JP2012202837A - Passive sonar signal processing device, passive sonar signal processing method and passive sonar signal processing program - Google Patents

Passive sonar signal processing device, passive sonar signal processing method and passive sonar signal processing program Download PDF

Info

Publication number
JP2012202837A
JP2012202837A JP2011067975A JP2011067975A JP2012202837A JP 2012202837 A JP2012202837 A JP 2012202837A JP 2011067975 A JP2011067975 A JP 2011067975A JP 2011067975 A JP2011067975 A JP 2011067975A JP 2012202837 A JP2012202837 A JP 2012202837A
Authority
JP
Japan
Prior art keywords
increase
decrease ratio
ratio
azimuth
passive sonar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011067975A
Other languages
Japanese (ja)
Other versions
JP5699736B2 (en
Inventor
Kazutaka Sakamoto
和崇 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011067975A priority Critical patent/JP5699736B2/en
Publication of JP2012202837A publication Critical patent/JP2012202837A/en
Application granted granted Critical
Publication of JP5699736B2 publication Critical patent/JP5699736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a passive sonar signal processing device free from the occurrence of any blind zone or ghost.SOLUTION: A passive sonar signal processing device comprises differential processing means that calculates the increase/decrease ratio of signal levels between orientation channels; integral processing means that calculates the total increase/decrease ratio for each section determined on the basis of the increase/decrease ratio based on the increase/decrease ratio of orientation channels included in the section; and S/N ratio detection processing means that calculates the S/N ratios of the signals on the basis of the total increase/decrease ratio of a plurality of mutually different orientation channels selected on the basis of the value of the total increase/decrease ratio.

Description

本発明は、パッシブソナー信号処理装置、パッシブソナー信号処理方法及びパッシブソナー信号処理プログラムに関し、特に目標が放射する信号の方位を検出する処理に用いられるパッシブソナー信号処理装置、パッシブソナー信号処理方法及びパッシブソナー信号処理プログラムに関する。   The present invention relates to a passive sonar signal processing device, a passive sonar signal processing method, and a passive sonar signal processing program, and more particularly to a passive sonar signal processing device, a passive sonar signal processing method, and a passive sonar signal processing method used for processing to detect the direction of a signal emitted by a target. The present invention relates to a passive sonar signal processing program.

一般的に知られている通常のパッシブソナー装置は、例えば、特許文献1及び2に記載されている。   Commonly known ordinary passive sonar devices are described in Patent Documents 1 and 2, for example.

特許文献1及び2の例に限らず、パッシブソナー装置の基本的な原理としては、複数のアレイを配置し、整相処理によって特定の方位に受波指向性を持たせたうえで、その受波信号に対して、
(1)周波数分析によって特徴周波数を抽出する
(2)位相差あるいは、受信信号のエネルギー分布から信号到来方位を算出する
ための処理を行う。いかなる前処理や後処理を行うにしても、最終的には目標が放つ音の特徴周波数とその方位を検出することに集約される。
The basic principle of the passive sonar device is not limited to the examples of Patent Documents 1 and 2, but a plurality of arrays are arranged, and the receiving directionality is given to a specific direction by phasing processing. For wave signals
(1) Feature frequency is extracted by frequency analysis. (2) Processing for calculating the signal arrival direction from the phase difference or the energy distribution of the received signal is performed. Whatever pre-processing or post-processing is performed, ultimately, the characteristic frequency of the sound emitted by the target and its direction are detected.

ところで、背景雑音レベルはランダムな雑音によって常に変化するため、単純な閾値設定を行うことによって信号検出を行うことは困難である。そのため、いかなる処理系であろうとも、S/N比(Signal/Noise比)を抽出する処理が必須である。   By the way, since the background noise level always changes due to random noise, it is difficult to detect a signal by simply setting a threshold value. Therefore, it is essential to extract the S / N ratio (Signal / Noise ratio) regardless of the processing system.

一般的には、現在取得しているデータから移動平均等の統計処理によって背景雑音レベルを推定し、その値で正規化するAGC処理が良く知られている。   In general, AGC processing for estimating a background noise level from statistical data such as moving average from currently acquired data and normalizing the background noise level is well known.

しかし、統計処理によって背景雑音レベルを推定する方法では、常に過去のデータに依存しているので、背景雑音レベルに大きな変動があった場合や異常値が混入した場合には、正常に信号検出が出来なくなる問題がある。   However, the method of estimating the background noise level by statistical processing always depends on the past data, so if the background noise level fluctuates significantly or if an abnormal value is mixed, signal detection is performed normally. There is a problem that makes it impossible.

この課題を解決するための技術として、特許文献3に記載されている技術が提案されている。   As a technique for solving this problem, a technique described in Patent Document 3 has been proposed.

特許文献3に記載されている技術は、3つの積分出力信号を用い、最小値検出回路を備え、最小値検出回路の出力信号を用いてダイナミックレンジの広い受信信号の背景雑音レベルを均一にするための自動利得調整回路に関するものである。   The technique described in Patent Document 3 uses three integrated output signals, includes a minimum value detection circuit, and uses the output signal of the minimum value detection circuit to make the background noise level of a received signal having a wide dynamic range uniform. The present invention relates to an automatic gain adjustment circuit.

その他に、特許文献4及び5に記載されている技術が本願発明に関連したものである。   In addition, the techniques described in Patent Documents 4 and 5 are related to the present invention.

