JP2012203399A - Electrophotographic photoreceptor, image forming apparatus, and process cartridge - Google Patents

Electrophotographic photoreceptor, image forming apparatus, and process cartridge Download PDF

Info

Publication number
JP2012203399A
JP2012203399A JP2011071188A JP2011071188A JP2012203399A JP 2012203399 A JP2012203399 A JP 2012203399A JP 2011071188 A JP2011071188 A JP 2011071188A JP 2011071188 A JP2011071188 A JP 2011071188A JP 2012203399 A JP2012203399 A JP 2012203399A
Authority
JP
Japan
Prior art keywords
charge transport
transport material
layer
mass
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011071188A
Other languages
Japanese (ja)
Inventor
Hiroichi Sakashita
博一 坂下
Masahiro Iwasaki
真宏 岩崎
Hiroshi Nakamura
博史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2011071188A priority Critical patent/JP2012203399A/en
Publication of JP2012203399A publication Critical patent/JP2012203399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress variation in residual potential due to change in environment.SOLUTION: An electrophotographic photoreceptor includes a conductive substrate 1, and a photosensitive layer 2 on the conductive substrate 1. A layer that constitutes the outermost surface layer of the photosensitive layer 2 (a protection layer 2C) contains a polymer of a charge transport material (A) having a plurality of hydroxyl groups and a charge transport material (B) having no reactive substituent groups. The content ratio of the charge transport material (B) in the entire charge transport materials is 0.19 wt.% or more and 1.5 wt.% or less; and the ionization potential of the charge transport material (A) (IpA) and the ionization potential of the charge transport material (B) (IpB) satisfy the following formula (1). IpB+0.2[eV]≥IpA[eV]≥IpB+0.04[eV] formula (1).

Description

本発明は、電子写真感光体、画像形成装置、およびプロセスカートリッジに関する。   The present invention relates to an electrophotographic photosensitive member, an image forming apparatus, and a process cartridge.

電子写真方式の画像形成装置に用いられる電子写真感光体においては、その表面に保護層(表面層)を設けることが提案されている。
該保護層を形成する材料系としては、例えば、導電粉をフェノール樹脂に分散したもの(例えば、特許文献1参照)、連鎖重合性材料によるもの(例えば、特許文献2参照)がそれぞれ提案されている。また、保護層中に電荷輸送材を含有させた感光体を用いた画像形成装置が提案されている(例えば、特許文献3、4参照)。そのほか、連鎖重合性官能基を有する電荷輸送性物質を重合、架橋させる感光体が提案されている(例えば、特許文献5参照)。
In an electrophotographic photoreceptor used in an electrophotographic image forming apparatus, it has been proposed to provide a protective layer (surface layer) on the surface.
As a material system for forming the protective layer, for example, a material in which conductive powder is dispersed in a phenol resin (for example, see Patent Document 1) and a material using a chain polymerizable material (for example, see Patent Document 2) have been proposed. Yes. In addition, an image forming apparatus using a photoreceptor in which a charge transport material is contained in a protective layer has been proposed (see, for example, Patent Documents 3 and 4). In addition, a photoreceptor that polymerizes and crosslinks a charge transporting substance having a chain polymerizable functional group has been proposed (see, for example, Patent Document 5).

特許第3287678号明細書Japanese Patent No. 3287678 特開2005−234546号公報JP 2005-234546 A 特開2006−85033号公報JP 2006-85033 A 特開2000−292959号公報JP 2000-292959 A 特許第4429340号明細書Japanese Patent No. 4429340

本発明の課題は、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有しない場合、全電荷輸送物質中における電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下でない場合、および/または、電荷輸送物質(A)のイオン化ポテンシャル(IpA)と電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが前記式(1)を満たさない場合に比べ、環境変化による残留電位の変動を抑制することにある。   An object of the present invention is to provide a charge transport material in all charge transport materials when it does not contain a polymer of a charge transport material (A) having a plurality of hydroxyl groups and a charge transport material (B) having no reactive substituent. When the ratio of (B) is not 0.19 mass% or more and 1.5 mass% or less, and / or the ionization potential (IpA) of the charge transport material (A) and the ionization potential (IpB) of the charge transport material (B) Compared to the case where the above equation (1) is not satisfied, the variation in the residual potential due to the environmental change is suppressed.

上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
導電性基体と、前記導電性基体上に感光層と、を有し、
前記感光層の最外表面を構成する層が、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有し、
全電荷輸送物質中における前記電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下であり、
前記電荷輸送物質(A)のイオン化ポテンシャル(IpA)と前記電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが下記式(1)を満たす電子写真感光体である。
IpB+0.2[eV]≧IpA[eV]≧IpB+0.04[eV] 式(1)
The above problem is solved by the following means. That is,
The invention according to claim 1
A conductive substrate and a photosensitive layer on the conductive substrate;
The layer constituting the outermost surface of the photosensitive layer contains a charge transport material (A) having a plurality of hydroxyl groups and a charge transport material (B) having no reactive substituent,
The ratio of the charge transport material (B) in the total charge transport material is 0.19% by mass or more and 1.5% by mass or less,
An electrophotographic photoreceptor in which the ionization potential (IpA) of the charge transport material (A) and the ionization potential (IpB) of the charge transport material (B) satisfy the following formula (1).
IpB + 0.2 [eV] ≧ IpA [eV] ≧ IpB + 0.04 [eV] Equation (1)

請求項2に係る発明は、
導電性基体上に感光層を有し、前記感光層の最外表面を構成する層が、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有し、全電荷輸送物質中における前記電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下であり、前記電荷輸送物質(A)のイオン化ポテンシャル(IpA)と前記電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが下記式(1)を満たす電子写真感光体と、
前記電子写真感光体の表面を帯電させる帯電装置と、
帯電された前記電子写真感光体の表面に静電潜像を形成する静電潜像形成装置と、
前記静電潜像を現像剤で現像してトナー像を形成する現像装置と、
前記トナー像を被転写媒体に転写する転写装置と、
を備える画像形成装置である。
IpB+0.2[eV]≧IpA[eV]≧IpB+0.04[eV] 式(1)
The invention according to claim 2
A charge transport material having a photosensitive layer on a conductive substrate, wherein the layer constituting the outermost surface of the photosensitive layer does not have a reactive substituent with the polymer of the charge transport material (A) having a plurality of hydroxyl groups (B), the ratio of the charge transport material (B) in the total charge transport material is 0.19 mass% or more and 1.5 mass% or less, and the ionization potential of the charge transport material (A) ( An electrophotographic photoreceptor in which IpA) and the ionization potential (IpB) of the charge transport material (B) satisfy the following formula (1):
A charging device for charging the surface of the electrophotographic photosensitive member;
An electrostatic latent image forming apparatus for forming an electrostatic latent image on the surface of the charged electrophotographic photosensitive member;
A developing device for developing the electrostatic latent image with a developer to form a toner image;
A transfer device for transferring the toner image to a transfer medium;
An image forming apparatus.
IpB + 0.2 [eV] ≧ IpA [eV] ≧ IpB + 0.04 [eV] Equation (1)

請求項3に係る発明は、
導電性基体上に感光層を有し、前記感光層の最外表面を構成する層が、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有し、全電荷輸送物質中における前記電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下であり、前記電荷輸送物質(A)のイオン化ポテンシャル(IpA)と前記電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが下記式(1)を満たす電子写真感光体を備え、
画像形成装置に着脱し得るプロセスカートリッジである。
IpB+0.2[eV]≧IpA[eV]≧IpB+0.04[eV] 式(1)
The invention according to claim 3
A charge transport material having a photosensitive layer on a conductive substrate, wherein the layer constituting the outermost surface of the photosensitive layer does not have a reactive substituent with the polymer of the charge transport material (A) having a plurality of hydroxyl groups (B), the ratio of the charge transport material (B) in the total charge transport material is 0.19 mass% or more and 1.5 mass% or less, and the ionization potential of the charge transport material (A) ( An electrophotographic photoreceptor in which IpA) and the ionization potential (IpB) of the charge transport material (B) satisfy the following formula (1):
The process cartridge is detachable from the image forming apparatus.
IpB + 0.2 [eV] ≧ IpA [eV] ≧ IpB + 0.04 [eV] Equation (1)

請求項1に係る発明によれば、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有しない場合、全電荷輸送物質中における電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下でない場合、および/または、電荷輸送物質(A)のイオン化ポテンシャル(IpA)と電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが前記式(1)を満たさない場合に比べ、環境変化による残留電位の変動が抑制される。   According to the first aspect of the present invention, when the charge transport material (A) having a plurality of hydroxyl groups and the charge transport material (B) having no reactive substituent are not contained, When the ratio of the charge transport material (B) is not 0.19 mass% or more and 1.5 mass% or less, and / or the ionization potential (IpA) of the charge transport material (A) and the ionization of the charge transport material (B) Compared with the case where the potential (IpB) does not satisfy the formula (1), fluctuations in the residual potential due to environmental changes are suppressed.

請求項2に係る発明によれば、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有しない場合、全電荷輸送物質中における電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下でない場合、および/または、電荷輸送物質(A)のイオン化ポテンシャル(IpA)と電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが前記式(1)を満たさない場合に比べ、環境変化による画質欠陥の発生が抑制される。   According to the invention of claim 2, when the charge transport material (A) having a plurality of hydroxyl groups and the charge transport material (B) having no reactive substituent are not contained, When the ratio of the charge transport material (B) is not 0.19 mass% or more and 1.5 mass% or less, and / or the ionization potential (IpA) of the charge transport material (A) and the ionization of the charge transport material (B) Compared with the case where the potential (IpB) does not satisfy the above formula (1), the occurrence of image quality defects due to environmental changes is suppressed.

請求項3に係る発明によれば、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有しない場合、全電荷輸送物質中における電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下でない場合、および/または、電荷輸送物質(A)のイオン化ポテンシャル(IpA)と電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが前記式(1)を満たさない場合に比べ、環境変化による画質欠陥の発生が抑制される。   According to the invention of claim 3, when the charge transport material (A) having a plurality of hydroxyl groups and the charge transport material (B) having no reactive substituent are not contained, When the ratio of the charge transport material (B) is not 0.19 mass% or more and 1.5 mass% or less, and / or the ionization potential (IpA) of the charge transport material (A) and the ionization of the charge transport material (B) Compared with the case where the potential (IpB) does not satisfy the above formula (1), the occurrence of image quality defects due to environmental changes is suppressed.

本実施形態に用いられる第1の態様の電子写真感光体を示す概略部分断面図である。1 is a schematic partial cross-sectional view showing an electrophotographic photosensitive member of a first aspect used in the present embodiment. 本実施形態に用いられる第2の態様の電子写真感光体を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the electrophotographic photoreceptor of the 2nd aspect used for this embodiment. 本実施形態に係る画像形成装置を示す概略構成図である。1 is a schematic configuration diagram illustrating an image forming apparatus according to an exemplary embodiment. 本実施形態に係る他の画像形成装置を示す概略構成図である。It is a schematic block diagram which shows the other image forming apparatus which concerns on this embodiment.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<電子写真感光体>
本実施形態に係る電子写真感光体(以下単に「感光体」と称す)は、導電性基体と、前記導電性基体上に感光層と、を有し、前記感光層の最外表面を構成する層(以下単に「表面層」と称す)が、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有し、全電荷輸送物質中における前記電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下であり、前記電荷輸送物質(A)のイオン化ポテンシャル(IpA)と前記電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが下記式(1)を満たす。
IpB+0.2[eV]≧IpA[eV]≧IpB+0.04[eV] 式(1)
<Electrophotographic photoreceptor>
The electrophotographic photoreceptor according to the exemplary embodiment (hereinafter simply referred to as “photoreceptor”) includes a conductive substrate and a photosensitive layer on the conductive substrate, and constitutes the outermost surface of the photosensitive layer. A layer (hereinafter simply referred to as “surface layer”) contains a polymer of a charge transport material (A) having a plurality of hydroxyl groups and a charge transport material (B) having no reactive substituent, and is capable of transporting all charges. The ratio of the charge transport material (B) in the material is 0.19% by mass or more and 1.5% by mass or less, and the ionization potential (IpA) of the charge transport material (A) and the charge transport material (B) The ionization potential (IpB) satisfies the following formula (1).
IpB + 0.2 [eV] ≧ IpA [eV] ≧ IpB + 0.04 [eV] Equation (1)

水酸基を持つ電荷輸送物質を重合して形成される感光体の表面層中には、反応せずに残った残留水酸基が存在する。この残留水酸基は、画像形成装置中での湿度変化や放電ガスの暴露などの環境変化によって相互作用を起こし、電荷を捕獲するトラップを形成して残留電位を変動させることがある。   Residual hydroxyl groups remaining without reacting exist in the surface layer of the photoreceptor formed by polymerizing a charge transport material having hydroxyl groups. This residual hydroxyl group may interact due to environmental changes such as humidity change and discharge gas exposure in the image forming apparatus, and may form a trap for trapping charges to change the residual potential.

この環境変化による残留電位の変動について鋭意検討したところ、複数の水酸基を持つ電荷輸送物質(A)と反応するための置換基(反応性置換基)を持たず、且つイオン化ポテンシャル(Ip)が前記(A)よりも上記に示す範囲分低い電荷輸送物質(B)を上記範囲にて添加することで、残留電位の変動を抑制し得ることを見出した。
これは、電荷輸送物質(B)が上記の通り電荷輸送物質(A)よりもイオン化ポテンシャル(Ip)が低く、環境変化(湿度変化や放電ガスの暴露など)によって生じる相互作用を引き起こしやすいために、該相互作用を前記の残留水酸基に代わって選択的に受け持ち、その結果残留電位の変動が抑制されるものと推察される。
また、特に電荷輸送物質(B)自体の含有量が上記の通り1.5質量%以下と少ないため、表面層全体の電気特性変化を抑制するためと考えられる。よって、電荷輸送物質(B)の量が上記範囲であることが重要となる。
As a result of diligent examination on the fluctuation of the residual potential due to this environmental change, it has no substituent (reactive substituent) for reacting with the charge transport material (A) having a plurality of hydroxyl groups, and the ionization potential (Ip) is It has been found that the fluctuation of the residual potential can be suppressed by adding the charge transport material (B) lower than the range shown in (A) in the above range.
This is because the charge transport material (B) has a lower ionization potential (Ip) than the charge transport material (A) as described above, and is likely to cause an interaction caused by an environmental change (such as humidity change or discharge gas exposure). It is presumed that the interaction is selectively carried out instead of the residual hydroxyl group, and as a result, the fluctuation of the residual potential is suppressed.
In addition, since the content of the charge transport material (B) itself is as small as 1.5% by mass or less as described above, it is considered that the change in the electrical characteristics of the entire surface layer is suppressed. Therefore, it is important that the amount of the charge transport material (B) is in the above range.

・イオン化ポテンシャル
電荷輸送物質(B)のイオン化ポテンシャル(IpB)は電荷輸送物質(A)のイオン化ポテンシャル(IpA)よりも、上記の通り0.04eV以上0.2eV以下低く、更には0.04eV以上0.18eV以下低いことがより好ましい。
電荷輸送物質(B)の電荷輸送物質(A)とのイオン化ポテンシャルの差が0.04eV未満である場合には、イオン化ポテンシャルの差が小さ過ぎて残留電位の変動抑制、特に湿度による残留電位の変動抑制の効果が得られない。一方0.2eVよりも大きい場合には、イオン化ポテンシャルの差が大き過ぎて、帯電と除電を繰り返して画像を形成した場合に残留電位の蓄積により残留電位の変動が顕著に発生する。
-Ionization potential The ionization potential (IpB) of the charge transport material (B) is lower than the ionization potential (IpA) of the charge transport material (A) by 0.04 eV or more and 0.2 eV or less, and further 0.04 eV or more as described above. More preferably, it is 0.18 eV or less.
When the difference in ionization potential between the charge transport material (B) and the charge transport material (A) is less than 0.04 eV, the difference in ionization potential is too small to suppress the variation in residual potential, particularly the residual potential due to humidity. The effect of suppressing fluctuation cannot be obtained. On the other hand, if it is greater than 0.2 eV, the difference in ionization potential is too large, and when an image is formed by repeating charging and discharging, the residual potential varies significantly due to accumulation of the residual potential.

ここで、イオン化ポテンシャルとは、物質の基底状態から電子一個を取り出すのに必要なエネルギー量を意味する。イオン化ポテンシャルの測定は、大気雰囲気中でサンプルにモノクロメーターで分光した紫外光を、エネルギーを変化させながら照射し、光電効果により光電子が放出され始めるエネルギーを求めることで行なわれる。尚、上記電荷輸送物質(A)および電荷輸送物質(B)のイオン化ポテンシャルの測定は、理研計器社製の大気中光電子分光装置AC−2を用いて測定される。   Here, the ionization potential means the amount of energy required to extract one electron from the ground state of the substance. The ionization potential is measured by irradiating the sample with ultraviolet light that has been dispersed with a monochromator while changing the energy in an air atmosphere, and obtaining the energy at which photoelectrons start to be emitted by the photoelectric effect. The ionization potential of the charge transport material (A) and the charge transport material (B) is measured using an atmospheric photoelectron spectrometer AC-2 manufactured by Riken Keiki Co., Ltd.

・含有比率
表面層に含有される全電荷輸送物質中における前記電荷輸送物質(B)の比率は、0.19質量%以上1.5質量%以下であり、更には0.5質量%以上1.3質量%以下であることがより好ましい。
電荷輸送物質(B)の含有比率が0.19質量%未満である場合には、含有量が少な過ぎて残留電位の変動抑制、特に湿度による残留電位の変動抑制の効果が得られない。一方1.5質量%よりも大きい場合には、表面層全体の電気特性変化が抑制されず、帯電と除電を繰り返して画像を形成した場合に残留電位の蓄積により残留電位の変動が顕著に発生する。
以下、本実施形態における感光体の構成について説明する。
-Content ratio The ratio of the said charge transport material (B) in all the charge transport materials contained in a surface layer is 0.19 mass% or more and 1.5 mass% or less, Furthermore, 0.5 mass% or more 1 More preferably, it is 3% by mass or less.
When the content ratio of the charge transport material (B) is less than 0.19% by mass, the content is too small to obtain the effect of suppressing the fluctuation of the residual potential, in particular, the fluctuation of the residual potential due to humidity. On the other hand, if it is larger than 1.5% by mass, the change in the electrical characteristics of the entire surface layer is not suppressed, and when the image is formed by repeating charging and discharging, the residual potential varies significantly due to the accumulation of the residual potential. To do.
Hereinafter, the configuration of the photoreceptor in the present embodiment will be described.

−感光体の構成−
本実施形態に係る感光層は電荷輸送能と電荷発生能とを併せ持つ機能一体型の感光層を有していてもよいし、電荷輸送層と電荷発生層とを含む機能分離型の感光層を有していてもよい。さらには、下引層や保護層等のその他の層を設けてもよい。
-Structure of photoconductor-
The photosensitive layer according to the present embodiment may have a function-integrated type photosensitive layer having both charge transporting ability and charge generating ability, or a function separation type photosensitive layer including a charge transporting layer and a charge generating layer. You may have. Furthermore, you may provide other layers, such as an undercoat layer and a protective layer.

以下、本実施形態における感光体の構成について、図1乃至図2を参照して説明するが、本実施形態は図1乃至図2によって限定されることはない。
図1は、本実施形態における感光体の層構成の一例を示す模式断面図であり、図1中、1は導電性基体、2は感光層、2Aは電荷発生層、2Bは電荷輸送層、2Cは保護層、4は下引層を表す。
図1に示す感光体は、導電性基体1上に、下引層4、電荷発生層2A、電荷輸送層2B、保護層2Cがこの順に積層された層構成を有し、感光層2は電荷発生層2A、電荷輸送層2Bおよび保護層2Cの3層から構成される(第1の態様の感光体)。
尚、図1に示す感光体においては保護層2Cが最外表面を構成する表面層である。
Hereinafter, the configuration of the photoconductor in the present embodiment will be described with reference to FIGS. 1 and 2, but the present embodiment is not limited to FIGS. 1 and 2.
FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the photoreceptor in this embodiment. In FIG. 1, 1 is a conductive substrate, 2 is a photosensitive layer, 2A is a charge generation layer, 2B is a charge transport layer, 2C represents a protective layer and 4 represents an undercoat layer.
The photoreceptor shown in FIG. 1 has a layer structure in which an undercoat layer 4, a charge generation layer 2A, a charge transport layer 2B, and a protective layer 2C are laminated on a conductive substrate 1 in this order. It is composed of three layers including a generation layer 2A, a charge transport layer 2B, and a protective layer 2C (the photoreceptor of the first embodiment).
In the photoreceptor shown in FIG. 1, the protective layer 2C is a surface layer constituting the outermost surface.

図2は、本実施形態における感光体の層構成の他の例を示す模式断面図であり、図2中に示した符号は、図1中に示したものと同義である。
図2に示す感光体は、導電性基体1上に、下引層4、電荷発生層2A、電荷輸送層2Bがこの順に積層された層構成を有し、感光層2は電荷発生層2Aおよび電荷輸送層2Bの2層から構成される(第2の態様の感光体)。
尚、図2に示す感光体においては電荷輸送層2Bが最外表面を構成する表面層である。
FIG. 2 is a schematic cross-sectional view showing another example of the layer structure of the photoreceptor in the present embodiment, and the reference numerals shown in FIG. 2 are synonymous with those shown in FIG.
The photoreceptor shown in FIG. 2 has a layer structure in which an undercoat layer 4, a charge generation layer 2A, and a charge transport layer 2B are laminated in this order on a conductive substrate 1, and the photosensitive layer 2 includes the charge generation layer 2A and the charge generation layer 2A. It is composed of two layers of the charge transport layer 2B (photoconductor of the second aspect).
In the photoreceptor shown in FIG. 2, the charge transport layer 2B is a surface layer constituting the outermost surface.

また、図1に示す態様では上記の通り感光層2として電荷発生層2A、電荷輸送層2Bおよび保護層2Cの3層から構成される態様を示すが、この他にも前記感光層2の態様として、導電性基体1側から順に電荷輸送層2B、電荷発生層2A、保護層2Cを有する態様や、電荷輸送能と電荷発生能とを併せ持つ機能一体型の感光層および保護層2Cを有する態様等であってもよい。   In the embodiment shown in FIG. 1, the photosensitive layer 2 is composed of three layers including the charge generation layer 2A, the charge transport layer 2B and the protective layer 2C as described above. As an aspect having a charge transport layer 2B, a charge generation layer 2A, and a protective layer 2C in this order from the conductive substrate 1 side, an aspect having a function-integrated type photosensitive layer and a protective layer 2C having both charge transport ability and charge generation ability Etc.

以下、本実施形態における感光体の例として、上記第1乃至第2の態様のそれぞれについて説明する。   Hereinafter, each of the first to second aspects will be described as an example of the photoconductor in the present exemplary embodiment.

〔第1の態様の感光体:表面層=保護層〕
第1の態様の感光体は、図1に示す通り、導電性基体1上に、下引層4、電荷発生層2A、電荷輸送層2B、保護層2Cがこの順に積層された層構成を有し、保護層2Cが表面層である。
[Photoreceptor of First Aspect: Surface Layer = Protective Layer]
As shown in FIG. 1, the photoreceptor of the first embodiment has a layer structure in which an undercoat layer 4, a charge generation layer 2A, a charge transport layer 2B, and a protective layer 2C are laminated in this order on a conductive substrate 1. The protective layer 2C is a surface layer.

