JP2012205030A - Image signal processing apparatus - Google Patents

Image signal processing apparatus Download PDF

Info

Publication number
JP2012205030A
JP2012205030A JP2011066957A JP2011066957A JP2012205030A JP 2012205030 A JP2012205030 A JP 2012205030A JP 2011066957 A JP2011066957 A JP 2011066957A JP 2011066957 A JP2011066957 A JP 2011066957A JP 2012205030 A JP2012205030 A JP 2012205030A
Authority
JP
Japan
Prior art keywords
image
signal
control
linear
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011066957A
Other languages
Japanese (ja)
Other versions
JP5533752B2 (en
Inventor
Tsutomu Usui
勉 薄井
Yuichi Nonaka
雄一 野中
Shinichiro Hirooka
慎一郎 廣岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Consumer Electronics Co Ltd
Priority to JP2011066957A priority Critical patent/JP5533752B2/en
Publication of JP2012205030A publication Critical patent/JP2012205030A/en
Application granted granted Critical
Publication of JP5533752B2 publication Critical patent/JP5533752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which an image signal processing apparatus performing a wide dynamic range (WDR) processing, capable of obtaining an image with few blown-out highlights and blocked-up shadows by combining two images of a high-speed exposure image and low-speed exposure image, may cause many blown-out highlights and blocked-up shadows depending on a subject, particularly under a condition where the WDR is required, so that a feedback control, using the detection data, needs a time to optimally control detection data with an extreme blown-out highlight, obtained from the subject.SOLUTION: According to a detection result obtained by signal level detecting means for an image sensor with nonlinear photoelectric conversion characteristics, a long-time exposure and a short-time exposure by an image sensor with linear photoelectric conversion characteristics are controlled.

Description

本発明は、画像信号処理装置に関する。   The present invention relates to an image signal processing apparatus.

本技術分野の背景技術として、例えば、特開2002−279256号公報(特許文献1)がある。該公報には、課題として「上記ワイドダイナミックレンジカメラなどのダイナミックレンジの広い画像を撮影可能な撮像装置において,映像信号として再生可能な出力画像のダイナミックレンジが,輝度信号レベルが高輝度に該当する高輝度部分と輝度信号レベルが低輝度/中輝度に該当する低中輝度部分とに割り当てられる割合は,被写体によらず常に固定されていた。」と、[課題を解決するための手段]として、「被写体を撮像し;被写体の撮像された露光時間が相対的に長い長時間露光画像と,露光時間が相対的に短い短時間露光画像の画像信号を検波し;画像信号から決定される切替輝度信号レベルに基づき,長時間露光画像と短時間露光画像とから,合成画像を生成し;合成画像に占める輝度領域に応じて,合成画像を圧縮し,映像信号として出力する出力画像のダイナミックレンジの動的な割当てをし;出力画像のダイナミックレンジの動的な割当てに基づいて,合成画像のダイナミックレンジを圧縮することを特徴としている」と記載されている。   As background art in this technical field, for example, there is JP-A-2002-279256 (Patent Document 1). In this publication, as a problem, “in the imaging apparatus capable of capturing an image having a wide dynamic range such as the above-mentioned wide dynamic range camera, the dynamic range of the output image that can be reproduced as a video signal corresponds to the luminance signal level being high luminance. The ratio of the high luminance portion and the luminance signal level assigned to the low / medium luminance portion corresponding to the low luminance / medium luminance was always fixed regardless of the subject. ”[Means for solving the problem] , “Image picking up the subject; detecting the image signal of the long exposure image in which the exposure time of the subject imaged is relatively long and the short exposure image in which the exposure time is relatively short; switching determined from the image signal Generating a composite image from the long-exposure image and the short-exposure image based on the luminance signal level; compressing the composite image according to the luminance region occupied in the composite image; The dynamic range of the output image to be output as an image signal is dynamically allocated; the dynamic range of the composite image is compressed based on the dynamic allocation of the dynamic range of the output image ” Yes.