特公平6−93016号公報Japanese Patent Publication No. 6-93016 特開平4−143683号公報JP-A-4-143683 特開昭62−245173号公報JP 62-245173 A 特開平5−66256号公報JP-A-5-66256 特開平8−184661号公報JP-A-8-184661

通常の技術では、目標が放射する信号の方位を検出するための処理方法として、BDAGC処理が用いられてきた。これは、任意の時刻における方位毎の周波数処理帯域加算データに対し、処理を行う両隣の方位データを用いて2次曲線回帰計算を行い、その結果を背景雑音レベルの推定値とし、その値で正規化することによりS/N比を算出する方法である。   In ordinary technology, BDAGC processing has been used as a processing method for detecting the direction of a signal emitted from a target. This is a quadratic curve regression calculation using the adjacent azimuth data to be processed with respect to the frequency processing band addition data for each azimuth at an arbitrary time, and the result is an estimated value of the background noise level. This is a method of calculating the S / N ratio by normalization.

しかし、BDAGCを用いた場合、ある方位に強い信号レベルが検出されると(図1参照)、その方位の両側における推定背景雑音レベルが2次曲線回帰計算によって高くなってしまうことから、信号S/N比が算出されないブラインドゾーンとなってしまう問題点がある(図2参照)。
さらに、ブラインドゾーンとなる方位の直近の方位については、推定背景雑音レベルが2次曲線回帰計算によって著しく低下することから、その値で正規化が行われることによって信号S/N比が算出され、意図しない方位に信号S/N比が検出されるゴーストが発生する問題点がある(図2参照)。
However, when BDAGC is used, if a strong signal level is detected in a certain direction (see FIG. 1), the estimated background noise level on both sides of the direction is increased by the quadratic curve regression calculation. There is a problem that it becomes a blind zone in which the / N ratio is not calculated (see FIG. 2).
Furthermore, for the direction closest to the direction that becomes the blind zone, since the estimated background noise level is significantly reduced by the quadratic curve regression calculation, the signal S / N ratio is calculated by performing normalization with that value, There is a problem that a ghost in which the signal S / N ratio is detected in an unintended direction occurs (see FIG. 2).

本発明の目的は、ブラインドゾーンもゴーストも発生しないパッシブソナー信号処理装置、パッシブソナー信号処理方法及びパッシブソナー信号処理プログラムを提供することを目的とする。   An object of the present invention is to provide a passive sonar signal processing apparatus, a passive sonar signal processing method, and a passive sonar signal processing program in which neither a blind zone nor a ghost occurs.

本発明の第1の観点によれば、信号のレベルの方位チャネル間の増減比を計算する微分処理手段と、前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理手段と、前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理手段と、を備えることを特徴とするパッシブソナー信号処理装置が提供される。   According to the first aspect of the present invention, the differential processing means for calculating the increase / decrease ratio between the azimuth channels of the signal level and the azimuth included in the interval for each interval determined based on the value of the increase / decrease ratio Based on the increase / decrease ratio of the channel, the integration processing means for calculating the total increase / decrease ratio, and based on the total increase / decrease ratio of the plurality of different azimuth channels selected based on the value of the total increase / decrease ratio, There is provided a passive sonar signal processing apparatus comprising: S / N detection processing means for calculating an S / N ratio of a signal.

また、本発明の第2の観点によれば、信号のレベルの方位チャネル間の増減比を計算する微分処理ステップと、前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理ステップと、前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理ステップと、を有することを特徴とするパッシブソナー信号処理方法が提供される。   According to the second aspect of the present invention, the differential processing step for calculating the increase / decrease ratio between the azimuth channels of the signal level and each interval determined based on the value of the increase / decrease ratio are included in the interval. An integration processing step for calculating a total increase / decrease ratio based on the increase / decrease ratio of the azimuth channel, and based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the total increase / decrease ratio And a S / N detection processing step for calculating an S / N ratio of the signal. A passive sonar signal processing method is provided.

更に、本発明の第3の観点によれば、パッシブソナー信号処理装置としてコンピュータを機能させるためのパッシブソナー信号処理プログラムであって、コンピュータを、信号のレベルの方位チャネル間の増減比を計算する微分処理手段と、前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理手段と、前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理手段と、として機能させるためのパッシブソナー信号処理プログラムが提供される。   Furthermore, according to a third aspect of the present invention, there is provided a passive sonar signal processing program for causing a computer to function as a passive sonar signal processing apparatus, wherein the computer calculates a ratio of increase / decrease between azimuth channels of signal levels. Differentiation processing means, integration processing means for calculating a total increase / decrease ratio for each section determined based on the value of the increase / decrease ratio, based on the increase / decrease ratio of the azimuth channel included in the section, and the total increase / decrease ratio S / N detection processing means for calculating the S / N ratio of the signal based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the signal, and passive sonar for functioning as S / N detection processing means A signal processing program is provided.

本発明によれば、ブラインドゾーンもゴーストも発生しない。   According to the present invention, neither a blind zone nor a ghost occurs.