・導電性基体
導電性基体1としては、導電性を有する導電性基体が用いられ、例えば、アルミニウム、銅、亜鉛、ステンレス、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等の金属または合金を用いて構成される金属板、金属ドラム、および金属ベルト、または、導電性ポリマー、酸化インジウム等の導電性化合物やアルミニウム、パラジウム、金等の金属または合金を塗布、蒸着またはラミネートした紙、プラスチックフィルム、ベルト等が挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
Conductive substrate As the conductive substrate 1, a conductive substrate having conductivity is used. For example, a metal or alloy such as aluminum, copper, zinc, stainless steel, chromium, nickel, molybdenum, vanadium, indium, gold, platinum, or the like Paper, plastic coated, vapor-deposited, or laminated with metal plates, metal drums, and metal belts, or conductive polymers, conductive compounds such as indium oxide, and metals or alloys such as aluminum, palladium, and gold A film, a belt, etc. are mentioned. Here, “conductive” means that the volume resistivity is less than 10 13 Ωcm.

第1の態様の感光体がレーザープリンターに使用される場合であれば、導電性基体1の表面は中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化することが望ましい。但し、非干渉光を光源に用いる場合には粗面化は特に行わなくてもよい。   If the photoreceptor of the first aspect is used in a laser printer, the surface of the conductive substrate 1 is desirably roughened to a center line average roughness Ra of 0.04 μm or more and 0.5 μm or less. However, when non-interfering light is used as a light source, roughening is not particularly required.

粗面化の方法としては、研磨剤を水に懸濁させて支持体に吹き付けることによって行う湿式ホーニング、または回転する砥石に支持体を接触させ、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が望ましい。   Surface roughening methods include wet honing by suspending an abrasive in water and spraying it on the support, or centerless grinding and anodization in which the support is brought into contact with a rotating grindstone and continuously ground. Processing is desirable.

また、他の粗面化の方法としては、導電性基体1表面を粗面化することなく、導電性または半導電性粉体を樹脂中に分散させて、支持体表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も望ましく用いられる。   Further, as another roughening method, a conductive or semiconductive powder is dispersed in a resin without roughening the surface of the conductive substrate 1, and a layer is formed on the surface of the support. A method of roughening with particles dispersed in the layer is also desirably used.

ここで、陽極酸化による粗面化処理は、アルミニウムを陽極とし電解質溶液中で陽極酸化することによりアルミニウム表面に酸化膜を形成するものである。電解質溶液としては、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であるため、陽極酸化膜の微細孔を加圧水蒸気または沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが望ましい。 陽極酸化膜の膜厚については、0.3μm以上15μm以下が望ましい。   Here, the roughening treatment by anodic oxidation is to form an oxide film on the aluminum surface by anodizing in an electrolyte solution using aluminum as an anode. Examples of the electrolyte solution include a sulfuric acid solution and an oxalic acid solution. However, since the porous anodic oxide film formed by anodic oxidation is chemically active as it is, fine pores of the anodic oxide film may be added to pressurized water vapor or boiling water (metal salt such as nickel may be added). It is desirable to perform a sealing treatment to block the volume expansion due to the hydration reaction, and to change to a more stable hydrated oxide. The thickness of the anodic oxide film is desirably 0.3 μm or more and 15 μm or less.

また、導電性基体1には、酸性水溶液による処理またはベーマイト処理を施してもよい。
リン酸、クロム酸およびフッ酸を含む酸性処理液による処理は以下のようにして実施される。先ず、酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸およびフッ酸の配合割合は、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲が望ましい。処理温度は42℃以上48℃以下が望ましい。被膜の膜厚は、0.3μm以上15μm以下が望ましい。
Further, the conductive substrate 1 may be subjected to treatment with an acidic aqueous solution or boehmite treatment.
The treatment with an acidic treatment solution containing phosphoric acid, chromic acid and hydrofluoric acid is carried out as follows. First, an acidic treatment liquid is prepared. The mixing ratio of phosphoric acid, chromic acid and hydrofluoric acid in the acidic treatment liquid is such that phosphoric acid is in the range of 10% by mass to 11% by mass, chromic acid is in the range of 3% by mass to 5% by mass, and hydrofluoric acid is 0. The concentration of these acids is preferably in the range of 13.5 mass% to 18 mass%. The treatment temperature is desirably 42 ° C. or higher and 48 ° C. or lower. The film thickness is preferably from 0.3 μm to 15 μm.

ベーマイト処理は、90℃以上100℃以下の純水中に5分間以上60分間以下浸漬すること、または90℃以上120℃以下の加熱水蒸気に5分間以上60分間以下接触させることにより行われる。被膜の膜厚は、0.1μm以上5μm以下が望ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の他種に比べ被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。   The boehmite treatment is performed by immersing in pure water of 90 ° C. or more and 100 ° C. or less for 5 minutes or more and 60 minutes or less, or by contacting with heated steam of 90 ° C. or more and 120 ° C. or less for 5 minutes or more and 60 minutes or less. The film thickness is preferably 0.1 μm or more and 5 μm or less. This is further anodized using an electrolyte solution with lower film solubility than other types such as adipic acid, boric acid, borate, phosphate, phthalate, maleate, benzoate, tartrate, citrate, etc. It may be processed.

・下引層
下引層4は、例えば、結着樹脂に無機粒子を含有した層として構成される。
無機粒子としては、粉体抵抗(体積抵抗率)10Ω・cm以上1011Ω・cm以下のものが望ましく用いられる。
-Undercoat layer The undercoat layer 4 is comprised as a layer which contained the inorganic particle in binder resin, for example.
As the inorganic particles, those having a powder resistance (volume resistivity) of 10 2 Ω · cm to 10 11 Ω · cm are desirably used.

中でも上記抵抗値を有する無機粒子としては、酸化錫、酸化チタン、酸化亜鉛、酸化ジルコニウム等の無機粒子(導電性金属酸化物)を用いるのが望ましく、特に酸化亜鉛は望ましく用いられる。   Among these, inorganic particles (conductive metal oxide) such as tin oxide, titanium oxide, zinc oxide and zirconium oxide are preferably used as the inorganic particles having the above resistance value, and zinc oxide is particularly preferably used.

また、無機粒子は表面処理を行ったものでもよく、表面処理の異なるもの、または、粒子径の異なるものなど2種以上混合して用いてもよい。無機粒子の体積平均粒径は50nm以上2000nm以下(望ましくは60以上1000以下)の範囲であることが望ましい。   In addition, the inorganic particles may be subjected to a surface treatment, or may be used as a mixture of two or more types such as those having different surface treatments or particles having different particle diameters. The volume average particle size of the inorganic particles is desirably in the range of 50 nm to 2000 nm (desirably 60 to 1000).

また、無機粒子としては、BET法による比表面積が10m/g以上のものが望ましく用いられる。 As the inorganic particles, those having a specific surface area of 10 m 2 / g or more by the BET method are desirably used.

さらに無機粒子に加えて、アクセプター性化合物を含有させてもよい。アクセプター性化合物としてはいかなるものでも使用し得るが、例えば、クロラニル、ブロモアニル等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾールや2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)1,3,4−オキサジアゾール等のオキサジアゾール系化合物、キサントン系化合物、チオフェン化合物、3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物等の電子輸送性物質などが望ましく、特にアントラキノン構造を有する化合物が望ましい。さらに、ヒドロキシアントラキノン系化合物、アミノアントラキノン系化合物、アミノヒドロキシアントラキノン系化合物等、アントラキノン構造を有するアクセプター性化合物が望ましく用いられ、具体的にはアントラキノン、アリザリン、キニザリン、アントラルフィン、プルプリン等が挙げられる。   Further, in addition to the inorganic particles, an acceptor compound may be contained. Any acceptor compound may be used. For example, quinone compounds such as chloranil and bromoanil, tetracyanoquinodimethane compounds, 2,4,7-trinitrofluorenone, 2,4,5,7- Fluorenone compounds such as tetranitro-9-fluorenone, 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole and 2,5-bis (4-naphthyl)- Oxadiazole compounds such as 1,3,4-oxadiazole, 2,5-bis (4-diethylaminophenyl) 1,3,4-oxadiazole, xanthone compounds, thiophene compounds, 3,3 ′, Electron transporting substances such as diphenoquinone compounds such as 5,5′tetra-t-butyldiphenoquinone are desirable, and in particular, anthraquinone structure Compounds is desired. Furthermore, acceptor compounds having an anthraquinone structure such as hydroxyanthraquinone compounds, aminoanthraquinone compounds, aminohydroxyanthraquinone compounds, and the like are desirably used, and specific examples include anthraquinone, alizarin, quinizarin, anthralfin, and purpurin.

これらのアクセプター性化合物の含有量は任意に設定してもよいが、望ましくは無機粒子に対して0.01質量%以上20質量%以下含有される。さらに0.05質量%以上10質量%以下が望ましい。   The content of these acceptor compounds may be arbitrarily set, but is desirably 0.01% by mass or more and 20% by mass or less with respect to the inorganic particles. Furthermore, 0.05 mass% or more and 10 mass% or less are desirable.

アクセプター化合物は、下引層4の塗布時に添加するだけでもよいし、無機粒子表面にあらかじめ付着させておいてもよい。無機粒子表面にアクセプター化合物を付与させる方法としては、乾式法、または、湿式法が挙げられる。   The acceptor compound may be added only when the undercoat layer 4 is applied, or may be previously attached to the surface of the inorganic particles. Examples of the method for imparting the acceptor compound to the surface of the inorganic particles include a dry method or a wet method.

乾式法にて表面処理を施す場合には無機粒子をせん断力の大きなミキサ等で攪拌しながら、直接または有機溶媒に溶解させたアクセプター化合物を滴下、乾燥空気や窒素ガスとともに噴霧させることによって処理される。添加または噴霧する際には溶剤の沸点以下の温度で行われることが望ましい。添加または噴霧した後、さらに100℃以上で焼き付けを行ってもよい。焼き付けの温度、時間については任意の範囲で実施される。   When surface treatment is performed by a dry method, the inorganic particles are treated by dropping an acceptor compound dissolved in an organic solvent directly or with dry air or nitrogen gas while stirring with a mixer having a large shearing force. The The addition or spraying is preferably performed at a temperature below the boiling point of the solvent. After addition or spraying, baking may be performed at 100 ° C. or higher. About baking temperature and time, it implements in arbitrary ranges.

湿式法としては、無機粒子を溶剤中で攪拌し、超音波、サンドミルやアトライター、ボールミル等を用いて分散し、アクセプター化合物を添加し攪拌または分散したのち、溶剤除去することで処理される。溶剤除去方法はろ過または蒸留により留去される。溶剤除去後にはさらに100℃以上で焼き付けを行ってもよい。焼き付けの温度、時間については任意の範囲で実施される。湿式法においては表面処理剤を添加する前に無機粒子含有水分を除去してもよく、その例として表面処理に用いる溶剤中で攪拌加熱しながら除去する方法、溶剤と共沸させて除去する方法を用いてもよい。   As the wet method, the inorganic particles are stirred in a solvent, dispersed using ultrasonic waves, a sand mill, an attritor, a ball mill, or the like, and after adding or accepting an acceptor compound, the solvent is removed. The solvent removal method is distilled off by filtration or distillation. After removing the solvent, baking may be performed at 100 ° C. or higher. About baking temperature and time, it implements in arbitrary ranges. In the wet method, the water containing inorganic particles may be removed before adding the surface treatment agent. For example, a method of removing with stirring and heating in a solvent used for the surface treatment, a method of removing by azeotropic distillation with the solvent. May be used.

また、無機粒子はアクセプター化合物を付与する前に表面処理を施してもよい。表面処理剤としては、公知の材料から選択される。例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、界面活性材等が挙げられる。特に、シランカップリング剤が望ましく用いられる。さらにアミノ基を有するシランカップリング剤も望ましく用いられる。   In addition, the inorganic particles may be subjected to a surface treatment before the acceptor compound is provided. The surface treatment agent is selected from known materials. For example, a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a surfactant, and the like can be given. In particular, a silane coupling agent is desirably used. Furthermore, a silane coupling agent having an amino group is also desirably used.

アミノ基を有するシランカップリング剤としてはいかなる物を用いてもよいが、具体的例としてはγ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン等が挙げられる。但し、これらに限定されるものではない。   Any material may be used as the silane coupling agent having an amino group. Specific examples include γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N -Β- (aminoethyl) -γ-aminopropylmethylmethoxysilane, N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane, and the like. However, it is not limited to these.

また、シランカップリング剤は2種以上混合して使用してもよい。前記アミノ基を有するシランカップリング剤と併用して用いてもよいシランカップリング剤の例としては、ビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシラン等が挙げられる。但し、これらに限定されるものではない。   Two or more silane coupling agents may be mixed and used. Examples of silane coupling agents that may be used in combination with the silane coupling agent having an amino group include vinyltrimethoxysilane, γ-methacryloxypropyl-tris (β-methoxyethoxy) silane, β- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -Γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane, γ-chloropropyl Examples include trimethoxysilane. However, it is not limited to these.

表面処理方法は公知の方法であればいかなる方法でも使用し得るが、乾式法または湿式法を用いることがよい。また、アクセプター付与とカップリング剤等による表面処理とを並行して行ってもよい。   As the surface treatment method, any known method can be used, but a dry method or a wet method is preferably used. Moreover, you may perform acceptor provision and surface treatment by a coupling agent etc. in parallel.

下引層4中の無機粒子に対するシランカップリング剤の量は、任意に設定されるが、無機粒子に対して0.5質量%以上10質量%以下が望ましい。   Although the quantity of the silane coupling agent with respect to the inorganic particle in the undercoat layer 4 is set arbitrarily, 0.5 mass% or more and 10 mass% or less are desirable with respect to an inorganic particle.

下引層4に含有される結着樹脂としては、公知のいかなるものでも使用し得るが、例えばポリビニルブチラール等のアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂等の公知の高分子樹脂化合物、また電荷輸送性基を有する電荷輸送性樹脂やポリアニリン等の導電性樹脂等が用いられる。中でも上層の塗布溶剤に不溶な樹脂が望ましく用いられ、特にフェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂、ウレタン樹脂、エポキシ樹脂等が望ましく用いられる。これらを2種以上組み合わせて使用する場合には、その混合割合は、必要に応じて設定される。   As the binder resin contained in the undercoat layer 4, any known resin can be used. For example, acetal resin such as polyvinyl butyral, polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester Resins, methacrylic resins, acrylic resins, polyvinyl chloride resins, polyvinyl acetate resins, vinyl chloride-vinyl acetate-maleic anhydride resins, silicone resins, silicone-alkyd resins, phenol resins, phenol-formaldehyde resins, melamine resins, urethane resins, etc. These known polymer resin compounds, charge transporting resins having a charge transporting group, conductive resins such as polyaniline, and the like are used. Among these, resins that are insoluble in the upper coating solvent are preferably used, and phenol resins, phenol-formaldehyde resins, melamine resins, urethane resins, epoxy resins, and the like are particularly preferable. When these are used in combination of two or more, the mixing ratio is set as necessary.

尚、下引層形成用塗布液中のアクセプター性を付与した金属酸化物とバインダー樹脂、または無機粒子とバインダー樹脂との比率は、任意に設定される。   In addition, the ratio of the metal oxide and binder resin which provided acceptor property in the coating liquid for undercoat layer formation or an inorganic particle and binder resin is set arbitrarily.

下引層4中には種々の添加剤を用いてもよい。添加剤としては、多環縮合系、アゾ系等の電子輸送性顔料、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアルコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料が用いられる。シランカップリング剤は金属酸化物の表面処理に用いられるが、添加剤としてさらに塗布液に添加して用いてもよい。ここで用いられるシランカップリング剤の具体例としては、ビニルトリメトキシシラン、γ−メタクリルオキシプロピル−トリス(β−メトキシエトキシ)シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシラン、γ−クロルプロピルトリメトキシシラン等である。
ジルコニウムキレート化合物の例として、ジルコニウムブトキシド、ジルコニウムアセト酢酸エチル、ジルコニウムトリエタノールアミン、アセチルアセトネートジルコニウムブトキシド、アセト酢酸エチルジルコニウムブトキシド、ジルコニウムアセテート、ジルコニウムオキサレート、ジルコニウムラクテート、ジルコニウムホスホネート、オクタン酸ジルコニウム、ナフテン酸ジルコニウム、ラウリン酸ジルコニウム、ステアリン酸ジルコニウム、イソステアリン酸ジルコニウム、メタクリレートジルコニウムブトキシド、ステアレートジルコニウムブトキシド、イソステアレートジルコニウムブトキシド等が挙げられる。
Various additives may be used in the undercoat layer 4. As additives, known materials such as polycyclic condensation type, azo type electron transporting pigments, zirconium chelate compounds, titanium chelate compounds, aluminum chelate compounds, titanium alkoxide compounds, organic titanium compounds, silane coupling agents and the like are used. It is done. The silane coupling agent is used for the surface treatment of the metal oxide, but may be further added to the coating solution as an additive. Specific examples of the silane coupling agent used here include vinyltrimethoxysilane, γ-methacryloxypropyl-tris (β-methoxyethoxy) silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ. -Glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β -(Aminoethyl) -γ-aminopropylmethyldimethoxysilane, N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane, γ-chloropropyltrimethoxysilane and the like.
Examples of zirconium chelate compounds include zirconium butoxide, zirconium zirconium acetoacetate, zirconium triethanolamine, acetylacetonate zirconium butoxide, ethyl zirconium acetoacetate, zirconium acetate, zirconium oxalate, zirconium lactate, zirconium phosphonate, zirconium octoate, naphthene. Zirconate, zirconium laurate, zirconium stearate, zirconium isostearate, methacrylate zirconium butoxide, stearate zirconium butoxide, isostearate zirconium butoxide and the like.

チタニウムキレート化合物の例としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。   Examples of titanium chelate compounds include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate, titanium acetylacetonate, polytitanium acetylacetonate, titanium octylene glycolate, titanium lactate ammonium salt , Titanium lactate, titanium lactate ethyl ester, titanium triethanolamate, polyhydroxy titanium stearate and the like.

アルミニウムキレート化合物の例としては、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。   Examples of the aluminum chelate compound include aluminum isopropylate, monobutoxy aluminum diisopropylate, aluminum butyrate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate) and the like.

これらの化合物は単独で若しくは複数の化合物の混合物または重縮合物として用いてもよい。   These compounds may be used alone or as a mixture or polycondensate of a plurality of compounds.

下引層形成用塗布液を調製するための溶媒としては公知の有機溶剤、例えばアルコール系、芳香族系、ハロゲン化炭化水素系、ケトン系、ケトンアルコール系、エーテル系、エステル系等から選択される。溶媒としては、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤が用いられる。   The solvent for preparing the coating solution for forming the undercoat layer is selected from known organic solvents such as alcohols, aromatics, halogenated hydrocarbons, ketones, ketone alcohols, ethers, esters, etc. The Examples of the solvent include methanol, ethanol, n-propanol, iso-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate, Usual organic solvents such as dioxane, tetrahydrofuran, methylene chloride, chloroform, chlorobenzene and toluene are used.

また、これらの分散に用いる溶剤は単独または2種以上混合して用いてもよい。混合する際、使用される溶剤としては、混合溶剤としてバインダー樹脂を溶かし得る溶剤であれば、いかなるものでも使用される。   Moreover, you may use the solvent used for these dispersion | distribution individually or in mixture of 2 or more types. When mixing, any solvent can be used as long as it can dissolve the binder resin as the mixed solvent.

分散方法としては、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカーなどの公知の方法が用いられる。さらにこの下引層4を設けるときに用いる塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。   As a dispersion method, known methods such as a roll mill, a ball mill, a vibrating ball mill, an attritor, a sand mill, a colloid mill, and a paint shaker are used. Further, as the coating method used when the undercoat layer 4 is provided, usual methods such as a blade coating method, a wire bar coating method, a spray coating method, a dip coating method, a bead coating method, an air knife coating method, and a curtain coating method are used. Is used.

このようにして得られた下引層形成用塗布液を用い、導電性基体1上に下引層4が成膜される。
また、下引層4は、ビッカース強度が35以上とされていることが望ましい。
さらに、下引層4はいかなる厚さに設定してもよいが、厚さが15μm以上が望ましく、さらに望ましくは15μm以上50μm以下とされていることが望ましい。
The undercoat layer 4 is formed on the conductive substrate 1 using the coating solution for forming the undercoat layer thus obtained.
The undercoat layer 4 preferably has a Vickers strength of 35 or more.
Furthermore, the undercoat layer 4 may be set to any thickness, but the thickness is preferably 15 μm or more, and more preferably 15 μm or more and 50 μm or less.

また、下引層4の表面粗さ(十点平均粗さ)はモアレ像防止のために、使用される露光用レーザー波長λの1/4n(nは上層の屈折率)から1/2λまでに調整される。表面粗さ調整のために下引層中に樹脂などの粒子を添加してもよい。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメタクリル酸メチル樹脂粒子等が用いられる。   Further, the surface roughness (ten-point average roughness) of the undercoat layer 4 is from 1 / 4n (n is the refractive index of the upper layer) to 1 / 2λ of the exposure laser wavelength λ used to prevent moire images. Adjusted to In order to adjust the surface roughness, particles such as a resin may be added to the undercoat layer. As the resin particles, silicone resin particles, cross-linked polymethyl methacrylate resin particles and the like are used.

尚、下引層4は、結着樹脂および導電性金属酸化物を含み且つ厚み20μmにおける波長950nmの光に対する光透過率が40%以下(より望ましくは10%以上35%以下、更に望ましくは15%以上30%以下)であることがよい。
上記下引層の光透過率は次のようにして測定される。下引層形成用塗布液を、ガラスプレート上に乾燥後の厚さが20μmとなるように塗布し、乾燥後、分光光度計を用いて波長950nmでの膜の光透過率を測定する。光度計による光透過率は、分光光度計として装置名「Spectrophotometer(U−2000):日立社製」を用いる。
The undercoat layer 4 contains a binder resin and a conductive metal oxide, and has a light transmittance of 40% or less (more preferably 10% or more and 35% or less, more preferably 15%) with respect to light having a wavelength of 950 nm at a thickness of 20 μm. % Or more and 30% or less).
The light transmittance of the undercoat layer is measured as follows. The undercoat layer-forming coating solution is applied on a glass plate so that the thickness after drying is 20 μm, and after drying, the light transmittance of the film at a wavelength of 950 nm is measured using a spectrophotometer. For the light transmittance by the photometer, an apparatus name “Spectrophotometer (U-2000): manufactured by Hitachi, Ltd.” is used as a spectrophotometer.