また、例えば特開2002−77733号公報(特許文献2)がある。該公報には[課題]として「本発明は、バイアス電圧を切り換えることなく、光電変換部に入射される入射光量に応じて、自動的に対数変換動作及び線形変換動作を切り換えることができる固体撮像装置を提供することを目的とする。」と、解決手段として、「信号φVPSに、撮像時にMOSトランジスタT1のソースに与える電圧VHより低い電圧VLとなるパルス信号を与えることによって、撮像開始時におけるMOSトランジスタT1のゲート電圧をソース電圧より低い電圧とする。よって、撮像時において、被写体が所定の輝度値を超えるまでは、MOSトランジスタT1がカットオフ状態となるので、線形変換された電気信号が出力され、又、被写体が所定の輝度値を超えたとき、MOSトランジスタT1がサブスレッショルド領域で動作するので、対数変換された電気信号が出力される。」と記載されている。   Moreover, there exists Unexamined-Japanese-Patent No. 2002-77733 (patent document 2), for example. In this publication, as a [problem], “the present invention is capable of automatically switching between a logarithmic conversion operation and a linear conversion operation according to the amount of incident light incident on the photoelectric conversion unit without switching the bias voltage. The object is to provide a device. ”As a solution,“ By giving a pulse signal having a voltage VL lower than the voltage VH applied to the source of the MOS transistor T1 to the signal φVPS during imaging, Since the gate voltage of the MOS transistor T1 is lower than the source voltage, the MOS transistor T1 is cut off until the subject exceeds a predetermined luminance value at the time of imaging. When the output of the object exceeds a predetermined luminance value, the MOS transistor T1 is set in the subthreshold region. The logarithm-converted electrical signal is output because the operation is performed. "

特願2002−279256号公報Japanese Patent Application No. 2002-279256 特開2002− 77733号公報JP 2002-77733 A

高速露光画像と低速露光画像の二枚の画像を合成することで白飛びや黒潰れの少ない画像を得る事の可能なワイドダイナミックレンジ処理(以後、WDR=Wide Dynamic Range処理)を行う画像信号処理装置において、適正なWDR処理画像を得るために、前記特許文献1では、「合成画像が生成されるたびに, 適正なダイナミックレンジの振分割合であるか否かを判断し, 適正でなければ振分割合
を補正する」ことにより画像からえられる検波データ等を取得解析しており、これらは検波データを用いたフィードバック制御である為に、特にWDRが求められる環境においては被写体によって白飛びや黒潰れの状態が多く、極端に白飛びをしている被写体から得られる検波データでは制御が最適となるまでの時間が必要となるってしまうという課題があった。
Image signal processing that performs wide dynamic range processing (hereinafter referred to as WDR = Wide Dynamic Range processing) that can produce images with little overexposure and underexposure by combining two images, a high-speed exposure image and a low-speed exposure image In order to obtain an appropriate WDR-processed image in the apparatus, in Patent Document 1, “every time a composite image is generated, it is determined whether or not the distribution ratio is an appropriate dynamic range. The detection data obtained from the image is acquired and analyzed by `` correcting the distribution ratio '', and these are feedback control using the detection data, so in particular in the environment where WDR is required, There is a problem in that detection data obtained from a subject that is often blacked out and is extremely out of focus requires time for optimal control.

また前記特許文献2では対数(以後、非線形とする)変換動作と線形変換動作を切り替えるとあるが、非線形動作では線形動作時の画像と同等のノイズ量や、色再現に関する画質は得られず、線形動作時ではダイナミックレンジの広い画像は得られないという問題があった。   Further, in Patent Document 2, there is switching between a logarithmic (hereinafter referred to as non-linear) conversion operation and a linear conversion operation. However, in the non-linear operation, an amount of noise equivalent to the image in the linear operation and an image quality related to color reproduction cannot be obtained. There was a problem that images with a wide dynamic range could not be obtained during linear operation.

本発明は、線形および非線形の画像処理技術を使用する際に露光制御を高速に制御可能な画像信号処理装置を提供することを目的とする。   An object of the present invention is to provide an image signal processing apparatus capable of controlling exposure control at high speed when using linear and nonlinear image processing techniques.

上記目的を解決するために、特許請求の範囲に記載の構成を採用する。   In order to solve the above object, the configuration described in the claims is adopted.

