JP2012202674A - Absorption type freezer - Google Patents

Absorption type freezer Download PDF

Info

Publication number
JP2012202674A
JP2012202674A JP2011070734A JP2011070734A JP2012202674A JP 2012202674 A JP2012202674 A JP 2012202674A JP 2011070734 A JP2011070734 A JP 2011070734A JP 2011070734 A JP2011070734 A JP 2011070734A JP 2012202674 A JP2012202674 A JP 2012202674A
Authority
JP
Japan
Prior art keywords
refrigerant
absorber
absorption
density
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011070734A
Other languages
Japanese (ja)
Inventor
Taiji Kamata
泰司 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011070734A priority Critical patent/JP2012202674A/en
Publication of JP2012202674A publication Critical patent/JP2012202674A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an absorption type freezer capable of inexpensively detecting refrigerant leakage in an absorber at an early stage.SOLUTION: An absorption type freezer 100 includes a high temperature regenerator 5, a low temperature regenerator 6, an evaporator 1, a condenser 7, and an absorber 2, and these units are connected with pipes, thereby forming a circulation path both for absorption liquid and refrigerants. In the absorber 2, a cooling water pipe 15 is arranged for circulating cooling water whose density is smaller than that of the absorption liquid, and a leakage detector 60 is also disposed there for detecting the leakage of the cooling water based on the density variation of the absorption liquid in the absorber 2.

Description

本発明は、吸収器内に吸収液を冷却するための冷却用冷媒を流通させる配管を備える吸収式冷凍機に関する。   The present invention relates to an absorption refrigerator having a pipe for circulating a cooling refrigerant for cooling an absorbent in an absorber.

従来、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成する吸収式冷凍機が知られている(例えば、特許文献1参照)。この種の吸収式冷凍機では、蒸発器で蒸発した冷媒蒸気を吸収液に吸収させて吸収器内を高真空状態に保持しており、吸収器内には吸収液が冷媒蒸気を吸収する際に発生する熱を冷却する冷却用冷媒が流通する配管が設けられている。   2. Description of the Related Art Conventionally, absorption refrigerators that include a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber, which are connected to each other by piping to form a circulation path for absorbing liquid and refrigerant, are known (for example, , See Patent Document 1). In this type of absorption chiller, the refrigerant vapor evaporated by the evaporator is absorbed by the absorption liquid, and the inside of the absorber is maintained in a high vacuum state, and the absorption liquid absorbs the refrigerant vapor in the absorber. A pipe through which a cooling refrigerant for cooling the heat generated in the refrigerant flows is provided.

特開2000−283668号公報JP 2000-283668 A

ところで、吸収器内は高真空状態に保持されるため、冷却用冷媒が吸収器内にて漏れた場合には、圧力差によって当該冷却用冷媒が吸収器内に流入することにより吸収液濃度が規定値よりも薄くなり、冷却能力が低下する問題がある。
しかしながら、従来の構成では、吸収器内で冷媒漏れが生じた場合であっても、この冷媒漏れの事実は、吸収式冷凍機の運転中に当該機内が満水になることによる高温再生器の圧力高異常の発報、あるいは、冷却能力の低下によるメンテナンスコールによって、循環経路に設けられたサイトグラスを作業員が目視するまで発見されず、当該冷媒漏れの早期発見が困難であった。この場合、吸収器に圧力センサを取り付けることも考えられるが、吸収器内は高真空状態に保持され、使用されるセンサについても高精度が要求されるため、圧力センサを設ける構成ではコスト高となる問題があった。
本発明は、上述した事情に鑑みてなされたものであり、吸収器内で冷媒漏れを早期、かつ、安価に検出できる吸収式冷凍機を提供することを目的とする。
By the way, since the inside of the absorber is maintained in a high vacuum state, when the cooling refrigerant leaks in the absorber, the cooling refrigerant flows into the absorber due to a pressure difference, so that the concentration of the absorbing liquid is reduced. There is a problem that it becomes thinner than the specified value and the cooling capacity decreases.
However, in the conventional configuration, even when refrigerant leakage occurs in the absorber, the fact of this refrigerant leakage is the pressure of the high-temperature regenerator due to the fact that the interior of the absorption chiller becomes full during operation. A high-abnormality report or a maintenance call due to a decrease in cooling capacity did not detect the sight glass provided in the circulation path until an operator visually observed it, making it difficult to detect the refrigerant leak early. In this case, it is conceivable to attach a pressure sensor to the absorber. However, since the inside of the absorber is kept in a high vacuum state and high accuracy is required for the sensor to be used, the configuration with the pressure sensor is expensive. There was a problem.
This invention is made | formed in view of the situation mentioned above, and it aims at providing the absorption refrigerator which can detect a refrigerant | coolant leak in an absorber early and cheaply.

上記目的を達成するために、本発明は、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成するとともに、前記吸収器内に前記吸収液よりも密度の小さい冷却用冷媒を流通させる配管を備える吸収式冷凍機において、前記吸収器内の前記吸収液の密度変化に基づいて前記冷却用冷媒の漏れを検出する冷媒漏れ検出手段を備えたことを特徴とする。   In order to achieve the above object, the present invention comprises a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, and an absorber, and these are connected to form a circulation path for the absorbing liquid and the refrigerant, respectively. In the absorption refrigerator having a pipe for circulating a cooling refrigerant having a density lower than that of the absorbing liquid in the absorber, the cooling refrigerant leaks based on a change in density of the absorbing liquid in the absorber. A refrigerant leak detecting means for detecting is provided.

この場合、前記冷媒漏れ検出手段は、支軸を中心に揺動自在に配置される腕部と、この腕部の一端に設けられる浮子と、前記吸収液の密度が前記浮子の密度よりも小さくなった場合に、前記腕部と当接または近接することにより作動するスイッチ部とを備えても良い。さらに、前記浮子の密度は、通常運転時における前記吸収液の最小密度よりも小さく設定されても良い。   In this case, the refrigerant leak detection means includes an arm portion that is swingably arranged around a support shaft, a float provided at one end of the arm portion, and the density of the absorbing liquid is smaller than the density of the float. In such a case, a switch portion that operates by contacting or approaching the arm portion may be provided. Furthermore, the density of the float may be set smaller than the minimum density of the absorbing liquid during normal operation.

また、前記スイッチ部は前記吸収器の外側から内側に突出するように配置され、当該吸収器内には、前記スイッチ部を覆うカバー体が設けられても良い。また、前記冷媒漏れ検出手段は、前記吸収器の吸収液溜りに配置されていても良い。また、前記冷媒漏れ検出手段が前記冷却用冷媒の漏れを検出した場合に、当該冷媒の漏れを報知する報知手段を備えても良い。   The switch unit may be disposed so as to protrude inward from the outside of the absorber, and a cover body that covers the switch unit may be provided in the absorber. The refrigerant leak detection means may be disposed in an absorption liquid reservoir of the absorber. Moreover, when the said refrigerant | coolant leak detection means detects the leak of the said refrigerant | coolant for cooling, you may provide the alerting | reporting means which alert | reports the leak of the said refrigerant | coolant.

