JP2012203334A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2012203334A
JP2012203334A JP2011070240A JP2011070240A JP2012203334A JP 2012203334 A JP2012203334 A JP 2012203334A JP 2011070240 A JP2011070240 A JP 2011070240A JP 2011070240 A JP2011070240 A JP 2011070240A JP 2012203334 A JP2012203334 A JP 2012203334A
Authority
JP
Japan
Prior art keywords
light
optical element
output
optical
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011070240A
Other languages
Japanese (ja)
Inventor
Kaoru Hikuma
薫 日隈
Yuji Hayami
佑治 速水
Toshio Kataoka
利夫 片岡
Yoichi Oikawa
陽一 及川
Noriyasu Shiga
代康 志賀
Kazuya Ota
和哉 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Trimatiz Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Trimatiz Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Trimatiz Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2011070240A priority Critical patent/JP2012203334A/en
Publication of JP2012203334A publication Critical patent/JP2012203334A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical element which reduces the number of components and suppresses manufacturing costs from being increased or convergence tolerance from being deteriorated.SOLUTION: In an optical element, two light beams (A and B) are inputted to a birefringence material 10, four output light beams comprised of normal light beams (a1 and b1) and abnormal light beams (a2 and b2) corresponding to the input light beams are outputted, and the output light beams are made incident to a light-receiving element 40 while reducing a beam diameter and narrowing a beam interval. In the optical element, in an output terminal of the birefringence material 10, optical path conversion means 20 is disposed which converts an optical path in such a manner that the four output light beams (a1, a2, b1 and b2) cross approximately at one point (chain line D) and between the crossing point and the light-receiving element 40, convergence means 30 is provided which reduces the beam diameter of each output light beam.

Description

本発明は、光学素子に関し、特に、2つの入力光を複屈折材料に入射し、常光及び異常光からなる4つの出力光を受光素子に入射させるよう構成された光学素子に関する。   The present invention relates to an optical element, and more particularly to an optical element configured such that two input lights are incident on a birefringent material and four output lights composed of ordinary light and extraordinary light are incident on a light receiving element.

偏波直交多重多値変調方式(Dual Polarization
Differential Quadrature Phase Shift Keying,DP-QPSK)などのように、100Gbit/sを超える高速通信手段が提案されている。これらの光通信に使用される光受信器では、偏波分離した複数の出力光を、フォトダイオードなどの受光素子に入射させ、光信号を電気信号に変換(O/E変換)することが行われている。
Polarization orthogonal multiplex multilevel modulation (Dual Polarization)
High-speed communication means exceeding 100 Gbit / s has been proposed, such as Differential Quadrature Phase Shift Keying (DP-QPSK). In optical receivers used for these optical communications, a plurality of polarization-separated output lights are incident on a light receiving element such as a photodiode, and optical signals are converted into electrical signals (O / E conversion). It has been broken.

非特許文献1に示すように、従来のO/E変換部における光学結合系は、図1の平面光回路(Planar
Lightwave Circuit,PLC)1から出力された光波(点線)を2つのレンズアレイ2,4と90°に折り返すミラー(プリズム)3で、受光素子5に導入するよう構成されている。
As shown in Non-Patent Document 1, the optical coupling system in the conventional O / E converter is the planar optical circuit (Planar
A light wave (dotted line) output from a light wave circuit (PLC) 1 is introduced into the light receiving element 5 by two lens arrays 2 and 4 and a mirror (prism) 3 that turns back to 90 °.

図1のような光学結合系では、部品点数が多く、光学部品の調整が煩雑化するため、製造コストの増加する原因となっていた。また、レンズアレイのピッチや交差の影響により、受光素子に集光するための集光トレランスも厳しい構成となっていた。   In the optical coupling system as shown in FIG. 1, the number of parts is large and the adjustment of the optical parts is complicated, which causes an increase in manufacturing cost. Further, due to the influence of the pitch and intersection of the lens array, the light condensing tolerance for condensing light on the light receiving element has also become strict.