この下引き層の光透過率は、前記ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカー等を用いた分散時の分散時間を調整することで、制御し得る。分散時間は、特に限定しないが、5分以上1000時間以下の時間が好ましく、さらには30分以上10時間以下がより好ましい。分散時間を長くすると、光透過率は低下する傾向にある。   The light transmittance of the undercoat layer can be controlled by adjusting the dispersion time during dispersion using the roll mill, ball mill, vibration ball mill, attritor, sand mill, colloid mill, paint shaker, or the like. The dispersion time is not particularly limited, but is preferably 5 minutes to 1000 hours, and more preferably 30 minutes to 10 hours. When the dispersion time is increased, the light transmittance tends to decrease.

また、表面粗さ調整のために下引層を研磨してもよい。研磨方法としては、バフ研磨、サンドブラスト処理、湿式ホーニング、研削処理等が用いられる。   Further, the undercoat layer may be polished for adjusting the surface roughness. As a polishing method, buffing, sandblasting, wet honing, grinding, or the like is used.

塗布したものを乾燥させて下引層を得るが、通常、乾燥は溶剤を蒸発させ、製膜し得る温度で行われる。   The coated layer is dried to obtain an undercoat layer. Usually, the drying is performed at a temperature at which the solvent can be evaporated to form a film.

・電荷発生層
電荷発生層2Aは、少なくとも電荷発生材料および結着樹脂を含有する層であることが望ましい。
電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料、ジブロモアントアントロン等の縮環芳香族顔料、ペリレン顔料、ピロロピロール顔料、フタロシアニン顔料、酸化亜鉛、三方晶系セレン等が挙げられる。これらの中でも、近赤外域のレーザー露光に対しては、金属および/または無金属フタロシアニン顔料が望ましく、特に、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン、特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン、特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン、特開平4−189873号公報、特開平5−43823号公報等に開示されたチタニルフタロシアニンがより望ましい。また、近紫外域のレーザー露光に対してはジブロモアントアントロン等の縮環芳香族顔料、チオインジゴ系顔料、ポルフィラジン化合物、酸化亜鉛、三方晶系セレン等がより望ましい。電荷発生材料としては、380nm以上500nmの露光波長の光源を用いる場合には無機顔料が望ましく、700nm以下800nmの露光波長の光源を用いる場合には、金属および無金属フタロシアニン顔料が望ましい。
Charge generation layer The charge generation layer 2A is preferably a layer containing at least a charge generation material and a binder resin.
Examples of the charge generation material include azo pigments such as bisazo and trisazo, condensed aromatic pigments such as dibromoanthanthrone, perylene pigments, pyrrolopyrrole pigments, phthalocyanine pigments, zinc oxide, and trigonal selenium. Among these, metal and / or metal-free phthalocyanine pigments are desirable for near-infrared laser exposure. In particular, hydroxygallium disclosed in JP-A-5-263007, JP-A-5-279591, and the like. Phthalocyanine, chlorogallium phthalocyanine disclosed in JP-A-5-98181, dichlorotin phthalocyanine disclosed in JP-A-5-140472, JP-A-5-140473, etc., JP-A-4-189873, More preferred is titanyl phthalocyanine disclosed in JP-A-5-43823. For near-ultraviolet laser exposure, condensed aromatic pigments such as dibromoanthanthrone, thioindigo pigments, porphyrazine compounds, zinc oxide, and trigonal selenium are more desirable. As the charge generation material, an inorganic pigment is desirable when a light source with an exposure wavelength of 380 nm to 500 nm is used, and a metal and a metal-free phthalocyanine pigment are desirable when a light source with an exposure wavelength of 700 nm or less and 800 nm is used.

電荷発生材料としては、600nm以上900nm以下の波長域での分光吸収スペクトルにおいて、810nm以上839nm以下の範囲に最大ピーク波長を有するヒドロキシガリウムフタロシアニン顔料を用いることが望ましい。このヒドロキシガリウムフタロシアニン顔料は、従来のV型ヒドロキシガリウムフタロシアニン顔料とは異なるものであり、分光吸収スペクトルの最大ピーク波長を従来のV型ヒドロキシガリウムフタロシアニン顔料よりも短波長側にシフトさせたものである。   As the charge generation material, it is desirable to use a hydroxygallium phthalocyanine pigment having a maximum peak wavelength in a range of 810 nm to 839 nm in a spectral absorption spectrum in a wavelength range of 600 nm to 900 nm. This hydroxygallium phthalocyanine pigment is different from the conventional V-type hydroxygallium phthalocyanine pigment, and the maximum peak wavelength of the spectral absorption spectrum is shifted to a shorter wavelength side than the conventional V-type hydroxygallium phthalocyanine pigment. .

また、上記の810nm以上839nm以下の範囲に最大ピーク波長を有するヒドロキシガリウムフタロシアニン顔料は、平均粒径が特定の範囲であり、且つ、BET比表面積が特定の範囲であることが望ましい。具体的には、平均粒径が0.20μm以下であることが望ましく、0.01μm以上0.15μm以下であることがより望ましく、一方、BET比表面積が45m/g以上であることが望ましく、50m/g以上であることがより望ましく、55m/g以上120m/g以下であることが特に望ましい。平均粒径は、体積平均粒径(d50平均粒径)でレーザ回折散乱式粒度分布測定装置(LA−700、堀場製作所社製)にて測定した値である。また、BET式比表面積測定器(島津製作所製:フローソープII2300)を用い窒素置換法にて測定した値である。 The hydroxygallium phthalocyanine pigment having the maximum peak wavelength in the range of 810 nm to 839 nm is preferably in a specific range for the average particle size and in a specific range for the BET specific surface area. Specifically, the average particle size is desirably 0.20 μm or less, more desirably 0.01 μm or more and 0.15 μm or less, while the BET specific surface area is desirably 45 m 2 / g or more. 50 m 2 / g or more is more desirable, and 55 m 2 / g or more and 120 m 2 / g or less is particularly desirable. The average particle size is a volume average particle size (d50 average particle size) measured by a laser diffraction / scattering particle size distribution analyzer (LA-700, manufactured by Horiba, Ltd.). Moreover, it is the value measured by the nitrogen substitution method using the BET-type specific surface area measuring device (Shimadzu Corporation make: Flow soap II2300).

また、上記ヒドロキシガリウムフタロシアニン顔料の最大粒径(一次粒子径の最大値)は、1.2μm以下であることが望ましく、1.0μm以下であることがより望ましく、更に望ましくは0.3μm以下である。   The maximum particle size (maximum primary particle size) of the hydroxygallium phthalocyanine pigment is desirably 1.2 μm or less, more desirably 1.0 μm or less, and further desirably 0.3 μm or less. is there.

更に、上記ヒドロキシガリウムフタロシアニン顔料は、平均粒径が0.2μm以下、最大粒径が1.2μm以下であり、且つ、比表面積値が45m/g以上であることが望ましい。 Further, the hydroxygallium phthalocyanine pigment preferably has an average particle size of 0.2 μm or less, a maximum particle size of 1.2 μm or less, and a specific surface area value of 45 m 2 / g or more.

また、上記のヒドロキシガリウムフタロシアニン顔料は、CuKα特性X線を用いたX線回折スペクトルにおいて、ブラッグ角度(2θ±0.2°)7.5°、9.9°、12.5°、16.3°、18.6°、25.1°および28.3°に回折ピークを有するものであることが望ましい。   In addition, the hydroxygallium phthalocyanine pigment described above has Bragg angles (2θ ± 0.2 °) of 7.5 °, 9.9 °, 12.5 °, and 16.5 in an X-ray diffraction spectrum using CuKα characteristic X-rays. It is desirable to have diffraction peaks at 3 °, 18.6 °, 25.1 ° and 28.3 °.

また、上記のヒドロキシガリウムフタロシアニン顔料は、25℃から400℃まで昇温したときの熱重量減少率が2.0%以上4.0%以下であることが望ましく、2.5%以上3.8%以下であることがより望ましい。   The hydroxygallium phthalocyanine pigment preferably has a thermal weight reduction rate of 2.0% or more and 4.0% or less when heated from 25 ° C. to 400 ° C., and preferably 2.5% or more and 3.8%. % Or less is more desirable.

電荷発生層2Aに使用される結着樹脂としては、広範な絶縁性樹脂から選択され、また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。望ましい結着樹脂としては、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。これらの結着樹脂は1種を単独でまたは2種以上を混合して用いられる。電荷発生材料と結着樹脂の配合比は質量比で10:1から1:10までの範囲内であることが望ましい。ここで、「絶縁性」とは、体積抵抗率が1013Ωcm以上であることをいう。 The binder resin used for the charge generation layer 2A is selected from a wide range of insulating resins, and selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, polyvinylpyrene, and polysilane. Also good. Desirable binder resins include polyvinyl butyral resins, polyarylate resins (polycondensates of bisphenols and aromatic divalent carboxylic acids, etc.), polycarbonate resins, polyester resins, phenoxy resins, vinyl chloride-vinyl acetate copolymers, polyamides. Resins, acrylic resins, polyacrylamide resins, polyvinyl pyridine resins, cellulose resins, urethane resins, epoxy resins, caseins, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, and the like. These binder resins are used alone or in combination of two or more. The blending ratio of the charge generation material and the binder resin is preferably in the range of 10: 1 to 1:10 by mass ratio. Here, “insulating” means that the volume resistivity is 10 13 Ωcm or more.

電荷発生層2Aは、例えば、上記電荷発生材料および結着樹脂を溶剤中に分散した塗布液を用いて形成される。
分散に用いる溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等が挙げられ、これらは1種を単独でまたは2種以上を混合して用いられる。
The charge generation layer 2A is formed using, for example, a coating liquid in which the charge generation material and the binder resin are dispersed in a solvent.
Solvents used for dispersion include methanol, ethanol, n-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, n-butyl acetate, dioxane, tetrahydrofuran, and methylene chloride. , Chloroform, chlorobenzene, toluene and the like. These may be used alone or in admixture of two or more.

また、電荷発生材料および結着樹脂を溶剤中に分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の通常の方法が用いられる。さらにこの分散の際、電荷発生材料の平均粒径を0.5μm以下、望ましくは0.3μm以下、さらに望ましくは0.15μm以下にすることが有効である。   Further, as a method for dispersing the charge generating material and the binder resin in the solvent, usual methods such as a ball mill dispersion method, an attritor dispersion method, and a sand mill dispersion method are used. Further, at the time of dispersion, it is effective that the average particle size of the charge generating material is 0.5 μm or less, desirably 0.3 μm or less, and more desirably 0.15 μm or less.

また、電荷発生層2Aを形成する際には、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。   Further, when forming the charge generation layer 2A, a usual method such as a blade coating method, a Mayer bar coating method, a spray coating method, a dip coating method, a bead coating method, an air knife coating method, or a curtain coating method is used. .

このようにして得られる電荷発生層2Aの膜厚は、望ましくは0.1μm以上5.0μm以下、さらに望ましくは0.2μm以上2.0μm以下である。   The film thickness of the charge generation layer 2A thus obtained is desirably 0.1 μm or more and 5.0 μm or less, and more desirably 0.2 μm or more and 2.0 μm or less.

・電荷輸送層
電荷輸送層2Bは、少なくとも電荷輸送材料と結着樹脂とを含有する層であるか、または高分子電荷輸送材を含有する層であることが望ましい。
電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン等のフルオレノン化合物、キサントン系化合物、ベンゾフェノン系化合物、シアノビニル系化合物、エチレン系化合物等の電子輸送性化合物、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物などの正孔輸送性化合物が挙げられる。これらの電荷輸送材料は1種を単独でまたは2種以上を混合して用いられるが、これらに限定されるものではない。
Charge transport layer The charge transport layer 2B is preferably a layer containing at least a charge transport material and a binder resin, or a layer containing a polymer charge transport material.
Charge transport materials include quinone compounds such as p-benzoquinone, chloranil, bromanyl, anthraquinone, tetracyanoquinodimethane compounds, fluorenone compounds such as 2,4,7-trinitrofluorenone, xanthone compounds, benzophenone compounds , Electron transport compounds such as cyanovinyl compounds and ethylene compounds, triarylamine compounds, benzidine compounds, arylalkane compounds, aryl-substituted ethylene compounds, stilbene compounds, anthracene compounds, hydrazone compounds, etc. Examples thereof include pore transporting compounds. These charge transport materials may be used alone or in combination of two or more, but are not limited thereto.

電荷輸送材料としては電荷移動度の観点から、下記構造式(a−1)で示されるトリアリールアミン誘導体、および下記構造式(a−2)で示されるベンジジン誘導体が望ましい。   As the charge transport material, from the viewpoint of charge mobility, a triarylamine derivative represented by the following structural formula (a-1) and a benzidine derivative represented by the following structural formula (a-2) are desirable.


(構造式(a−1)中、Rは、水素原子またはメチル基を示す。nは1または2を示す。ArおよびArは各々独立に置換若しくは未置換のアリール基、−C−C(R)=C(R10)(R11)、または−C−CH=CH−CH=C(R12)(R13)を示し、R乃至R13はそれぞれ独立に水素原子、置換若しくは未置換のアルキル基、または置換若しくは未置換のアリール基を表す。置換基としてはハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、または炭素数1以上3以下のアルキル基で置換された置換アミノ基を示す。) (In Structural Formula (a-1), R 8 represents a hydrogen atom or a methyl group. N represents 1 or 2. Ar 6 and Ar 7 are each independently a substituted or unsubstituted aryl group, —C 6. H 4 —C (R 9 ) ═C (R 10 ) (R 11 ), or —C 6 H 4 —CH═CH—CH═C (R 12 ) (R 13 ), wherein R 9 to R 13 are Each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, including a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms; A substituted amino group substituted with a group or an alkyl group having 1 to 3 carbon atoms.)


(構造式(a−2)中、R14およびR14’は同一でも異なってもよく、各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、を示す。R15、R15’、R16、およびR16’は同一でも異なってもよく、各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、炭素数1以上2以下のアルキル基で置換されたアミノ基、置換若しくは未置換のアリール基、−C(R17)=C(R18)(R19)、または−CH=CH−CH=C(R20)(R21)を示し、R17乃至R21は各々独立に水素原子、置換若しくは未置換のアルキル基、または置換若しくは未置換のアリール基を表す。mおよびnは各々独立に0以上2以下の整数を示す。) (In Structural Formula (a-2), R 14 and R 14 ′ may be the same or different and each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 to 5 carbon atoms. R 15 , R 15 ′ , R 16 and R 16 ′ may be the same or different and each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or 1 carbon atom. Or more, an alkoxy group having 5 or less, an amino group substituted with an alkyl group having 1 to 2 carbon atoms, a substituted or unsubstituted aryl group, -C (R 17 ) = C (R 18 ) (R 19 ), or- CH = CH—CH═C (R 20 ) (R 21 ), wherein R 17 to R 21 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group. And n are independent of each other 0 or 2 show the following integer.)

ここで、上記構造式(a−1)で示されるトリアリールアミン誘導体、および上記構造式(a−2)で示されるベンジジン誘導体のうち、特に、「−C−CH=CH−CH=C(R12)(R13)」を有するトリアリールアミン誘導体、および「−CH=CH−CH=C(R20)(R21)」を有するベンジジン誘導体が望ましい。 Here, among the triarylamine derivatives represented by the structural formula (a-1) and the benzidine derivatives represented by the structural formula (a-2), in particular, “—C 6 H 4 —CH═CH—CH Triarylamine derivatives having “═C (R 12 ) (R 13 )” and benzidine derivatives having “—CH═CH—CH═C (R 20 ) (R 21 )” are desirable.

電荷輸送層2Bに用いる結着樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーンアルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等が挙げられる。また、上述のように、特開平8−176293号公報、特開平8−208820号公報に開示されているポリエステル系高分子電荷輸送材等の高分子電荷輸送材を用いてもよい。これらの結着樹脂は1種を単独でまたは2種以上を混合して用いられる。電荷輸送材料と結着樹脂との配合比は質量比で10:1から1:5までが望ましい。   The binder resin used for the charge transport layer 2B is polycarbonate resin, polyester resin, polyarylate resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, styrene-butadiene copolymer. , Vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly- N-vinyl carbazole, polysilane, etc. are mentioned. Further, as described above, a polymer charge transport material such as a polyester-based polymer charge transport material disclosed in JP-A-8-176293 and JP-A-8-208820 may be used. These binder resins are used alone or in combination of two or more. The blending ratio of the charge transport material and the binder resin is desirably 10: 1 to 1: 5 by mass ratio.

結着樹脂としては、特に限定されないが、粘度平均分子量50000以上80000以下のポリカーボネート樹脂、および粘度平均分子量50000以上80000以下のポリアリレート樹脂の少なくとも1種が望ましい。   The binder resin is not particularly limited, but at least one of a polycarbonate resin having a viscosity average molecular weight of 50,000 to 80,000 and a polyarylate resin having a viscosity average molecular weight of 50,000 to 80,000 is desirable.

また、電荷輸送材料として高分子電荷輸送材を用いてもよい。高分子電荷輸送材としては、ポリ−N−ビニルカルバゾール、ポリシランなどの電荷輸送性を有する公知のものが用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系高分子電荷輸送材は特に望ましい。高分子電荷輸送材はそれだけでも成膜し得るものであるが、後述する結着樹脂と混合して成膜してもよい。   In addition, a polymer charge transport material may be used as the charge transport material. As the polymer charge transporting material, known materials having charge transporting properties such as poly-N-vinylcarbazole and polysilane are used. In particular, polyester polymer charge transport materials disclosed in JP-A-8-176293 and JP-A-8-208820 are particularly desirable. Although the polymer charge transport material can be formed by itself, it may be formed by mixing with a binder resin described later.

電荷輸送層2Bは、例えば、上記構成材料を含有する電荷輸送層形成用塗布液を用いて形成される。電荷輸送層形成用塗布液に用いる溶剤としては、ベンゼン、トルエン、キシレン、クロルベンゼン等の芳香族炭化水素類、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルム、塩化エチレン等のハロンゲン化脂肪族炭化水素類、テトラヒドロフラン、エチルエーテル等の環状もしくは直鎖状のエーテル類等の通常の有機溶剤を単独または2種以上混合して用いられる。また、上記各構成材料の分散方法としては、公知の方法が使用される。   The charge transport layer 2B is formed using, for example, a charge transport layer forming coating solution containing the above-described constituent materials. Solvents used in the coating solution for forming the charge transport layer include aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, ketones such as acetone and 2-butanone, and halogenation such as methylene chloride, chloroform and ethylene chloride. Ordinary organic solvents such as aliphatic hydrocarbons, cyclic ethers such as tetrahydrofuran and ethyl ether, or straight chain ethers may be used alone or in admixture of two or more. Moreover, a well-known method is used as a dispersion method of each said constituent material.

電荷輸送層形成用塗布液を電荷発生層2Aの上に塗布する際の塗布方法としては、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。   Coating methods for coating the charge transport layer forming coating solution on the charge generation layer 2A include blade coating method, Mayer bar coating method, spray coating method, dip coating method, bead coating method, air knife coating method, A usual method such as a curtain coating method is used.

電荷輸送層2Bの膜厚は、望ましくは5μm以上50μm以下、より望ましくは10μm以上30μm以下である。   The film thickness of the charge transport layer 2B is desirably 5 μm or more and 50 μm or less, and more desirably 10 μm or more and 30 μm or less.

・保護層
表面層(第1の態様においては保護層2C)は、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有する。
-Protective layer The surface layer (protective layer 2C in the first embodiment) contains a polymer of a charge transport material (A) having a plurality of hydroxyl groups and a charge transport material (B) having no reactive substituent. To do.

(複数の水酸基を持つ電荷輸送物質(A))
複数の水酸基を持つ電荷輸送物質(A)としては、反応性の官能基である水酸基を複数有している電荷輸送物質であれば特に限定されるものではない。中でも、下記一般式(I)で示される構造を有する電荷輸送性材料が好適に用いられる。
F−((−R−X)n1(Rn3−OH)n2 (I)
(一般式(I)中、Fは正孔輸送能を有する化合物から誘導される有機基を、RおよびRは、それぞれ独立に、炭素数1以上5以下の直鎖状または分鎖状のアルキレン基を、n1は0または1を、n2は2以上4以下の整数を、n3は0または1を、Xは酸素原子、硫黄原子および−NH−基から選択される何れかを、示す。)
(Charge transport material having a plurality of hydroxyl groups (A))
The charge transport material (A) having a plurality of hydroxyl groups is not particularly limited as long as it is a charge transport material having a plurality of hydroxyl groups that are reactive functional groups. Among them, a charge transport material having a structure represented by the following general formula (I) is preferably used.
F - ((- R 1 -X ) n1 (R 2) n3 -OH) n2 (I)
(In general formula (I), F represents an organic group derived from a compound having a hole transporting ability, and R 1 and R 2 each independently represents a linear or branched chain having 1 to 5 carbon atoms. N1 is 0 or 1, n2 is an integer of 2 or more, 4 or less, n3 is 0 or 1, and X is any one selected from an oxygen atom, a sulfur atom, and a —NH— group .)

一般式(I)中、Fで示される正孔輸送能を有する化合物から誘導される有機基における正孔輸送能を有する化合物としては、アリールアミン誘導体が好適に挙げられる。アリールアミン誘導体としては、トリフェニルアミン誘導体、テトラフェニルベンジジン誘導体が好適に挙げられる。   In general formula (I), as the compound having a hole transport ability in an organic group derived from a compound having a hole transport ability represented by F, an arylamine derivative is preferably exemplified. Preferred examples of the arylamine derivative include a triphenylamine derivative and a tetraphenylbenzidine derivative.

そして、一般式(I)で示される化合物は、下記一般式(II)で示される化合物であることが望ましい。   The compound represented by the general formula (I) is preferably a compound represented by the following general formula (II).


(一般式(II)中、Ar乃至Arは、同一でも異なっていてもよく、それぞれ独立に置換若しくは未置換のアリール基を示し、Arは置換若しくは未置換のアリール基または置換若しくは未置換のアリーレン基を示し、Dは−(−R−X)n1(Rn3−OHを示し、cはそれぞれ独立に0または1を示し、kは0または1を示し、Dの総数は2以上4以下である。また、RおよびRはそれぞれ独立に炭素数1以上5以下の直鎖状または分鎖状のアルキレン基を示し、n1は0または1を示し、n3は0または1を示し、Xは酸素、NH、または硫黄原子を示す。) (In general formula (II), Ar 1 to Ar 4 may be the same or different and each independently represents a substituted or unsubstituted aryl group, and Ar 5 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted aryl group. A substituted arylene group, D represents — (— R 1 —X) n1 (R 2 ) n3 —OH, c independently represents 0 or 1, k represents 0 or 1, and the total number of D Is from 2 to 4. R 1 and R 2 each independently represents a linear or branched alkylene group having 1 to 5 carbon atoms, n1 represents 0 or 1, and n3 represents 0 Or 1 and X represents an oxygen, NH, or sulfur atom.)

一般式(II)中、Dを示す「−(−R−X)n1(Rn3−OH」は、一般式(I)と同義であり、RおよびRはそれぞれ独立に炭素数1以上5以下の直鎖状若しくは分鎖状のアルキレン基である。また、n1として望ましくは、1である。また、Xとして望ましくは、酸素である。 In the general formula (II), “— (— R 1 —X) n1 (R 2 ) n3 —OH” representing D has the same meaning as in the general formula (I), and R 1 and R 2 are each independently carbon. A linear or branched alkylene group having a number of 1 or more and 5 or less. N1 is preferably 1. X is preferably oxygen.