本発明によれば、吸収器内で冷却用冷媒の漏れを生じた場合、この冷却用冷媒の吸収液への混入による当該吸収液の密度の低下を冷媒漏れ検出手段が検出するため、高価な圧力センサを設けることなく、安価にかつ早期に冷却用冷媒の漏れを検出することができる。   According to the present invention, when the cooling refrigerant leaks in the absorber, the refrigerant leak detection means detects a decrease in the density of the absorbing liquid due to the mixing of the cooling refrigerant into the absorbing liquid. Without providing a pressure sensor, it is possible to detect the leakage of the cooling refrigerant at a low cost and at an early stage.

本実施形態にかかる吸収式冷凍機の概略構成図である。It is a schematic block diagram of the absorption refrigerator concerning this embodiment. 漏れ検出装置が作動する前の状態を示す図である。It is a figure which shows the state before a leak detection apparatus act | operates. 漏れ検出装置が作動した状態を示す図である。It is a figure which shows the state which the leak detection apparatus act | operated.

以下、図面を参照して本発明の一実施形態を説明する。
図1は、本実施形態にかかる吸収式冷凍機100の概略構成図である。吸収式冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した二重効用型の吸収式冷凍機である。
吸収式冷凍機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴(下胴)3と、ガスバーナ4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6及び凝縮器7を収納した低温再生器凝縮器胴(上胴)8と、低温熱交換器12と、高温熱交換器13と、冷媒ドレン熱交換器16と、稀吸収液ポンプP1と、濃吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜25及び冷媒管31〜36などを介して配管接続されている。
また、符号14は、蒸発器1内で冷媒と熱交換した熱媒、又はブライン(以下、ブライン等という)を、図示しない熱負荷(例えば空気調和装置)に循環供給するための冷/温水管であり、この冷/温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。符号15は、吸収器2及び凝縮器7に順次冷却水(冷却用冷媒)を流通させるための冷却水管(配管)であり、この冷却水管15の一部に形成された各伝熱管15A、15Bがそれぞれ吸収器2及び凝縮器7内に配置されている。本実施形態では、冷却水には吸収液よりも密度の小さい水が使用されている。
符号50は、吸収式冷凍機100全体の制御を司る制御装置であり、この制御装置50には、各種異常発生時に異常を報音するブザー(報知手段)54が接続されている。なお、ブザー54の替わりに、もしくはブザー54に加えてランプを点灯させたり、操作盤に設けられた画面上に表示して異常を報知する構成としても良い。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an absorption refrigerator 100 according to the present embodiment. The absorption refrigerator 100 is a double-effect absorption refrigerator that uses water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid.
As shown in FIG. 1, the absorption refrigerator 100 includes an evaporator 1, an absorber 2 provided side by side with the evaporator 1, and an evaporator absorber body (which stores the evaporator 1 and the absorber 2). (Lower body) 3, a high-temperature regenerator 5 having a gas burner 4, a low-temperature regenerator 6, a condenser 7 juxtaposed to the low-temperature regenerator 6, and the low-temperature regenerator 6 and the condenser 7 were accommodated. Low temperature regenerator condenser cylinder (upper cylinder) 8, low temperature heat exchanger 12, high temperature heat exchanger 13, refrigerant drain heat exchanger 16, rare absorbent pump P1, concentrated absorbent pump P2, refrigerant A pump P3 is provided, and these devices are connected to each other through absorption liquid pipes 21 to 25, refrigerant pipes 31 to 36, and the like.
Reference numeral 14 denotes a cold / hot water pipe for circulatingly supplying a heat medium or brine (hereinafter referred to as brine or the like) heat-exchanged with the refrigerant in the evaporator 1 to a heat load (not shown) such as an air conditioner. A heat transfer tube 14 </ b> A formed in a part of the cold / hot water tube 14 is disposed in the evaporator 1. Reference numeral 15 denotes a cooling water pipe (pipe) for sequentially flowing cooling water (cooling refrigerant) through the absorber 2 and the condenser 7, and each heat transfer pipe 15 </ b> A, 15 </ b> B formed in a part of the cooling water pipe 15. Are arranged in the absorber 2 and the condenser 7, respectively. In the present embodiment, water having a density lower than that of the absorbing liquid is used for the cooling water.
Reference numeral 50 denotes a control device that controls the entire absorption refrigerator 100, and a buzzer (notification unit) 54 that reports an abnormality when various abnormalities occur is connected to the control device 50. Instead of the buzzer 54 or in addition to the buzzer 54, a lamp may be turned on or displayed on a screen provided on the operation panel to notify the abnormality.

吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り(吸収液溜り)2Aが形成され、この稀吸収液溜り2Aには、吸収式冷凍機100の各機器を循環する際に最も濃度が低い吸収液が貯留される。稀吸収液溜り2Aには、インバータ51により周波数可変に制御される稀吸収液ポンプP1が設けられた稀吸収液管21の一端が接続されている。この稀吸収液管21は、稀吸収液ポンプP1の下流側で第1稀吸収液管21Aと第2稀吸収液管21Bとに分岐され、第1稀吸収液管21Aは冷媒ドレン熱交換器16を経由し、第2稀吸収液管21Bは低温熱交換器12を経由した後に再び合流する。稀吸収液管21の他端は、高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口している。   The absorber 2 has a function of absorbing the refrigerant vapor evaporated in the evaporator 1 into the absorption liquid and maintaining the pressure in the evaporator absorber body 3 in a high vacuum state. In the lower part of the absorber 2, there is formed a dilute absorption liquid reservoir (absorption liquid reservoir) 2A in which a dilute absorption liquid that has been diluted by absorbing refrigerant vapor is accumulated. The dilute absorption liquid reservoir 2A includes an absorption refrigerator. When circulating through each of the 100 devices, the absorption liquid having the lowest concentration is stored. One end of a rare absorbing liquid pipe 21 provided with a rare absorbing liquid pump P1 that is controlled by an inverter 51 so as to be variable in frequency is connected to the rare absorbing liquid reservoir 2A. The rare absorbent pipe 21 is branched into a first rare absorbent pipe 21A and a second rare absorbent pipe 21B on the downstream side of the rare absorbent pump P1, and the first rare absorbent pipe 21A is a refrigerant drain heat exchanger. 16, the second rare absorbent pipe 21 </ b> B joins again after passing through the low-temperature heat exchanger 12. The other end of the rare absorption liquid pipe 21 passes through the high-temperature heat exchanger 13 and then opens to the gas layer part 5B located above the heat exchange part 5A formed in the high-temperature regenerator 5.

