JP2012201072A - Duct - Google Patents

Duct Download PDF

Info

Publication number
JP2012201072A
JP2012201072A JP2011069789A JP2011069789A JP2012201072A JP 2012201072 A JP2012201072 A JP 2012201072A JP 2011069789 A JP2011069789 A JP 2011069789A JP 2011069789 A JP2011069789 A JP 2011069789A JP 2012201072 A JP2012201072 A JP 2012201072A
Authority
JP
Japan
Prior art keywords
duct
rib
sound
wall
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011069789A
Other languages
Japanese (ja)
Other versions
JP5906573B2 (en
Inventor
Yoshinori Ono
慶詞 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoraku Co Ltd
Original Assignee
Kyoraku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoraku Co Ltd filed Critical Kyoraku Co Ltd
Priority to JP2011069789A priority Critical patent/JP5906573B2/en
Publication of JP2012201072A publication Critical patent/JP2012201072A/en
Application granted granted Critical
Publication of JP5906573B2 publication Critical patent/JP5906573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a duct capable of obtaining a desired shape without increasing man-hours, reducing operation sound of a fan and suppressing excessive heating of the duct.SOLUTION: The duct (1) of this embodiment is the duct (1) molded by adding a foaming agent to a thermoplastic resin, and has a rib (2) to be in a projected shape in the view from the inner side of the duct (1) and to be in a recessed shape in the view from the outer side of the duct (1).

Description

本発明は、プロジェクタ等の冷却ファンと併用する排気ダクトとして用いられる熱可塑性樹脂製のダクトに関し、特に、ブロー成形により樹脂を発泡させ所望の形状を得たダクトに関する。   The present invention relates to a duct made of a thermoplastic resin used as an exhaust duct used in combination with a cooling fan such as a projector, and more particularly to a duct obtained by foaming a resin by blow molding to obtain a desired shape.

現在、光源装置から射出された光束を画像情報に応じて変調させて画像光を形成し、該画像光を拡大投射するプロジェクタが利用されている。このようなプロジェクタは、投影の際、光源装置等が発熱することになる。このため、筐体外部から取り入れた空気を利用し、光源装置等を冷却し、ファンを用いて排気ダクトを介して光源装置等の熱を奪い、高温となった空気をプロジェクタ外部へ放出する手法が採用されている。   Currently, a projector is used that modulates a light beam emitted from a light source device according to image information to form image light, and enlarges and projects the image light. In such a projector, the light source device and the like generate heat during projection. Therefore, using air taken from outside the case, cooling the light source device, etc., using a fan to remove heat from the light source device, etc. via the exhaust duct, and releasing the heated air to the outside of the projector Is adopted.

しかし、上記の冷却ファンを使用する排気系では、ファンモータの発する音もプロジェクタの外部へ放出される。プロジェクタは、暗騒音の小さい場所で使用される機会が多いため、ファンの音は利用者の集中を妨げたり不快感を招いたりする要因となり得る。   However, in the exhaust system using the cooling fan, the sound generated by the fan motor is also emitted to the outside of the projector. Since projectors are often used in places with low background noise, the sound of fans can be a factor that hinders user concentration and causes discomfort.

なお、これまで排気ダクト出口から放出される騒音を低減するため、例えば、特許文献1ではダクト内部に吸音材を配する手法を提案しており、また、特許文献2ではレーザを用いダクト壁に細孔を設ける手法を提案している。   In order to reduce the noise emitted from the outlet of the exhaust duct, for example, Patent Document 1 proposes a method of arranging a sound absorbing material inside the duct, and Patent Document 2 uses a laser on the duct wall. A method of providing pores is proposed.

一方、光源装置等の冷却後に排気される空気は高温となっており、排気ダクトや筐体が熱を帯びる問題も生じている。   On the other hand, the air exhausted after cooling the light source device or the like has a high temperature, and there is a problem that the exhaust duct and the casing are heated.