なお、一般式(II)におけるDの総数は、一般式(I)におけるn2に相当し、望ましくは3以上4以下である。つまり、一般式(I)や一般式(II)において一分子中に2以上4以下、さらに望ましくは3以上4以下の「−OH」基を有する。   The total number of D in the general formula (II) corresponds to n2 in the general formula (I), and is preferably 3 or more and 4 or less. That is, in general formula (I) or general formula (II), it has 2 or more and 4 or less, more preferably 3 or more and 4 or less “—OH” groups in one molecule.

一般式(II)中、Ar乃至Arとしては、下記式(1)乃至(7)のうちのいずれかであることが望ましい。なお、下記式(1)乃至(7)は、各Ar乃至Arに連結され得る「−(D)」と共に示す。 In general formula (II), Ar 1 to Ar 4 are preferably any of the following formulas (1) to (7). The following formulas (1) to (7) are shown together with “-(D) c ” that can be linked to each of Ar 1 to Ar 4 .


[式(1)乃至(7)中、Rは水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルキル基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基からなる群より選ばれる1種を表し、R10乃至R12はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Arは置換または未置換のアリーレン基を表し、Dおよびcは一般式(II)における「D」、「c」と同義であり、sはそれぞれ0または1を表し、tは1以上3以下の整数を表す。] [In the formulas (1) to (7), R 9 is substituted with a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Represents one selected from the group consisting of a phenyl group, an unsubstituted phenyl group, and an aralkyl group having 7 to 10 carbon atoms, wherein R 10 to R 12 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, carbon 1 selected from the group consisting of an alkoxy group having 1 to 4 carbon atoms, a phenyl group substituted with an alkoxy group having 1 to 4 carbon atoms, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom. Represents a seed, Ar represents a substituted or unsubstituted arylene group, D and c have the same meanings as “D” and “c” in formula (II), s represents 0 or 1, and t represents 1 3 or more It represents an integer. ]

ここで、式(7)中のArとしては、下記式(8)または(9)で表されるものが望ましい。   Here, as Ar in Formula (7), what is represented by following formula (8) or (9) is desirable.


[式(8)、(9)中、R13およびR14はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、tは1以上3以下の整数を表す。] [In formulas (8) and (9), R 13 and R 14 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. 1 represents one selected from the group consisting of a phenyl group substituted with, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms and a halogen atom, and t represents an integer of 1 to 3. ]

また、式(7)中のZ’としては、下記式(10)乃至(17)のうちのいずれかで表されるものが望ましい。   Further, Z ′ in the formula (7) is preferably represented by any one of the following formulas (10) to (17).


[式(10)乃至(17)中、R15およびR16はそれぞれ水素原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基もしくは炭素数1以上4以下のアルコキシ基で置換されたフェニル基、未置換のフェニル基、炭素数7以上10以下のアラルキル基、ハロゲン原子からなる群より選ばれる1種を表し、Wは2価の基を表し、qおよびrはそれぞれ1以上10以下の整数を表し、tはそれぞれ1以上3以下の整数を表す。] [In the formulas (10) to (17), R 15 and R 16 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. 1 represents one selected from the group consisting of a phenyl group substituted with, an unsubstituted phenyl group, an aralkyl group having 7 to 10 carbon atoms, and a halogen atom, W represents a divalent group, q and r each represent Represents an integer of 1 to 10, and t represents an integer of 1 to 3. ]

上記式(16)乃至(17)中のWとしては、下記(18)乃至(26)で表される2価の基のうちのいずれかであることが望ましい。但し、式(25)中、uは0以上3以下の整数を表す。   W in the formulas (16) to (17) is preferably any one of divalent groups represented by the following (18) to (26). However, in formula (25), u represents an integer of 0 or more and 3 or less.


また、一般式(II)中、Arは、kが0のときはAr乃至Arの説明で例示された上記(1)乃至(7)のアリール基であり、kが1のときはかかる上記(1)乃至(7)のアリール基から1つの水素原子を除いたアリーレン基であることが望ましい。 In general formula (II), Ar 5 is the aryl group of the above (1) to (7) exemplified in the description of Ar 1 to Ar 4 when k is 0, and when k is 1, An arylene group obtained by removing one hydrogen atom from the above aryl groups (1) to (7) is desirable.

尚、一般式(I)において、Fで示される正孔輸送能を有する化合物から誘導される有機基としては、特に、トリフェニルアミン骨格、N,N,N’,N’−テトラフェニルベンジジン骨格が好ましい。
これらの有機基は置換基を有していてもよく、該置換基としては、メチル基、ジフェニルビニル基、フェニル基、ハロゲン原子が好ましく、中でも、メチル基またはジフェニルビニル基が好ましい。
In the general formula (I), examples of the organic group derived from the compound having a hole transporting ability represented by F include triphenylamine skeleton, N, N, N ′, N′-tetraphenylbenzidine skeleton. Is preferred.
These organic groups may have a substituent, and as the substituent, a methyl group, a diphenylvinyl group, a phenyl group, and a halogen atom are preferable, and among them, a methyl group or a diphenylvinyl group is preferable.

「(−R−X)n1(Rn3」で示される基のうち、n1は0であることが、n3は1であることが好ましい。
またRとしては、特に、メチレン基が好ましい。
Of the groups represented by “(—R 1 —X) n1 (R 2 ) n3 ”, n1 is preferably 0 and n3 is preferably 1.
R 2 is particularly preferably a methylene group.

ここで、複数の水酸基を持つ電荷輸送物質(A)の具体例としては、例えば以下のものが挙げられる。   Here, specific examples of the charge transport material (A) having a plurality of hydroxyl groups include the following.





(反応性の置換基を持たない電荷輸送物質(B))
反応性の置換基を持たない電荷輸送物質(B)としては、反応性の置換基を有さない電荷輸送物質であれば特に限定されるものではない。中でも、下記一般式(A)または下記一般式(B)で示される化合物から選択される少なくとも1種の電荷輸送物質が好適に用いられる。
(Charge transport material having no reactive substituent (B))
The charge transport material (B) having no reactive substituent is not particularly limited as long as it is a charge transport material having no reactive substituent. Among these, at least one kind of charge transport material selected from the compounds represented by the following general formula (A) or the following general formula (B) is preferably used.


(一般式(A)中、L、Lはそれぞれ独立に、炭素数1以上5以下の置換もしくは未置換のアルキル基、炭素数7以上15以下の置換もしくは未置換のアラルキル基を示し、L、Lはそれぞれ独立に、水素原子、炭素数1以上5以下の置換もしくは未置換のアルキル基、炭素数7以上20以下の置換もしくは未置換のアラルキル基を示し、f、gはそれぞれ独立に、1または2を表す。
一般式(B)中、L乃至Lはそれぞれ独立に、水素原子、炭素数1以上5以下の置換もしくは未置換のアルキル基、炭素数7以上15以下の置換もしくは未置換のアラルキル基、炭素数6以上15以下の置換もしくは未置換のアリール基、または下記一般式(C)で示される構造を示し、且つL乃至Lのうちの少なくとも1つは下記一般式(C)で示される構造を有する。h乃至kはそれぞれ独立に、1または2を表す。L、L10はそれぞれ独立に、水素原子、炭素数1以上5以下の置換もしくは未置換のアルキル基、炭素数7以上15以下の置換もしくは未置換のアラルキル基、炭素数6以上15以下の置換もしくは未置換のアリール基、または炭素数1以上15以下の置換もしくは未置換のアミノ基を示す。)
(In General Formula (A), L 1 and L 2 each independently represent a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 15 carbon atoms, L 3 and L 4 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, and f and g are each Independently, 1 or 2 is represented.
In general formula (B), L 5 to L 8 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 15 carbon atoms, A substituted or unsubstituted aryl group having 6 to 15 carbon atoms or a structure represented by the following general formula (C); and at least one of L 5 to L 8 is represented by the following general formula (C): Has a structure. h to k each independently represent 1 or 2. L 9 and L 10 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 15 carbon atoms, and a carbon number of 6 to 15 carbon atoms. A substituted or unsubstituted aryl group, or a substituted or unsubstituted amino group having 1 to 15 carbon atoms is shown. )


(一般式(C)中、L、Lはそれぞれ独立に、炭素数1以上5以下の置換もしくは未置換のアルキル基、炭素数7以上15以下の置換もしくは未置換のアラルキル基を示す。) (In General Formula (C), L 1 and L 2 each independently represents a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or a substituted or unsubstituted aralkyl group having 7 to 15 carbon atoms. )

一般式(A)中、L、Lを表す、炭素数1以上5以下の置換もしくは未置換のアルキル基としては、炭素数1以上3以下のアルキル基が好ましい。 In the general formula (A), the substituted or unsubstituted alkyl group having 1 to 5 carbon atoms representing L 1 and L 2 is preferably an alkyl group having 1 to 3 carbon atoms.

上記の中でも、L、Lとしては、エチル基が好ましい。 Among the above, as L 1 and L 2 , an ethyl group is preferable.

一般式(A)中、L、Lが、炭素数1以上5以下の置換もしくは未置換のアルキル基である場合には、このアルキル基としては、炭素数1以上5以下のアルキル基が好ましく、炭素数1以上3以下のアルキル基が特に好ましい。 In the general formula (A), when L 3 and L 4 are a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, the alkyl group is an alkyl group having 1 to 5 carbon atoms. An alkyl group having 1 to 3 carbon atoms is particularly preferable.

、Lが表す好ましいアルキル基として具体的には、例えば、メチル基、エチル基、プロピル基、n−ブチル基、i−ブチル基、t−ブチル基が挙げられる。
上記の中でも、L、Lで表されるアルキル基の有する置換基としては、メチルまたはエチル基が最も好ましい。
Specific examples of preferable alkyl groups represented by L 3 and L 4 include a methyl group, an ethyl group, a propyl group, an n-butyl group, an i-butyl group, and a t-butyl group.
Among these, as the substituent of the alkyl group represented by L 3 or L 4 , a methyl or ethyl group is most preferable.

、Lが炭素数7以上20以下の置換もしくは未置換のアラルキル基である場合には、このアラルキル基としては、炭素数7以上15以下のアラルキル基が好ましく、炭素数7以上10以下のアラルキル基が特に好ましい。 When L 3 and L 4 are a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, the aralkyl group is preferably an aralkyl group having 7 to 15 carbon atoms, and has 7 to 10 carbon atoms. The aralkyl group is particularly preferable.

上記の中でも、L、Lで表されるアラルキル基の有する置換基としては、ベンジル基が最も好ましい。 Among the above, as a substituent which the aralkyl group represented by L 3 and L 4 has, a benzyl group is most preferable.

一般式(B)中、L乃至Lが、炭素数1以上5以下の置換もしくは未置換のアルキル基である場合には、このアルキル基としては、炭素数1以上5以下のアルキル基が好ましく、炭素数1以上3以下のアルキル基が特に好ましい。 In the general formula (B), when L 5 to L 8 are a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, the alkyl group is an alkyl group having 1 to 5 carbon atoms. An alkyl group having 1 to 3 carbon atoms is particularly preferable.

乃至Lが表す好ましいアルキル基として具体的には、例えば、メチル基、エチル基、プロピル基、n−ブチル基、i−ブチル基、t−ブチル基が挙げられる。 Specific examples of preferred alkyl groups represented by L 5 to L 8 include a methyl group, an ethyl group, a propyl group, an n-butyl group, an i-butyl group, and a t-butyl group.

乃至Lが炭素数7以上15以下の置換もしくは未置換のアラルキル基である場合には、このアラルキル基としては、例えば、ベンジル基、フェネチル基が好適に挙げられる。これらの中でも、ベンジル基が特に好ましい。 When L 5 to L 8 is a substituted or unsubstituted aralkyl group having 7 to 15 carbon atoms, examples of the aralkyl group include a benzyl group and a phenethyl group. Among these, a benzyl group is particularly preferable.

乃至Lが炭素数6以上15以下の置換もしくは未置換のアリール基である場合には、これらのアリール基としては、例えば、フェニル、ビフェニリル基が好適に挙げられる。これらの中でも、フェニル基が特に好ましい。 When L 5 to L 8 are substituted or unsubstituted aryl groups having 6 to 15 carbon atoms, examples of these aryl groups include phenyl and biphenylyl groups. Among these, a phenyl group is particularly preferable.

乃至Lのうちの少なくとも1つが示す一般式(C)で示される構造中における、L、Lは、上記一般式(A)中における、LおよびLと同義であり、その好ましい範囲も同じである。 L at 5 to in the structure represented by the general formula (C) shown at least one of the L 8, L 1, L 2 are in the above general formula (A), has the same meaning as L 1 and L 2, The preferable range is also the same.

一般式(A)中、L、L10の何れか一方または双方が、炭素数1以上5以下の置換もしくは未置換のアルキル基である場合には、このアルキル基としては、炭素数1以上5以下のアルキル基が好ましく、炭素数1以上3以下のアルキル基が特に好ましい。 In the general formula (A), when one or both of L 9 and L 10 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, the alkyl group has 1 or more carbon atoms. An alkyl group having 5 or less is preferable, and an alkyl group having 1 to 3 carbon atoms is particularly preferable.

上記の中でも、L、L10で表されるアルキル基の有する置換基としては、メチルまたはエチル基が最も好ましい。 Among these, as the substituent that the alkyl group represented by L 9 or L 10 has, a methyl or ethyl group is most preferable.

、L10の何れか一方または双方が、炭素数7以上15以下の置換もしくは未置換のアラルキル基である場合には、このアラルキル基としては、例えば、ベンジル、フェネチル基が好適に挙げられる。 When either or both of L 9 and L 10 is a substituted or unsubstituted aralkyl group having 7 to 15 carbon atoms, examples of the aralkyl group include benzyl and phenethyl groups. .

、L10の何れか一方または双方が、炭素数6以上15以下の置換もしくは未置換のアリール基である場合には、これらのアリール基としては、例えば、フェニル、ビフェニリル基、ジメチルアミノフェニル基、ジエチルアミノフェニル基などが好適に挙げられる。 When one or both of L 9 and L 10 is a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, examples of these aryl groups include phenyl, biphenylyl group, dimethylaminophenyl, and the like. Preferred examples include a group and a diethylaminophenyl group.

以下に、上記一般式(A)あるいは(B)で示される化合物の具体例を示すが、これらに限られるわけではない。なお下記具体例(A−1)乃至(A−6)は、各々上記一般式(A)で示される化合物の具体例を示し、下記具体例(B−1)乃至(B−13)は、各々上記一般式(B)で示される化合物の具体例を示す。   Specific examples of the compound represented by the general formula (A) or (B) are shown below, but are not limited thereto. The following specific examples (A-1) to (A-6) are specific examples of the compound represented by the general formula (A), and the following specific examples (B-1) to (B-13) are Specific examples of the compound represented by the general formula (B) are shown below.




上記一般式(A)および上記一般式(B)で示される化合物等の反応性の置換基を持たない電荷輸送物質(B)は、1種単独で用いてもよいが、2種以上を併用してもよい。   The charge transport material (B) having no reactive substituent such as the compounds represented by the general formula (A) and the general formula (B) may be used alone or in combination of two or more. May be.

表面層(第1の態様においては保護層2C)に含有される全電荷輸送物質中における前記電荷輸送物質(B)の比率は、0.19質量%以上1.5質量%以下である。   The ratio of the charge transport material (B) in the total charge transport material contained in the surface layer (the protective layer 2C in the first embodiment) is 0.19% by mass or more and 1.5% by mass or less.

(電荷輸送物質(A)と電荷輸送物質(B)とのイオン化ポテンシャルの差)
表面層に用いられる電荷輸送物質(B)のイオン化ポテンシャル(IpB)は、電荷輸送物質(A)のイオン化ポテンシャル(IpA)よりも、0.04eV以上0.2eV以下低いものが用いられる。
尚、上記イオン化ポテンシャルの差は、電荷輸送物質(A)および電荷輸送物質(B)として用いる材料の選択によって制御され、上記イオン化ポテンシャルの差が上記範囲となる組合せで用いることで行なわれる。
(Difference in ionization potential between charge transport material (A) and charge transport material (B))
The ionization potential (IpB) of the charge transport material (B) used for the surface layer is 0.04 eV or more and 0.2 eV or less lower than the ionization potential (IpA) of the charge transport material (A).
The difference in ionization potential is controlled by the selection of materials used as the charge transport material (A) and the charge transport material (B), and is performed by using a combination in which the difference in ionization potential falls within the above range.

(その他の電荷輸送物質)
また、保護層2Cには、前記複数の水酸基を持つ電荷輸送物質(A)や反応性の置換基を持たない電荷輸送物質(B)以外にも、反応性官能基を有する他の電荷輸送性物質を併用してもよい。例えば、下記一般式(III)で示される構造を有する電荷輸送物質の少なくとも一種を併用してもよい。
F−((−R−X)n1(Rn3−Y)n2 (III)
(一般式(III)中、Fは正孔輸送能を有する化合物から誘導される有機基を、RおよびRは、それぞれ独立に、炭素数1以上5以下の直鎖状または分鎖状のアルキレン基を、n1は0または1を、n2は1以上4以下の整数を、n3は0または1を、Xは酸素原子、硫黄原子および−NH−基から選択される何れかを、Yは−OR,−NH,−SHまたは−COOH基を、Rはアルキル基を示す。)
(Other charge transport materials)
In addition to the charge transport material (A) having a plurality of hydroxyl groups and the charge transport material (B) having no reactive substituent, the protective layer 2C has other charge transport properties having a reactive functional group. Substances may be used in combination. For example, at least one charge transport material having a structure represented by the following general formula (III) may be used in combination.
F - ((- R 1 -X ) n1 (R 2) n3 -Y) n2 (III)
(In general formula (III), F represents an organic group derived from a compound having a hole transporting ability, and R 1 and R 2 each independently represents a linear or branched chain having 1 to 5 carbon atoms. N1 is 0 or 1, n2 is an integer of 1 to 4, n3 is 0 or 1, X is any one selected from an oxygen atom, a sulfur atom and a —NH— group, Represents —OR 3 , —NH 2 , —SH or —COOH group, and R 3 represents an alkyl group.)

尚、表面層(第1の態様においては保護層2C)の固形分となる全単量体に対して全電荷輸送性物質が90質量%以上となる比率で重合されることが好ましい。   In addition, it is preferable that the total charge transporting substance is polymerized at a ratio of 90% by mass or more with respect to the total amount of monomers as the solid content of the surface layer (protective layer 2C in the first embodiment).

(グアナミン化合物およびメラミン化合物)
前記電荷輸送物質(A)と電荷輸送物質(B)とを重合してなる保護層2Cは、更にグアナミン化合物およびメラミン化合物から選択される少なくとも1種と共に重合して形成されてもよい。
(Guanamine compounds and melamine compounds)
The protective layer 2C formed by polymerizing the charge transport material (A) and the charge transport material (B) may be formed by further polymerizing with at least one selected from a guanamine compound and a melamine compound.

まず、グアナミン化合物について説明する。
グアナミン化合物は、グアナミン骨格(構造)を有する化合物であり、例えば、アセトグアナミン、ベンゾグアナミン、ホルモグアナミン、ステログアナミン、スピログアナミン、シクロヘキシルグアナミンなどが挙げられる。
First, the guanamine compound will be described.
The guanamine compound is a compound having a guanamine skeleton (structure), and examples thereof include acetoguanamine, benzoguanamine, formoguanamine, steroguanamine, spiroguanamine, and cyclohexylguanamine.

グアナミン化合物としては、特に下記一般式(A)で示される化合物およびその多量体の少なくとも1種であることが望ましい。ここで、多量体は、一般式(A)で示される化合物を構造単位として重合されたオリゴマーであり、その重合度は例えば2以上200以下(望ましくは2以上100以下)である。なお、一般式(A)で示される化合物は、一種単独で用いてもよいが、2種以上を併用してもよい。   The guanamine compound is particularly preferably at least one of a compound represented by the following general formula (A) and a multimer thereof. Here, the multimer is an oligomer polymerized using the compound represented by the general formula (A) as a structural unit, and the degree of polymerization thereof is, for example, 2 or more and 200 or less (preferably 2 or more and 100 or less). In addition, the compound shown by general formula (A) may be used individually by 1 type, but may use 2 or more types together.


一般式(A)中、Rは、炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基、炭素数6以上10以下の置換若しくは未置換のフェニル基、または炭素数4以上10以下の置換若しくは未置換の脂環式炭化水素基を示す。R乃至Rは、それぞれ独立に水素、−CH−OH、または−CH−O−Rを示す。Rは、水素、または炭素数1以上10以下の直鎖状若しくは分鎖状のアルキル基を示す。 In General Formula (A), R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, or 4 to 10 carbon atoms. The following substituted or unsubstituted alicyclic hydrocarbon groups are shown. R 2 to R 5 each independently represent hydrogen, —CH 2 —OH, or —CH 2 —O—R 6 . R 6 represents hydrogen or a linear or branched alkyl group having 1 to 10 carbon atoms.

一般式(A)において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以上8以下であり、より望ましくは炭素数が1以上5以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。 In general formula (A), the alkyl group represented by R 1 has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms. . The alkyl group may be linear or branched.

一般式(A)中、Rを示すフェニル基は、炭素数6以上10以下であるが、より望ましくは6以上8以下である。当該フェニル基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。 In general formula (A), the phenyl group represented by R 1 has 6 to 10 carbon atoms, and more preferably 6 to 8 carbon atoms. Examples of the substituent substituted with the phenyl group include a methyl group, an ethyl group, and a propyl group.

一般式(A)中、Rを示す脂環式炭化水素基は、炭素数4以上10以下であるが、より望ましくは5以上8以下である。当該脂環式炭化水素基に置換される置換基としては、例えば、メチル基、エチル基、プロピル基などが挙げられる。 In general formula (A), the alicyclic hydrocarbon group representing R 1 has 4 to 10 carbon atoms, and more preferably 5 to 8 carbon atoms. Examples of the substituent substituted with the alicyclic hydrocarbon group include a methyl group, an ethyl group, and a propyl group.

一般式(A)中、R乃至Rを示す「−CH−O−R」において、Rを示すアルキル基は、炭素数が1以上10以下であるが、望ましくは炭素数が1以上8以下であり、より望ましくは炭素数が1以上6以下である。また、当該アルキル基は、直鎖状であってもよし、分鎖状であってもよい。望ましくは、メチル基、エチル基、ブチル基などが挙げられる。 In the general formula (A), in “—CH 2 —O—R 6 ” representing R 2 to R 5 , the alkyl group representing R 6 has 1 to 10 carbon atoms, and desirably has carbon atoms. 1 to 8 and more preferably 1 to 6 carbon atoms. The alkyl group may be linear or branched. Desirably, a methyl group, an ethyl group, a butyl group, etc. are mentioned.

一般式(A)で示される化合物としては、特に望ましくは、Rが炭素数6以上10以下の置換若しくは未置換のフェニル基を示し、R乃至Rがそれぞれ独立に−CH−O−Rを示される化合物である。また、Rは、メチル基またはn−ブチル基から選ばれることが望ましい。 As the compound represented by the general formula (A), it is particularly desirable that R 1 represents a substituted or unsubstituted phenyl group having 6 to 10 carbon atoms, and R 2 to R 5 are each independently —CH 2 —O. It is a compound represented by —R 6 . R 6 is preferably selected from a methyl group and an n-butyl group.