高温再生器5は、ガスバーナ4の火炎を熱源として熱交換部5Aに溜った吸収液を加熱再生するものであり、熱交換部5Aの側方には、この熱交換部5Aで加熱再生された中間吸収液が溜る中間吸収液溜り5Cが形成されている。この中間吸収液溜り5Cには、中間吸収液溜り5C(高温再生器5内)に溜った吸収液の液面レベルを検知する液面センサ(液面レベル検出器)52が設けられている。この液面センサ52は、長さの異なる3本の電極A,B,Cを備え、最も長さの長い電極Bが共通電極であり、吸収液の液面が上昇して液面高レベルを検出する電極Aに達したとき、これら電極Aと電極Bとが導通状態となって、制御装置50が液面高レベルを検出する。
また、吸収液の液面が液面低レベルを検出する電極Cよりも低下して電極Bと電極Cとが非導通状態となれば、制御装置50は液面低レベル検出する。このため、吸収液の液面レベルが電極C以上であって電極A以下の範囲が吸収液量の正規の状態であり、この状態にあるか否かが制御装置50によって監視されている。
The high-temperature regenerator 5 heats and regenerates the absorption liquid accumulated in the heat exchange unit 5A using the flame of the gas burner 4 as a heat source, and the heat exchange unit 5A is heated and regenerated on the side of the heat exchange unit 5A. An intermediate absorption liquid reservoir 5C is formed in which the intermediate absorption liquid is stored. The intermediate absorbing liquid reservoir 5C is provided with a liquid level sensor (liquid level detector) 52 for detecting the liquid level of the absorbing liquid accumulated in the intermediate absorbing liquid reservoir 5C (in the high temperature regenerator 5). The liquid level sensor 52 includes three electrodes A, B, and C having different lengths, and the electrode B having the longest length is a common electrode, and the liquid level of the absorbing liquid rises to increase the liquid level. When the electrode A to be detected is reached, the electrode A and the electrode B become conductive, and the control device 50 detects the liquid level high level.
Further, when the liquid level of the absorbing liquid is lower than the electrode C for detecting the liquid level low level and the electrodes B and C are in a non-conductive state, the control device 50 detects the liquid level low. For this reason, the liquid level of the absorbing liquid is not lower than the electrode C and the range not higher than the electrode A is the normal state of the absorbing liquid amount, and the controller 50 monitors whether or not this state is in effect.

中間吸収液溜り5Cの下端には、中間吸収液管22の一端が接続され、この中間吸収液管22の他端は、高温熱交換器13を介して、低温再生器6内の上部に形成された気層部6Aに開口している。高温熱交換器13は、中間吸収液溜り5Cから流出した高温の吸収液の温熱で稀吸収液管21を流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。
本実施形態では、中間吸収液管22は、高温熱交換器13と低温再生器6との間に、当該中間吸収液管22を流れる吸収液の流量を調整する溶液調整弁53を備える。この溶液調整弁53は、制御装置50の制御下、液面センサ52の検知する液面レベルに応じて、開度が調整されるものであり、吸収液の液面レベルが正規の状態である場合には、開度が半開状態に保持されている。また、中間吸収液管22の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管23により接続されている。
One end of the intermediate absorption liquid pipe 22 is connected to the lower end of the intermediate absorption liquid reservoir 5C, and the other end of the intermediate absorption liquid pipe 22 is formed in the upper part of the low temperature regenerator 6 via the high temperature heat exchanger 13. The gas layer 6A is opened. The high temperature heat exchanger 13 heats the absorption liquid flowing through the rare absorption liquid pipe 21 with the high temperature of the high temperature absorption liquid flowing out from the intermediate absorption liquid reservoir 5C, and the fuel consumption of the gas burner 4 in the high temperature regenerator 5 is increased. We are trying to reduce it.
In the present embodiment, the intermediate absorption liquid pipe 22 includes a solution adjustment valve 53 that adjusts the flow rate of the absorption liquid flowing through the intermediate absorption liquid pipe 22 between the high temperature heat exchanger 13 and the low temperature regenerator 6. The solution adjustment valve 53 is adjusted in opening degree according to the liquid level detected by the liquid level sensor 52 under the control of the control device 50, and the liquid level of the absorbing liquid is in a normal state. In this case, the opening degree is held in a half-open state. Further, the upstream side of the high-temperature heat exchanger 13 of the intermediate absorption liquid pipe 22 and the absorber 2 are connected by an absorption liquid pipe 23 with an on-off valve V1 interposed therebetween.

低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、気層部6Aの下方に形成された吸収液溜り6Bに溜った吸収液を加熱再生するものであり、吸収液溜り6Bには、高温再生器5の上端部から凝縮器7の底部への延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、上記伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Bに溜った吸収液に伝達され、この吸収液が更に濃縮される。
低温再生器6の吸収液溜り6Bの下端には、濃吸収液管24の一端が接続され、この濃吸収液管24の他端は、濃吸収液ポンプP2及び低温熱交換器12を介して、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。低温熱交換器12は、低温再生器6の吸収液溜り6Bから流出した濃吸収液の温熱で第2稀吸収液管21Bを流れる稀吸収液を加熱するものである。また、濃吸収液ポンプP2の上流側には、この濃吸収液ポンプP2及び低温熱交換器12をバイパスするバイパス管25が設けられており、濃吸収液ポンプP2の運転が停止している場合には、低温再生器6の吸収液溜り6Bから流出した吸収液は、バイパス管25通じて低温熱交換器12を経由することなく吸収器2内に供給される。
The low-temperature regenerator 6 uses the refrigerant vapor separated by the high-temperature regenerator 5 as a heat source to heat and regenerate the absorption liquid stored in the absorption liquid reservoir 6B formed below the gas layer portion 6A. In 6B, a heat transfer tube 31A formed in a part of the refrigerant tube 31 extending from the upper end of the high temperature regenerator 5 to the bottom of the condenser 7 is disposed. By circulating the refrigerant vapor through the refrigerant pipe 31, the heat of the refrigerant vapor is transmitted to the absorption liquid stored in the absorption liquid reservoir 6B via the heat transfer pipe 31A, and the absorption liquid is further concentrated.
One end of a concentrated absorption liquid pipe 24 is connected to the lower end of the absorption liquid reservoir 6B of the low temperature regenerator 6, and the other end of the concentrated absorption liquid pipe 24 is connected via the concentrated absorption liquid pump P2 and the low temperature heat exchanger 12. The absorber 2 is connected to a concentrated liquid spreader 2C provided on the upper part of the gas layer 2B. The low-temperature heat exchanger 12 heats the rare absorbent flowing through the second rare absorbent pipe 21B with the warm heat of the concentrated absorbent flowing out from the absorbent pool 6B of the low-temperature regenerator 6. Further, a bypass pipe 25 that bypasses the concentrated absorbent pump P2 and the low-temperature heat exchanger 12 is provided upstream of the concentrated absorbent pump P2, and the operation of the concentrated absorbent pump P2 is stopped. In this case, the absorption liquid flowing out from the absorption liquid reservoir 6B of the low-temperature regenerator 6 is supplied into the absorber 2 through the bypass pipe 25 without passing through the low-temperature heat exchanger 12.