特開平11−117761号公報JP-A-11-117761 特開2009−281166号公報JP 2009-281166 A

しかし、特許文献1では吸音材を接着させてダクトを作成しており、特許文献2ではレーザによる開孔を成形後に行っているため、いずれの手法においても工程数が増加し、多種の材料を用意する必要があると共に、形状の規制が大きい。   However, in Patent Document 1, a sound absorbing material is bonded to create a duct, and in Patent Document 2, a laser hole is formed after molding. Therefore, the number of processes increases in any method, and various materials are used. It is necessary to prepare, and the regulation of the shape is large.

本発明は、上記事情に鑑みてなされたものであり、工数を増やすことなく、所望の形状が得られると共に、ファンの作動音を低減させ、ダクトの過剰加熱を抑制することが可能なダクトを提供する。   The present invention has been made in view of the above circumstances, and a duct capable of obtaining a desired shape without increasing the number of man-hours, reducing operating noise of the fan, and suppressing excessive heating of the duct. provide.

かかる目的を達成するために、本発明は、以下の特徴を有する。
本発明にかかるダクトは、
熱可塑性樹脂に発泡剤を添加して成形されたダクトであって、
ダクトの内側から見て凸形状、ダクトの外側から見て凹形状となるリブを有することを特徴とする。
In order to achieve this object, the present invention has the following features.
The duct according to the present invention is
A duct formed by adding a foaming agent to a thermoplastic resin,
It has a rib having a convex shape when viewed from the inside of the duct and a concave shape when viewed from the outside of the duct.

本発明によれば、工数を増やすことなく、所望の形状が得られると共に、ファンの作動音を低減させ、ダクトの過剰加熱を抑制することができる。   According to the present invention, a desired shape can be obtained without increasing the number of man-hours, the operating noise of the fan can be reduced, and excessive heating of the duct can be suppressed.

本実施形態のダクトの概略図である。It is the schematic of the duct of this embodiment. 図1に示すダクトにおける排気流体の流動方向と平行をなす面の断面概略図である。FIG. 2 is a schematic cross-sectional view of a surface parallel to the flow direction of exhaust fluid in the duct shown in FIG. 1. 図1に示すダクトにおける排気流体の流動方向と垂直をなす面の断面概略図である。FIG. 2 is a schematic cross-sectional view of a surface perpendicular to the flow direction of exhaust fluid in the duct shown in FIG. 1. 図2に示すリブ断面の拡大模式図である。It is an expansion schematic diagram of the rib cross section shown in FIG. ピン型リブを配した例を示す概略図であり、(a)は、リブを通るダクト流路と垂直な断面図であり、(b)は、PLを通るダクト流路と平行な断面図である。It is the schematic which shows the example which has arrange | positioned the pin type rib, (a) is sectional drawing perpendicular | vertical to the duct flow path which passes through a rib, (b) is sectional drawing parallel to the duct flow path which passes through PL. is there. 衝立型リブを配した例を示す概略図であり、(a)は、リブを通るダクト流路と垂直な断面図であり、(b)は、PLを通るダクト流路と平行な断面図である。It is the schematic which shows the example which has arranged the partition type | mold rib, (a) is sectional drawing perpendicular | vertical to the duct flow path which passes through a rib, (b) is sectional drawing parallel to the duct flow path which passes through PL. is there. ダクト出口の音圧測定結果を示す図である。It is a figure which shows the sound pressure measurement result of a duct exit.

以下、添付図面を参照しながら、本実施形態の排気ダクト1について詳細に説明する。   Hereinafter, the exhaust duct 1 of the present embodiment will be described in detail with reference to the accompanying drawings.

本実施形態の排気ダクト1は、図1に示すように、壁面に螺旋状のリブ2を有しており、図2、図3に示すように、該リブ2は、ダクト外壁が凹形状を、ダクト内壁が凸形状をしている。   As shown in FIG. 1, the exhaust duct 1 of the present embodiment has a spiral rib 2 on the wall surface. As shown in FIGS. 2 and 3, the rib 2 has a concave outer wall. The inner wall of the duct has a convex shape.