一般式(A)で示される化合物は、例えば、グアナミンとホルムアルデヒドとを用いて公知の方法(例えば、実験化学講座第4版、28巻、430ページ参照)で合成される。   The compound represented by the general formula (A) is synthesized by a known method using, for example, guanamine and formaldehyde (for example, see Experimental Chemistry Course 4th edition, Vol. 28, page 430).

以下、一般式(A)で示される化合物の具体例を示すが、これらに限られるわけではない。また、以下の具体例は、単量体のものを示すが、これらを構造単位とする多量体(オリゴマー)であってもよい。   Specific examples of the compound represented by the general formula (A) are shown below, but are not limited thereto. Moreover, although the following specific examples show the thing of a monomer, the multimer (oligomer) which uses these as a structural unit may be sufficient.





一般式(A)で示される化合物の市販品としては、例えば、”スーパーベッカミン(R)L−148−55、スーパーベッカミン(R)13−535、スーパーベッカミン(R)L−145−60、スーパーベッカミン(R)TD−126”以上DIC社製、”ニカラックBL−60、ニカラックBX−4000”以上日本カーバイド社製、などが挙げられる。   Commercially available products of the compound represented by the general formula (A) include, for example, “Superbecamine (R) L-148-55, Superbecamine (R) 13-535, Superbecamine (R) L-145- 60, Super Becamine (R) TD-126 "or more manufactured by DIC Corporation," Nicarac BL-60, Nicalac BX-4000 "or more manufactured by Nippon Carbide Corporation, and the like.

また、一般式(A)で示される化合物(多量体を含む)は、合成後または市販品の購入後、残留触媒の影響を取り除くために、トルエン、キシレン、酢酸エチル、などの適当な溶剤に溶解し、蒸留水、イオン交換水などで洗浄してもよいし、イオン交換樹脂で処理して除去してもよい。   In addition, the compound represented by the general formula (A) (including multimers) can be used in a suitable solvent such as toluene, xylene, ethyl acetate, etc., in order to remove the influence of residual catalyst after synthesis or after purchasing a commercial product. It may be dissolved and washed with distilled water, ion exchange water or the like, or may be removed by treatment with an ion exchange resin.

次に、メラミン化合物について説明する。
メラミン化合物としては、メラミン骨格(構造)であり、特に下記一般式(B)で示される化合物およびその多量体の少なくとも1種であることが望ましい。ここで、多量体は、一般式(A)のごとく、一般式(B)で示される化合物を構造単位として重合されたオリゴマーであり、その重合度は例えば2以上200以下(望ましくは2以上100以下)である。なお、一般式(B)で示される化合物またはその多量体は、1種単独で用いてもよいが、2種以上を併用してもよい。また、前記一般式(A)で示される化合物またはその多量体と併用してもよい。
Next, the melamine compound will be described.
The melamine compound is a melamine skeleton (structure), and is preferably at least one of a compound represented by the following general formula (B) and a multimer thereof. Here, the multimer is an oligomer obtained by polymerizing the compound represented by the general formula (B) as a structural unit as in the general formula (A), and the degree of polymerization thereof is, for example, 2 or more and 200 or less (preferably 2 or more and 100). The following). In addition, the compound shown by General formula (B) or its multimer may be used individually by 1 type, but may use 2 or more types together. Moreover, you may use together with the compound shown by the said general formula (A), or its multimer.


一般式(B)中、R乃至R12はそれぞれ独立に、水素原子、−CH−OH、−CH−O−R13を示し、R13は炭素数1以上5以下の分岐してもよいアルキル基を示す。R13としてはメチル基、エチル基、ブチル基などが挙げられる。 In general formula (B), R 7 to R 12 each independently represent a hydrogen atom, —CH 2 —OH, —CH 2 —O—R 13 , and R 13 is branched from 1 to 5 carbon atoms. Or a good alkyl group. Examples of R 13 include a methyl group, an ethyl group, and a butyl group.

一般式(B)で示される化合物は、例えば、メラミンとホルムアルデヒドとを用いて公知の方法(例えば、実験化学講座第4版、28巻、430ページに記載のメラミン樹脂のごとく合成される)で合成される。   The compound represented by the general formula (B) is synthesized by a known method using, for example, melamine and formaldehyde (for example, synthesized like the melamine resin described in Experimental Chemistry Course 4th edition, Volume 28, page 430). Synthesized.

以下、一般式(B)で示される化合物の具体例を示すが、これらに限られるわけではない。また、以下の具体例は、単量体のものを示すが、これらを構造単位とする多量体(オリゴマー)であってもよい。   Specific examples of the compound represented by the general formula (B) are shown below, but are not limited thereto. Moreover, although the following specific examples show the thing of a monomer, the multimer (oligomer) which uses these as a structural unit may be sufficient.


一般式(B)で示される化合物の市販品としては、例えば、スーパーメラミNo.90(日油社製)、スーパーベッカミン(R)TD−139−60(DIC社製)、ユーバン2020(三井化学)、スミテックスレジンM−3(住友化学工業)、ニカラックMW−30(日本カーバイド社製)、などが挙げられる。   As a commercial item of the compound represented by the general formula (B), for example, Super Melami No. 90 (manufactured by NOF Corporation), Super Becamine (R) TD-139-60 (manufactured by DIC), Uban 2020 (Mitsui Chemicals), Sumitex Resin M-3 (Sumitomo Chemical Industries), Nicarak MW-30 (Japan) Carbide).

また、一般式(B)で示される化合物(多量体を含む)は、合成後または市販品の購入後、残留触媒の影響を取り除くために、トルエン、キシレン、酢酸エチルなどの適当な溶剤に溶解し、蒸留水、イオン交換水などで洗浄してもよいし、イオン交換樹脂で処理して除去してもよい。   In addition, the compound represented by the general formula (B) (including multimers) is dissolved in an appropriate solvent such as toluene, xylene or ethyl acetate after synthesis or after purchase of a commercial product in order to remove the influence of residual catalyst. It may be washed with distilled water, ion exchange water or the like, or may be removed by treatment with ion exchange resin.

ここで、グアナミン化合物およびメラミン化合物から選択される少なくとも1種の、表面層(第1の態様においては保護層2C)形成用塗布液における固形分濃度は、0.1質量%以上5質量%以下であることが好ましく、より好は1質量%以上3質量%以下である。   Here, the solid content concentration in the coating liquid for forming the surface layer (protective layer 2C in the first embodiment) selected from guanamine compounds and melamine compounds is 0.1% by mass or more and 5% by mass or less. It is preferable that it is 1 mass% or more and 3 mass% or less.

(その他の組成物)
保護層2Cには、特定の電荷輸送物質が架橋された架橋物と共に、フェノール樹脂、メラミン樹脂、尿素樹脂、アルキッド樹脂、ベンゾグアナミン樹脂などの他の熱硬化性樹脂を混合して用いてもよい。また、スピロアセタール系グアナミン樹脂(例えば「CTU−グアナミン」(味の素ファインテクノ(株)))など、一分子中の官能基のより多い化合物を当該架橋物中の材料に共重合させてもよい。
(Other compositions)
For the protective layer 2C, other thermosetting resins such as a phenol resin, a melamine resin, a urea resin, an alkyd resin, and a benzoguanamine resin may be mixed and used together with a crosslinked product obtained by crosslinking a specific charge transport material. In addition, a compound having a larger number of functional groups in one molecule such as a spiroacetal guanamine resin (for example, “CTU-guanamine” (Ajinomoto Fine Techno Co., Ltd.)) may be copolymerized with the material in the crosslinked product.

保護層2Cは、フッ素系樹脂粒子を含有してもよい。該フッ素系樹脂粒子としては、特に限定されるものではないが、4フッ化エチレン樹脂(PTFE)、3フッ化塩化エチレン樹脂、6フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、2フッ化2塩化エチレン樹脂およびそれらの共重合体の中から1種あるいは2種以上を選択するのが望ましいが、さらに望ましくは4フッ化エチレン樹脂、フッ化ビニリデン樹脂であり、特に望ましくは4フッ化エチレン樹脂である。   The protective layer 2C may contain fluorine-based resin particles. The fluororesin particles are not particularly limited, but include tetrafluoroethylene resin (PTFE), trifluoroethylene chloride resin, hexafluoropropylene resin, vinyl fluoride resin, vinylidene fluoride resin, 2 It is desirable to select one or two or more kinds of fluorinated ethylene chloride resins and copolymers thereof, more preferably tetrafluoroethylene resin and vinylidene fluoride resin, particularly preferably 4 fluorocarbon resins. It is a hydrogenated ethylene resin.

表面層である保護層2Cの固形分全量に対するフッ素系樹脂粒子の含有量は1質量%以上30質量%以下が望ましく、2質量%以上20質量%以下がさらに望ましい。   The content of the fluororesin particles with respect to the total solid content of the protective layer 2C as the surface layer is preferably 1% by mass or more and 30% by mass or less, and more preferably 2% by mass or more and 20% by mass or less.

また、保護層2Cには界面活性剤を添加することが好ましく、用いる界面活性剤としては、フッ素原子、アルキレンオキサイド構造、シリコーン構造のうち少なくとも一種類以上の構造を含む界面活性剤であれば特に制限はないが、上記構造を複数有するものが好適に挙げられる。   In addition, it is preferable to add a surfactant to the protective layer 2C, and the surfactant to be used is particularly a surfactant that includes at least one type of structure among a fluorine atom, an alkylene oxide structure, and a silicone structure. Although there is no restriction | limiting, What has multiple said structures is mentioned suitably.

フッ素原子を有する界面活性剤としては、様々なものが挙げられる。フッ素原子およびアクリル構造を有する界面活性剤として具体的は、ポリフローKL600(共栄社化学社製)、エフトップEF−351、EF−352、EF−801、EF−802、EF−601(以上、JEMCO社製)などが挙げられる。アクリル構造を有する界面活性剤とは、アクリルもしくはメタクリル化合物などのモノマーを重合もしくは共重合したものが主に挙げられる。   Various things are mentioned as surfactant which has a fluorine atom. Specific examples of the surfactant having a fluorine atom and an acrylic structure include Polyflow KL600 (manufactured by Kyoeisha Chemical Co., Ltd.), F-top EF-351, EF-352, EF-801, EF-802, EF-601 (above, JEMCO Manufactured). The surfactant having an acrylic structure mainly includes those obtained by polymerizing or copolymerizing monomers such as acrylic or methacrylic compounds.

また、フッ素原子としてパーフルオロアルキル基を持つ界面活性剤として、具体的には、パーフルオロアルキルスルホン酸類(例えば、パーフルオロブタンスルホン酸、パーフルオロオクタンスルホン酸など)、パーフルオロアルキルカルボン酸類(例えば、パーフルオロブタンカルボン酸、パーフルオロオクタンカルボン酸など)、パーフルオロアルキル基含有リン酸エステルが好適に挙げられる。パーフルオロアルキルスルホン酸類、およびパーフルオロアルキルカルボン酸類は、その塩およびそのアミド変性体であってもよい。   Further, as the surfactant having a perfluoroalkyl group as a fluorine atom, specifically, perfluoroalkyl sulfonic acids (for example, perfluorobutane sulfonic acid, perfluorooctane sulfonic acid, etc.), perfluoroalkyl carboxylic acids (for example, , Perfluorobutanecarboxylic acid, perfluorooctanecarboxylic acid, etc.) and perfluoroalkyl group-containing phosphates. Perfluoroalkylsulfonic acids and perfluoroalkylcarboxylic acids may be salts thereof and amide-modified products thereof.

パーフルオロアルキルスルホン酸類の市販品としては、例えばメガファックF−114(DIC株式会社製)、エフトップEF−101、EF102、EF−103、EF−104、EF−105、EF−112、EF−121、EF−122A、EF−122B、EF−122C、EF−123A(以上、JEMCO社製)、A−K、501(以上、ネオス社製)などが挙げられる。
パーフルオロアルキルカルボン酸類の市販品としては、例えばメガファックF−410(DIC株式会社製)、エフトップ EF−201、EF−204(以上、JEMCO社製)などが挙げられる。
パーフルオロアルキル基含有リン酸エステルの市販品としては、メガファックF−493、F−494(以上、DIC株式会社製)エフトップ EF−123A、EF−123B、EF−125M、EF−132、(以上、JEMCO社製)などが挙げられる。
Examples of commercially available perfluoroalkyl sulfonic acids include Megafax F-114 (manufactured by DIC Corporation), F-top EF-101, EF102, EF-103, EF-104, EF-105, EF-112, and EF-. 121, EF-122A, EF-122B, EF-122C, EF-123A (manufactured by JEMCO), AK, 501 (manufactured by Neos) and the like.
Examples of commercially available products of perfluoroalkylcarboxylic acids include Megafac F-410 (manufactured by DIC Corporation), F-top EF-201, EF-204 (manufactured by JEMCO Corporation), and the like.
Commercially available perfluoroalkyl group-containing phosphate esters include MegaFac F-493 and F-494 (manufactured by DIC Corporation) F-top EF-123A, EF-123B, EF-125M, EF-132, ( As mentioned above, JEMCO Co., Ltd.) can be cited.

アルキレンオキサイド構造を持つ界面活性剤としてはポリエチレングリコール、ポリエーテル消泡剤、ポリエーテル変性シリコーンオイルなどが挙げられる。ポリエチレングリコールとしては数平均分子量が2000以下のものが好ましい。数平均分子量が2000以下のポリエチレングリコールとしては、ポリエチレングリコール2000(数平均分子量2000)、ポリエチレングリコール600(数平均分子量600)、ポリエチレングリコール400(数平均分子量400)、ポリエチレングリコール200(数平均分子量200)等が挙げられる。   Examples of the surfactant having an alkylene oxide structure include polyethylene glycol, polyether antifoaming agent, and polyether-modified silicone oil. Polyethylene glycol preferably has a number average molecular weight of 2000 or less. Polyethylene glycol having a number average molecular weight of 2000 or less includes polyethylene glycol 2000 (number average molecular weight 2000), polyethylene glycol 600 (number average molecular weight 600), polyethylene glycol 400 (number average molecular weight 400), polyethylene glycol 200 (number average molecular weight 200). ) And the like.

また、ポリエーテル消泡剤としては、PE−M、PE−L(以上、和光純薬工業社製)、消泡剤No.1、消泡剤No.5(以上、花王社製)等が挙げられる。   Moreover, as a polyether antifoamer, PE-M, PE-L (above, Wako Pure Chemical Industries Ltd. make), antifoam No. 1. Antifoaming agent No. 1 5 (above, manufactured by Kao Corporation).

シリコーン構造を有する界面活性剤としては、ジメチルシリコーン、メチルフェニルシリコーン、ジフェニルシリコーンやそれらの誘導体等の一般的なシリコーンオイルが挙げられる。   Examples of the surfactant having a silicone structure include general silicone oils such as dimethyl silicone, methylphenyl silicone, diphenyl silicone and derivatives thereof.

さらに、フッ素原子、アルキレンオキサイド構造の両方を有する界面活性剤としては、アルキレンオキサイド構造またはポリアルキレン構造を側鎖に有するものや、アルキレンオキサイドまたはポリアルキレンオキサイド構造の末端がフッ素を含む置換基で置換されたものなどが挙げられる。アルキレンオキサイド構造を有する界面活性剤として、具体的には、例えば、メガファックF−443、F−444、F−445、F−446(以上、DIC株式会社製)、POLY FOX PF636、PF6320、PF6520、PF656(以上、北村化学社製)などが挙げられる。   Further, as the surfactant having both a fluorine atom and an alkylene oxide structure, those having an alkylene oxide structure or a polyalkylene structure in the side chain, or substituted at the terminal of the alkylene oxide or polyalkylene oxide structure with a substituent containing fluorine And the like. Specific examples of the surfactant having an alkylene oxide structure include, for example, MegaFuck F-443, F-444, F-445, F-446 (above, manufactured by DIC Corporation), POLY FOX PF636, PF6320, and PF6520. , PF656 (made by Kitamura Chemical Co., Ltd.) and the like.

また、アルキレンオキサイド構造、シリコーン構造の両方を有する界面活性剤としてはKF351(A)、KF352(A)、KF353(A)、KF354(A)、KF355(A)、KF615(A)、KF618、KF945(A)、KF6004(以上、信越化学工業社製)、TSF4440、TSF4445、TSF4450、TSF4446、TSF4452、TSF4453、TSF4460(以上、GE東芝シリコン社製)、BYK−300、302、306、307、310、315、320、322、323、325、330、331、333、337、341、344、345、346、347、348、370、375、377、378、UV3500、UV3510、UV3570等(以上、ビックケミー・ジャパン株式会社製)が挙げられる。   As surfactants having both an alkylene oxide structure and a silicone structure, KF351 (A), KF352 (A), KF353 (A), KF354 (A), KF355 (A), KF615 (A), KF618, KF945 (A), KF6004 (above, manufactured by Shin-Etsu Chemical Co., Ltd.), TSF4440, TSF4445, TSF4450, TSF4446, TSF4452, TSF4453, TSF4460 (above, manufactured by GE Toshiba Silicon), BYK-300, 302, 306, 307, 310, 315, 320, 322, 323, 325, 330, 331, 333, 337, 341, 344, 345, 346, 347, 348, 370, 375, 377, 378, UV3500, UV3510, UV3570, etc. Made emissions Co., Ltd.) and the like.

界面活性剤の含有量は、保護層の固形分全量に対して、望ましくは0.01質量%以上1質量%以下、より望ましくは0.02質量%以上0.5質量%以下である。   The content of the surfactant is desirably 0.01% by mass or more and 1% by mass or less, more desirably 0.02% by mass or more and 0.5% by mass or less with respect to the total solid content of the protective layer.

また、保護層2Cには、さらに他のカップリング剤、フッ素化合物と混合して用いてもよい。この化合物として、各種シランカップリング剤、および市販のシリコーン系ハードコート剤が用いられる。   Further, the protective layer 2C may be further mixed with another coupling agent or a fluorine compound. As this compound, various silane coupling agents and commercially available silicone hard coat agents are used.

シランカップリング剤としては、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、等が用いられる。市販のハードコート剤としては、KP−85、X−40−9740、X−8239(以上、信越シリコーン社製)、AY42−440、AY42−441、AY49−208(以上、東レダウコーニング社製)等が用いられる。また、撥水性等の付与のために、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリエトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、3−(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、1H,1H,2H,2H−パーフルオロアルキルトリエトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリエトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリエトシキシラン、等の含フッ素化合物を加えてもよい。シランカップリング剤は任意の量で使用されるが、含フッ素化合物の量は、フッ素を含まない化合物に対して質量で0.25倍以下とすることが望ましい。   As the silane coupling agent, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and the like are used. As a commercially available hard coat agent, KP-85, X-40-9740, X-8239 (manufactured by Shin-Etsu Silicone), AY42-440, AY42-441, AY49-208 (manufactured by Toray Dow Corning) Etc. are used. In order to impart water repellency and the like, (tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, 3- (hepta) Fluoroisopropoxy) propyltriethoxysilane, 1H, 1H, 2H, 2H-perfluoroalkyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorooctyl Fluorine-containing compounds such as triethoxysilane may be added. Although the silane coupling agent is used in an arbitrary amount, the amount of the fluorine-containing compound is desirably 0.25 times or less by mass with respect to the compound not containing fluorine.

また、保護層にはアルコールに溶解する樹脂を加えてもよい。ここで、アルコールに可溶な樹脂とは、炭素数5以下のアルコールに1質量%以上溶解し得る樹脂を意味する。アルコール系溶剤に可溶な樹脂としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールやアセトアセタール等で変性された部分アセタール化ポリビニルアセタール樹脂などのポリビニルアセタール樹脂(たとえば積水化学社製エスレックB、K等)、ポリアミド樹脂、セルロ−ス樹脂、ポリビニルフェノール樹脂などがあげられる。特に、ポリビニルアセタール樹脂、ポリビニルフェノール樹脂が望ましい。
当該樹脂の重量平均分子量は2,000以上100,000以下が望ましく、5,000以上50,000以下がより望ましい。また、当該樹脂の添加量は1質量%以上40質量%以下が望ましく、1質量%以上30質量%以下がより望ましく、5質量%以上20質量%以下がさらに望ましい。
Further, a resin that dissolves in alcohol may be added to the protective layer. Here, the alcohol-soluble resin means a resin that can be dissolved by 1% by mass or more in an alcohol having 5 or less carbon atoms. Examples of resins that are soluble in alcohol solvents include polyvinyl acetal resins such as polyvinyl butyral resin, polyvinyl formal resin, and partially acetalized polyvinyl acetal resin in which a part of butyral is modified with formal or acetoacetal (for example, manufactured by Sekisui Chemical Co., Ltd.) ESREC B, K, etc.), polyamide resin, cellulose resin, polyvinylphenol resin and the like. In particular, polyvinyl acetal resin and polyvinyl phenol resin are desirable.
The resin preferably has a weight average molecular weight of 2,000 to 100,000, and more preferably 5,000 to 50,000. The amount of the resin added is preferably 1% by mass or more and 40% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and further preferably 5% by mass or more and 20% by mass or less.

保護層2Cには、酸化防止剤を添加してもよい。酸化防止剤としては、ヒンダードフェノール系またはヒンダードアミン系が望ましく、有機イオウ系酸化防止剤、フォスファイト系酸化防止剤、ジチオカルバミン酸塩系酸化防止剤、チオウレア系酸化防止剤、ベンズイミダゾール系酸化防止剤、などの公知の酸化防止剤を用いてもよい。酸化防止剤の添加量としては20質量%以下が望ましく、10質量%以下がより望ましい。   An antioxidant may be added to the protective layer 2C. Antioxidants are preferably hindered phenols or hindered amines, organic sulfur antioxidants, phosphite antioxidants, dithiocarbamate antioxidants, thiourea antioxidants, benzimidazole antioxidants. , Etc., may be used. The addition amount of the antioxidant is preferably 20% by mass or less, and more preferably 10% by mass or less.

ヒンダードフェノール系酸化防止剤としては、2,6−ジ−t−ブチル−4−メチルフェノール、2,5−ジ−t−ブチルヒドロキノン、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナマイド、3,5−ジ−t−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール、2,6−ジ−t−ブチル−4−エチルフェノール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、2,5−ジ−t−アミルヒドロキノン、2−t−ブチル−6−(3−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)等が挙げられる。   Examples of the hindered phenol antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butylhydroquinone, N, N′-hexamethylene bis (3,5-di). -T-butyl-4-hydroxyhydrocinnamide, 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 2,4-bis [(octylthio) methyl] -o-cresol, 2,6-di-t-butyl-4-ethylphenol, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol) 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 2,5-di-t-amylhydroquinone, 2-t-butyl-6- (3-butyl-2- Dorokishi-5-methylbenzyl) -4-methylphenyl acrylate, 4,4'-butylidene bis (3-methyl -6-t-butylphenol) and the like.