上述のように、高温再生器5の気層部5Bと凝縮器7の底部とは、低温再生器6の吸収液溜り6Bに配管された伝熱管31A及び冷媒ドレン熱交換器16を経由する冷媒管31により接続され、この冷媒管31の伝熱管31A上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。また、凝縮器7の底部と蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在するに冷媒管34により接続されている。この冷媒管34の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは開閉弁V3が介在する冷媒管35により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V4が介在する冷媒管36により接続されている。   As described above, the gas layer 5B of the high-temperature regenerator 5 and the bottom of the condenser 7 are the refrigerant that passes through the heat transfer pipe 31A and the refrigerant drain heat exchanger 16 that are piped to the absorption liquid reservoir 6B of the low-temperature regenerator 6. The refrigerant pipe 31 is connected to the upstream side of the heat transfer pipe 31A and the gas layer 2B of the absorber 2 by a refrigerant pipe 32 having an on-off valve V2. Further, the bottom of the condenser 7 and the gas layer part 1A of the evaporator 1 are connected by a refrigerant pipe 33 with a U seal part 33A interposed therebetween. A refrigerant liquid reservoir 1B in which liquefied refrigerant accumulates is formed below the evaporator 1, and the refrigerant liquid reservoir 1B and the spreader 1C disposed above the gas layer portion 1A of the evaporator 1 are refrigerant pumps P3. Are connected by a refrigerant pipe 34. The refrigerant pipe 34 downstream side of the refrigerant pump P3 and the absorbing liquid reservoir 2A of the absorber 2 are connected by a refrigerant pipe 35 having an on-off valve V3 interposed therebetween. Further, the outlet side of the heat transfer pipe 14A of the cold / hot water pipe 14 and the outlet side of the heat transfer pipe 15B of the cooling water pipe 15 are connected by a refrigerant pipe 36 having an on-off valve V4 interposed therebetween.

吸収式冷凍機100は、制御装置50の制御により、冷/温水管14から冷水を取り出す冷房運転と、この冷/温水管14から温水を取り出す暖房運転とに切り替え運転される。
冷房運転時には、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン等(例えば冷水)の蒸発器1出口側温度が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御装置50により制御される。具体的には、制御装置50は、すべての開閉弁V1〜V4を閉じ、すべてのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させ、温度センサS1が計測するブライン等の温度が所定の7℃となるようにガスバーナ4の火力を制御する。
Under the control of the control device 50, the absorption refrigerator 100 is switched between a cooling operation in which cold water is extracted from the cold / hot water pipe 14 and a heating operation in which hot water is extracted from the cold / hot water pipe 14.
During the cooling operation, the absorption refrigeration is performed so that the temperature on the outlet side of the evaporator 1 such as brine (for example, cold water) circulated and supplied to a heat load (not shown) through the cold / hot water pipe 14 becomes a predetermined set temperature, for example, 7 ° C The amount of heat input to the machine 100 is controlled by the control device 50. Specifically, the control device 50 closes all the on-off valves V1 to V4, starts all the pumps P1 to P3, burns the gas in the gas burner 4, and measures the temperature of the brine or the like measured by the temperature sensor S1. The heating power of the gas burner 4 is controlled so that becomes a predetermined 7 ° C.

吸収器2から稀吸収液管21を介して、稀吸収液ポンプP1により高温再生器5に搬送された稀吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この稀吸収液中の冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した中間吸収液は、高温熱交換器13を経由して低温再生器6へ送られる。この低温再生器6において、中間吸収液は、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が濃吸収液ポンプP2及び低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。   The rare absorbent transported from the absorber 2 to the high temperature regenerator 5 by the rare absorbent pump P1 through the rare absorbent pipe 21 is heated by the flame by the gas burner 4 and the high temperature combustion gas in the high temperature regenerator 5. Therefore, the refrigerant in the rare absorbent is evaporated and separated. The intermediate absorbing liquid whose concentration has been increased by evaporating and separating the refrigerant in the high temperature regenerator 5 is sent to the low temperature regenerator 6 via the high temperature heat exchanger 13. In this low-temperature regenerator 6, the intermediate absorbent is heated by the high-temperature refrigerant vapor supplied from the high-temperature regenerator 5 through the refrigerant pipe 31 and flowing into the heat transfer pipe 31A, and the refrigerant is further separated to further increase the concentration. Thus, the concentrated absorbent is sent to the absorber 2 via the concentrated absorbent pump P2 and the low-temperature heat exchanger 12, and sprayed from above the concentrated liquid sprayer 2C.

一方、低温再生器6で分離生成した冷媒は凝縮器7に入って凝縮する。そして、凝縮器7で生成された冷媒液は冷媒管33を経由して蒸発器1に入り、冷媒ポンプP3の運転により揚液されて散布器1Cから冷/温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブライン等から気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブライン等は冷却され、こうして温度を下げたブライン等が冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって高温再生器5に搬送される循環を繰り返す。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
On the other hand, the refrigerant separated and generated by the low temperature regenerator 6 enters the condenser 7 and condenses. Then, the refrigerant liquid generated in the condenser 7 enters the evaporator 1 through the refrigerant pipe 33, is pumped by the operation of the refrigerant pump P3, and passes from the spreader 1C to the heat transfer pipe 14A of the cold / hot water pipe 14. Sprayed on.
The refrigerant liquid sprayed on the heat transfer tube 14A evaporates by removing vaporization heat from the brine passing through the inside of the heat transfer tube 14A, so that the brine etc. passing through the inside of the heat transfer tube 14A is cooled, thus lowering the temperature. Brine or the like is supplied from the cold / hot water pipe 14 to the heat load, and cooling operation such as cooling is performed.
Then, the refrigerant evaporated in the evaporator 1 enters the absorber 2, is absorbed by the concentrated absorbent supplied from the low temperature regenerator 6 and sprayed from above, and accumulates in the rare absorbent reservoir 2A of the absorber 2, The circulation conveyed to the high temperature regenerator 5 by the absorption liquid pump P1 is repeated. Note that the heat generated when the absorbing liquid absorbs the refrigerant is cooled by the heat transfer pipe 15 </ b> A of the cooling water pipe 15 disposed in the absorber 2.