T.Ohyama et al.,"All-in-one100-Gbit/s DP-QPSK Coherent Receiver using Novel PLC-based IntegrationStructure with Low-loss and Wide-tolerance Multi-channel OpticalCoupling",15th OptoElectronics and CommunicationsConference(OECC2010)Technical Digest, July 2010, Sapporo Convention Center, JapanT. Ohyama et al., "All-in-one100-Gbit / s DP-QPSK Coherent Receiver using Novel PLC-based Integration Structure with Low-loss and Wide-tolerance Multi-channel Optical Coupling", 15th Opto Electronics and Communications Conference (OECC2010) Technical Digest, July 2010, Sapporo Convention Center, Japan

本発明が解決しようとする課題は、上述したような問題を解決し、部品点数を減少し、製造コストの増加や集光トレランスの悪化を抑制した光学素子を提供することである。   The problem to be solved by the present invention is to provide an optical element that solves the above-described problems, reduces the number of parts, and suppresses an increase in manufacturing cost and deterioration in light collection tolerance.

上記課題を解決するため、請求項1に係る発明は、2つの入力光を複屈折材料に入力し、各入力光に対応する常光及び異常光からなる4つの出力光を出力し、該出力光を、ビーム径を小さくすると共に、ビーム間隔を狭めた状態で受光素子に入射させる光学素子において、該複屈折材料の出力端に、前記4つの出力光が略一点で交差するよう光路変換する光路変換手段を配置し、前記交差した点と該受光素子との間に、各出力光のビーム径を絞る集光手段を設けることを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 inputs two input lights to a birefringent material, outputs four output lights composed of ordinary light and extraordinary light corresponding to each input light, and outputs the output light. Is an optical element that enters the light receiving element in a state where the beam diameter is reduced and the beam interval is narrowed, and an optical path for changing the optical path so that the four output lights intersect at substantially one point at the output end of the birefringent material A converting means is arranged, and a condensing means for reducing the beam diameter of each output light is provided between the intersecting point and the light receiving element.

請求項2に係る発明は、請求項1に記載の光学素子において、該光路変換手段は、入射面もしくは出射面の少なくとも一方が多面体で構成された一つの光学部品で構成されていることを特徴とする。   According to a second aspect of the present invention, in the optical element according to the first aspect, the optical path changing means is composed of one optical component in which at least one of the incident surface and the emitting surface is formed of a polyhedron. And

請求項3に係る発明は、請求項1又は2に記載の光学素子において、該集光手段は、球レンズで構成されることを特徴とする。   The invention according to claim 3 is the optical element according to claim 1 or 2, characterized in that the light condensing means is constituted by a spherical lens.

請求項4に係る発明は、請求項3に記載の光学素子において、該球レンズは半球状の球レンズであり、該球レンズの曲面部分から入射した光波が平面で反射し、他の曲面部分から出射するよう構成されていることを特徴とする。   According to a fourth aspect of the present invention, in the optical element according to the third aspect, the spherical lens is a hemispherical spherical lens, and a light wave incident from a curved surface portion of the spherical lens is reflected by a plane, and the other curved surface portion. It is comprised so that it may radiate | emit from.