本発明によれば、線形および非線形の画像処理技術を使用する際に露光制御を高速に制御可能な画像信号処理装置を提供することができる。   According to the present invention, it is possible to provide an image signal processing apparatus capable of controlling exposure control at high speed when using linear and non-linear image processing techniques.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

実施例1における基本構成の一例を説明する図である。2 is a diagram illustrating an example of a basic configuration in Embodiment 1. FIG. 撮像素子の詳細について説明する図である。It is a figure explaining the detail of an image sensor. 白飛びが発生している画像のヒストグラムの制御例を示す図である。It is a figure which shows the example of control of the histogram of the image in which whiteout has generate | occur | produced. 線形センサと非線形センサを併用した際の画像のヒストグラムの例を示す図である。It is a figure which shows the example of the histogram of the image at the time of using a linear sensor and a nonlinear sensor together. カラーフィルタの配列の一例を示す図である。It is a figure which shows an example of the arrangement | sequence of a color filter. カラーフィルタの配列の一例を示す図である。It is a figure which shows an example of the arrangement | sequence of a color filter. カラーフィルタの配列の一例を示す図である。It is a figure which shows an example of the arrangement | sequence of a color filter.

以下、本発明の実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例1のシステム構成について図1を用いて説明する。
図1は、本発明の実施例1における基本構成の一例を説明する図である。
撮像部101の詳細については図2で説明する。
A system configuration of the first embodiment will be described with reference to FIG.
FIG. 1 is a diagram illustrating an example of a basic configuration according to the first embodiment of the present invention.
Details of the imaging unit 101 will be described with reference to FIG.

撮像部101は、被写体からの入射光の光量を調整する絞り(図示せず)、該絞りを通った光を集めるためのレンズ(図示せず)、該レンズが集めた光を光電変換し画像信号として出力し、かつ、その入出力特性が線形である撮像素子と非線形である撮像素子で構成され、各撮像素子には電子シャッタ制御部(図示せず)及び利得制御部(図示せず)が備わっている。   The imaging unit 101 includes a diaphragm (not shown) that adjusts the amount of incident light from the subject, a lens (not shown) that collects light that passes through the diaphragm, and photoelectrically converts the light collected by the lens to generate an image. An image sensor that outputs as a signal and has an input / output characteristic that is linear and an image sensor that is non-linear, each image sensor includes an electronic shutter controller (not shown) and a gain controller (not shown). Is equipped.

画像入力部102は、撮像部101からの画像信号を入力して後段の信号処理を行うブロックにて画像信号処理を行うための入力インタフェース処理であり、例えば、AD(Analog to Digital)変換処理であり、また、例えば、撮像素子と信号処理部との処理タイミングを調整する同期調整処理である。なお、画像入力部102は、信号レベル調整のための利得制御やフィルタ処理など、所定の画像信号処理を含んでも良い。   The image input unit 102 is an input interface process for performing image signal processing in a block that receives an image signal from the imaging unit 101 and performs subsequent signal processing. For example, the image input unit 102 performs AD (Analog to Digital) conversion processing. Also, for example, it is a synchronization adjustment process for adjusting the processing timing of the image sensor and the signal processing unit. The image input unit 102 may include predetermined image signal processing such as gain control and filter processing for signal level adjustment.

線形センサ露光制御部103は、撮像部101の絞りや、撮像素子の電子シャッタ制御および、利得制御、画像入力部102の利得などの制御を行う。また、WDR画像を得るために時分割で線形センサに対して長時間露光と短時間露光の制御を行い、長時間露光画像と短時間露光画像を得る。   The linear sensor exposure control unit 103 controls the aperture of the imaging unit 101, the electronic shutter control of the imaging device, the gain control, the gain of the image input unit 102, and the like. Further, in order to obtain a WDR image, the long time exposure and the short time exposure control are performed on the linear sensor in a time division manner to obtain a long time exposure image and a short time exposure image.

非線形センサ露光制御部104は、線形センサ露光制御部103が長時間露光と短時間露光を時分割で制御する為に撮像部101の絞りを制御する事で非線形センサに対する入射光の光量が変化する場合や、線形センサ露光制御部103が画像入力部102の利得などを制御する場合に、画像入力部102からの出力される非線形センサ画像信号の量を所定に保つように、撮像素子の電子シャッタや利得、あるいはその両方の制御を行う。   The non-linear sensor exposure control unit 104 changes the amount of incident light with respect to the non-linear sensor by controlling the aperture of the imaging unit 101 so that the linear sensor exposure control unit 103 controls long exposure and short exposure in a time-sharing manner. When the linear sensor exposure control unit 103 controls the gain of the image input unit 102 or the like, the electronic shutter of the image sensor is maintained so as to keep the amount of the nonlinear sensor image signal output from the image input unit 102 at a predetermined level. And / or gain control.