更に、保護層には各種粒子を添加してもよい。粒子の一例として、ケイ素含有粒子が挙げられる。ケイ素含有粒子とは、構成元素にケイ素を含む粒子であり、具体的には、コロイダルシリカおよびシリコーン粒子等が挙げられる。ケイ素含有粒子として用いられるコロイダルシリカは、平均粒径1nm以上100nm以下、望ましくは10nm以上30nm以下のシリカを、酸性もしくはアルカリ性の水分散液、アルコール、ケトン、またはエステル等の有機溶媒中に分散させたものから選ばれ、一般に市販されているものを使用してもよい。保護層2C中のコロイダルシリカの固形分含有量は、特に限定されるものではないが、保護層の全固形分全量を基準として、0.1質量%以上50質量%以下、望ましくは0.1質量%以上30質量%以下の範囲で用いられる。   Furthermore, various particles may be added to the protective layer. An example of the particles is silicon-containing particles. Silicon-containing particles are particles containing silicon as a constituent element, and specific examples include colloidal silica and silicone particles. The colloidal silica used as the silicon-containing particles is obtained by dispersing silica having an average particle diameter of 1 nm or more and 100 nm or less, preferably 10 nm or more and 30 nm or less in an organic solvent such as an acidic or alkaline aqueous dispersion, alcohol, ketone, or ester. A commercially available product may be used. The solid content of the colloidal silica in the protective layer 2C is not particularly limited, but is 0.1% by mass or more and 50% by mass or less, preferably 0.1% by mass based on the total solid content of the protective layer. It is used in the range of mass% to 30 mass%.

ケイ素含有粒子として用いられるシリコーン粒子は、シリコーン樹脂粒子、シリコーンゴム粒子、シリコーン表面処理シリカ粒子から選ばれ、一般に市販されているものを使用してもよい。これらのシリコーン粒子は球状で、その平均粒径は望ましくは1nm以上500nm以下、より望ましくは10nm以上100nm以下である。シリコーン粒子は、化学的に不活性で、樹脂への分散性に優れる粒子である。保護層中のシリコーン粒子の含有量は、保護層の全固形分全量を基準として、望ましくは0.1質量%以上30質量%以下、より望ましくは0.5質量%以上10質量%以下である。   The silicone particles used as the silicon-containing particles may be selected from silicone resin particles, silicone rubber particles, and silicone surface-treated silica particles, and commercially available particles may be used. These silicone particles are spherical, and the average particle size is desirably 1 nm or more and 500 nm or less, and more desirably 10 nm or more and 100 nm or less. Silicone particles are particles that are chemically inert and have excellent dispersibility in resins. The content of the silicone particles in the protective layer is preferably 0.1% by mass or more and 30% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, based on the total solid content of the protective layer. .

また、その他の粒子としては、四フッ化エチレン、三フッ化エチレン、六フッ化プロピレン、フッ化ビニル、フッ化ビニリデン等のフッ素系粒子や“第8回ポリマー材料フォーラム講演予稿集p89”に示される如く、フッ素樹脂と水酸基を有するモノマーを共重合させた樹脂からなる粒子、ZnO−Al、SnO−Sb、In−SnO、ZnO−TiO、ZnO−TiO、MgO−Al、FeO−TiO、TiO、SnO、In、ZnO、MgO等の半導電性金属酸化物が挙げられる。
また、シリコーンオイル等のオイルを添加してもよい。シリコーンオイルとしては、ジメチルポリシロキサン、ジフェニルポリシロキサン、フェニルメチルシロキサン等のシリコーンオイル;アミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシル変性ポリシロキサン、カルビノール変性ポリシロキサン、メタクリル変性ポリシロキサン、メルカプト変性ポリシロキサン、フェノール変性ポリシロキサン等の反応性シリコーンオイル;ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ジメチルシクロシロキサン類;1,3,5−トリメチル−1,3,5−トリフェニルシクロトリシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラフェニルシクロテトラシロキサン、1,3,5,7,9−ペンタメチル−1,3,5,7,9−ペンタフェニルシクロペンタシロキサン等の環状メチルフェニルシクロシロキサン類;ヘキサフェニルシクロトリシロキサン等の環状フェニルシクロシロキサン類;(3,3,3−トリフルオロプロピル)メチルシクロトリシロキサン等のフッ素含有シクロシロキサン類;メチルヒドロシロキサン混合物、ペンタメチルシクロペンタシロキサン、フェニルヒドロシクロシロキサン等のヒドロシリル基含有シクロシロキサン類;ペンタビニルペンタメチルシクロペンタシロキサン等のビニル基含有シクロシロキサン類等が挙げられる。
Other particles include fluorine-based particles such as ethylene tetrafluoride, ethylene trifluoride, propylene hexafluoride, vinyl fluoride, and vinylidene fluoride, and “8th Polymer Material Forum Lecture Proceedings p89”. As shown, particles made of a resin obtained by copolymerizing a fluororesin and a monomer having a hydroxyl group, ZnO—Al 2 O 3 , SnO 2 —Sb 2 O 3 , In 2 O 3 —SnO 2 , ZnO 2 —TiO 2 , ZnO Examples thereof include semiconductive metal oxides such as —TiO 2 , MgO—Al 2 O 3 , FeO—TiO 2 , TiO 2 , SnO 2 , In 2 O 3 , ZnO, and MgO.
Oil such as silicone oil may be added. Silicone oils include silicone oils such as dimethylpolysiloxane, diphenylpolysiloxane, and phenylmethylsiloxane; amino-modified polysiloxane, epoxy-modified polysiloxane, carboxyl-modified polysiloxane, carbinol-modified polysiloxane, methacryl-modified polysiloxane, mercapto-modified poly Reactive silicone oils such as siloxane and phenol-modified polysiloxane; cyclic dimethylcyclosiloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and dodecamethylcyclohexasiloxane; 1,3,5- Trimethyl-1,3,5-triphenylcyclotrisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetraphenylcyclo Cyclic methylphenylcyclosiloxanes such as trasiloxane, 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentaphenylcyclopentasiloxane; cyclic phenylcyclosiloxanes such as hexaphenylcyclotrisiloxane Fluorine-containing cyclosiloxanes such as (3,3,3-trifluoropropyl) methylcyclotrisiloxane; hydrosilyl group-containing cyclosiloxanes such as methylhydrosiloxane mixtures, pentamethylcyclopentasiloxane, and phenylhydrocyclosiloxane; penta And vinyl group-containing cyclosiloxanes such as vinylpentamethylcyclopentasiloxane.

また、保護層には金属、金属酸化物およびカーボンブラック等を添加してもよい。金属としては、アルミニウム、亜鉛、銅、クロム、ニッケル、銀およびステンレス等、またはこれらの金属をプラスチックの粒子の表面に蒸着したもの等が挙げられる。金属酸化物としては、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス、スズをドープした酸化インジウム、アンチモンやタンタルをドープした酸化スズおよびアンチモンをドープした酸化ジルコニウム等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合は、単に混合しても、固溶体や融着の形にしてもよい。導電性粒子の平均粒径は0.3μm以下、特に0.1μm以下が望ましい。   Moreover, you may add a metal, a metal oxide, carbon black, etc. to a protective layer. Examples of the metal include aluminum, zinc, copper, chromium, nickel, silver and stainless steel, or those obtained by depositing these metals on the surface of plastic particles. Examples of the metal oxide include zinc oxide, titanium oxide, tin oxide, antimony oxide, indium oxide, bismuth oxide, indium oxide doped with tin, tin oxide doped with antimony and tantalum, and zirconium oxide doped with antimony. . These may be used alone or in combination of two or more. When two or more types are used in combination, they may be simply mixed, or may be in the form of a solid solution or fusion. The average particle size of the conductive particles is preferably 0.3 μm or less, particularly preferably 0.1 μm or less.

保護層2Cには、グアナミン化合物およびメラミン化合物や前記特定の電荷輸送物質の硬化を促進するための硬化触媒を含有させてもよい。硬化触媒として酸系の触媒が望ましく用いられる。酸系の触媒としては、酢酸、クロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、シュウ酸、マレイン酸、マロン酸、乳酸などの脂肪族カルボン酸、安息香酸、フタル酸、テレフタル酸、トリメリット酸などの芳香族カルボン酸、メタンスルホン酸、ドデシルスルホン酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、などの脂肪族、および芳香族スルホン酸類などが用いられるが、含硫黄系材料を用いることが望ましい。   The protective layer 2C may contain a curing catalyst for accelerating the curing of the guanamine compound and the melamine compound or the specific charge transport material. An acid catalyst is preferably used as the curing catalyst. Acid-based catalysts include acetic acid, chloroacetic acid, trichloroacetic acid, trifluoroacetic acid, oxalic acid, maleic acid, malonic acid, lactic acid and other aliphatic carboxylic acids, benzoic acid, phthalic acid, terephthalic acid, trimellitic acid, etc. Aromatic carboxylic acids, methane sulfonic acids, dodecyl sulfonic acids, benzene sulfonic acids, aliphatics such as dodecyl benzene sulfonic acids, naphthalene sulfonic acids, and aromatic sulfonic acids are used, but sulfur-containing materials should be used. desirable.

硬化触媒としての含硫黄系材料は、常温(例えば25℃)、または加熱後に酸性を示すものが望ましく、有機スルホン酸およびその誘導体の少なくとも1種が最も望ましい。保護層2C中にこれら触媒の存在は、エネルギー分散型X線分析(EDS)、X線光電子分光法(XPS)等により容易に確認される。   The sulfur-containing material as the curing catalyst is desirably one that exhibits acidity at room temperature (for example, 25 ° C.) or after heating, and is most desirably at least one of organic sulfonic acids and derivatives thereof. The presence of these catalysts in the protective layer 2C is easily confirmed by energy dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS), or the like.

有機スルホン酸および/またはその誘導体としては、例えば、パラトルエンスルホン酸、ジノニルナフタレンスルホン酸(DNNSA)、ジノニルナフタレンジスルホン酸(DNNDSA)、ドデシルベンゼンスルホン酸、フェノールスルホン酸等が挙げられる。これらの中でも、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸が望ましい。また、硬化性樹脂組成物中で、解離し得るものであれば、有機スルホン酸塩を用いてもよい。   Examples of the organic sulfonic acid and / or a derivative thereof include p-toluenesulfonic acid, dinonylnaphthalenesulfonic acid (DNNSA), dinonylnaphthalenedisulfonic acid (DNNDSA), dodecylbenzenesulfonic acid, and phenolsulfonic acid. Among these, p-toluenesulfonic acid and dodecylbenzenesulfonic acid are desirable. Moreover, as long as it can dissociate in a curable resin composition, you may use an organic sulfonate.

また、熱をかけた際に触媒能力が高くなる、所謂熱潜在性触媒を用いてもよい。
熱潜在性触媒として、たとえば有機スルホン化合物等をポリマーで粒子状に包んだマイクロカプセル、ゼオライトの如く空孔化合物に酸等を吸着させたもの、プロトン酸および/またはプロトン酸誘導体を塩基でブロックした熱潜在性プロトン酸触媒や、プロトン酸および/またはプロトン酸誘導体を一級もしくは二級のアルコールでエステル化したもの、プロトン酸および/またはプロトン酸誘導体をビニルエーテル類および/またはビニルチオエーテル類でブロックしたもの、三フッ化ホウ素のモノエチルアミン錯体、三フッ化ホウ素のピリジン錯体などが挙げられる。
Further, a so-called thermal latent catalyst, which has a high catalytic ability when heated, may be used.
As a heat latent catalyst, for example, a microcapsule in which an organic sulfone compound or the like is encapsulated in a polymer form, an adsorbed acid or the like on a pore compound such as zeolite, and a proton acid and / or proton acid derivative is blocked with a base Thermal latent proton acid catalyst, proton acid and / or proton acid derivative esterified with primary or secondary alcohol, proton acid and / or proton acid derivative blocked with vinyl ethers and / or vinyl thioethers , Boron trifluoride monoethylamine complex, boron trifluoride pyridine complex, and the like.

中でも、プロトン酸および/またはプロトン酸誘導体を塩基でブロックしたものが望ましい。
熱潜在性プロトン酸触媒のプロトン酸として、硫酸、塩酸、酢酸、ギ酸、硝酸、リン酸、スルホン酸、モノカルボン酸、ポリカルボン酸類、プロピオン酸、シュウ酸、安息香酸、アクリル酸、メタクリル酸、イタコン酸、フタル酸、マレイン酸、ベンゼンスルホン酸、o、m、p−トルエンスルホン酸、スチレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、テトラデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。また、プロトン酸誘導体として、スルホン酸、リン酸等のプロトン酸のアルカリ金属塩またはアルカリ土類金属円などの中和物、プロトン酸骨格が高分子鎖中に導入された高分子化合物(ポリビニルスルホン酸等)等が挙げられる。プロトン酸をブロックする塩基として、アミン類が挙げられる。
Of these, a protonic acid and / or a protonic acid derivative blocked with a base is desirable.
As the protonic acid of the heat latent protonic acid catalyst, sulfuric acid, hydrochloric acid, acetic acid, formic acid, nitric acid, phosphoric acid, sulfonic acid, monocarboxylic acid, polycarboxylic acids, propionic acid, oxalic acid, benzoic acid, acrylic acid, methacrylic acid, Itaconic acid, phthalic acid, maleic acid, benzenesulfonic acid, o, m, p-toluenesulfonic acid, styrenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, decylbenzenesulfonic acid, undecylbenzenesulfonic acid, Examples include tridecylbenzenesulfonic acid, tetradecylbenzenesulfonic acid, dodecylbenzenesulfonic acid and the like. In addition, as protonic acid derivatives, neutralized products such as alkali metal salts of alkaline acids or alkaline earth metal circles such as sulfonic acid and phosphoric acid, and polymer compounds in which a protonic acid skeleton is introduced into the polymer chain (polyvinylsulfone) Acid, etc.). Examples of the base that blocks the protonic acid include amines.

アミン類は、1級、2級または3級アミンに分類される。特に制限はなく、いずれも使用してもよい。   Amines are classified as primary, secondary or tertiary amines. There is no restriction in particular and any of them may be used.

1級アミンとして、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、セカンダリーブチルアミン、アリルアミン、メチルヘキシルアミン等が挙げられる。   Examples of the primary amine include methylamine, ethylamine, propylamine, isopropylamine, n-butylamine, isobutylamine, t-butylamine, hexylamine, 2-ethylhexylamine, secondary butylamine, allylamine, and methylhexylamine.

2級アミンとして、ジメチルアミン、ジエチルアミン、ジn−プロピルアミン、ジイソプロピルアミン、ジn−ブチルアミン、ジイソブチルアミン、ジt−ブチルアミン、ジヘキシルアミン、ジ(2−エチルヘキシル)アミン、N−イソプロピルN−イソブチルアミン、ジ(2−エチルヘキシル)アミン、ジセカンダリーブチルアミン、ジアリルアミン、N−メチルヘキシルアミン、3−ピペコリン、4−ピペコリン、2,4−ルペチジン、2,6−ルペチジン、3,5−ルペチジン、モルホリン、N−メチルベンジルアミン等が挙げられる。   As secondary amines, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, dihexylamine, di (2-ethylhexyl) amine, N-isopropyl N-isobutylamine , Di (2-ethylhexyl) amine, disecondary butylamine, diallylamine, N-methylhexylamine, 3-pipecoline, 4-pipecoline, 2,4-lupetidine, 2,6-lupetidine, 3,5-lupetidine, morpholine, N -Methylbenzylamine and the like.

3級アミンとして、トリメチルアミン、トリエチルアミン、トリn−プロピルアミン、トリイソプロピルアミン、トリn−ブチルアミン、トリイソブチルアミン、トリt−ブチルアミン、トリヘキシルアミン、トリ(2−エチルヘキシル)アミン、N−メチルモルホリン、N,N−ジメチルアリルアミン、N−メチルジアリルアミン、トリアリルアミン、N,N−ジメチルアリルアミン、N,N,N’,N’−テトラメチル−1,2−ジアミノエタン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラアリル−1,4−ジアミノブタン、N−メチルピペリジン、ピリジン、4−エチルピリジン、N−プロピルジアリルアミン、3−ジメチルアミノプロパノ−ル、2−エチルピラジン、2,3−ジメチルピラジン、2,5−ジメチルピラジン、2,4−ルチジン、2,5−ルチジン、3,4−ルチジン、3,5−ルチジン、2,4,6−コリジン、2−メチル−4−エチルピリジン、2−メチル−5−エチルピリジン、N,N,N’,N’ −テトラメチルヘキサメチレンジアミン、N−エチル−3−ヒドロキシピペリジン、3−メチル−4−エチルピリジン、3−エチル−4−メチルピリジン、4−(5−ノニル)ピリジン、イミダゾ−ル、N−メチルピペラジン等が挙げられる。   As tertiary amines, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-t-butylamine, trihexylamine, tri (2-ethylhexyl) amine, N-methylmorpholine, N, N-dimethylallylamine, N-methyldiallylamine, triallylamine, N, N-dimethylallylamine, N, N, N ′, N′-tetramethyl-1,2-diaminoethane, N, N, N ′, N '-Tetramethyl-1,3-diaminopropane, N, N, N', N'-tetraallyl-1,4-diaminobutane, N-methylpiperidine, pyridine, 4-ethylpyridine, N-propyldiallylamine, 3- Dimethylaminopropanol, 2-ethylpyrazine, 2,3-di Tilpyrazine, 2,5-dimethylpyrazine, 2,4-lutidine, 2,5-lutidine, 3,4-lutidine, 3,5-lutidine, 2,4,6-collidine, 2-methyl-4-ethylpyridine, 2-methyl-5-ethylpyridine, N, N, N ′, N′-tetramethylhexamethylenediamine, N-ethyl-3-hydroxypiperidine, 3-methyl-4-ethylpyridine, 3-ethyl-4-methyl Pyridine, 4- (5-nonyl) pyridine, imidazole, N-methylpiperazine and the like can be mentioned.

市販品としては、キングインダストリーズ社製の「NACURE2501」(トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH6.0以上pH7.2以下、解離温度80℃)、「NACURE2107」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH8.0以上pH9.0以下、解離温度90℃)、「NACURE2500」(p−トルエンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度65℃)、「NACURE2530」(p−トルエンスルホン酸解離、メタノール/イソプロパノール溶媒、pH5.7以上pH6.5以下、解離温度65℃)、「NACURE2547」(p−トルエンスルホン酸解離、水溶液、pH8.0以上pH9.0以下、解離温度107℃)、「NACURE2558」(p−トルエンスルホン酸解離、エチレングリコール溶媒、pH3.5以上pH4.5以下、解離温度80℃)、「NACUREXP−357」(p−トルエンスルホン酸解離、メタノール溶媒、pH2.0以上pH4.0以下、解離温度65℃)、「NACUREXP−386」(p−トルエンスルホン酸解離、水溶液、pH6.1以上pH6.4以下、解離温度80℃)、「NACUREXC−2211」(p−トルエンスルホン酸解離、pH7.2以上pH8.5以下、解離温度80℃)、「NACURE5225」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH6.0以上pH7.0以下、解離温度120℃)、「NACURE5414」(ドデシルベンゼンスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE5528」(ドデシルベンゼンスルホン酸解離、イソプロパノール溶媒、pH7.0以上pH8.0以下、解離温度120℃)、「NACURE5925」(ドデシルベンゼンスルホン酸解離、pH7.0以上pH7.5以下、解離温度130℃)、「NACURE1323」(ジノニルナフタレンスルホン酸解離、キシレン溶媒、pH6.8以上pH7.5以下、解離温度150℃)、「NACURE1419」(ジノニルナフタレンスルホン酸解離、キシレン/メチルイソブチルケトン溶媒、解離温度150℃)、「NACURE1557」(ジノニルナフタレンスルホン酸解離、ブタノール/2−ブトキシエタノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACUREX49−110」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃)、「NACURE3525」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH7.0以上pH8.5以下、解離温度120℃)、「NACUREXP−383」(ジノニルナフタレンジスルホン酸解離、キシレン溶媒、解離温度120℃)、「NACURE3327」(ジノニルナフタレンジスルホン酸解離、イソブタノール/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度150℃)、「NACURE4167」(リン酸解離、イソプロパノール/イソブタノール溶媒、pH6.8以上pH7.3以下、解離温度80℃)、「NACUREXP−297」(リン酸解離、水/イソプロパノール溶媒、pH6.5以上pH7.5以下、解離温度90℃、「NACURE4575」(リン酸解離、pH7.0以上pH8.0以下、解離温度110℃)等が挙げられる。
これらの熱潜在性触媒は単独または二種類以上組み合わせても使用される。
Commercially available products include “NACURE2501” (toluenesulfonic acid dissociation, methanol / isopropanol solvent, pH 6.0 to pH 7.2, dissociation temperature 80 ° C.), “NACURE2107” (p-toluenesulfonic acid dissociation, manufactured by King Industries, Inc. Isopropanol solvent, pH 8.0 to pH 9.0, dissociation temperature 90 ° C.) “NACURE 2500” (p-toluenesulfonic acid dissociation, isopropanol solvent, pH 6.0 to pH 7.0, dissociation temperature 65 ° C.), “NACURE 2530” (P-toluenesulfonic acid dissociation, methanol / isopropanol solvent, pH 5.7 to pH 6.5, dissociation temperature 65 ° C.), “NACURE2547” (p-toluenesulfonic acid dissociation, aqueous solution, pH 8.0 to pH 9.0, Dissociation temperature 107 ), “NACURE2558” (p-toluenesulfonic acid dissociation, ethylene glycol solvent, pH 3.5 to pH4.5, dissociation temperature 80 ° C.), “NACUREXP-357” (p-toluenesulfonic acid dissociation, methanol solvent, pH 2. 0 to pH 4.0, dissociation temperature 65 ° C.) “NACUREXP-386” (p-toluenesulfonic acid dissociation, aqueous solution, pH 6.1 to pH 6.4, dissociation temperature 80 ° C.), “NACUREX C-2211” (p -Toluenesulfonic acid dissociation, pH 7.2 to pH 8.5, dissociation temperature 80 ° C.), “NACURE 5225” (dodecylbenzenesulfonic acid dissociation, isopropanol solvent, pH 6.0 to pH 7.0, dissociation temperature 120 ° C.), “ NACURE 5414 "(dodecylbenzenesulfonic acid dissociation, key Ren solvent, dissociation temperature 120 ° C.), “NACURE 5528” (dodecylbenzenesulfonic acid dissociation, isopropanol solvent, pH 7.0 to pH 8.0, dissociation temperature 120 ° C.), “NACURE 5925” (dodecylbenzenesulfonic acid dissociation, pH 7.0) PH 7.5 or less, dissociation temperature 130 ° C., “NACURE 1323” (disinyl naphthalene sulfonic acid dissociation, xylene solvent, pH 6.8 to pH 7.5, dissociation temperature 150 ° C.), “NACURE 1419” (dinonyl naphthalene sulfonic acid Dissociation, xylene / methyl isobutyl ketone solvent, dissociation temperature 150 ° C.), “NACURE1557” (dinonylnaphthalenesulfonic acid dissociation, butanol / 2-butoxyethanol solvent, pH 6.5 to pH 7.5, dissociation temperature 150 ° C.), “ NA CUREX 49-110 ”(dinonyl naphthalene disulfonic acid dissociation, isobutanol / isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 90 ° C.),“ NACURE 3525 ”(dinonyl naphthalene disulfonic acid dissociation, isobutanol / isopropanol solvent, pH 7.0 to pH 8.5, dissociation temperature 120 ° C., “NACUREXP-383” (dinonyl naphthalene disulfonic acid dissociation, xylene solvent, dissociation temperature 120 ° C.), “NACURE 3327” (dinonyl naphthalene disulfonic acid dissociation, isobutanol / Isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 150 ° C.), “NACURE4167” (phosphoric acid dissociation, isopropanol / isobutanol solvent, pH 6.8 to pH 7.3, dissociation temperature 80 ), “NACUREXP-297” (phosphoric acid dissociation, water / isopropanol solvent, pH 6.5 to pH 7.5, dissociation temperature 90 ° C., “NACURE 4575” (phosphoric acid dissociation, pH 7.0 to pH 8.0, dissociation temperature) 110 ° C.).
These thermal latent catalysts may be used alone or in combination of two or more.