請求項1に係る発明により、2つの入力光を複屈折材料に入力し、各入力光に対応する常光及び異常光からなる4つの出力光を出力し、該出力光を、ビーム径を小さくすると共に、ビーム間隔を狭めた状態で受光素子に入射させる光学素子において、該複屈折材料の出力端に、前記4つの出力光が略一点で交差するよう光路変換する光路変換手段を配置し、前記交差した点と該受光素子との間に、各出力光のビーム径を絞る集光手段を設けるため、光学部品は、光路変換手段と集光手段の2つのみとなるため、部品点数を削減でき、光学部品の調整も簡素化できるため、製造コストの増加を抑制することが可能となる。また、受光素子に入射する4つの出力光を1つの集光手段で集光するため、従来のレンズアレイと異なり、集光トレランスを高めることも可能となる。   According to the first aspect of the present invention, two input lights are input to a birefringent material, four output lights composed of ordinary light and extraordinary light corresponding to each input light are output, and the beam diameter of the output light is reduced. In addition, in the optical element that is incident on the light receiving element in a state where the beam interval is narrowed, an optical path changing unit that changes the optical path so that the four output lights intersect at substantially one point is disposed at the output end of the birefringent material, Since a condensing means for reducing the beam diameter of each output light is provided between the intersecting point and the light receiving element, there are only two optical parts, an optical path changing means and a condensing means, so the number of parts is reduced. In addition, the adjustment of the optical components can be simplified, so that an increase in manufacturing cost can be suppressed. In addition, since the four output lights incident on the light receiving element are condensed by one condensing unit, it is possible to increase the condensing tolerance unlike the conventional lens array.

請求項2に係る発明により、光路変換手段は、入射面もしくは出射面の少なくとも一方が多面体で構成された一つの光学部品で構成されているため、部品点数が少なく、製造コストの増加を抑制することが可能となる。しかも、多面体の面の角度を調整することで、受光素子に入射する4つの出力光のビーム間隔を調整することが可能となり、ビーム間隔のピッチ調整を容易に行うことが可能となる。   According to the invention of claim 2, since the optical path changing means is composed of one optical component in which at least one of the incident surface and the exit surface is a polyhedron, the number of components is small and an increase in manufacturing cost is suppressed. It becomes possible. In addition, by adjusting the angle of the surface of the polyhedron, it is possible to adjust the beam interval of the four output lights incident on the light receiving element, and the pitch of the beam interval can be easily adjusted.

請求項3に係る発明により、集光手段は、球レンズで構成されるため、4つの出力光を1つの光学部品で集光することが可能となり、製造コストの増加を抑制し、光学素子全体の小型化にも寄与する。   According to the invention of claim 3, since the light condensing means is composed of a spherical lens, it becomes possible to condense four output lights with one optical component, suppressing an increase in manufacturing cost, and the entire optical element. This contributes to downsizing of the product.

請求項4に係る発明により、該球レンズは半球状の球レンズであり、該球レンズの曲面部分から入射した光波が平面で反射し、他の曲面部分から出射するよう構成されているため、集光するだけでなく、光路を90°に折り曲げる構成も一つの光学部品で構成できるため、光学素子の製造コストの増加を抑制し、素子全体の小型化を達成することが可能となる。   According to the invention of claim 4, the spherical lens is a hemispherical spherical lens, and the light wave incident from the curved surface portion of the spherical lens is reflected by the plane and is emitted from the other curved surface portion. In addition to condensing light, the optical path can be bent at 90 ° with a single optical component. Therefore, an increase in the manufacturing cost of the optical element can be suppressed, and the entire element can be downsized.

非特許文献1に開示された、従来の光学素子の概略を説明する図である。It is a figure explaining the outline of the conventional optical element disclosed by the nonpatent literature 1. FIG. 本発明の光学素子の概略を説明する図である。(a)は平面図、(b)は側面図を示す。It is a figure explaining the outline of the optical element of this invention. (A) is a plan view and (b) is a side view. 本発明の光学素子の他の実施例を説明する平面図である。It is a top view explaining the other Example of the optical element of this invention. 図2又は3の光学素子に使用される光路変換手段の概略を説明する図である。It is a figure explaining the outline of the optical path changing means used for the optical element of FIG.