信号レベル検出部105は、画像入力部102からの線形センサと非線形センサからの画像信号の信号レベルを検出する。信号レベル検出部105にて検出する数値は、例えば、入力した画素信号の絶対値である。また、例えば、入力した画素信号のヒストグラム分布、最大値最小値、平均値など、画像領域の信号の輝度分布状態を示す情報となる数値である。以上の情報を検出すれば、画素信号を得た際の入射光の光量を推定することができる。   The signal level detection unit 105 detects the signal level of the image signal from the linear sensor and the nonlinear sensor from the image input unit 102. The numerical value detected by the signal level detection unit 105 is, for example, the absolute value of the input pixel signal. Also, for example, numerical values serving as information indicating the luminance distribution state of the signal in the image area, such as a histogram distribution, maximum value minimum value, and average value of the input pixel signal. If the above information is detected, the amount of incident light when the pixel signal is obtained can be estimated.

画質制御部106は、信号レベル検出部105からの長時間露光画像信号および短時間露光画像信号にノイズ除去、ガンマ補正、輪郭強調、フィルタ処理、ズーム処理、手ぶれ補正、画像認識などの、画像信号処理を行う。   The image quality control unit 106 applies image signals such as noise removal, gamma correction, contour enhancement, filter processing, zoom processing, camera shake correction, and image recognition to the long exposure image signal and the short exposure image signal from the signal level detection unit 105. Process.

画像合成部107は画質制御部からの長時間露光画像信号および短時間露光画像信号からWDR画像を合成する
画像出力部108は、画像合成部107からの画像信号に所定の処理を行い出力する。
The image synthesis unit 107 synthesizes the WDR image from the long exposure image signal and the short exposure image signal from the image quality control unit, and the image output unit 108 performs predetermined processing on the image signal from the image synthesis unit 107 and outputs it.

所定の処理とは、TVやストレージなどの出力機器の信号フォーマットに変換する出力インタフェース処理であり、例えば、NTSCやPALのビデオ出力に変換するものであり、例えば、HDMI信号に変換するものであり、例えば、ネットワーク伝送のために所定の信号に変換するものである。なお、画像出力部110は、信号レベル調整のための利得制御や、フィルタ処理、エンコードによる圧縮処理など、所定の画像信号処理を含む構成であっても良い。   The predetermined process is an output interface process for converting to a signal format of an output device such as a TV or a storage, for example, converting to an NTSC or PAL video output, for example, converting to an HDMI signal. For example, the signal is converted into a predetermined signal for network transmission. The image output unit 110 may be configured to include predetermined image signal processing such as gain control for signal level adjustment, filter processing, and compression processing by encoding.

次に撮像部101の一部である撮像素子の詳細について図2で説明する。
図2で示すカラーフィルタの配列は一般的ベイヤ配列と呼ばれているRGB各カラーフィルタに対して、R、G、Bフィルタを配置している撮像素子は線形撮像素子を用いており、例えばGフィルタの半数にあたる箇所を非線形撮像素子としている。
Next, the details of the image sensor which is a part of the imaging unit 101 will be described with reference to FIG.
The color filter array shown in FIG. 2 uses a linear image sensor as an image sensor in which R, G, and B filters are arranged with respect to each RGB color filter called a general Bayer array. A portion corresponding to half of the filter is a non-linear image sensor.

また、前記線形センサ露光制御部103は、図2のR,G,Bフィルタが配置されている線形画素に対する電子シャッタ及び、利得制御を行う。前記非線形センサ露光制御部104は、図2の非線形画素(Lの画素)に対する電子シャッタ及び利得制御を行う事で、画像入力部102からの出力される線形画素と非線形画素の信号の量を個別に制御が可能となる。   Further, the linear sensor exposure control unit 103 performs electronic shutter and gain control for the linear pixel in which the R, G, and B filters of FIG. 2 are arranged. The non-linear sensor exposure control unit 104 performs electronic shutter and gain control on the non-linear pixel (L pixel) in FIG. 2 to individually control the amount of linear pixel and non-linear pixel signals output from the image input unit 102. Control becomes possible.