ここで、触媒の配合量は、塗布液におけるフッ素系樹脂粒子およびフッ化アルキル基含有共重合体を除いた全固形分に対し、0.1質量%以上10質量%以下の範囲であることが望ましく、特に0.1質量%以上5質量%以下が望ましい。   Here, the compounding amount of the catalyst is in the range of 0.1% by mass or more and 10% by mass or less with respect to the total solid content excluding the fluororesin particles and the fluorinated alkyl group-containing copolymer in the coating solution. Desirably, 0.1 mass% or more and 5 mass% or less are especially desirable.

(表面層の形成方法)
ここで、本実施形態における感光体の製造において、表面層を形成する工程の一例として、第1の態様の感光体における表面層である保護層2Cの形成方法について説明する。
まず、第1の態様の感光体の製造方法は、表面層(即ち保護層2C)以外の層(即ち下引層4、電荷発生層2Aおよび電荷輸送層2B等)を形成した導電性基体1を準備する導電性基体準備工程、並びに前記特定の電荷輸送物質と、その他の組成物と、を含有する塗布液を前記導電性基体上に塗布し、重合して表面層(即ち保護層2C)を形成する表面層形成工程、を有する。
(Method for forming surface layer)
Here, as an example of the step of forming the surface layer in the production of the photoreceptor in the present embodiment, a method of forming the protective layer 2C that is the surface layer in the photoreceptor of the first aspect will be described.
First, in the method for producing the photoreceptor of the first aspect, the conductive substrate 1 in which layers other than the surface layer (that is, the protective layer 2C) (that is, the undercoat layer 4, the charge generation layer 2A, the charge transport layer 2B, and the like) are formed. And a coating solution containing the specific charge transport material and other composition is applied onto the conductive substrate and polymerized to form a surface layer (ie, protective layer 2C). Forming a surface layer.

上記表面層としての保護層2Cの形成に使用される溶媒としては、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン等の環状脂肪族ケトン化合物;メタノール、エタノール、プロパノール、ブタノール、シクロペンタノール等の環状或いは直鎖状アルコール類;アセトン、メチルエチルケトン等の直鎖状ケトン類;テトラヒドロフラン、ジオキサン、エチレングリコール、ジエチルエーテル等の環状或いは直鎖状エーテル類;塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素溶媒等の溶媒が挙げられる。   Examples of the solvent used for forming the protective layer 2C as the surface layer include cycloaliphatic ketone compounds such as cyclobutanone, cyclopentanone, cyclohexanone, and cycloheptanone; methanol, ethanol, propanol, butanol, cyclopentanol, and the like. Cyclic or linear alcohols; Linear ketones such as acetone and methyl ethyl ketone; Cyclic or linear ethers such as tetrahydrofuran, dioxane, ethylene glycol, and diethyl ether; Halogenated fats such as methylene chloride, chloroform, and ethylene chloride And solvents such as group hydrocarbon solvents.

上記表面層としての保護層2Cを形成するための皮膜形成用塗布液の塗布法としては、突き上げ塗布法、リング塗布法、ブレード塗布法、マイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法、インクジェット塗布法等の方法が挙げられる。塗布後は、例えば温度100℃以上170℃以下で加熱し硬化(架橋)させることで、保護層2Cが得られる。   As a coating method of the film forming coating solution for forming the protective layer 2C as the surface layer, push-up coating method, ring coating method, blade coating method, Meyer bar coating method, spray coating method, dip coating method, bead Examples of the method include a coating method, an air knife coating method, a curtain coating method, and an inkjet coating method. After coating, for example, the protective layer 2C can be obtained by heating at a temperature of 100 ° C. to 170 ° C. and curing (crosslinking).

本実施形態において表面層の厚さは、5μm以上20μm以下が好ましく、さらに好ましくは7μm以上15μm以下である。   In the present embodiment, the thickness of the surface layer is preferably 5 μm or more and 20 μm or less, more preferably 7 μm or more and 15 μm or less.

〔第2の態様の感光体:表面層=電荷輸送層〕
本実施形態における一例である第2の態様の感光体は、図2に示す通り、導電性基体1上に、下引層4、電荷発生層2A、電荷輸送層2Bがこの順に積層された層構成を有し、電荷輸送層2Bが表面層である。
[Photoreceptor of Second Embodiment: Surface Layer = Charge Transport Layer]
As shown in FIG. 2, the photoreceptor of the second mode, which is an example in the present embodiment, is a layer in which an undercoat layer 4, a charge generation layer 2A, and a charge transport layer 2B are laminated in this order on a conductive substrate 1. The charge transport layer 2B is a surface layer.

第2の態様の感光体における導電性基体1、下引層4、電荷発生層2Aとしては、前述の図1に示す第1の態様の感光体における導電性基体1、下引層4、電荷発生層2Aがそのまま適用される。また、第2の態様の感光体における電荷輸送層2Bとしては、前述の図1に示す第1の態様の感光体における保護層2Cがそのまま適用される。   As the conductive substrate 1, the undercoat layer 4, and the charge generation layer 2A in the photoreceptor of the second embodiment, the conductive substrate 1, the undercoat layer 4, the charge in the photoreceptor of the first embodiment shown in FIG. The generation layer 2A is applied as it is. As the charge transport layer 2B in the photoconductor of the second mode, the protective layer 2C in the photoconductor of the first mode shown in FIG. 1 is applied as it is.

[画像形成装置]
図3は、本実施形態に係る画像形成装置を示す概略構成図である。画像形成装置100は、図3に示すように電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9と、転写装置40と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光し得る位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。
[Image forming apparatus]
FIG. 3 is a schematic configuration diagram illustrating the image forming apparatus according to the present embodiment. As shown in FIG. 3, the image forming apparatus 100 includes a process cartridge 300 including an electrophotographic photosensitive member 7, an exposure device 9, a transfer device 40, and an intermediate transfer member 50. In the image forming apparatus 100, the exposure device 9 is disposed at a position where the electrophotographic photosensitive member 7 can be exposed from the opening of the process cartridge 300, and the transfer device 40 is interposed between the electrophotographic photosensitive member via the intermediate transfer member 50. 7, and a part of the intermediate transfer member 50 is disposed in contact with the electrophotographic photosensitive member 7.

図3におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置8、現像装置11およびクリーニング装置13を一体に支持している。クリーニング装置13は、ゴムなどの弾性材料からなるクリーニングブレード131(ブレード部材)を有しており、クリーニングブレード131はその一端のエッジが電子写真感光体7の表面に接触するように配置され、電子写真感光体7表面に付着したトナー等の現像剤を除去する方法が適用されている。尚、このほかにも、導電性プラスチックを用いたクリーニングブラシを用いた方法等、公知のクリーニング方法が用いられる。   A process cartridge 300 in FIG. 3 integrally supports an electrophotographic photosensitive member 7, a charging device 8, a developing device 11, and a cleaning device 13 in a housing. The cleaning device 13 has a cleaning blade 131 (blade member) made of an elastic material such as rubber, and the cleaning blade 131 is arranged so that the edge of one end thereof is in contact with the surface of the electrophotographic photosensitive member 7. A method of removing a developer such as toner adhered to the surface of the photographic photoreceptor 7 is applied. In addition to this, a known cleaning method such as a method using a cleaning brush using conductive plastic is used.

また、潤滑材14を感光体7の表面に供給する繊維状部材132(ロール状)、クリーニングをアシストする繊維状部材133(平ブラシ状)を用いた例を示してあるが、これらは必要に応じて使用してもよい。   Further, an example is shown in which a fibrous member 132 (roll shape) for supplying the lubricant 14 to the surface of the photoreceptor 7 and a fibrous member 133 (flat brush shape) for assisting cleaning are used. It may be used accordingly.

帯電装置8としては、例えば、導電性または半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。   As the charging device 8, for example, a contact type charger using a conductive or semiconductive charging roller, a charging brush, a charging film, a charging rubber blade, a charging tube or the like is used. Further, a non-contact type roller charger, a known charger such as a scorotron charger using a corona discharge or a corotron charger may be used.

なお、図示しないが、電子写真感光体7の周囲には、電子写真感光体7の温度を上昇させ、相対温度を低減させるための感光体加熱部材を設けてもよい。   Although not shown, a photosensitive member heating member for raising the temperature of the electrophotographic photosensitive member 7 and reducing the relative temperature may be provided around the electrophotographic photosensitive member 7.

露光装置9としては、例えば、感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、所望の像様に露光する光学系機器等が挙げられる。光源の波長は感光体の分光感度領域にあるものが使用される。半導体レーザーの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザーや青色レーザーとして400nm以上450nm以下に発振波長を有するレーザーも利用してもよい。また、多色画像形成のためにはマルチビームを出力し得るタイプの面発光型のレーザー光源も有効である。   Examples of the exposure apparatus 9 include optical system devices that expose the surface of the photoconductor 7 with light such as semiconductor laser light, LED light, and liquid crystal shutter light in a desired image-like manner. The wavelength of the light source is in the spectral sensitivity region of the photoreceptor. As the wavelength of the semiconductor laser, near infrared having an oscillation wavelength near 780 nm is the mainstream. However, the present invention is not limited to this wavelength, and a laser having an oscillation wavelength of 600 nm or a laser having an oscillation wavelength of 400 nm to 450 nm as a blue laser may be used. In addition, a surface-emitting type laser light source that can output a multi-beam is also effective for forming a multicolor image.

現像装置11としては、例えば、磁性若しくは非磁性の一成分系現像剤または二成分系現像剤等を接触または非接触させて現像する一般的な現像装置を用いて行ってもよい。その現像装置としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、上記一成分系現像剤または二成分系現像剤をブラシ、ローラ等を用いて感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが望ましい。   As the developing device 11, for example, a general developing device that performs development by bringing a magnetic or non-magnetic one-component developer or two-component developer into contact or non-contact with each other may be used. The developing device is not particularly limited as long as it has the functions described above, and is selected according to the purpose. For example, a known developing device having a function of adhering the one-component developer or the two-component developer to the photoreceptor 7 using a brush, a roller, or the like can be used. Among these, those using a developing roller holding the developer on the surface are desirable.

以下、現像装置11に使用されるトナーについて説明する。
本実施形態の画像形成装置に用いられるトナーは、平均形状係数((ML/A)×(π/4)×100、ここでMLは粒子の最大長を表し、Aは粒子の投影面積を表す)が100以上150以下であることが望ましく、105以上145以下であることがより望ましく、110以上140以下であることがさらに望ましい。さらに、トナーとしては、体積平均粒子径が3μm以上12μm以下であることが望ましく、3.5μm以上9μm以下であることがさらに望ましい。
Hereinafter, the toner used in the developing device 11 will be described.
The toner used in the image forming apparatus of this embodiment has an average shape factor ((ML 2 / A) × (π / 4) × 100, where ML represents the maximum length of the particles, and A represents the projected area of the particles. Is preferably from 100 to 150, more preferably from 105 to 145, and even more preferably from 110 to 140. Further, the toner preferably has a volume average particle size of 3 μm to 12 μm, and more preferably 3.5 μm to 9 μm.

トナーは、特に製造方法により限定されるものではないが、例えば、結着樹脂、着色剤および離型剤、やその他更に帯電制御剤等を加えて混練、粉砕、分級する混練粉砕法;混練粉砕法にて得られた粒子を機械的衝撃力または熱エネルギーにて形状を変化させる方法;結着樹脂の重合性単量体を乳化重合させ、形成された分散液と、着色剤および離型剤、その他更に帯電制御剤等の分散液とを混合し、凝集、加熱融着させ、トナー粒子を得る乳化重合凝集法;結着樹脂を得るための重合性単量体と、着色剤および離型剤、その他更に帯電制御剤等の溶液を水系溶媒に懸濁させて重合する懸濁重合法;結着樹脂と、着色剤および離型剤、その他更に帯電制御剤等の溶液とを水系溶媒に懸濁させて造粒する溶解懸濁法等により製造されるトナーが使用される。   The toner is not particularly limited by the production method. For example, a kneading and pulverizing method in which a binder resin, a colorant and a release agent, and a charge control agent are further added, kneaded, pulverized, and classified; A method of changing the shape of particles obtained by the method by mechanical impact force or thermal energy; a dispersion monomer formed by emulsion polymerization of a polymerizable monomer of a binder resin, a colorant and a release agent In addition, an emulsion polymerization aggregation method for obtaining toner particles by mixing a dispersion liquid such as a charge control agent and aggregating and heat-fusing to obtain toner particles; a polymerizable monomer for obtaining a binder resin, a colorant and a release agent Suspension polymerization method in which a solution of an agent, a charge control agent, etc. is suspended in an aqueous solvent for polymerization; a binder resin, a coloring agent, a release agent, and a solution of a charge control agent, etc., in an aqueous solvent Toner produced by the suspension method, etc. It is use.

また上記方法で得られたトナーをコアにして、さらに凝集粒子を付着、加熱融合してコアシェル構造をもたせる製造方法等、公知の方法が使用される。なお、トナーの製造方法としては、形状制御、粒度分布制御の観点から水系溶媒にて製造する懸濁重合法、乳化重合凝集法、溶解懸濁法が望ましく、乳化重合凝集法が特に望ましい。   Further, a known method such as a production method in which the toner obtained by the above method is used as a core, and agglomerated particles are further adhered and heated and fused to give a core-shell structure is used. The toner production method is preferably a suspension polymerization method, an emulsion polymerization aggregation method, or a dissolution suspension method in which an aqueous solvent is used from the viewpoint of shape control and particle size distribution control, and an emulsion polymerization aggregation method is particularly desirable.

トナー母粒子は、結着樹脂、着色剤および離型剤を含有することが望ましく、更にシリカや帯電制御剤を含有してもよい。   The toner base particles desirably contain a binder resin, a colorant, and a release agent, and may further contain silica or a charge control agent.

トナー母粒子に使用される結着樹脂としては、スチレン、クロロスチレン等のスチレン類、エチレン、プロピレン、ブチレン、イソプレン等のモノオレフィン類、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル類、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ドデシル、アクリル酸オクチル、アクリル酸フェニル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ドデシル等のα−メチレン脂肪族モノカルボン酸エステル類、ビニルメチルエーテル、ビニルエチルエーテル、ビニルブチルエーテル等のビニルエーテル類、ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロペニルケトン等のビニルケトン類等の単独重合体および共重合体、ジカルボン酸類とジオール類との共重合によるポリエステル樹脂等が挙げられる。   Binder resins used for toner base particles include styrenes such as styrene and chlorostyrene, monoolefins such as ethylene, propylene, butylene and isoprene, vinyl acetate, vinyl propionate, vinyl benzoate, vinyl butyrate, etc. Α-methylene aliphatics such as vinyl esters, methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate Homopolymers and copolymers of monocarboxylic acid esters, vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl butyl ether, vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone and vinyl isopropenyl ketone , Polyester resins by copolymerization of dicarboxylic acids and diols.

特に代表的な結着樹脂としては、ポリスチレン、スチレン−アクリル酸アルキル共重合体、スチレン−メタクリル酸アルキル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエチレン、ポリプロピレン、ポリエステル樹脂等が挙げられる。さらに、ポリウレタン、エポキシ樹脂、シリコーン樹脂、ポリアミド、変性ロジン、パラフィンワックス等が挙げられる。   Particularly representative binder resins include polystyrene, styrene-alkyl acrylate copolymer, styrene-alkyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer. A polymer, polyethylene, a polypropylene, a polyester resin etc. are mentioned. Further, polyurethane, epoxy resin, silicone resin, polyamide, modified rosin, paraffin wax and the like can be mentioned.

また、着色剤としては、マグネタイト、フェライト等の磁性粉、カーボンブラック、アニリンブルー、カルイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.I.ピグメント・イエロー17、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:3等を代表的なものとして例示される。   In addition, as colorants, magnetic powders such as magnetite and ferrite, carbon black, aniline blue, caryl blue, chrome yellow, ultramarine blue, Dupont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, Lamp Black, Rose Bengal, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. I. Pigment yellow 17, C.I. I. Pigment blue 15: 1, C.I. I. Pigment Blue 15: 3 is exemplified as a representative example.

離型剤としては、低分子ポリエチレン、低分子ポリプロピレン、フィッシャートロピィシュワックス、モンタンワックス、カルナバワックス、ライスワックス、キャンデリラワックス等を代表的なものとして例示される。   Typical examples of the release agent include low molecular weight polyethylene, low molecular weight polypropylene, Fischer tropical wax, montan wax, carnauba wax, rice wax, and candelilla wax.

また、帯電制御剤としては、公知のものが使用されるが、アゾ系金属錯化合物、サリチル酸の金属錯化合物、極性基を含有するレジンタイプの帯電制御剤が用いられる。湿式製法でトナーを製造する場合、水に溶解しにくい素材を使用することが望ましい。また、トナーとしては、磁性材料を内包する磁性トナーおよび磁性材料を含有しない非磁性トナーのいずれであってもよい。   As the charge control agent, known ones are used, and azo metal complex compounds, metal complex compounds of salicylic acid, and resin type charge control agents containing polar groups are used. When toner is manufactured by a wet manufacturing method, it is desirable to use a material that is difficult to dissolve in water. The toner may be either a magnetic toner containing a magnetic material or a non-magnetic toner containing no magnetic material.

現像装置11に用いるトナーとしては、上記トナー母粒子および上記外添剤をヘンシェルミキサーまたはVブレンダー等で混合することによって製造される。また、トナー母粒子を湿式にて製造する場合は、湿式にて外添してもよい。   The toner used in the developing device 11 is manufactured by mixing the toner base particles and the external additive with a Henschel mixer or a V blender. Further, when the toner base particles are produced by a wet method, they may be externally added by a wet method.

現像装置11に用いるトナーには滑性粒子を添加してもよい。滑性粒子としては、グラファイト、二硫化モリブデン、滑石、脂肪酸、脂肪酸金属塩等の固体潤滑剤や、ポリプロピレン、ポリエチレン、ポリブテン等の低分子量ポリオレフィン類、加熱により軟化点を有するシリコーン類、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、ステアリン酸アミド等の脂肪族アミド類やカルナバワックス、ライスワックス、キャンデリラワックス、木ロウ、ホホバ油等の植物系ワックス、ミツロウの動物系ワックス、モンタンワックス、オゾケライト、セレシン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス等の鉱物、石油系ワックス、およびそれらの変性物が使用される。これらは、1種を単独で、または2種以上を併用して使用される。但し、平均粒径としては0.1μm以上10μm以下の範囲が望ましく、上記化学構造のものを粉砕して、粒径をそろえてもよい。トナーへの添加量は望ましくは0.05質量%以上2.0質量%以下、より望ましくは0.1質量%以上1.5質量%以下の範囲である。   Lubricating particles may be added to the toner used in the developing device 11. Lubricating particles include solid lubricants such as graphite, molybdenum disulfide, talc, fatty acids and fatty acid metal salts, low molecular weight polyolefins such as polypropylene, polyethylene and polybutene, silicones having a softening point upon heating, oleic amides , Erucic acid amide, ricinoleic acid amide, stearic acid amide and other aliphatic amides, carnauba wax, rice wax, candelilla wax, tree wax, jojoba oil and other plant waxes, beeswax animal wax, montan wax, ozokerite , Ceresin, paraffin wax, microcrystalline wax, minerals such as Fischer-Tropsch wax, petroleum wax, and modified products thereof. These are used individually by 1 type or in combination of 2 or more types. However, the average particle size is preferably in the range of 0.1 μm or more and 10 μm or less, and those having the above chemical structure may be pulverized to make the particle sizes uniform. The amount added to the toner is desirably in the range of 0.05% by mass to 2.0% by mass, and more desirably in the range of 0.1% by mass to 1.5% by mass.

現像装置11に用いるトナーには、無機粒子、有機粒子、該有機粒子に無機粒子を付着させた複合粒子等を加えてもよい。   To the toner used in the developing device 11, inorganic particles, organic particles, composite particles obtained by attaching inorganic particles to the organic particles, or the like may be added.

無機粒子としては、シリカ、アルミナ、チタニア、ジルコニア、チタン酸バリウム、チタン酸アルミニウム、チタン酸ストロンチウム、チタン酸マグネシウム、酸化亜鉛、酸化クロム、酸化セリウム、酸化アンチモン、酸化タングステン、酸化スズ、酸化テルル、酸化マンガン、酸化ホウ素、炭化ケイ素、炭化ホウ素、炭化チタン、窒化ケイ素、窒化チタン、窒化ホウ素等の各種無機酸化物、窒化物、ホウ化物等が好適に使用される。   Inorganic particles include silica, alumina, titania, zirconia, barium titanate, aluminum titanate, strontium titanate, magnesium titanate, zinc oxide, chromium oxide, cerium oxide, antimony oxide, tungsten oxide, tin oxide, tellurium oxide, Various inorganic oxides such as manganese oxide, boron oxide, silicon carbide, boron carbide, titanium carbide, silicon nitride, titanium nitride, and boron nitride, nitrides, borides, and the like are preferably used.

また、上記無機粒子を、テトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート、ビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等のチタンカップリング剤、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)γ−アミノプロピルトリメトキシシラン塩酸塩、ヘキサメチルジシラザン、メチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ヘキシルトエリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フェニルトリメトキシシラン、o−メチルフェニルトリメトキシシラン、p−メチルフェニルトリメトキシシラン等のシランカップリング剤等で処理を行ってもよい。また、シリコーンオイル、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の高級脂肪酸金属塩によって疎水化処理したものも望ましく使用される。   In addition, the inorganic particles may be mixed with titanium coupling agents such as tetrabutyl titanate, tetraoctyl titanate, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, bis (dioctylpyrophosphate) oxyacetate titanate, γ- (2- Aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) γ-aminopropyltrimethoxy Silane hydrochloride, hexamethyldisilazane, methyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane The treatment may be performed with a silane coupling agent such as run, decyltrimethoxysilane, dodecyltrimethoxysilane, phenyltrimethoxysilane, o-methylphenyltrimethoxysilane, and p-methylphenyltrimethoxysilane. In addition, those hydrophobized with higher fatty acid metal salts such as silicone oil, aluminum stearate, zinc stearate, calcium stearate and the like are also desirably used.

有機粒子としては、スチレン樹脂粒子、スチレンアクリル樹脂粒子、ポリエステル樹脂粒子、ウレタン樹脂粒子等が挙げられる。   Examples of the organic particles include styrene resin particles, styrene acrylic resin particles, polyester resin particles, and urethane resin particles.