以下、本発明の光学素子について、好適例を用いて詳細に説明する。
本発明は、図2に示すように、2つの入力光(A,B)を複屈折材料10に入力し、各入力光に対応する常光(a1,b1)及び異常光(a2,b2)からなる4つの出力光を出力し、該出力光を、ビーム径を小さくすると共に、ビーム間隔を狭めた状態で受光素子40に入射させる光学素子において、該複屈折材料10の出力端に、前記4つの出力光(a1,a2,b1,b2)が略一点(一点鎖線D)で交差するよう光路変換する光路変換手段20を配置し、前記交差した点と該受光素子40との間に、各出力光のビーム径を絞る集光手段30を設けることを特徴とする。
Hereinafter, the optical element of the present invention will be described in detail using preferred examples.
In the present invention, as shown in FIG. 2, two input lights (A, B) are input to the birefringent material 10, and from ordinary light (a1, b1) and extraordinary light (a2, b2) corresponding to each input light. In the optical element in which the output light is output, and the output light is incident on the light receiving element 40 in a state where the beam diameter is reduced and the beam interval is reduced, the output light of the birefringent material 10 is An optical path changing means 20 for changing the optical path is arranged so that the two output lights (a1, a2, b1, b2) intersect at substantially one point (one-dot chain line D), and between each of the intersecting points and the light receiving element 40, Condensing means 30 for reducing the beam diameter of the output light is provided.

本発明における「略一点で交差する」とは、本発明の技術的範囲が「一点で交差する」ことに限定されるのではなく、本発明の効果を奏する範囲において当該一点から若干ずれても良いことを意味している。   In the present invention, “intersecting at approximately one point” is not limited to the technical scope of the present invention being “intersecting at one point”, but may be slightly deviated from the one point within the scope of the effects of the present invention. Means good.

複屈折材料としては、イットリウム・バナデート(YVO4)を使用できる。2つの複屈折率材料の中間に45°半波長板を介在させ、常光及び異常光の分離状態や伝搬方向を調整することが可能である。複屈折材料では結晶中を通過する光線の偏光方向によって屈折率が異なるため、結晶を通過する光線の光学距離(屈折率×材料中の伝搬距離)が偏光方向毎に異なる。このため、図2に示すように、複屈折材料の結晶10を前半部と後半部の2つに分け、それぞれの光線の偏光方向を前半部と後半部を90°回転することで結晶を通過する光線全ての光学距離を同じにしている。また、光線の偏光方向を結晶前半部と後半部で90°回転させるために、結晶間に半波長板11を挿入する。   As the birefringent material, yttrium vanadate (YVO4) can be used. It is possible to adjust the separation state and propagation direction of ordinary light and extraordinary light by interposing a 45 ° half-wave plate between two birefringent materials. In a birefringent material, since the refractive index differs depending on the polarization direction of the light beam passing through the crystal, the optical distance (refractive index × propagation distance in the material) of the light beam passing through the crystal differs for each polarization direction. For this reason, as shown in FIG. 2, the birefringent material crystal 10 is divided into two parts, a first half and a second half, and the polarization direction of each light beam passes through the crystal by rotating the first half and the second half by 90 °. The optical distance of all the light rays to be made is the same. Further, a half-wave plate 11 is inserted between the crystals in order to rotate the polarization direction of the light beam by 90 ° between the first half and the second half of the crystal.

図2においては、上述の理由から2つの複屈折率材料10の中間に45°半波長板11を介在させる構成としているが、本発明はこれに限定されることはなく、図3に示すように、一つ目の複屈折率材料10の直後にガラス板等の光路長調整板12を配置し、二つ目の複屈折率材料を省略することも可能である。   In FIG. 2, a 45 ° half-wave plate 11 is interposed between the two birefringent materials 10 for the reason described above. However, the present invention is not limited to this, and as shown in FIG. In addition, an optical path length adjusting plate 12 such as a glass plate may be disposed immediately after the first birefringence material 10 and the second birefringence material may be omitted.