本発明の有効性を示すための、入力信号の一例を示す図である。It is a figure which shows an example of the input signal for showing the effectiveness of this invention. 通常の技術を用いた場合の問題点を説明するための図である。It is a figure for demonstrating the problem at the time of using a normal technique. 本発明の実施形態によるパッシブソナー信号処理装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the passive sonar signal processing apparatus by embodiment of this invention. 図3に示す微分処理部の出力信号である方位チャネル毎の増減比を示す図である。It is a figure which shows the increase / decrease ratio for every azimuth | direction channel which is an output signal of the differentiation process part shown in FIG. 図3に示すワンクロス積分処理部の出力信号である方位チャネル毎の合計増減比を示す図である。It is a figure which shows the total increase / decrease ratio for every azimuth | direction channel which is an output signal of the one cross integration process part shown in FIG. 図3に示すS/N検出処理部の出力信号である方位チャネル毎のS/N比を示す図である。It is a figure which shows S / N ratio for every azimuth | direction channel which is an output signal of the S / N detection process part shown in FIG.

以下、図面を参照して本発明を実施するための形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

図2に本実施形態によるパッシブソナー信号処理装置の全体構成を示す。   FIG. 2 shows the overall configuration of the passive sonar signal processing apparatus according to the present embodiment.

図2を参照すると、本実施形態によるパッシブソナー信号処理装置は、パッシブソナーで受信した方位チャネル毎の信号の方位チャネル間の増減比を計算する微分処理部1、増減比が1である区間、増減比が1を超える区間及び増減比が1未満である区間毎にその区間に含まれる方位チャネルの増減比を掛け合わせることにより合計増減比を計算するワンクロス積分処理部2、1を超える合計増減比と1を超えない合計増減比をペアとして抽出し、1を超える合計増減比と1を超えない合計増減比の逆数との相乗平均をとることによって、方位チャネル毎の信号S/N比を計算するS/N算出処理部3を含む。   Referring to FIG. 2, the passive sonar signal processing apparatus according to the present embodiment includes a differential processing unit 1 that calculates an increase / decrease ratio between azimuth channels of signals for each azimuth channel received by the passive sonar, a section in which the increase / decrease ratio is 1. One cross integration processing unit 2, which calculates the total increase / decrease ratio by multiplying the interval where the increase / decrease ratio exceeds 1 and the interval where the increase / decrease ratio is less than 1 by the increase / decrease ratio of the azimuth channel included in that interval The signal S / N ratio for each azimuth channel is obtained by extracting the increase / decrease ratio and the total increase / decrease ratio not exceeding 1 as a pair and taking the geometric mean of the total increase / decrease ratio exceeding 1 and the inverse of the total increase / decrease ratio not exceeding 1 S / N calculation processing unit 3 is calculated.

次に、本実施形態によるパッシブソナー信号処理装置により行なわれるパッシブソナー信号処理方法について説明する。   Next, a passive sonar signal processing method performed by the passive sonar signal processing apparatus according to the present embodiment will be described.

微分処理部1は(1)式により、方位チャネル毎の信号増減比diff[ch+1]を算出する。   The differential processing unit 1 calculates the signal increase / decrease ratio diff [ch + 1] for each azimuth channel by the equation (1).

Figure 2012202837
ch:受信チャネル(方位) (ch=0,1,・・・,N)
ワンクロス積分処理部2は、(2)式により、信号増減比が1未満であることが続く区間、信号増減比が1を超えることが続く区間及び信号増減比が1である区間毎にその区間に含まれる方位チャネルの増減器を掛け合わせることにより合計増減比Integral[j+1]を算出する。
Figure 2012202837
ch: Reception channel (azimuth) (ch = 0,1, ..., N)
The one-cross integration processing unit 2 uses the equation (2) to calculate the interval for each interval where the signal increase / decrease ratio is less than 1, the interval where the signal increase / decrease ratio exceeds 1 and the interval where the signal increase / decrease ratio is 1. The total increase / decrease ratio Integral [j + 1] is calculated by multiplying the increase / decrease units of the azimuth channels included in the section.

Figure 2012202837
但し、
信号増減比が1未満であることが続く区間については、
Diff[i-1]=>1, Diff[i]<1, Diff[i+1]<1,・・・,Diff[j]<1, Diff[j+1]=>1
信号増減比が1を超えることが続く区間については、
Diff[i-1]=<1, Diff[i]>1, Diff[i+1]>1,・・・,Diff[j]>1, Diff[j+1]=<1
信号増減比が1である区間については、
Diff[i]=Diff[i+1]=…Diff[j]=1
なおそのとき、(2)式によっては、i番目の方位チャネルからj番目の方位チャネルについての合計増減比を計算することができないが、それらのチャネルについての合計増減比を1とする。すなわち、
Integral[i]=integral[i+1]=integral[j]=1
とする。
Figure 2012202837
However,
For the section where the signal increase / decrease ratio continues to be less than 1,
Diff [i-1] => 1, Diff [i] <1, Diff [i + 1] <1, ..., Diff [j] <1, Diff [j + 1] => 1
For sections where the signal increase / decrease ratio continues to exceed 1,
Diff [i-1] = <1, Diff [i]> 1, Diff [i + 1]> 1, ..., Diff [j]> 1, Diff [j + 1] = <1
For sections where the signal increase / decrease ratio is 1,
Diff [i] = Diff [i + 1] =… Diff [j] = 1
At this time, the total increase / decrease ratio for the i-th azimuth channel to the j-th azimuth channel cannot be calculated according to equation (2), but the total increase / decrease ratio for these channels is set to 1. That is,
Integral [i] = integral [i + 1] = integral [j] = 1
And