ファンモータの騒音は、排気ダクト1を介して筐体外部へ誘導される。その際、排気ダクト1が有する図2のダクト内壁リブ表面2aと音波が接触することで、音波の反射頻度が増加すると共に音圧の減衰が行われる。さらにリブ2と接触し、屈折した音波が、他の音波と干渉し、打ち消し合うことでも減音効果が得られる。   The noise of the fan motor is guided to the outside of the housing through the exhaust duct 1. At that time, the sound waves come into contact with the duct inner wall rib surface 2a of FIG. 2 of the exhaust duct 1, so that the frequency of sound wave reflection increases and the sound pressure is attenuated. Further, the sound reduction effect can be obtained by contacting the ribs 2 and refracting the sound waves that interfere with other sound waves and cancel each other.

リブ2を螺旋状に延びるように形成することは、ダクト内流路4を通過する排気流体の急激な方向転換を防止し、通気抵抗の増大を抑制する効果がある。   Forming the rib 2 so as to extend in a spiral shape has an effect of preventing an abrupt change in direction of the exhaust fluid passing through the duct internal passage 4 and suppressing an increase in ventilation resistance.

排気流体の流れ方向について、図4に示すダクト内壁リブ表面2aの接線とダクト内壁面3aがなすリブ取付角度5が一定以上であると、空気の流動を妨げるおそれがあるため、リブ取付角度5は45°以下が好ましく40°以下がさらに好ましい。反面、リブ取付角度5が過剰に小である時、流路内における音波の反射回数が十分に発生しないため、リブ取付角度5は10°以上が好ましく20°以上がさらに好ましい。なお、図4に示すように、リブ取付角度5は傾斜が最大となる部分で測定する。   With respect to the flow direction of the exhaust fluid, if the rib attachment angle 5 formed by the tangent line of the duct inner wall rib surface 2a and the duct inner wall surface 3a shown in FIG. Is preferably 45 ° or less, more preferably 40 ° or less. On the other hand, when the rib attachment angle 5 is excessively small, the number of reflections of sound waves in the flow path is not sufficiently generated. Therefore, the rib attachment angle 5 is preferably 10 ° or more, and more preferably 20 ° or more. In addition, as shown in FIG. 4, the rib attachment angle 5 is measured at a portion where the inclination is maximum.

図2に示すリブ高さ6も通気抵抗と音圧低減効果とに多大な影響を与える。要求される排気流量及びダクト流路の断面積に依存してリブ高さ6の制限は変動するが、リブ2を除外した流路の幅を1としたとき、リブ高さ6は1/20〜1/3の範囲であることが好ましく、1/7〜1/4の範囲であることがさらに好ましい。リブ高さ6が大となると通気抵抗が増大し、小となると十分な減音効果が得られない。   The rib height 6 shown in FIG. 2 also greatly affects the ventilation resistance and the sound pressure reduction effect. The limit of the rib height 6 varies depending on the required exhaust flow rate and the cross-sectional area of the duct flow path, but when the width of the flow path excluding the rib 2 is 1, the rib height 6 is 1/20. It is preferably in the range of ˜1 / 3, more preferably in the range of 1/7 to ¼. When the rib height 6 is increased, the airflow resistance is increased, and when the rib height 6 is decreased, a sufficient sound reduction effect cannot be obtained.

ファンにより排気ダクトを介して筐体外部へ誘導される高温空気は、ダクト内壁と接触する際に熱を伝導するため、プロジェクタを長時間使用するとダクトが高温となるおそれがある。ダクト外壁面3bに形成された凹形状リブ2bは、ダクト流路外の空気7とダクト壁の接触面積を増大させ、ダクト外壁での放熱を促進する効果を有する。   The high-temperature air that is guided to the outside of the housing by the fan through the exhaust duct conducts heat when coming into contact with the inner wall of the duct, and thus the duct may become hot when the projector is used for a long time. The concave rib 2b formed on the duct outer wall surface 3b has an effect of increasing the contact area between the air 7 outside the duct flow path and the duct wall, and promoting heat radiation on the duct outer wall.