次に本実施例によって解決されるWDR制御について説明する。まず初めにWDR制御とは高速露光画像と低速露光画像の二枚の画像を合成することで白飛びや黒潰れの少ない画像を得る事の可能な制御であるが、先に課題で述べたとおり、適正なWDR処理画像を得るためには、画像からえられる検波データを取得解析し、合成画像に占める輝度領域に応じて,合成画像を圧縮し,映像信号として出力する出力画像のダイナミックレンジの動的な割当てを行っている。この動的な割り当てを行う為に必要な高速露光画像と低速露光画像の取得には、高速露光画像に対しては白飛びを抑えるようにシャッタ制御や、絞り制御、ゲイン制御を行い、また低速露光画像に対して黒つぶれを抑えるように同様の制御行っている。   Next, WDR control solved by this embodiment will be described. First of all, WDR control is a control that can obtain an image with little overexposure and underexposure by combining two images, a high-speed exposure image and a low-speed exposure image. In order to obtain an appropriate WDR-processed image, the detection data obtained from the image is acquired and analyzed, and the composite image is compressed according to the luminance region occupied in the composite image, and the dynamic range of the output image output as a video signal Dynamic allocation is performed. In order to acquire the high-speed exposure image and low-speed exposure image necessary for this dynamic allocation, shutter control, aperture control, and gain control are performed on the high-speed exposure image to suppress overexposure. The same control is performed so as to suppress blackout on the exposed image.

しかし従来の線形センサでは、ダイナミックレンジが狭い為にこれらの各画像に白飛びや黒つぶれが発生している際、特に白飛びに関してはセンサで取得したデータが飽和している場合は一回の制御で最適画像となる制御量が求めることが出来ないために、検波データ取得と解析と制御を繰り返し実施することが必要となる為に、制御が最適となるまでの時間が必要となるってしまっていた。   However, in the conventional linear sensor, since the dynamic range is narrow, each of these images has whiteout or blackout, especially when the data acquired by the sensor is saturated with regard to whiteout. Since it is not possible to obtain the control amount that will be the optimal image in the control, it is necessary to repeat the detection data acquisition, analysis, and control, so it takes time to optimize the control. I was sorry.

そこで本実施例においては、従来WDR制御のように白飛びや黒潰れした映像から、最適な長時間露光制御と短時間露光制御になるまで繰り返し制御を行うのではなく、線形センサと非線形センサを併用し、非線形センサによって常時取得可能な白飛びや黒潰れのない検波データから得られるヒストグラムや輝度データを解析する事によって、線形撮像素子による撮像データが白飛びや黒つぶれせずに取得できるシャッタ制御値、絞り制御値、ゲイン制御値を求める事が可能となる。   Therefore, in this embodiment, the linear sensor and the non-linear sensor are used instead of repeating the control until the optimum long exposure control and short exposure control are performed from the image that has been blown out or blacked out as in the conventional WDR control. Combined with this, by analyzing the histogram and brightness data obtained from detection data without whiteout or blackout that can always be acquired by a non-linear sensor, the shutter can acquire image data from the linear image sensor without whiteout or blackout. The control value, aperture control value, and gain control value can be obtained.

その制御の違いを図3と図4を用いて説明する。
図3に従来WDRによる白飛びが発生している画像のヒストグラムの制御例を示す。図3(a)はセンサの飽和レベルa以上の信号が存在している状態を表している。図3(a)はWDR制御によって飽和レベルa以上の信号は存在しないが、最適信号レベルb以下にはなっていない状態。図3(b)は最適信号レベルになった状態である。
The difference in control will be described with reference to FIGS.
FIG. 3 shows a control example of a histogram of an image in which whiteout occurs due to conventional WDR. FIG. 3A shows a state in which a signal having a saturation level a or higher of the sensor exists. FIG. 3A shows a state in which there is no signal above the saturation level a by the WDR control, but it is not below the optimum signal level b. FIG. 3B shows a state where the optimum signal level is reached.