S/N比検出処理部3は、合計増減比が1を超える方位チャネルについて、2つの合計増減比に基づいて、信号S/N比を計算する。すなわち、S/N比検出処理部3は、全ての方位チャネルの合計増減比を調べる。そして、合計増減比が1を超える各方位チャネル(以下、「第1次着目方位チャネル」という。)について、合計増減比が1未満である方位チャネルのうち着目方位チャネルから最も近い方位チャネル(以下、「第2次着目方位チャネル」という。)を探す。そして、第1次着目方位チャネルの合計増減比と、第2次着目方位チャネルの合計増減比の逆数と、の相乗平均を第1次着目方位チャネルの隣の方位チャネルの信号S/N比S/N[ch-1]として計算する。この計算のための計算式を(3)式に表す。   The S / N ratio detection processing unit 3 calculates the signal S / N ratio based on the two total increase / decrease ratios for the azimuth channel whose total increase / decrease ratio exceeds 1. That is, the S / N ratio detection processing unit 3 checks the total increase / decrease ratio of all the azimuth channels. Then, for each azimuth channel having a total increase / decrease ratio exceeding 1 (hereinafter referred to as a “first primary azimuth channel”), an azimuth channel closest to the target azimuth channel (hereinafter referred to as “first primary azimuth channel”) is less than 1 , “Secondary target orientation channel”). Then, the signal S / N ratio S of the azimuth channel adjacent to the primary azimuth channel is the geometric average of the total increase / decrease ratio of the primary azimuth channel and the reciprocal of the total increase / decrease ratio of the second azimuth channel. Calculate as / N [ch-1]. A calculation formula for this calculation is expressed by the following equation (3).

Figure 2012202837
ch :第1次着目方位チャネル
ch’:第2次着目方位チャネル
合計増減比が1を超えない方位チャネルについては、信号S/N比率を1とする。
Figure 2012202837
ch: Primary orientation channel
ch ′: Secondary attention azimuth channel For the azimuth channel whose total increase / decrease ratio does not exceed 1, the signal S / N ratio is set to 1.

本実施形態によれば、ブラインドゾーンもゴーストも発生しないという効果が奏される。   According to the present embodiment, there is an effect that neither a blind zone nor a ghost occurs.

その理由は、本実施形態における処理において、入力信号から背景雑音レベル等を推定する処理ではなく、微分処理によって方位毎の増減比を直接算出し、ワンクロス積分処理によって合計増減比の算出を行い、S/N比検出処理によって合計増減比に基づいて方位毎のS/N比を算出するため、入力信号において確認できるピークとその増減比を、雑音レベル等を推定することなく直接算出するということである。   The reason for this is that in the process of this embodiment, instead of the process of estimating the background noise level or the like from the input signal, the increase / decrease ratio for each direction is directly calculated by differential processing, and the total increase / decrease ratio is calculated by one-cross integration processing. Since the S / N ratio for each direction is calculated based on the total increase / decrease ratio by the S / N ratio detection process, the peak that can be confirmed in the input signal and the increase / decrease ratio are directly calculated without estimating the noise level or the like. That is.

次に、具体例を用いてパッシブソナー信号処理装置により行なわれるパッシブソナー信号処理方法について説明をする。   Next, a passive sonar signal processing method performed by the passive sonar signal processing apparatus will be described using a specific example.

図3に示すように、ある時刻において、受信方位チャネル毎にある周波数帯域でエネルギー加算されたデータが36方位チャネル分入力されたとする。図3を参照すると、第33方位チャネルの信号レベルが約650であり、第34方位チャネルの信号レベルが約1700であり、第35方位チャネルの信号レベルが約550であり、その他の方位チャネルの信号レベルが約100である。   As shown in FIG. 3, it is assumed that data obtained by adding energy in a certain frequency band for each reception azimuth channel is input for 36 azimuth channels at a certain time. Referring to FIG. 3, the signal level of the 33rd azimuth channel is about 650, the signal level of the 34th azimuth channel is about 1700, the signal level of the 35th azimuth channel is about 550, and The signal level is about 100.

微分処理部1は、前述の(1)式により、方位毎の信号増減比を算出する。その結果を図4に示す。図4を参照すると、第33方位チャネルの増減比が約6.5(=650/100)であり、第34方位チャネルの増減比が約2.6(=1700/650)であり、第35方位チャネルの増減比が約0.3(=550/1700)であり、第36方位チャネルの増減比が約0.2(=100/550)であり、他の方位チャネルの増減比が1(=100/100)である。   The differentiation processing unit 1 calculates the signal increase / decrease ratio for each azimuth by the above-described equation (1). The result is shown in FIG. Referring to FIG. 4, the increase / decrease ratio of the 33rd azimuth channel is about 6.5 (= 650/100), the increase / decrease ratio of the 34th azimuth channel is about 2.6 (= 1700/650), The increase / decrease ratio of the azimuth channel is about 0.3 (= 550/1700), the increase / decrease ratio of the 36th azimuth channel is about 0.2 (= 100/550), and the increase / decrease ratio of the other azimuth channels is 1 ( = 100/100).