暖房運転時には、冷/温水管14を介して熱負荷に循環供給されるブライン等(例えば温水)の蒸発器1出口側温度が所定の設定温度、例えば55℃になるように吸収式冷凍機100に投入される熱量が制御装置50により制御される。具体的には、制御装置50は、開閉弁V1〜V3を開き、すべてのポンプP1を起動し、且つ、ガスバーナ4においてガスを燃焼させ、温度センサS1が計測するブライン等の温度が所定の55℃となるようにガスバーナ4の火力を制御する。また、冷却水管15への冷却水の流通が止められる。
この場合、高温再生器5で稀吸収液から蒸発した冷媒は、冷媒管31の途中から主に流路抵抗の小さい冷媒管32を通って吸収器2、蒸発器1に入り、冷/温水管14から供給される水と伝熱管14Aを介して熱交換して凝縮し、このときの凝縮熱によって伝熱管17Aの内部を流れる水が加熱される。こうして温度を上げたブライン等が冷/温水管14から熱負荷に供給されて暖房運転が行われる。
During the heating operation, the absorption chiller 100 is set such that the outlet side temperature of the evaporator 1 such as brine (for example, hot water) circulated and supplied to the heat load via the cold / hot water pipe 14 becomes a predetermined set temperature, for example, 55 ° C. The amount of heat input to the is controlled by the control device 50. Specifically, the control device 50 opens the on-off valves V1 to V3, starts all the pumps P1, burns gas in the gas burner 4, and the temperature of the brine or the like measured by the temperature sensor S1 is a predetermined 55. The heating power of the gas burner 4 is controlled so as to be at ° C. Further, the circulation of the cooling water to the cooling water pipe 15 is stopped.
In this case, the refrigerant evaporated from the rare absorbent in the high-temperature regenerator 5 enters the absorber 2 and the evaporator 1 mainly from the middle of the refrigerant pipe 31 through the refrigerant pipe 32 having a small channel resistance, and enters the cold / hot water pipe. The water supplied from 14 is condensed by exchanging heat via the heat transfer tube 14A, and the water flowing through the heat transfer tube 17A is heated by the condensation heat at this time. The brine whose temperature has been raised in this way is supplied from the cold / hot water pipe 14 to the heat load, and the heating operation is performed.

蒸発器1で加熱作用を行って凝縮した冷媒は、蒸発器1の底部の冷媒液溜り1B吸収液溜り2Aを仕切る堰を通り吸収器2に入り、この吸収器2内で、吸収液管23及び開閉弁V1を通って高温再生器5から流入する吸収液と混合され、稀吸収液ポンプP1の運転によって、稀吸収液管21から冷媒ドレン熱交換器16、低温熱交換器12及び高温熱交換器13を経由して高温再生器5へ送られる。   The refrigerant condensed by the heating action in the evaporator 1 enters the absorber 2 through the weir partitioning the refrigerant liquid reservoir 1B absorbing liquid reservoir 2A at the bottom of the evaporator 1, and in the absorber 2, the absorbing liquid pipe 23 And the absorption liquid flowing in from the high temperature regenerator 5 through the on-off valve V1, and by operating the rare absorption liquid pump P1, the refrigerant drain heat exchanger 16, the low temperature heat exchanger 12, and the high temperature heat are discharged from the rare absorption liquid pipe 21. It is sent to the high-temperature regenerator 5 via the exchanger 13.

ところで、上述のように吸収器2を備える蒸発器吸収器胴3内は高真空状態に保持されるため、この蒸発器吸収器胴3内で冷却水管15から冷却水が漏れたり、冷/温水管14からブライン等が漏れたりした場合には、圧力差によって当該冷却水及びブライン等が稀吸収液溜り2Aに流入することにより、吸収液濃度が規定値よりも薄くなり冷却能力が低下する問題がある。
本構成では、図1に示すように、稀吸収液溜り2Aには、この稀吸収液溜り2A内の吸収液の密度変化に基づいて冷却水またはブライン等の漏れを検出する漏れ検出装置(冷媒漏れ検出手段)60が配置されている。
この漏れ検出装置60は、図2に示すように、稀吸収液溜り2Aの底面2A1に立設される支柱61に支軸62を中心に揺動自在に配置される天秤竿(腕部)63と、この天秤竿63の両端にそれぞれ設けられる第1浮子(浮子)64及び第2浮子(錘)65と、この天秤竿63の第1浮子64側が降下した際に、当該天秤竿63と当接して作動するスイッチ(スイッチ部)66とを備える。このスイッチ66は、制御装置50に接続されて当該スイッチ66が作動した際の出力信号を制御装置50に出力する。
By the way, since the inside of the evaporator absorber cylinder 3 provided with the absorber 2 is maintained in a high vacuum state as described above, cooling water leaks from the cooling water pipe 15 in the evaporator absorber cylinder 3 or cold / hot water. When brine or the like leaks from the pipe 14, the cooling water, brine, or the like flows into the rare absorbent reservoir 2A due to a pressure difference, so that the concentration of the absorbent becomes thinner than the specified value and the cooling capacity decreases. There is.
In this configuration, as shown in FIG. 1, the rare absorbent reservoir 2A includes a leak detection device (refrigerant) that detects leakage of cooling water or brine based on the density change of the absorbent in the rare absorbent reservoir 2A. Leakage detection means) 60 is arranged.
As shown in FIG. 2, the leak detection device 60 is a balance rod (arm portion) 63 that is swingably disposed around a support shaft 62 on a support 61 that is erected on the bottom surface 2A1 of the rare absorbent reservoir 2A. When the first float 64 and the second float 65 are provided at both ends of the balance rod 63 and the first float 64 side of the balance rod 63 is lowered, the balance 63 and the balance And a switch (switch unit) 66 that operates in contact therewith. The switch 66 is connected to the control device 50 and outputs an output signal to the control device 50 when the switch 66 is activated.