複屈折率材料10で4つの出力光(a1,a2,b1,b2)に分離された後、光路変換手段で、各出力光の光路を調整し、4つの出力光が一点鎖線Dで示す位置で交差するよう設定される。光路変換手段20としては、図4に示すように、入射面21が複屈折材料の出射面と平行な面を有し、出射面が多面体22〜25で構成された一つの光学部品で構成されている。   After the birefringent material 10 separates the four output lights (a1, a2, b1, b2), the optical path conversion means adjusts the optical path of each output light, and the four output lights are indicated by a one-dot chain line D. Set to intersect at As shown in FIG. 4, the optical path changing means 20 is composed of one optical component in which the incident surface 21 has a surface parallel to the exit surface of the birefringent material, and the exit surface is composed of polyhedrons 22 to 25. ing.

光路変換手段の入射面21を複屈折材料の出射面と平行にすることで、複屈折率材料と光路変換手段とを精度よく一体化することができるため、個々の光学部品の位置や角度を調整する必要がなく且つ単純な構成とすることで信頼性の向上を図ることができる。なお、光路変換手段は、出射面を多面体とするだけでなく入射面を多面体として構成することも可能である。   By making the incident surface 21 of the optical path changing means parallel to the exit surface of the birefringent material, the birefringent material and the optical path changing means can be integrated with high accuracy, so the position and angle of each optical component can be adjusted. It is not necessary to adjust and a simple configuration can improve reliability. The optical path changing means can be configured not only to make the exit surface a polyhedron but also to make the incident surface a polyhedron.

光路変換手段を構成する多面体22〜25の各面の角度θ1〜θ4を調整することとで、受光素子40に入射するビーム間隔(ピッチ)を変更することが可能である。なお、本実施例では4つの出力光が一点鎖線Dで示す位置で交差するようにしているが、該出力光の交差点の位置はこの後に入射される受光素子におけるビーム径やビーム位置が光学特性に影響しない範囲であれば許容される。つまり4つの出力光は略一点で交差すれば良い。また、多面体は4つの出力光を略一点で交差する機能を有していれば光路変換手段の入射面もしくは出射面の少なくとも一方に形成されていればよい。   By adjusting the angles θ1 to θ4 of the respective faces of the polyhedrons 22 to 25 constituting the optical path changing means, it is possible to change the beam interval (pitch) incident on the light receiving element 40. In the present embodiment, the four output lights intersect at the position indicated by the alternate long and short dash line D. The position of the intersection of the output lights depends on the optical diameter and the beam position of the light receiving element to be incident thereafter. It is permissible if it does not affect the range. That is, the four output lights may intersect at substantially one point. Further, the polyhedron only needs to be formed on at least one of the incident surface and the exit surface of the optical path changing means as long as it has a function of intersecting the four output lights at approximately one point.

集光手段は、球レンズで構成することが可能である。一点鎖線Dで示される位置に球レンズの曲面が位置するよう配置することで、球レンズを利用して出力光のビーム径を小さく集光させることが可能となる。しかも、一つのレンズで集光するため、集光トレランスを向上させることが可能となる。   The light condensing means can be composed of a spherical lens. By arranging so that the curved surface of the spherical lens is positioned at the position indicated by the alternate long and short dash line D, it is possible to condense the beam diameter of the output light using the spherical lens. In addition, since the light is collected by one lens, the light collection tolerance can be improved.

本発明の光学素子では、さらに、集光手段30として、図2に示すように、集光手段である球レンズに、半球状の球レンズを用いている。この構成により、図2(b)のように、球レンズの曲面部分から入射した光波が平面で反射し、他の曲面部分から出射するよう構成することができ、光路を90°に折り曲げることも可能となる。通常、受光素子の受光面は受光素子周辺の電子配線を考慮して複屈折率材料を配置した平面の垂線方向に向いた状態で配置されるが、光路を90°に折り曲げることで容易に光を受光面に入射することができ、光学部品の配置・調整を容易にすることが可能となる。   In the optical element of the present invention, a hemispherical spherical lens is used as the condensing means 30 as a concentrating spherical lens as shown in FIG. With this configuration, as shown in FIG. 2B, the light wave incident from the curved surface portion of the spherical lens can be reflected by the plane and emitted from the other curved surface portion, and the optical path can be bent at 90 °. It becomes possible. Normally, the light receiving surface of the light receiving element is arranged in a state facing the perpendicular direction of the plane on which the birefringent material is arranged in consideration of the electronic wiring around the light receiving element, but light can be easily obtained by bending the optical path to 90 °. Can be incident on the light receiving surface, and the arrangement and adjustment of optical components can be facilitated.