ワンクロス積分処理部2は、具体的には、第33方位チャネルと第34方位チャネルよりなる区間が増減比が1を超えることが続く区間であるので、第33方位チャネルの増減比(=約6.5)と第34方位チャネルの増減比(=約2.6)とを掛け合わせることにより得た値(=約16.9)を、第34方位チャネルの次の方位チャネルである第35方位チャネルの合計増減比として計算する。また、ワンクロス積分処理部2は、具体的には、第35方位チャネルから第36方位チャネルを経由して第1方位チャネルまでの区間が増減比が1未満であることが続く区間であるので、第35方位チャネルの増減比(=約0.3)と第36方位チャネルの増減比(=約0.2)と第1方位チャネルの増減比(=約0.99)とを掛け合わせることにより得た値(=約0.06)を、第1方位チャネルの次の方位チャネルである第2方位チャネルの合計増減比として計算する。   Specifically, the one-cross integration processing unit 2 is a section in which the increase / decrease ratio of the section composed of the 33rd azimuth channel and the 34th azimuth channel continues to exceed 1, so the increase / decrease ratio of the 33rd azimuth channel (= about 6.5) and the increase / decrease ratio of the 34th azimuth channel (= about 2.6), the value (= about 16.9) obtained by multiplying the 35th azimuth channel is the 35th azimuth channel that is the next azimuth channel. Calculated as the total increase / decrease ratio of the azimuth channel. Further, the one-cross integration processing unit 2 is specifically a section in which the ratio from the 35th azimuth channel to the first azimuth channel via the 36th azimuth channel continues to be less than 1. Multiplying the increase / decrease ratio of the 35th azimuth channel (= about 0.3), the increase / decrease ratio of the 36th azimuth channel (= about 0.2) and the increase / decrease ratio of the first azimuth channel (= about 0.99). Is calculated as the total increase / decrease ratio of the second azimuth channel, which is the next azimuth channel after the first azimuth channel (= about 0.06).

S/N検出処理部3は、具体的には、第1次着目方位チャネルが第35方位チャネルであり、第2次着目方位チャネルが第2方位チャネルであるので、第35方位チャネルの合計増減比(=約16.9)と、第2チャネルの合計増減比(=0.06)の逆数の相乗平均(=約16.8)を、第35方位チャネルの1つ下の隣接方位チャネルである第34方位チャネルの信号S/N比として計算する。   Specifically, the S / N detection processing unit 3 is configured such that the first target azimuth channel is the 35th azimuth channel and the second target azimuth channel is the second azimuth channel. The geometric mean (= about 16.8) of the reciprocal of the ratio (= about 16.9) and the total increase / decrease ratio of the second channel (= 0.06) is calculated for the adjacent azimuth channel one level below the 35th azimuth channel. The signal S / N ratio of a certain 34th azimuth channel is calculated.

なお、上記のパッシブソナー信号処理装置は、ハードウェア、ソフトウェア又はこれらの組合わせにより実現することができる。また、上記のパッシブソナー信号処理装置により行なわれるパッシブソナー信号処理方法も、ハードウェア、ソフトウェア又はこれらの組合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。   The passive sonar signal processing apparatus described above can be realized by hardware, software, or a combination thereof. The passive sonar signal processing method performed by the above passive sonar signal processing apparatus can also be realized by hardware, software, or a combination thereof. Here, “realized by software” means realized by a computer reading and executing a program.

プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。   The program may be stored using various types of non-transitory computer readable media and supplied to the computer. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer readable media include magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROMs (Read Only Memory), CD- R, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)). The program may also be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。   A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.

(付記1)
信号のレベルの方位チャネル間の増減比を計算する微分処理手段と、
前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理手段と、
前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理手段と、
を備えることを特徴とするパッシブソナー信号処理装置。
(Appendix 1)
Differential processing means for calculating an increase / decrease ratio between the azimuth channels of the signal level;
Integration processing means for calculating a total increase / decrease ratio for each section determined based on the value of the increase / decrease ratio, based on the increase / decrease ratio of the azimuth channel included in the section;
S / N detection processing means for calculating an S / N ratio of the signal based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the total increase / decrease ratio;
A passive sonar signal processing apparatus comprising:

(付記2)
付記1に記載のパッシブソナー信号処理装置であって、
前記微分処理手段は、前記信号のレベルの隣接する方位チャネル間の比率を前記増減比として計算することを特徴とするパッシブソナー信号処理装置。
(Appendix 2)
The passive sonar signal processing device according to appendix 1,
The passive sonar signal processing apparatus, wherein the differential processing means calculates a ratio between adjacent azimuth channels of the signal level as the increase / decrease ratio.

(付記3)
付記1又は2に記載のパッシブソナー信号処理装置であって、
前記積分処理手段は、前記増減比が1未満であることが続く各区間毎、前記増減比が1を超えることが続く各区間毎及び前記増減比が1である各区間毎にその区間に含まれる方位チャネルの前記増減比を掛け合わせることにより各区間毎の前記合計増減比を計算することを特徴とするパッシブソナー信号処理装置。
(Appendix 3)
The passive sonar signal processing device according to appendix 1 or 2,
The integration processing means is included in each section where the increase / decrease ratio continues to be less than 1, for each section where the increase / decrease ratio exceeds 1 and for each section where the increase / decrease ratio is 1. A passive sonar signal processing apparatus, wherein the total increase / decrease ratio for each section is calculated by multiplying the increase / decrease ratios of the azimuth channels.