ポリオレフィンを主原料とする樹脂に発泡剤を添加し、押出機にて混練した後、アキュームレータに樹脂を貯蔵し、続いて所定の樹脂量が貯留された後、ピストンを押出し形成されたパリソンを分割金型に附形することで所望の形状を得る発泡ブロー成形法が一般的に知られている。上記発泡剤には空気や窒素ガス、炭酸ガス、水等の無機系物理発泡剤か、ブタンやヘキサン等の有機系有機系物理発泡剤か、重炭酸ナトリウムに代表される無機系化学発泡剤か、アゾジカルボンアミドやジニトロソペンタメチレンテトラミン等の有機系化学発泡剤かのいずれかが使用される。   After adding a foaming agent to a polyolefin-based resin and kneading with an extruder, the resin is stored in an accumulator, and after a predetermined amount of resin is stored, the piston is extruded to divide the parison. A foam blow molding method for obtaining a desired shape by attaching to a mold is generally known. The foaming agent may be an inorganic physical foaming agent such as air, nitrogen gas, carbon dioxide gas or water, an organic organic physical foaming agent such as butane or hexane, or an inorganic chemical foaming agent typified by sodium bicarbonate. Any one of organic chemical foaming agents such as azodicarbonamide and dinitrosopentamethylenetetramine is used.

本実施形態の排気ダクト1は、発泡ブロー成形で作成されている。ブロー成形で製造したダクトの壁は金型形状を転写され、内外壁に類似した凹凸形状をもたらすため、ダクトの内外壁に容易に螺旋状のリブを形成することが可能であり、成形後にリブを作成する工程を必要としない。   The exhaust duct 1 of this embodiment is created by foam blow molding. The wall of the duct manufactured by blow molding is transferred to the mold shape and gives an uneven shape similar to the inner and outer walls, so it is possible to easily form spiral ribs on the inner and outer walls of the duct. No need to create a process.

さらにブロー成形を用いることで直管形状のみならず、屈曲形状を有するダクトを容易に表現できる。なお、屈曲部では排気流体の方向転換が生じるため、通気抵抗は増加するが減音効果も増加する。   Further, by using blow molding, a duct having not only a straight pipe shape but also a bent shape can be easily expressed. In addition, since the direction change of exhaust fluid arises in a bending part, ventilation resistance increases, but the sound reduction effect also increases.

また、発泡ブロー成形では附形の圧力が低いため、射出成形に比べて高い発泡倍率を得ることが出来る。排気ダクト1の壁面を発泡体とすることで、壁内に含まれる気泡の振動により高い吸音効果を得ることができる。   In addition, since foam pressure is low in foam blow molding, a higher foaming ratio can be obtained than in injection molding. By making the wall surface of the exhaust duct 1 into a foam, a high sound absorption effect can be obtained by vibration of bubbles contained in the wall.

さらにダクト壁内に微細な気泡を配することで、多数の空気層が形成され、温度境界層が増加するため、壁全体での熱伝導率が小さくなり、ダクトの温度上昇抑制効果を有することができる。   Furthermore, by arranging fine air bubbles in the duct wall, a large number of air layers are formed, and the temperature boundary layer increases, so the thermal conductivity of the entire wall is reduced and the temperature rise of the duct is suppressed. Can do.

上記の騒音抑制効果ならびに温度上昇抑制効果を得るために、ダクトの発泡倍率は1.5倍以上が好ましく、2倍以上がさらに好ましい。   In order to obtain the above-described noise suppression effect and temperature rise suppression effect, the duct expansion ratio is preferably 1.5 times or more, and more preferably 2 times or more.

ここで述べた発泡倍率とは、基材となる樹脂ペレットの見掛け比重を成形品の見掛け比重で除したものを表す。例えば、基材樹脂の見掛け比重が1であり、成形品の見掛け比重が0.5であれば発泡倍率は2倍となる。   The expansion ratio described here represents a value obtained by dividing the apparent specific gravity of the resin pellet as the base material by the apparent specific gravity of the molded product. For example, if the apparent specific gravity of the base resin is 1 and the apparent specific gravity of the molded product is 0.5, the expansion ratio is doubled.