図2に示すような光学素子において、例えば、複屈折材料から出射する出力光のビーム径が0.8mm、ビーム間隔が1.0mmである場合には、光路変換手段20の出射位置Cから交差点Dまでの距離を8mmとなるような光路変換手段を利用し、かつ、集光手段30として半球状の球レンズの直径φ4mmを用いることにより、ビーム径10μm、ビーム間隔を250μmに調整することが可能となる。   In the optical element as shown in FIG. 2, for example, when the beam diameter of the output light emitted from the birefringent material is 0.8 mm and the beam interval is 1.0 mm, the intersection from the emission position C of the optical path changing means 20 By using an optical path changing means such that the distance to D is 8 mm, and using the diameter φ4 mm of a hemispherical sphere lens as the condensing means 30, the beam diameter can be adjusted to 10 μm and the beam interval to 250 μm. It becomes possible.

以上説明したように、本発明によれば、部品点数を減少し、製造コストの増加や集光トレランスの悪化を抑制した光学素子を提供することが可能となる。   As described above, according to the present invention, it is possible to provide an optical element in which the number of parts is reduced and an increase in manufacturing cost and deterioration in light collection tolerance are suppressed.

10 複屈折材料
11 45°半波長板
12 光路長調整板
20 光路変換手段
30 集光手段
40 受光素子
DESCRIPTION OF SYMBOLS 10 Birefringent material 11 45 degree half-wave plate 12 Optical path length adjusting plate 20 Optical path conversion means 30 Condensing means 40 Light receiving element

Claims (4)

2つの入力光を複屈折材料に入力し、各入力光に対応する常光及び異常光からなる4つの出力光を出力し、該出力光を、ビーム径を小さくすると共に、ビーム間隔を狭めた状態で受光素子に入射させる光学素子において、
該複屈折材料の出力端に、前記4つの出力光が略一点で交差するよう光路変換する光路変換手段を配置し、前記交差した点と該受光素子との間に、各出力光のビーム径を絞る集光手段を設けることを特徴とする光学素子。
Two input lights are input to a birefringent material, and four output lights composed of ordinary light and extraordinary light corresponding to each input light are output, and the beam diameter of the output light is reduced and the beam interval is reduced. In the optical element to be incident on the light receiving element in
An optical path changing means for changing the optical path is arranged at the output end of the birefringent material so that the four output lights intersect at approximately one point, and the beam diameter of each output light is between the intersecting point and the light receiving element. An optical element, characterized in that a light condensing means for restricting the aperture is provided.
請求項1に記載の光学素子において、該光路変換手段は、入射面が該複屈折材料の出射面と平行な面を有し、入射面もしくは出射面の少なくとも一方が多面体で構成された一つの光学部品で構成されていることを特徴とする光学素子。   2. The optical element according to claim 1, wherein the optical path changing means has one surface in which an incident surface has a plane parallel to the exit surface of the birefringent material, and at least one of the entrance surface or the exit surface is a polyhedron. An optical element comprising an optical component. 請求項1又は2に記載の光学素子において、該集光手段は、球レンズで構成されることを特徴とする光学素子。   The optical element according to claim 1, wherein the light condensing means is constituted by a spherical lens. 請求項3に記載の光学素子において、該球レンズは半球状の球レンズであり、該球レンズの曲面部分から入射した光波が平面で反射し、他の曲面部分から出射するよう構成されていることを特徴とする光学素子。   4. The optical element according to claim 3, wherein the spherical lens is a hemispherical spherical lens, and a light wave incident from a curved surface portion of the spherical lens is reflected by a plane and emitted from another curved surface portion. An optical element.
JP2011070240A 2011-03-28 2011-03-28 Optical element Withdrawn JP2012203334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070240A JP2012203334A (en) 2011-03-28 2011-03-28 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070240A JP2012203334A (en) 2011-03-28 2011-03-28 Optical element