(付記4)
付記1乃至3の何れか1に記載のパッシブソナー信号処理装置であって、
前記S/N検出処理手段は、1を超える前記合計増減比に対応する方位チャネル毎に、前記1を超える前記合計増減比と、1未満の前記合計増減比に対応する方位チャネルのうちの1を超える前記合計増減比に対応する方位チャネルの直近の方位チャネルに対応する前記合計増減比との比率に基づいて前記信号のS/N比を計算することを特徴とするパッシブソナー信号処理装置。
(Appendix 4)
The passive sonar signal processing device according to any one of appendices 1 to 3,
The S / N detection processing means includes, for each azimuth channel corresponding to the total increase / decrease ratio exceeding 1, one of the total increase / decrease ratio exceeding 1 and the azimuth channel corresponding to the total increase / decrease ratio less than 1. The S / N ratio of the signal is calculated based on the ratio of the total increase / decrease ratio corresponding to the nearest azimuth channel of the azimuth channel corresponding to the total increase / decrease ratio exceeding SNR.

(付記5)
信号のレベルの方位チャネル間の増減比を計算する微分処理ステップと、
前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理ステップと、
前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理ステップと、
を有することを特徴とするパッシブソナー信号処理方法。
(Appendix 5)
A differential processing step for calculating an increase / decrease ratio between the azimuth channels of the signal level;
An integration processing step for calculating a total increase / decrease ratio for each section determined based on the value of the increase / decrease ratio, based on the increase / decrease ratio of the azimuth channel included in the section;
An S / N detection processing step of calculating an S / N ratio of the signal based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the total increase / decrease ratio;
A passive sonar signal processing method characterized by comprising:

(付記6)
付記5に記載のパッシブソナー信号処理方法であって、
前記微分処理ステップでは、前記信号のレベルの隣接する方位チャネル間の比率を前記増減比として計算することを特徴とするパッシブソナー信号処理方法。
(Appendix 6)
The passive sonar signal processing method according to appendix 5,
In the differential processing step, a ratio between adjacent azimuth channels of the signal level is calculated as the increase / decrease ratio.

(付記7)
付記5又は6に記載のパッシブソナー信号処理方法であって、
前記積分処理ステップでは、前記増減比が1未満であることが続く各区間毎、前記増減比が1を超えることが続く各区間毎及び前記増減比が1である各区間毎にその区間に含まれる方位チャネルの前記増減比を掛け合わせることにより各区間毎の前記合計増減比を計算することを特徴とするパッシブソナー信号処理方法。
(Appendix 7)
The passive sonar signal processing method according to appendix 5 or 6,
In the integration processing step, each interval in which the increase / decrease ratio continues to be less than 1, each interval in which the increase / decrease ratio exceeds 1 and each interval in which the increase / decrease ratio is 1 are included in the interval And calculating the total increase / decrease ratio for each section by multiplying the increase / decrease ratios of the azimuth channels.

(付記8)
付記5乃至7の何れか1に記載のパッシブソナー信号処理方法であって、
前記S/N検出処理ステップでは、1を超える前記合計増減比に対応する方位チャネル毎に、前記1を超える前記合計増減比と、1未満の前記合計増減比に対応する方位チャネルのうちの1を超える前記合計増減比に対応する方位チャネルの直近の方位チャネルに対応する前記合計増減比との比率に基づいて前記信号のS/N比を計算することを特徴とするパッシブソナー信号処理方法。
(Appendix 8)
The passive sonar signal processing method according to any one of appendices 5 to 7,
In the S / N detection processing step, for each azimuth channel corresponding to the total increase / decrease ratio exceeding 1, one of the total increase / decrease ratio exceeding 1 and the azimuth channel corresponding to the total increase / decrease ratio less than 1 The S / N ratio of the signal is calculated based on the ratio of the total increase / decrease ratio corresponding to the nearest azimuth channel of the azimuth channel corresponding to the total increase / decrease ratio exceeding SNR.

(付記9)
パッシブソナー信号処理装置としてコンピュータを機能させるためのパッシブソナー信号処理プログラムであって、
コンピュータを、
信号のレベルの方位チャネル間の増減比を計算する微分処理手段と、
前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理手段と、
前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理手段と、
として機能させるためのパッシブソナー信号処理プログラム。
(Appendix 9)
A passive sonar signal processing program for causing a computer to function as a passive sonar signal processing device,
Computer
Differential processing means for calculating an increase / decrease ratio between the azimuth channels of the signal level;
Integration processing means for calculating a total increase / decrease ratio for each section determined based on the value of the increase / decrease ratio, based on the increase / decrease ratio of the azimuth channel included in the section;
S / N detection processing means for calculating an S / N ratio of the signal based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the total increase / decrease ratio;
Passive sonar signal processing program to function as

(付記10)
付記9に記載のパッシブソナー信号処理プログラムであって、
前記微分処理手段は、前記信号のレベルの隣接する方位チャネル間の比率を前記増減比として計算することを特徴とするパッシブソナー信号処理プログラム。
(Appendix 10)
A passive sonar signal processing program according to attachment 9, wherein
The differential processing means calculates a ratio between adjacent azimuth channels of the signal level as the increase / decrease ratio, and a passive sonar signal processing program.

(付記11)
付記9又は10に記載のパッシブソナー信号処理プログラムであって、
前記積分処理手段は、前記増減比が1未満であることが続く各区間毎、前記増減比が1を超えることが続く各区間毎及び前記増減比が1である各区間毎にその区間に含まれる方位チャネルの前記増減比を掛け合わせることにより各区間毎の前記合計増減比を計算することを特徴とするパッシブソナー信号処理プログラム。
(Appendix 11)
A passive sonar signal processing program according to appendix 9 or 10,
The integration processing means is included in each section where the increase / decrease ratio continues to be less than 1, for each section where the increase / decrease ratio exceeds 1 and for each section where the increase / decrease ratio is 1. A passive sonar signal processing program for calculating the total increase / decrease ratio for each section by multiplying the increase / decrease ratios of the azimuth channels.