粒子径としては、個数平均粒子径で望ましくは5nm以上1000nm以下、より望ましくは5nm以上800nm以下、さらに望ましくは5nm以上700nm以下でのものが使用される。また、上述した粒子と滑性粒子との添加量の和が0.6質量%以上であることが望ましい。   The particle diameter is preferably 5 nm to 1000 nm, more preferably 5 nm to 800 nm, and even more preferably 5 nm to 700 nm in terms of number average particle diameter. Moreover, it is desirable that the sum of the addition amounts of the above-described particles and the lubricating particles is 0.6% by mass or more.

トナーに添加されるその他の無機酸化物としては、1次粒径が40nm以下の小径無機酸化物を用い、更にそれより大径の無機酸化物を添加することが望ましい。これらの無機酸化物粒子は公知のものが使用されるが、シリカと酸化チタンを併用することが望ましい。   As the other inorganic oxide added to the toner, it is desirable to use a small-diameter inorganic oxide having a primary particle size of 40 nm or less, and further add an inorganic oxide having a larger diameter. Known inorganic oxide particles are used, but it is desirable to use silica and titanium oxide in combination.

また、小径無機粒子については表面処理してもよい。さらに、炭酸カルシウム、炭酸マグネシウム等の炭酸塩や、ハイドロタルサイト等の無機鉱物を添加することも望ましい。   Moreover, you may surface-treat about a small diameter inorganic particle. Furthermore, it is also desirable to add carbonates such as calcium carbonate and magnesium carbonate and inorganic minerals such as hydrotalcite.

また、電子写真用カラートナーはキャリアと混合して使用されるが、キャリアとしては、鉄粉、ガラスビーズ、フェライト粉、ニッケル粉またはそれ等の表面に樹脂を被覆したものが使用される。また、キャリアとの混合割合は、必要に応じて設定される。   In addition, the color toner for electrophotography is used by mixing with a carrier. As the carrier, iron powder, glass beads, ferrite powder, nickel powder, or those coated with a resin are used. The mixing ratio with the carrier is set as necessary.

転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。   As the transfer device 40, for example, a contact transfer charger using a belt, a roller, a film, a rubber blade, etc., or a known transfer charger such as a scorotron transfer charger using a corona discharge or a corotron transfer charger. Can be mentioned.

中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等のベルト状のもの(中間転写ベルト)が使用される。また、中間転写体50の形態としては、ベルト状以外にドラム状のものを用いられる。   As the intermediate transfer member 50, a belt-like member (intermediate transfer belt) made of polyimide, polyamideimide, polycarbonate, polyarylate, polyester, rubber or the like having semiconductivity is used. Further, as the form of the intermediate transfer member 50, a drum-like one is used in addition to the belt shape.

画像形成装置100は、上述した各装置の他に、例えば、感光体7に対して光除電を行う光除電装置を備えていてもよい。   In addition to the above-described devices, the image forming apparatus 100 may include, for example, a light neutralizing device that performs light neutralization on the photoconductor 7.

図4は、他の実施形態に係る画像形成装置を示す概略断面図である。画像形成装置120は、図4に示すように、プロセスカートリッジ300を4つ搭載したタンデム方式のフル多色画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同じ構成を有している。   FIG. 4 is a schematic cross-sectional view showing an image forming apparatus according to another embodiment. As shown in FIG. 4, the image forming apparatus 120 is a tandem-type full multicolor image forming apparatus equipped with four process cartridges 300. In the image forming apparatus 120, four process cartridges 300 are arranged in parallel on the intermediate transfer member 50, and one electrophotographic photosensitive member is used for one color. The image forming apparatus 120 has the same configuration as the image forming apparatus 100 except that it is a tandem system.

以下、実施例および比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。尚、以下において「部」は特に断りのない限り質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to a following example at all. In the following, “part” is based on mass unless otherwise specified.

[実施例1]
(下引層の形成)
酸化亜鉛(平均粒子径70nm:テイカ社製:比表面積値15m/g)100部をテトラヒドロフラン500部と攪拌混合し、シランカップリング剤(KBM503:信越化学社製)1.3部を添加し、2時間攪拌した。その後トルエンを減圧蒸留にて留去し、120℃で3時間焼き付けを行い、シランカップリング剤表面処理酸化亜鉛を得た。
前記表面処理酸化亜鉛110部を、500部のテトラヒドロフランと攪拌混合し、アリザリン0.6部を、50部のテトラヒドロフランに溶解させた溶液を添加し、50℃にて5時間攪拌した。その後、減圧ろ過にてアリザリンを付与させた酸化亜鉛をろ別し、さらに60℃で減圧乾燥を行い、アリザリン付与酸化亜鉛を得た。
このアリザリン付与酸化亜鉛60部と硬化剤(ブロック化イソシアネート スミジュール3175、住友バイエルンウレタン社製)13.5部とブチラール樹脂(エスレックBM−1、積水化学社製)15部とをメチルエチルケトン85部に溶解した溶液38部と、メチルエチルケトン25部と、を混合し、1mmφのガラスビーズを用いてサンドミルにて2時間の分散を行い分散液を得た。
得られた分散液に触媒としてジオクチルスズジラウレート0.005部、シリコーン樹脂粒子(トスパール145、GE東芝シリコーン社製)40部を添加し、下引層用塗布液を得た。この塗布液を浸漬塗布法にて直径60mm、長さ357mm、肉厚1mmのアルミニウム基材上に塗布し、170℃、40分の乾燥硬化を行い厚さ19μmの下引層を得た。
[Example 1]
(Formation of undercoat layer)
100 parts of zinc oxide (average particle size 70 nm: manufactured by Teika: specific surface area value 15 m 2 / g) is stirred and mixed with 500 parts of tetrahydrofuran, and 1.3 parts of a silane coupling agent (KBM503: manufactured by Shin-Etsu Chemical Co., Ltd.) is added. Stir for 2 hours. Thereafter, toluene was distilled off under reduced pressure and baked at 120 ° C. for 3 hours to obtain a silane coupling agent surface-treated zinc oxide.
110 parts of the surface-treated zinc oxide was stirred and mixed with 500 parts of tetrahydrofuran, a solution prepared by dissolving 0.6 part of alizarin in 50 parts of tetrahydrofuran was added, and the mixture was stirred at 50 ° C. for 5 hours. Then, the zinc oxide to which alizarin was imparted by filtration under reduced pressure was filtered off, and further dried at 60 ° C. under reduced pressure to obtain alizarin imparted zinc oxide.
60 parts of this alizarin-provided zinc oxide, 13.5 parts of a curing agent (blocked isocyanate Sumijoule 3175, manufactured by Sumitomo Bayern Urethane Co., Ltd.) and 15 parts of butyral resin (ESREC BM-1, manufactured by Sekisui Chemical Co., Ltd.) in 85 parts of methyl ethyl ketone 38 parts of the dissolved solution and 25 parts of methyl ethyl ketone were mixed and dispersed with a sand mill for 2 hours using 1 mmφ glass beads to obtain a dispersion.
As a catalyst, 0.005 part of dioctyltin dilaurate and 40 parts of silicone resin particles (Tospearl 145, manufactured by GE Toshiba Silicone) were added to the resulting dispersion to obtain a coating solution for an undercoat layer. This coating solution was applied on an aluminum substrate having a diameter of 60 mm, a length of 357 mm, and a thickness of 1 mm by a dip coating method, followed by drying and curing at 170 ° C. for 40 minutes to obtain an undercoat layer having a thickness of 19 μm.

(電荷発生層の形成)
電荷発生物質としてのCukα特性X線を用いたX線回折スペクトルのブラッグ角度(2θ±0.2°)が少なくとも7.3゜,16.0゜,24.9゜,28.0゜の位置に回折ピークを有するヒドロキシガリウムフタロシアニン15部、結着樹脂としての塩化ビニル・酢酸ビニル共重合体樹脂(VMCH、日本ユニカー社製)10部、n−酢酸ブチル200部からなる混合物を、直径1mmφのガラスビーズを用いてサンドミルにて4時間分散した。得られた分散液にn−酢酸ブチル175部、メチルエチルケトン180部を添加し、攪拌して電荷発生層用塗布液を得た。この電荷発生層用塗布液を前記下引層上に浸漬塗布し、常温(25℃)で乾燥して、膜厚が0.2μmの電荷発生層を形成した。
(Formation of charge generation layer)
Bragg angles (2θ ± 0.2 °) of X-ray diffraction spectrum using Cukα characteristic X-ray as a charge generating material are at least 7.3 °, 16.0 °, 24.9 °, 28.0 ° A mixture of 15 parts of hydroxygallium phthalocyanine having a diffraction peak, 10 parts of vinyl chloride / vinyl acetate copolymer resin (VMCH, manufactured by Nihon Unicar) as a binder resin, and 200 parts of n-butyl acetate was used. The glass beads were used for dispersion for 4 hours in a sand mill. To the obtained dispersion, 175 parts of n-butyl acetate and 180 parts of methyl ethyl ketone were added and stirred to obtain a charge generation layer coating solution. This charge generation layer coating solution was dip coated on the undercoat layer and dried at room temperature (25 ° C.) to form a charge generation layer having a thickness of 0.2 μm.

(電荷輸送層の形成)
N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’]ビフェニル−4,4’−ジアミン42部およびビスフェノールZポリカーボネート樹脂(粘度平均分子量:5万)58部をクロルベンゼン800部に加えて溶解し、電荷輸送層用塗布液を得た。この塗布液を電荷発生層上に塗布し、150℃、45分の乾燥を行って前記電荷輸送層を形成した。このときの膜厚を干渉膜厚計で測定したところ、19.78μmであった。
(Formation of charge transport layer)
N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1 ′] biphenyl-4,4′-diamine 42 parts and bisphenol Z polycarbonate resin (viscosity average molecular weight: 50,000) 58 Part was added to 800 parts of chlorobenzene and dissolved to obtain a coating solution for charge transport layer. This coating solution was applied onto the charge generation layer and dried at 150 ° C. for 45 minutes to form the charge transport layer. The film thickness at this time was measured with an interference film thickness meter and found to be 19.78 μm.

(表面保護層の形成)
複数の水酸基を持つ電荷輸送物質(A)として下記に示す(化合物α)(前述の「I−11」で示される化合物に相当)96部、反応性の置換基を持たない電荷輸送物質(B)として下記に示す(化合物II)(前述の「B−8」で示される化合物に相当)0.19部、メラミン樹脂(前述の「(B)−2」で示される化合物に相当)3.5部、ドデシルベンゼンスルホン酸0.05部、レベリング剤BYK−302(ビックケミー・ジャパン(株)製)0.26部、シクロペンタノール160部を加えて保護層用塗布液を調製した。この塗布液を電荷輸送層の上に浸漬塗布法により塗布し、室温(25℃)で10分風乾した後、155℃で45分加熱処理して硬化させ、膜厚6.0μmの保護層を
形成して感光体を作製した。
(Formation of surface protective layer)
96 parts of the following (compound α) (corresponding to the compound represented by the above-mentioned “I-11”) as a charge transporting substance (A) having a plurality of hydroxyl groups, a charge transporting substance having no reactive substituent (B ) (Compound II) (corresponding to the compound represented by the above-mentioned “B-8”) 0.19 parts, melamine resin (corresponding to the compound represented by the above-mentioned “(B) -2”) 5 parts, 0.05 parts of dodecylbenzenesulfonic acid, 0.26 parts of leveling agent BYK-302 (manufactured by Big Chemie Japan Co., Ltd.) and 160 parts of cyclopentanol were added to prepare a coating solution for a protective layer. This coating solution is applied onto the charge transport layer by a dip coating method, air-dried at room temperature (25 ° C.) for 10 minutes, and then heated and cured at 155 ° C. for 45 minutes to form a protective layer having a thickness of 6.0 μm. Thus, a photoreceptor was produced.

−評価−
得られた感光体の残留電位を以下のように測定/評価した。
<湿度変動RP>
常温低湿(20℃、15%)および常温高湿(20℃、85%)の環境下で、それぞれ感光体を100rpmで回転させた状態で、スコロトロン帯電器により感光体を−700Vに帯電させ、帯電後の423msec後に5080.0erg/cmの赤色LED光を照射して除電し、除電から92msec後の電位VRPを表面電位計測用プローブ:トレック334(トレック社製)を用いて測定し、これを残留電位(RP)とした。
このときの、上記常温低湿環境下と常温高湿環境下との残留電位(RP)の差を「湿度変動RP」とし、5V以下を「○」、5Vを超えるものを「×」として評価した。
-Evaluation-
The residual potential of the obtained photoreceptor was measured / evaluated as follows.
<Humidity fluctuation RP>
Under the environment of room temperature and low humidity (20 ° C., 15%) and room temperature and high humidity (20 ° C., 85%), the photoconductor was charged at −700 V with a scorotron charger while rotating the photoconductor at 100 rpm. After 423 msec after charging, 5080.0 erg / cm 2 of red LED light was applied to neutralize the charge, and the potential VRP after 92 msec from neutralization was measured using a surface potential measurement probe: Trek 334 (manufactured by Trek). Was the residual potential (RP).
At this time, the difference in residual potential (RP) between the room temperature and low humidity environment and the room temperature and high humidity environment was evaluated as “humidity fluctuation RP”, and 5V or less was evaluated as “◯”, and those exceeding 5 V were evaluated as “×”. .

<サイクル変動RP>
高温高湿(28℃、85%)の環境下で、感光体を100rpmで回転させた状態で、スコロトロン帯電器により感光体を−700Vに帯電させ、帯電後の423msec後に5080.0erg/cmの赤色LED光を照射して除電し、除電から92msec後の電位VRPを表面電位計測用プローブ:トレック334(トレック社製)を用いて測定し、これを初期の残留電位(RP)とした。次いで、この測定サイクルを800cyc繰り返し、800cyc後の残留電位(RP)を測定した。
このときの、初期の残留電位(RP)と800cyc後の残留電位(RP)との差を「サイクル変動RP」とし、該差の絶対値が50V以下を「○」、該差の絶対値が50Vを超えるものを「×」として評価した。
結果を表2に示す。
<Cycle fluctuation RP>
In a high temperature and high humidity (28 ° C., 85%) environment, the photoconductor was rotated at 100 rpm, the photoconductor was charged to −700 V by a scorotron charger, and 5080.0 erg / cm 2 after 423 msec after charging. Then, the potential VRP after 92 msec from the static elimination was measured using a surface potential measurement probe: Trek 334 (manufactured by Trek), and this was defined as the initial residual potential (RP). Then, this measurement cycle was repeated 800 cyc, and the residual potential (RP) after 800 cyc was measured.
At this time, the difference between the initial residual potential (RP) and the residual potential (RP) after 800 cyc is defined as “cycle fluctuation RP”, the absolute value of the difference being “50” or less is “◯”, and the absolute value of the difference is Those exceeding 50V were evaluated as “x”.
The results are shown in Table 2.

[実施例2〜6、比較例1〜9]
実施例1において、表面保護層に用いた「複数の水酸基を持つ電荷輸送物質(A)」および「反応性の置換基を持たない電荷輸送物質(B)」をそれぞれ下記表1に示すものに変更し、且つ電荷輸送物質(A)および(B)の全量に対する電荷輸送物質(B)の比率(電荷輸送物質(B)の含有率)を下記表2に示すものに変更した以外は、実施例1に記載の方法により感光体を作製し、評価を行った。
[Examples 2-6, Comparative Examples 1-9]
In Example 1, “charge transporting substance (A) having a plurality of hydroxyl groups” and “charge transporting substance (B) having no reactive substituent” used for the surface protective layer are those shown in Table 1 below. Implemented except that the ratio of the charge transport material (B) to the total amount of the charge transport materials (A) and (B) (content ratio of the charge transport material (B)) was changed to the one shown in Table 2 below. Photoconductors were prepared by the method described in Example 1 and evaluated.




1 基体、2 感光層、2A 電荷発生層、2B 電荷輸送層、2C 保護層、4 下引層、7 電子写真感光体、8 帯電装置、9 露光装置、11 現像装置、13 クリーニング装置、14 潤滑材、40 転写装置、50 中間転写体、100 画像形成装置、120 画像形成装置、131 クリーニングブレード、132 繊維状部材(ロール状)、133 繊維状部材(平ブラシ状)、300 プロセスカートリッジ
DESCRIPTION OF SYMBOLS 1 Substrate, 2 Photosensitive layer, 2A Charge generation layer, 2B Charge transport layer, 2C Protective layer, 4 Undercoat layer, 7 Electrophotographic photoreceptor, 8 Charging device, 9 Exposure device, 11 Developing device, 13 Cleaning device, 14 Lubrication 40, transfer device, 50 intermediate transfer member, 100 image forming device, 120 image forming device, 131 cleaning blade, 132 fibrous member (roll shape), 133 fibrous member (flat brush shape), 300 process cartridge

Claims (3)

導電性基体と、前記導電性基体上に感光層と、を有し、
前記感光層の最外表面を構成する層が、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有し、
全電荷輸送物質中における前記電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下であり、
前記電荷輸送物質(A)のイオン化ポテンシャル(IpA)と前記電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが下記式(1)を満たす電子写真感光体。
IpB+0.2[eV]≧IpA[eV]≧IpB+0.04[eV] 式(1)
A conductive substrate and a photosensitive layer on the conductive substrate;
The layer constituting the outermost surface of the photosensitive layer contains a charge transport material (A) having a plurality of hydroxyl groups and a charge transport material (B) having no reactive substituent,
The ratio of the charge transport material (B) in the total charge transport material is 0.19% by mass or more and 1.5% by mass or less,
An electrophotographic photoreceptor in which the ionization potential (IpA) of the charge transport material (A) and the ionization potential (IpB) of the charge transport material (B) satisfy the following formula (1).
IpB + 0.2 [eV] ≧ IpA [eV] ≧ IpB + 0.04 [eV] Equation (1)
導電性基体上に感光層を有し、前記感光層の最外表面を構成する層が、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有し、全電荷輸送物質中における前記電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下であり、前記電荷輸送物質(A)のイオン化ポテンシャル(IpA)と前記電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが下記式(1)を満たす電子写真感光体と、
前記電子写真感光体の表面を帯電させる帯電装置と、
帯電された前記電子写真感光体の表面に静電潜像を形成する静電潜像形成装置と、
前記静電潜像を現像剤で現像してトナー像を形成する現像装置と、
前記トナー像を被転写媒体に転写する転写装置と、
を備える画像形成装置。
IpB+0.2[eV]≧IpA[eV]≧IpB+0.04[eV] 式(1)
A charge transport material having a photosensitive layer on a conductive substrate, wherein the layer constituting the outermost surface of the photosensitive layer does not have a reactive substituent with the polymer of the charge transport material (A) having a plurality of hydroxyl groups (B), the ratio of the charge transport material (B) in the total charge transport material is 0.19 mass% or more and 1.5 mass% or less, and the ionization potential of the charge transport material (A) ( An electrophotographic photoreceptor in which IpA) and the ionization potential (IpB) of the charge transport material (B) satisfy the following formula (1):
A charging device for charging the surface of the electrophotographic photosensitive member;
An electrostatic latent image forming apparatus for forming an electrostatic latent image on the surface of the charged electrophotographic photosensitive member;
A developing device for developing the electrostatic latent image with a developer to form a toner image;
A transfer device for transferring the toner image to a transfer medium;
An image forming apparatus comprising:
IpB + 0.2 [eV] ≧ IpA [eV] ≧ IpB + 0.04 [eV] Equation (1)
導電性基体上に感光層を有し、前記感光層の最外表面を構成する層が、複数の水酸基を持つ電荷輸送物質(A)の重合物と反応性の置換基を持たない電荷輸送物質(B)とを含有し、全電荷輸送物質中における前記電荷輸送物質(B)の比率が0.19質量%以上1.5質量%以下であり、前記電荷輸送物質(A)のイオン化ポテンシャル(IpA)と前記電荷輸送物質(B)のイオン化ポテンシャル(IpB)とが下記式(1)を満たす電子写真感光体を備え、
画像形成装置に着脱し得るプロセスカートリッジ。
IpB+0.2[eV]≧IpA[eV]≧IpB+0.04[eV] 式(1)
A charge transport material having a photosensitive layer on a conductive substrate, wherein the layer constituting the outermost surface of the photosensitive layer does not have a reactive substituent with the polymer of the charge transport material (A) having a plurality of hydroxyl groups (B), the ratio of the charge transport material (B) in the total charge transport material is 0.19 mass% or more and 1.5 mass% or less, and the ionization potential of the charge transport material (A) ( An electrophotographic photoreceptor in which IpA) and the ionization potential (IpB) of the charge transport material (B) satisfy the following formula (1):
A process cartridge that can be attached to and detached from an image forming apparatus.
IpB + 0.2 [eV] ≧ IpA [eV] ≧ IpB + 0.04 [eV] Equation (1)
JP2011071188A 2011-03-28 2011-03-28 Electrophotographic photoreceptor, image forming apparatus, and process cartridge Pending JP2012203399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071188A JP2012203399A (en) 2011-03-28 2011-03-28 Electrophotographic photoreceptor, image forming apparatus, and process cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071188A JP2012203399A (en) 2011-03-28 2011-03-28 Electrophotographic photoreceptor, image forming apparatus, and process cartridge

Publications (1)

Publication Number Publication Date
JP2012203399A true JP2012203399A (en) 2012-10-22

Family

ID=47184411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071188A Pending JP2012203399A (en) 2011-03-28 2011-03-28 Electrophotographic photoreceptor, image forming apparatus, and process cartridge

Country Status (1)

Country Link
JP (1) JP2012203399A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187347A (en) * 1998-12-22 2000-07-04 Xerox Corp Electrophotographic imaging member and its production
JP2010145507A (en) * 2008-12-16 2010-07-01 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2011039341A (en) * 2009-08-13 2011-02-24 Fuji Xerox Co Ltd Image forming apparatus and process cartridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187347A (en) * 1998-12-22 2000-07-04 Xerox Corp Electrophotographic imaging member and its production
JP2010145507A (en) * 2008-12-16 2010-07-01 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2011039341A (en) * 2009-08-13 2011-02-24 Fuji Xerox Co Ltd Image forming apparatus and process cartridge

Similar Documents

Publication Publication Date Title
JP4618311B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5724518B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP4702447B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5573170B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5866991B2 (en) Image forming apparatus
JP2010079130A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2010181540A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2010224173A (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP5560755B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2011070023A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2014189500A (en) Charge-transport compound, electrophotographic photoreceptor, process cartridge, image-forming device and image-forming method
JP5493349B2 (en) Image forming apparatus and process cartridge
JP2013200504A (en) Electrophotographic photoreceptor, image formation device, and process cartridge
JP5024279B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2010231077A (en) Electrophotographic photoreceptor, process cartridge, and image forming device
JP5391687B2 (en) Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2009229740A (en) Image forming apparatus and process cartridge
JP2013057810A (en) Electrophotographic photoreceptor, method of producing electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2012203253A (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2010211031A (en) Process cartridge, and image forming apparatus
JP2011203495A (en) Electrophotographic photoreceptor, method for producing the same, process cartridge, and image forming apparatus
JP5345831B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5799738B2 (en) Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5672900B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4910847B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and coating liquid for film formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602