従来WDR制御では、白飛びしている信号がその程度の輝度レベルにあるかが、センサの信号が飽和してしまっているために判断が出来ないため、図3(a)の状態から図3(b)の状態になるまでの制御量が求めることができない。そのため、図3(d)のフローチャートに示すように信号が飽和している場合の制御量は、適当な一定制御量を繰り返し行い徐々に制御値を変えて制御する方法しかできない。仮に制御量を大きくすれば、最適露光状態を超えて制御をかけすぎてしまう可能性があり、また制御量を小さくすれば制御に時間がかかってしまう。   In the conventional WDR control, it cannot be determined whether or not the whiteout signal is at such a luminance level because the signal of the sensor is saturated, so the state shown in FIG. The control amount until the state (b) is reached cannot be obtained. For this reason, as shown in the flowchart of FIG. 3D, the control amount when the signal is saturated can only be controlled by repeatedly changing an appropriate constant control amount and gradually changing the control value. If the control amount is increased, there is a possibility that the control will be excessively performed beyond the optimum exposure state, and if the control amount is decreased, the control will take time.

そこで図4に線形センサと非線形センサを併用した際の画像のヒストグラムの例を示す。   FIG. 4 shows an example of an image histogram when a linear sensor and a nonlinear sensor are used in combination.

図4(a)は図3と同様の被写体を撮影していると仮定しセンサの飽和レベルa以上の信号が存在している状態を表している。図4(b)は図4(a)と同じタイミングで非線形センサにより撮影されたヒストグラムの例である。図4(a)では飽和レベル以上の信号となってしまっている信号が、非線形センサでは図4(b)で示すように最適信号レベルのヒストグラムとして取得することが可能となる様子を示している。また線形センサと非線形センサの信号レベルの相関関係はセンサの入出力特性や、各素子のゲイン量などから決まるので非線形センサで取得したヒストグラムの図4(b)の明るさcに割りあたっている信号レベルを線形センサの図4(c)の最適信号レベルbに制御するための制御量は求めることが可能となる。   FIG. 4A shows a state where a signal equal to or higher than the saturation level a of the sensor exists on the assumption that the same subject as in FIG. 3 is being photographed. FIG. 4B is an example of a histogram photographed by a non-linear sensor at the same timing as FIG. FIG. 4A shows that a signal that has become a signal equal to or higher than the saturation level can be acquired as a histogram of the optimum signal level in the nonlinear sensor as shown in FIG. 4B. . Further, since the correlation between the signal level of the linear sensor and the nonlinear sensor is determined by the input / output characteristics of the sensor, the gain amount of each element, etc., it is assigned to the brightness c in FIG. 4B of the histogram acquired by the nonlinear sensor. A control amount for controlling the signal level to the optimum signal level b in FIG. 4C of the linear sensor can be obtained.

そのため、従来の線形センサのように適当な制御値になるように徐々に制御量を変えていく必要がなく、短時間の制御によって線形センサの最適露光状態に制御することが可能である。   Therefore, it is not necessary to gradually change the control amount so as to obtain an appropriate control value as in the conventional linear sensor, and the linear sensor can be controlled to the optimum exposure state by a short time control.

しかし入力特性が線形である撮像部に対する長時間露光と短時間露光制御を行っている為に両センサで共通に使用されているメカニカルシャッタや絞りが変化することで入出力特性が非線形である撮像部への入力信号も同じく変動してしまう。   However, because long-time exposure and short-time exposure control are performed for an image pickup unit with linear input characteristics, the input / output characteristics are nonlinear by changing the mechanical shutter and diaphragm used in common for both sensors. The input signal to the unit also varies.

しかしメカシャッタや絞り制御などにより線形撮像素子の入力信号が変動する場合でも、非線形撮像素子で撮像した信号から線形撮像素子の制御量を求めることはメカシャッタの制御量や、絞り量を考慮する事で可能である
あるいはシャッタの制御量や、絞りの制御量を非線形撮像素子の電子シャッタ制御やゲイン制御等を用いて相殺するように制御する事で、非線形撮像素子の信号量がシャッタや絞りゲイン制御が固定の状態と同等の状態とする事が可能である。
However, even when the input signal of the linear image sensor fluctuates due to the mechanical shutter or aperture control, the control amount of the linear image sensor can be obtained from the signal imaged by the nonlinear image sensor by considering the control amount of the mechanical shutter and the aperture amount. It is possible to control the amount of control of the shutter and the amount of control of the aperture by using electronic shutter control and gain control of the nonlinear imaging device, so that the signal amount of the nonlinear imaging device can be controlled by the shutter and aperture gain control. Can be equivalent to a fixed state.