(付記12)
付記9乃至11の何れか1に記載のパッシブソナー信号処理プログラムであって、
前記S/N検出処理手段は、1を超える前記合計増減比に対応する方位チャネル毎に、前記1を超える前記合計増減比と、1未満の前記合計増減比に対応する方位チャネルのうちの1を超える前記合計増減比に対応する方位チャネルの直近の方位チャネルに対応する前記合計増減比との比率に基づいて前記信号のS/N比を計算することを特徴とするパッシブソナー信号処理プログラム。
(Appendix 12)
A passive sonar signal processing program according to any one of appendices 9 to 11,
The S / N detection processing means includes, for each azimuth channel corresponding to the total increase / decrease ratio exceeding 1, one of the total increase / decrease ratio exceeding 1 and the azimuth channel corresponding to the total increase / decrease ratio less than 1. The S / N ratio of the signal is calculated based on a ratio of the total increase / decrease ratio corresponding to the nearest azimuth channel of the azimuth channel corresponding to the total increase / decrease ratio exceeding SNR.

1 微分処理部
2 ワンクロス積分処理部
3 S/N比算出処理部
1 differential processing unit 2 one-cross integration processing unit 3 S / N ratio calculation processing unit

Claims (6)

信号のレベルの方位チャネル間の増減比を計算する微分処理手段と、
前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理手段と、
前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理手段と、
を備えることを特徴とするパッシブソナー信号処理装置。
Differential processing means for calculating an increase / decrease ratio between the azimuth channels of the signal level;
Integration processing means for calculating a total increase / decrease ratio for each section determined based on the value of the increase / decrease ratio, based on the increase / decrease ratio of the azimuth channel included in the section;
S / N detection processing means for calculating an S / N ratio of the signal based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the total increase / decrease ratio;
A passive sonar signal processing apparatus comprising:
請求項1に記載のパッシブソナー信号処理装置であって、
前記微分処理手段は、前記信号のレベルの隣接する方位チャネル間の比率を前記増減比として計算することを特徴とするパッシブソナー信号処理装置。
The passive sonar signal processing device according to claim 1,
The passive sonar signal processing apparatus, wherein the differential processing means calculates a ratio between adjacent azimuth channels of the signal level as the increase / decrease ratio.
請求項1又は2に記載のパッシブソナー信号処理装置であって、
前記積分処理手段は、前記増減比が1未満であることが続く各区間毎、前記増減比が1を超えることが続く各区間毎及び前記増減比が1である各区間毎にその区間に含まれる方位チャネルの前記増減比を掛け合わせることにより各区間毎の前記合計増減比を計算することを特徴とするパッシブソナー信号処理装置。
The passive sonar signal processing device according to claim 1 or 2,
The integration processing means is included in each section where the increase / decrease ratio continues to be less than 1, for each section where the increase / decrease ratio exceeds 1 and for each section where the increase / decrease ratio is 1. A passive sonar signal processing apparatus, wherein the total increase / decrease ratio for each section is calculated by multiplying the increase / decrease ratios of the azimuth channels.
請求項1乃至3の何れか1に記載のパッシブソナー信号処理装置であって、
前記S/N検出処理手段は、1を超える前記合計増減比に対応する方位チャネル毎に、前記1を超える前記合計増減比と、1未満の前記合計増減比に対応する方位チャネルのうちの1を超える前記合計増減比に対応する方位チャネルの直近の方位チャネルに対応する前記合計増減比との比率に基づいて前記信号のS/N比を計算することを特徴とするパッシブソナー信号処理装置。
The passive sonar signal processing device according to any one of claims 1 to 3,
The S / N detection processing means includes, for each azimuth channel corresponding to the total increase / decrease ratio exceeding 1, one of the total increase / decrease ratio exceeding 1 and the azimuth channel corresponding to the total increase / decrease ratio less than 1. The S / N ratio of the signal is calculated based on the ratio of the total increase / decrease ratio corresponding to the nearest azimuth channel of the azimuth channel corresponding to the total increase / decrease ratio exceeding SNR.
信号のレベルの方位チャネル間の増減比を計算する微分処理ステップと、
前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理ステップと、
前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理ステップと、
を有することを特徴とするパッシブソナー信号処理方法。
A differential processing step for calculating an increase / decrease ratio between the azimuth channels of the signal level;
An integration processing step for calculating a total increase / decrease ratio for each section determined based on the value of the increase / decrease ratio, based on the increase / decrease ratio of the azimuth channel included in the section;
An S / N detection processing step of calculating an S / N ratio of the signal based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the total increase / decrease ratio;
A passive sonar signal processing method characterized by comprising:
パッシブソナー信号処理装置としてコンピュータを機能させるためのパッシブソナー信号処理プログラムであって、
コンピュータを、
信号のレベルの方位チャネル間の増減比を計算する微分処理手段と、
前記増減比の値に基づいて決められた区間毎に、該区間に含まれる方位チャネルの前記増減比を基に、合計増減比を計算する積分処理手段と、
前記合計増減比の値に基づいて選択された相互に異なった複数の方位チャネルの前記合計増減比に基づいて、前記信号のS/N比を計算するS/N検出処理手段と、
として機能させるためのパッシブソナー信号処理プログラム。
A passive sonar signal processing program for causing a computer to function as a passive sonar signal processing device,
Computer
Differential processing means for calculating an increase / decrease ratio between the azimuth channels of the signal level;
Integration processing means for calculating a total increase / decrease ratio for each section determined based on the value of the increase / decrease ratio, based on the increase / decrease ratio of the azimuth channel included in the section;
S / N detection processing means for calculating an S / N ratio of the signal based on the total increase / decrease ratio of a plurality of different azimuth channels selected based on the value of the total increase / decrease ratio;
Passive sonar signal processing program to function as
JP2011067975A 2011-03-25 2011-03-25 Passive sonar signal processing apparatus, passive sonar signal processing method, and passive sonar signal processing program Active JP5699736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067975A JP5699736B2 (en) 2011-03-25 2011-03-25 Passive sonar signal processing apparatus, passive sonar signal processing method, and passive sonar signal processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067975A JP5699736B2 (en) 2011-03-25 2011-03-25 Passive sonar signal processing apparatus, passive sonar signal processing method, and passive sonar signal processing program