発泡倍率が同一である樹脂においては、ダクト壁内部に散在する気泡の平均径縮小に従い断熱効果が単調増加するが、気泡径を抑制すると発泡倍率の高い製品を得難くなる。この点を鑑み、製品の平均気泡径は20μmから130μmが好ましく、30から110μmがさらに好ましい。   In a resin having the same expansion ratio, the heat insulation effect increases monotonically as the average diameter of bubbles scattered inside the duct wall decreases. However, if the bubble diameter is suppressed, it is difficult to obtain a product with a high expansion ratio. In view of this point, the average bubble diameter of the product is preferably 20 μm to 130 μm, more preferably 30 to 110 μm.

ダクト壁内で生じる吸音において、径の小さい気泡は高周波音のサウンドパワーレベル低減に効果を発揮し、径の大きい気泡は低周波音のサウンドパワーレベル低減に有効である。発泡ブロー成形では樹脂のドローダウンやプリブロー等の影響を受け、不均一な気泡を形成するため、広い周波数領域に対しての減音に効果が期待できる。   In the sound absorption generated in the duct wall, the small diameter bubbles are effective in reducing the sound power level of high frequency sound, and the large diameter bubbles are effective in reducing the sound power level of low frequency sound. Foam blow molding is influenced by resin draw-down, pre-blow, etc., and forms non-uniform bubbles. Therefore, it can be expected to be effective for sound reduction over a wide frequency range.

特にブロー成形では溶融樹脂を金型に附形する際、ブローエアーをパリソン内に吹込む方法が一般的であり、ダクト壁の断面には、エアーの圧力により潰され楕円形状を呈した気泡が多数存在する。   In blow molding, in particular, when blowing molten resin to a mold, blow air is generally blown into the parison. Bubbles that are crushed by the pressure of air and have an elliptical shape are formed on the cross section of the duct wall. There are many.

発泡ブロー成形ではパリソンを分割金型に附形する際、パリソン内部にブローエアーを吹込み、パリソン内部の圧力により樹脂が圧されるため、ダクト壁内に存在する気泡は、壁面の厚み方向に短径を有しており、また、一般的にパリソンは自重により引き伸ばされるため、パリソンが重力加速度を被る方向に長径を有する傾向がある。   In foam blow molding, when the parison is attached to the split mold, blow air is blown into the parison, and the resin is pressed by the pressure inside the parison. The parison has a minor axis, and since the parison is generally stretched by its own weight, the parison tends to have a major axis in the direction of gravity acceleration.

そのため上記の気泡径は、ダクト両端部と排気流路中央部の互いに向き合う2つの壁面6箇所について、ダクト内部の排気流体が移動する方向と垂直をなす面を鋭利な刃物で切断し、現れた断面についてダクト壁厚みを示す線分を引き、この線分と交差する全ての気泡について、セルの壁により分断された気泡内に存在する該線分の長さを測定し、その平均値より求める。なお、平均値は上記の分断された線分長の総和を気泡数で除し算出する。   Therefore, the above-mentioned bubble diameter appeared by cutting the surface perpendicular to the direction of movement of the exhaust fluid inside the duct with a sharp blade at two locations on the two wall surfaces facing each other at both ends of the duct and the central portion of the exhaust passage. A line segment indicating the duct wall thickness is drawn for the cross section, and the lengths of the line segments existing in the bubbles divided by the cell walls are measured for all the bubbles intersecting the line segment, and the average value is obtained. . The average value is calculated by dividing the sum of the segment lengths divided above by the number of bubbles.

図3に示すように、排気ダクト1は、排気流体が流動する方向と直交するダクトの断面が形成する四角形の、辺部10ではなく、向き合う角部9にパーティングライン(PL)11が形成されている。   As shown in FIG. 3, the exhaust duct 1 has a parting line (PL) 11 formed at a corner 9 facing each other instead of a side 10 formed by a cross section of the duct perpendicular to the direction in which the exhaust fluid flows. Has been.