第1浮子64及び第2浮子65は、それぞれ密度の異なる2種類の材質により形成されており、本実施形態では、第1浮子64は、通常運転時における吸収液の最小密度よりも小さい密度を有する材質であるポリテトラフルオロエチレン(poly tetra fluoro ethylene)で形成され、第2浮子65は、第1浮子64及び吸収液の密度よりも十分に大きい密度を有する材質であるステンレススチールで形成されている。また、第1浮子64の体積V1は、第2浮子65の体積V2よりも大きく形成されている。このため、漏れ検出装置60を稀吸収液溜り2Aに配置すると、通常運転時には第1浮子64と第2浮子65の浮力差により、図2に示すように、第1浮子64が第2浮子65よりも上方に位置するように天秤竿63が傾いた状態で保持される。
一方、天秤竿63は、図3に示すように、吸収液の濃度(密度)が第1浮子64の密度より小さい所定の閾値を下回った場合に、第1浮子64が第2浮子65よりも下方に位置するようにバランス設計されている。この閾値は、通常運転時における吸収液の最小密度の例えば1/2に設定されており、吸収液の濃度(密度)が略2倍に薄まった時点で天秤竿63の傾斜が変更される。
The first float 64 and the second float 65 are formed of two kinds of materials having different densities. In this embodiment, the first float 64 has a density smaller than the minimum density of the absorbing liquid during normal operation. The second float 65 is made of stainless steel, which is a material having a density sufficiently higher than the density of the first float 64 and the absorbing liquid. Yes. The volume V1 of the first float 64 is formed larger than the volume V2 of the second float 65. For this reason, when the leak detection device 60 is disposed in the rare absorbent reservoir 2A, the first float 64 is moved to the second float 65 as shown in FIG. 2 due to the difference in buoyancy between the first float 64 and the second float 65 during normal operation. The balance rod 63 is held in a tilted state so as to be positioned above.
On the other hand, as shown in FIG. 3, when the concentration (density) of the absorbing solution falls below a predetermined threshold smaller than the density of the first float 64, the balance 63 has the first float 64 that is more than the second float 65. The balance is designed to be positioned below. This threshold is set to, for example, 1/2 of the minimum density of the absorbing liquid during normal operation, and the inclination of the balance 63 is changed when the concentration (density) of the absorbing liquid becomes approximately doubled.

スイッチ66は、被検出物が当接することにより軸方向に変位する当接部67を備える押しボタンスイッチであり、当接部67が軸方向に押し込まれることにより内部の接点が閉じて出力信号を発する。
本実施形態では、スイッチ66は、稀吸収液溜り2Aに形成された開口70を通じて、稀吸収液溜り2Aの外側から内側に突出するように配置されており、稀吸収液溜り2A内には、スイッチ66を覆うカバー体71が配置されている。このカバー体71は、天秤竿63とスイッチ66の当接部67との間に延在する上面部73と、この上面部73と上記開口70とを水密に接続する側面部72とを備える。この側面部72は、例えば、ポリテトラフルオロエチレ等の可撓性を有する材料を用いて、天秤竿63が当接した際に短縮するベローズ状に形成されている。
この構成によれば、スイッチ66は、蒸発器吸収器胴3の外側に配置できるため、当該スイッチ66の防水性及び絶縁性を確保しなくても簡単に天秤竿63の傾きの変化を検出することができる。
The switch 66 is a push button switch including an abutting portion 67 that is displaced in the axial direction when the object to be detected abuts. When the abutting portion 67 is pushed in the axial direction, an internal contact is closed and an output signal is output. To emit.
In the present embodiment, the switch 66 is disposed so as to protrude from the outside of the rare absorbent reservoir 2A through the opening 70 formed in the rare absorbent reservoir 2A, and in the rare absorbent reservoir 2A, A cover body 71 that covers the switch 66 is disposed. The cover body 71 includes an upper surface portion 73 that extends between the balance rod 63 and the contact portion 67 of the switch 66, and a side surface portion 72 that connects the upper surface portion 73 and the opening 70 in a watertight manner. The side surface 72 is formed in a bellows shape that is shortened when the balance 63 comes into contact, for example, using a flexible material such as polytetrafluoroethylene.
According to this configuration, since the switch 66 can be disposed outside the evaporator absorber body 3, it is possible to easily detect a change in the tilt of the balance 63 without securing the waterproofness and insulation of the switch 66. be able to.

次に、漏れ検出装置60の動作について説明する。
通常運転時には、稀吸収液溜り2A内の稀吸収液の密度は、第1浮子64の密度よりも大きいため、この第1浮子64と第2浮子65の浮力差により、図2に示すように、第1浮子64が第2浮子65よりも上方に位置するように天秤竿63が傾いた状態で保持される。
この状態において、蒸発器吸収器胴3内で冷却水管15から冷却水が漏れたり、冷/温水管14からブライン等が漏れたりした場合には、当該冷却水及びブライン等が稀吸収液溜り2Aに流入するため、稀吸収液の濃度及び密度が小さくなる。
そして、稀吸収液の濃度(密度)が上記した所定の閾値を下回った場合、図3に示すように、第1浮子64が第2浮子65よりも下方に位置するように天秤竿63が傾き、この天秤竿63がスイッチ66の当接部67を押し込むことにより、当該スイッチ66が作動して蒸発器吸収器胴3内での冷却水もしくはブライン等の漏れが検出される。
Next, the operation of the leak detection device 60 will be described.
During normal operation, the density of the rare absorbent in the rare absorbent pool 2A is larger than the density of the first float 64. Therefore, due to the difference in buoyancy between the first float 64 and the second float 65, as shown in FIG. The balance rod 63 is held in an inclined state so that the first float 64 is positioned above the second float 65.
In this state, when cooling water leaks from the cooling water pipe 15 in the evaporator absorber body 3 or brine leaks from the cold / hot water pipe 14, the cooling water, brine, etc. are stored in the rare absorbing liquid reservoir 2A. Therefore, the concentration and density of the rare absorbent are reduced.
When the concentration (density) of the rare absorbent is below the predetermined threshold, the balance rod 63 is tilted so that the first float 64 is positioned below the second float 65, as shown in FIG. When the balance 63 pushes the contact portion 67 of the switch 66, the switch 66 is activated to detect leakage of cooling water or brine in the evaporator absorber body 3.

以上、説明したように、本実施形態によれば、高温再生器5、低温再生器6、蒸発器1、凝縮器7及び吸収器2を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成するとともに、吸収器2内に吸収液よりも密度の小さい冷却水を流通させる冷却水管15を備える吸収式冷凍機100において、吸収器2内の吸収液の密度変化に基づいて冷却水の漏れを検出する漏れ検出装置60を備えたため、この漏れ検出装置60が冷却水の吸収液への混入による当該吸収液の密度の低下を検出するため、高価な圧力センサ等を設けることなく、安価にかつ早期に吸収器2内での冷却水の漏れを検出できる。   As described above, according to the present embodiment, the high-temperature regenerator 5, the low-temperature regenerator 6, the evaporator 1, the condenser 7, and the absorber 2 are provided, and these are connected by piping to circulate the absorbing liquid and the refrigerant. In the absorption refrigerator 100 including the cooling water pipe 15 that forms the respective paths and distributes the cooling water having a density lower than that of the absorbing liquid in the absorber 2, cooling is performed based on the density change of the absorbing liquid in the absorber 2. Since the leak detection device 60 that detects the leak of water is provided, the leak detection device 60 detects a decrease in the density of the absorption liquid due to mixing of the cooling water into the absorption liquid, so that an expensive pressure sensor or the like is not provided. Therefore, it is possible to detect the leakage of the cooling water in the absorber 2 at low cost and early.