すなわち非線形撮像部の電子シャッタやゲインを、線形撮像部による露出制御を打ち消すように制御することで非線形の撮像部への入力信号をある一定の信号量になるようにする事が可能であり、このように制御する事により非線形撮像素子が常に一定の制御量で動作しているとみなすことができ、非線形素子が取得するヒストグラム等の検出結果より線形素子の制御量を簡単に求めることが可能となる。   That is, by controlling the electronic shutter and gain of the nonlinear imaging unit so as to cancel the exposure control by the linear imaging unit, it is possible to make the input signal to the nonlinear imaging unit have a certain signal amount, By controlling in this way, it can be assumed that the nonlinear imaging element is always operating with a constant control amount, and the control amount of the linear element can be easily obtained from the detection result such as a histogram acquired by the nonlinear element. It becomes.

このように制御する事で非線形撮像素子のダイナミックレンジが広い特性より得られる白飛びや黒潰れの状態がない画像からの検波データを線形撮像素子の制御に用いる事が可能となる。   By controlling in this way, it becomes possible to use detection data from an image having no overexposure or underexposure obtained from the characteristic that the dynamic range of the nonlinear imaging device is wide for controlling the linear imaging device.

また短時間露光制御についても同様で、線形撮像素子では黒潰れが発生していた被写体に対して制御時間を必要とせず最適な長時間露光制御量を求める事が可能となる。   The same applies to the short-time exposure control, and it is possible to obtain an optimal long-time exposure control amount without requiring a control time for a subject in which blackout occurs in the linear imaging device.

また、カラーフィルタの配列については図2で示すカラーフィルタの配列以外に、非線形撮像素子とするGフィルタの位置を図5のパターンとしてもよく、また非線形撮像素子の解像度重視のパターンである図6や、Gフィルタ色再現重視のパターンである図7などとしてもよい。   In addition to the color filter arrangement shown in FIG. 2, the arrangement of the color filters may be such that the position of the G filter as the non-linear image sensor is the pattern shown in FIG. Alternatively, FIG. 7 may be used as a G filter color reproduction-oriented pattern.

101…撮像部、102…画像入力部、103…線形センサ露光制御部、104・・・非線形センサ露光制御部、105…信号レベル検出部、106…画質制御部、107.・・・画像合成部、108…画像出力部、201…R:線形画素及びRフィルタ、202・・・G:線形画素および、Gフィルタ。203・・・B:線形画素及び、Bフィルタ、204・・・L:非線形画素 DESCRIPTION OF SYMBOLS 101 ... Imaging part, 102 ... Image input part, 103 ... Linear sensor exposure control part, 104 ... Nonlinear sensor exposure control part, 105 ... Signal level detection part, 106 ... Image quality control part, 107 ... Image composition part 108: Image output unit 201: R: Linear pixel and R filter 202: G: Linear pixel and G filter 203 ... B: Linear pixel and B filter, 204 ... L: Non-linear pixel

Claims (2)

光電変換特性が非線形である第1の撮像素子と
光電変換特性が線形である第2の撮像素子と、
該撮像素子からの信号を入力する画像入力手段と、
該画像入力手段からの信号レベルを検出する信号レベル検出手段と、
高速露光信号と低速露光信号を合成する画像信号合成手段と
光電変換特性が非線形である撮像素子の第1の露光制御手段と、
光電変換特性が線形である撮像素子の第2の露光制御手段と、
を具備し、
前記第2の露光制御手段は、前記光電変換が非線形である撮像素子の信号レベル検出手段によって得られた検波結果に応じて、光電変換特性が線形である撮像素子による長時間露光制御と短時間露光制御を制御する事を特徴とする画像信号処理装置。
A first image sensor having a non-linear photoelectric conversion characteristic and a second image sensor having a linear photoelectric conversion characteristic;
Image input means for inputting a signal from the image sensor;
Signal level detection means for detecting the signal level from the image input means;
Image signal combining means for combining a high-speed exposure signal and a low-speed exposure signal; first exposure control means for an image pickup device whose photoelectric conversion characteristics are nonlinear;
A second exposure control means of the image pickup device having a linear photoelectric conversion characteristic;
Comprising
The second exposure control means includes a long-time exposure control and a short time by an imaging element having a linear photoelectric conversion characteristic according to a detection result obtained by the signal level detection means of the imaging element in which the photoelectric conversion is nonlinear. An image signal processing apparatus for controlling exposure control.
請求項1において、光電変換特性が非線形である撮像素子に対する検波結果が、光電変換特性が線形である撮像素子に対する露光制御量を打ち消すように、光電変換特性が非線形である撮像素子の第1の露光制御手段が制御することを特徴とする画像信号処理装置。 2. The first imaging device according to claim 1, wherein the detection result for the imaging device having a non-linear photoelectric conversion characteristic cancels the exposure control amount for the imaging device having a linear photoelectric conversion property. An image signal processing apparatus controlled by exposure control means.
JP2011066957A 2011-03-25 2011-03-25 Image signal processing device Active JP5533752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066957A JP5533752B2 (en) 2011-03-25 2011-03-25 Image signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066957A JP5533752B2 (en) 2011-03-25 2011-03-25 Image signal processing device