Publications (2)

Publication Number Publication Date
JP2012202837A true JP2012202837A (en) 2012-10-22
JP5699736B2 JP5699736B2 (en) 2015-04-15

Family

ID=47184003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067975A Active JP5699736B2 (en) 2011-03-25 2011-03-25 Passive sonar signal processing apparatus, passive sonar signal processing method, and passive sonar signal processing program

Country Status (1)

Country Link
JP (1) JP5699736B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830681A (en) * 1981-08-15 1983-02-23 Tech Res & Dev Inst Of Japan Def Agency Automatic tracking system for sonar
JPS62245173A (en) * 1986-04-16 1987-10-26 Nec Corp Automatic gain adjusting circuit
JPH03179285A (en) * 1989-12-08 1991-08-05 Oki Electric Ind Co Ltd Target tracking apparatus
JPH04155282A (en) * 1990-10-18 1992-05-28 Tech Res & Dev Inst Of Japan Def Agency Sonar signal detection system
JPH0566256A (en) * 1991-09-09 1993-03-19 Nec Corp Bearing detector for underwater sound
JPH11102442A (en) * 1997-09-25 1999-04-13 Matsushita Electric Works Ltd Method and device for detecting edge
JP2000221255A (en) * 1999-02-01 2000-08-11 Nec Corp Apparatus and method for passive sonar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830681A (en) * 1981-08-15 1983-02-23 Tech Res & Dev Inst Of Japan Def Agency Automatic tracking system for sonar
JPS62245173A (en) * 1986-04-16 1987-10-26 Nec Corp Automatic gain adjusting circuit
JPH03179285A (en) * 1989-12-08 1991-08-05 Oki Electric Ind Co Ltd Target tracking apparatus
JPH04155282A (en) * 1990-10-18 1992-05-28 Tech Res & Dev Inst Of Japan Def Agency Sonar signal detection system
JPH0566256A (en) * 1991-09-09 1993-03-19 Nec Corp Bearing detector for underwater sound
JPH11102442A (en) * 1997-09-25 1999-04-13 Matsushita Electric Works Ltd Method and device for detecting edge
JP2000221255A (en) * 1999-02-01 2000-08-11 Nec Corp Apparatus and method for passive sonar

Also Published As

Publication number Publication date
JP5699736B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
US10602267B2 (en) Sound signal processing apparatus and method for enhancing a sound signal
KR101597752B1 (en) Apparatus and method for noise estimation and noise reduction apparatus employing the same
EP3526979B1 (en) Method and apparatus for output signal equalization between microphones
US9959886B2 (en) Spectral comb voice activity detection
US9552828B2 (en) Audio signal processing device
US9042576B2 (en) Signal processing method, information processing apparatus, and storage medium for storing a signal processing program
WO2010002676A2 (en) Multi-microphone voice activity detector
US9378754B1 (en) Adaptive spatial classifier for multi-microphone systems
WO2021008000A1 (en) Voice wakeup method and apparatus, electronic device and storage medium
JP2017503388A5 (en)
EP3113508A1 (en) Signal-processing device, method, and program
US20130170319A1 (en) Apparatus and method for resolving an ambiguity from a direction of arrival estimate
EP2985762A1 (en) Signal processing device, signal processing method, and signal processing program
US20130301841A1 (en) Audio processing device, audio processing method and program
KR20180112421A (en) Covariance matrix generation method for doa estimation
JP5699736B2 (en) Passive sonar signal processing apparatus, passive sonar signal processing method, and passive sonar signal processing program
KR20150069910A (en) Method for detecting saturation signals beyond dynamic range in underwater wireless distributed sensor networks
Zheng et al. A statistical analysis of two-channel post-filter estimators in isotropic noise fields
JP4413043B2 (en) Periodic noise suppression method, periodic noise suppression device, periodic noise suppression program
KR101509649B1 (en) Method and apparatus for detecting sound object based on estimation accuracy in frequency band
CN105513606B (en) Voice signal processing method, device and system
Moragues et al. Improving detection of acoustic signals by means of a time and frequency multiple energy detector
US11528556B2 (en) Method and apparatus for output signal equalization between microphones
JP6631127B2 (en) Voice determination device, method and program, and voice processing device
JP4810800B2 (en) Integrated display system in the Sonobuoy signal processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R150 Certificate of patent or registration of utility model

Ref document number: 5699736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150