また、本実施形態によれば、漏れ検出装置60は、支軸62を中心に揺動自在に配置される天秤竿63と、この天秤竿63の一端に設けられる第1浮子64と、吸収液の密度が第1浮子64の密度よりも小さくなった場合に、天秤竿63と当接することにより作動するスイッチ66とを備えるため、簡単な構成で確実に吸収器2内での冷却水の漏れを検出できる。   In addition, according to the present embodiment, the leak detection device 60 includes the balance rod 63 that is swingably arranged around the support shaft 62, the first float 64 provided at one end of the balance rod 63, and the absorbent liquid. When the density of the first float 64 is smaller than the density of the first float 64, the switch 66 that operates by contacting the balance 63 is provided. Can be detected.

また、本実施形態によれば、第1浮子64の密度は、通常運転時における稀吸収液溜り2A内の稀吸収液の最小密度よりも小さく設定されているため、漏れ検出装置60の誤作動を抑制することができ、当該漏れ検出装置60の検出精度を高めることができる。   Further, according to the present embodiment, the density of the first float 64 is set to be smaller than the minimum density of the rare absorbent in the rare absorbent pool 2A during normal operation. And the detection accuracy of the leak detection device 60 can be increased.

また、本実施形態によれば、スイッチ66は吸収器2の外側から内側に突出するように配置され、当該吸収器2内には、スイッチ66を覆うカバー体71が設けられているため、当該スイッチ66の防水性及び絶縁性を確保しなくても簡単に天秤竿63の傾きの変化を検出することができる。   Further, according to the present embodiment, the switch 66 is disposed so as to protrude from the outside of the absorber 2 to the inside, and the cover body 71 that covers the switch 66 is provided in the absorber 2. Even if the waterproof and insulating properties of the switch 66 are not secured, a change in the inclination of the balance rod 63 can be easily detected.

また、本実施形態によれば、漏れ検出装置60は、吸収器2の稀吸収液溜り2Aに配置されているため、吸収器2内で冷却水の漏れが生じたとしても、この冷却水の漏れを早期に検出できる。さらに、稀吸収液溜り2Aには、常時、稀吸収液が貯留されているため、漏れ検出装置60を水没させた状態に保持することができ、当該漏れ検出装置60の誤作動を抑制できる。   Further, according to the present embodiment, since the leak detection device 60 is disposed in the rare absorbing liquid reservoir 2A of the absorber 2, even if cooling water leaks in the absorber 2, this cooling water Leaks can be detected early. Furthermore, since the rare absorption liquid is always stored in the rare absorption liquid reservoir 2A, the leak detection device 60 can be held in a submerged state, and malfunction of the leak detection device 60 can be suppressed.

また、本実施形態によれば、漏れ検出装置が冷却水の漏れを検出した場合に、当該冷却水の漏れを報知するブザー54を備えるため、冷却水の漏れを作業員に確実に伝えることができ、当該冷却水の漏れへの対処を早急に行うことができる。   Moreover, according to this embodiment, when the leak detection device detects the leakage of the cooling water, the buzzer 54 that notifies the leakage of the cooling water is provided, so that the leakage of the cooling water can be reliably transmitted to the worker. It is possible to cope with the leakage of the cooling water as soon as possible.

上記した実施形態は本発明を適用した一態様を示すものであって、本発明は上記実施形態に限定されない。例えば、本実施形態では、スイッチ66として押しボタンスイッチを用いる構成について説明したが、これに限るものではなく、外部磁界の影響により、導体表面に発生する渦電流による磁気損失を検出することにより、導体で形成された天秤竿63の近接を検出できる非接触型の近接スイッチを用いてもよい。この構成によれば、天秤竿63と当接しないため、カバー体71に可撓性を備える構成とする必要がなくなり、さらに構成の簡素化を図れる。   The above-described embodiment shows one aspect to which the present invention is applied, and the present invention is not limited to the above-described embodiment. For example, in the present embodiment, the configuration using a push button switch as the switch 66 has been described. However, the present invention is not limited to this, and by detecting a magnetic loss due to an eddy current generated on the conductor surface due to the influence of an external magnetic field, A non-contact type proximity switch that can detect the proximity of the balance 63 made of a conductor may be used. According to this structure, since it does not contact | abut with the balance lever 63, it is not necessary to make the cover body 71 the structure provided with flexibility, and also a structure can be simplified.

また、本実施形態では、防水性及び絶縁性を考慮したため、スイッチ66を蒸発器吸収器胴3の外側空間に配置したが、十分な防水性及び絶縁性を確保できるスイッチであれば、稀吸収液溜り2A内に配置しても良いのは勿論である。
また、本実施形態では、漏れ検出装置60は、支軸62の両端に浮子を有する天秤竿63を備える構成としたが、一端に浮子を設け、他端を支柱に揺動自在に配置しても良い。
また、本実施形態では、吸収式冷凍機100は二重効用型であるが、一重効用型を始め、一重二重効用型及び三重効用型の吸収式冷凍機及び吸収式ヒートポンプ装置に本発明を適用可能なことは勿論である。
In this embodiment, since the waterproof and insulating properties are taken into consideration, the switch 66 is disposed in the outer space of the evaporator absorber body 3. However, if the switch can secure a sufficient waterproof and insulating property, it is rarely absorbed. Of course, it may be arranged in the liquid reservoir 2A.
Further, in the present embodiment, the leak detection device 60 is configured to include the balance rod 63 having floats at both ends of the support shaft 62, but the float is provided at one end and the other end is swingably disposed on the support column. Also good.
In this embodiment, the absorption refrigerator 100 is a double effect type, but the present invention is applied to a single effect type, a single double effect type and a triple effect type absorption refrigerator and an absorption heat pump device. Of course, it is applicable.