Publications (1)

Publication Number Publication Date
JP2012203334A true JP2012203334A (en) 2012-10-22

Family

ID=47184369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070240A Withdrawn JP2012203334A (en) 2011-03-28 2011-03-28 Optical element

Country Status (1)

Country Link
JP (1) JP2012203334A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520375A (en) * 2015-05-15 2018-07-26 華為技術有限公司Huawei Technologies Co.,Ltd. Polarization-independent reflection modulator
US10222676B2 (en) 2017-01-27 2019-03-05 Futurewei Technologies, Inc. Polarization insensitive integrated optical modulator
US10243684B2 (en) 2017-05-23 2019-03-26 Futurewei Technologies, Inc. Wavelength-division multiplexed polarization-insensitive transmissive modulator
US10330959B2 (en) 2017-05-22 2019-06-25 Futurewei Technologies, Inc. Polarization insensitive micro ring modulator
US10551640B2 (en) 2016-11-21 2020-02-04 Futurewei Technologies, Inc. Wavelength division multiplexed polarization independent reflective modulators

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520375A (en) * 2015-05-15 2018-07-26 華為技術有限公司Huawei Technologies Co.,Ltd. Polarization-independent reflection modulator
US10551640B2 (en) 2016-11-21 2020-02-04 Futurewei Technologies, Inc. Wavelength division multiplexed polarization independent reflective modulators
US10222676B2 (en) 2017-01-27 2019-03-05 Futurewei Technologies, Inc. Polarization insensitive integrated optical modulator
US10330959B2 (en) 2017-05-22 2019-06-25 Futurewei Technologies, Inc. Polarization insensitive micro ring modulator
US10243684B2 (en) 2017-05-23 2019-03-26 Futurewei Technologies, Inc. Wavelength-division multiplexed polarization-insensitive transmissive modulator

Similar Documents

Publication Publication Date Title
US9753227B2 (en) Optical device
US10151865B2 (en) Compact external grating PBS/PBC coupler
JP5621861B2 (en) Optical device
US9632281B2 (en) Free space grating coupler
JP2012203334A (en) Optical element
WO2018079091A1 (en) Optically coupled device and optical communication system
US9110262B2 (en) Single-fiber subassembly
JP2013020227A (en) Optical device
US10459169B2 (en) Dispersion-compensative optical assembly
JP2012216599A (en) Optical element
US11515941B2 (en) Free space optical communication terminal with dispersive optical component
JPH11202263A (en) Depolarizer and optical transmission/reception module provided with the same
CN210427857U (en) Multichannel optical multiplexer, optical transmitter and optical module
JP6566022B2 (en) Integrated prism and integrated prism construction method
JP6053318B2 (en) Optical receiver
JP7452802B2 (en) optical module
CN218601514U (en) Optical device
US20230288738A1 (en) Integrated isolator and circulator systems
CN218728159U (en) Light splitting isolator
JP5521238B2 (en) Optical path switching device and optical path switching method for a plurality of optical signals
JP2017134400A (en) Optical receiver module
CN115508951A (en) Isolated polarization beam splitter
JPS6219817A (en) Optical branching and coupling device
JP2011191646A (en) Method for manufacturing optical device, and optical device
CN111123432A (en) Polarization-splitting optical interface assembly, optical connector and coupling method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603