Publications (2)

Publication Number Publication Date
JP2012205030A true JP2012205030A (en) 2012-10-22
JP5533752B2 JP5533752B2 (en) 2014-06-25

Family

ID=47185540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066957A Active JP5533752B2 (en) 2011-03-25 2011-03-25 Image signal processing device

Country Status (1)

Country Link
JP (1) JP5533752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009729A1 (en) * 2014-07-18 2016-01-21 ソニー株式会社 Imaging control device, imaging apparatus, and imaging control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103379A (en) * 1999-09-28 2001-04-13 Minolta Co Ltd Solid-state image pickup device
JP2004007298A (en) * 2002-06-03 2004-01-08 Olympus Corp Imaging apparatus and imaging method
JP2011024088A (en) * 2009-07-17 2011-02-03 Sony Corp Imaging device, and method of controlling imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103379A (en) * 1999-09-28 2001-04-13 Minolta Co Ltd Solid-state image pickup device
JP2004007298A (en) * 2002-06-03 2004-01-08 Olympus Corp Imaging apparatus and imaging method
JP2011024088A (en) * 2009-07-17 2011-02-03 Sony Corp Imaging device, and method of controlling imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009729A1 (en) * 2014-07-18 2016-01-21 ソニー株式会社 Imaging control device, imaging apparatus, and imaging control method
US9894284B2 (en) 2014-07-18 2018-02-13 Sony Semiconductor Solutions Corporation Imaging control device, imaging apparatus, and imaging control method

Also Published As

Publication number Publication date
JP5533752B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
US8736748B2 (en) Image capturing apparatus and control method controlling exposure time of image sensor
JP5018770B2 (en) Image signal processing apparatus and image signal processing method
US20130051700A1 (en) Image processing apparatus, image processing method, and program
KR20110032344A (en) High dynamic range imaging apparatus and method
US9699387B2 (en) Image processing device for processing pupil-divided images obtained through different pupil regions of an imaging optical system, control method thereof, and program
JP2008015741A (en) Image processor, image processing method, and image pickup device using the same
JP2009296178A (en) Imaging device and imaging method
WO2015190156A1 (en) Image processing device, imaging device equipped with same, image processing method, and image processing program
KR20080076004A (en) Image pickup device and method of extending dynamic range thereof
US9277135B2 (en) Image-pickup apparatus, control method for the same, and non-transitory computer-readable storage medium
US11838649B2 (en) Image capturing device and control method thereof and medium
US8970732B2 (en) Image capture apparatus and method of controlling the same
US9113117B2 (en) Image-taking apparatus and method for controlling the same
US8026965B2 (en) Image pickup apparatus and method for controlling the same
JP2012134745A (en) Image signal processing device
JP5533752B2 (en) Image signal processing device
US8368782B2 (en) Multiple exposure image pickup apparatus, multiple exposure image pickup method, program, and recording medium
JP5515795B2 (en) Imaging apparatus and imaging method
JP2001352552A (en) Video signal processing unit and video signal processing method
JP2010183461A (en) Image capturing apparatus and method of controlling the same
JP2015037222A (en) Image processing apparatus, imaging apparatus, control method, and program
JP2008306326A (en) Image processing device and image processing method
JP6849351B2 (en) Image processing equipment, image processing methods, and programs
JP2021057625A (en) Imaging apparatus and control method
JP5597124B2 (en) Image signal processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140310

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5533752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250