1 蒸発器
2 吸収器
2A 稀吸収液溜り(吸収液溜り)
2A1 底面
3 蒸発器吸収器胴
5 高温再生器
6 低温再生器
7 凝縮器
14 冷/温水管
15 冷却水管(配管)
50 制御装置
54 ブザー(報知手段)
60 漏れ検出装置(冷媒漏れ検出手段)
61 支柱
62 支軸
63 天秤竿(腕部)
64 第1浮子(浮子)
65 第2浮子
66 スイッチ(スイッチ部)
67 当接部
70 開口
71 カバー体
72 側面部
73 上面部
100 吸収式冷凍機
1 Evaporator 2 Absorber 2A Rare Absorbing Liquid Pool (absorbing liquid pool)
2A1 Bottom 3 Evaporator Absorber Body 5 High Temperature Regenerator 6 Low Temperature Regenerator 7 Condenser 14 Cold / Hot Water Pipe 15 Cooling Water Pipe (Piping)
50 control device 54 buzzer (notification means)
60 Leak detection device (refrigerant leak detection means)
61 support 62 support shaft 63 balance rod (arm)
64 First float (float)
65 Second float 66 Switch (switch part)
67 Contact portion 70 Opening 71 Cover body 72 Side surface portion 73 Upper surface portion 100 Absorption type refrigerator

Claims (6)

高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成するとともに、前記吸収器内に前記吸収液よりも密度の小さい冷却用冷媒を流通させる配管を備える吸収式冷凍機において、
前記吸収器内の前記吸収液の密度変化に基づいて前記冷却用冷媒の漏れを検出する冷媒漏れ検出手段を備えたことを特徴とする吸収式冷凍機。
A high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, and an absorber are provided, and these are connected by piping to form a circulation path for the absorption liquid and the refrigerant, respectively, and the density in the absorber is higher than that of the absorption liquid. In an absorption refrigerator having a pipe for circulating a small cooling refrigerant,
An absorption refrigerating machine comprising: a refrigerant leak detecting means for detecting a leak of the cooling refrigerant based on a density change of the absorbing liquid in the absorber.
前記冷媒漏れ検出手段は、支軸を中心に揺動自在に配置される腕部と、この腕部の一端に設けられる浮子と、前記吸収液の密度が前記浮子の密度よりも小さくなった場合に、前記腕部と当接または近接することにより作動するスイッチ部とを備えることを特徴とする請求項1に記載の吸収式冷凍機。   The refrigerant leak detection means includes an arm portion that is swingably arranged around a support shaft, a float provided at one end of the arm portion, and a density of the absorbing liquid that is smaller than a density of the float. The absorption refrigerator according to claim 1, further comprising a switch portion that operates by contacting or approaching the arm portion. 前記浮子の密度は、通常運転時における前記吸収液の最小密度よりも小さく設定されていることを特徴とする請求項2に記載の吸収式冷凍機。   The absorption type refrigerator according to claim 2, wherein the density of the float is set to be smaller than the minimum density of the absorbing liquid during normal operation. 前記スイッチ部は前記吸収器の外側から内側に突出するように配置され、当該吸収器内には、前記スイッチ部を覆うカバー体が設けられたことを特徴とする請求項2または3に記載の吸収式冷凍機。   The said switch part is arrange | positioned so that it may protrude inside from the outer side of the said absorber, The cover body which covers the said switch part was provided in the said absorber, The Claim 2 or 3 characterized by the above-mentioned. Absorption refrigerator. 前記冷媒漏れ検出手段は、前記吸収器の吸収液溜りに配置されていることを特徴とする請求項1乃至4のいずれかに記載の吸収式冷凍機。   The absorption refrigerator according to any one of claims 1 to 4, wherein the refrigerant leak detection means is disposed in an absorption liquid reservoir of the absorber. 前記冷媒漏れ検出手段が前記冷却用冷媒の漏れを検出した場合に、当該冷媒の漏れを報知する報知手段を備えることを特徴とする請求項1乃至5のいずれかに記載の吸収式冷凍機。   The absorption refrigerator according to any one of claims 1 to 5, further comprising an informing unit for informing the refrigerant leakage when the refrigerant leakage detecting unit detects the leakage of the cooling refrigerant.
JP2011070734A 2011-03-28 2011-03-28 Absorption type freezer Withdrawn JP2012202674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070734A JP2012202674A (en) 2011-03-28 2011-03-28 Absorption type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070734A JP2012202674A (en) 2011-03-28 2011-03-28 Absorption type freezer

Publications (1)

Publication Number Publication Date
JP2012202674A true JP2012202674A (en) 2012-10-22

Family

ID=47183861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070734A Withdrawn JP2012202674A (en) 2011-03-28 2011-03-28 Absorption type freezer

Country Status (1)

Country Link
JP (1) JP2012202674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458752A (en) * 2018-12-27 2019-03-12 双良节能系统股份有限公司 A kind of on-line checking density steam double-effect type suction-type lithium bromide low-temperature cold water unit
CN109458754A (en) * 2018-12-27 2019-03-12 双良节能系统股份有限公司 A kind of on-line checking density steam single-effect lithiumbromide absorption type low-temperature water cooler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458752A (en) * 2018-12-27 2019-03-12 双良节能系统股份有限公司 A kind of on-line checking density steam double-effect type suction-type lithium bromide low-temperature cold water unit
CN109458754A (en) * 2018-12-27 2019-03-12 双良节能系统股份有限公司 A kind of on-line checking density steam single-effect lithiumbromide absorption type low-temperature water cooler
CN109458754B (en) * 2018-12-27 2024-02-06 双良节能系统股份有限公司 Single-effect lithium bromide absorption type low-temperature water chilling unit for online detection of density steam
CN109458752B (en) * 2018-12-27 2024-02-06 双良节能系统股份有限公司 Double-effect lithium bromide absorption type low-temperature water chilling unit for online detection of density steam

Similar Documents

Publication Publication Date Title
JP6086213B2 (en) Chiller using refrigerator
JP5252796B2 (en) Absorption type water heater
JP2016080310A (en) Cooling system
JP2008116173A (en) Absorption type refrigerating machine
JP2012202674A (en) Absorption type freezer
JP2014081180A (en) Heat pump apparatus
KR200377788Y1 (en) Refrigerator for drinking water
JP2008008581A (en) Absorption type space heating/hot water supply device
JP6632951B2 (en) Absorption refrigerator
CN101713601B (en) Absorption type heat pump
KR101622045B1 (en) Absorption Heat Pump
JP2017207218A (en) Absorption type refrigerating machine
JP5456368B2 (en) Absorption refrigerator
JP7122538B2 (en) Absorption chiller
JP5646385B2 (en) Absorption refrigerator
JP6789846B2 (en) Absorption chiller
KR101163065B1 (en) Absorptive refrigerator
JP2014048037A (en) Refrigerator and cooling mechanism
KR20030078703A (en) Absorption type refrigerator
JP2010276244A (en) Absorption type water chiller/heater
KR102036107B1 (en) absoption system and a controlling method of the same
JP2012208017A (en) Liquid surface level detector and absorption refrigerator
JP2009058208A (en) Absorption type water cooler/heater
JP2017110864A (en) Refrigeration cycle device
US20120102990A1 (en) Adsorption type refrigerator that automatically determines switchover point

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603