この形状により、パーティングライン11を除くほぼ全てのダクト壁面に螺旋状リブを配置しても、金型から製品を抜くことが可能となる。   With this shape, even if spiral ribs are arranged on almost all duct wall surfaces except the parting line 11, the product can be removed from the mold.

樹脂の種類としては、ダクト形状の自由度と発泡性が高いことから、ポリプロピレンやポリエチレンもしくはポリスチレン樹脂が好ましいが、排気が特に高温となることが予想される用途においては耐熱性能に優れるポリプロピレンまたはポリスチレンを使用することが望ましい。   As the type of resin, polypropylene, polyethylene, or polystyrene resin is preferred because of its high degree of freedom in duct shape and foamability, but polypropylene or polystyrene that has excellent heat resistance in applications where exhaust is expected to be particularly hot. It is desirable to use

また、先述した原料には発泡倍率を著しく低下させない範囲で、所望の機能に併せ着色材や抗菌材、難燃材等の配合剤を添加しても良い。   Moreover, in the range which does not reduce a foaming ratio remarkably, you may add compounding agents, such as a coloring material, an antibacterial material, and a flame retardant, in the range which does not reduce a foaming ratio remarkably.

なお、螺旋以外のリブ形状を採用することもできる。例えば、図5のようなピン型のリブ81(ダクト内側に突出する複数の棒状の突起)や図6のような衝立型のリブ82(ダクト内側に突出する複数の板状の突起)を採用することもできる。   A rib shape other than a spiral may be employed. For example, a pin-shaped rib 81 (a plurality of rod-shaped protrusions protruding inside the duct) as shown in FIG. 5 or a screen-type rib 82 (a plurality of plate-like protrusions protruding inside the duct) as shown in FIG. 6 is adopted. You can also

次に、上述した実施形態の実施例について説明する。但し、以下の実施例は、一部の実施例であり、以下の実施例に限定するものではない。   Next, examples of the above-described embodiment will be described. However, the following examples are a part of examples, and are not limited to the following examples.

<ダクトを用いた騒音測定>
ダクトの一端にスピーカを取付け、ランダムノイズを発生させ、他端にマイクを配し、ダクト出口部の音圧測定を行った。試験ではスピーカの音圧を42dBもしくは62dBに固定し、ダクトを交換することでそれぞれの吸音性能を比較した。なお、排気流路の長さは125mm、壁厚みは平均1.5mm、排気方向と直交する断面は長方形を呈しており、該断面の長手は80mm該断面の短手は50mmであるダクトを試験片として使用した。
<Measurement of noise using duct>
A speaker was attached to one end of the duct to generate random noise, a microphone was placed on the other end, and the sound pressure at the duct outlet was measured. In the test, the sound pressure of the speaker was fixed at 42 dB or 62 dB, and the sound absorption performance was compared by replacing the duct. It should be noted that the exhaust channel length is 125 mm, the wall thickness is 1.5 mm on average, the cross section perpendicular to the exhaust direction is rectangular, the long cross section is 80 mm, and the short cross section is 50 mm. Used as a piece.

(実施例1)
ポリプロピレンを主原料とする、リブ高さ約20mm、リブ取付角度40°螺旋状リブ(ダクトの一端から他端まで形成されダクト周りに1周しているリブ)を有する、発泡倍率2.7倍であるダクトを、発泡ブロー成形により作成した。なお、本ダクトはBOREALIS社製WB140を主成分とするPP系樹脂を主原料としている。本ダクトを使用した音圧測定試験では、音源音圧42dB設定時におけるダクト出口のオーバーオール値は35.1dBであり、音源音圧62dB設定時におけるダクト出口のオーバーオール値は56.2dBであった。
Example 1
Polypropylene as a main raw material, rib height of about 20 mm, rib attachment angle of 40 ° spiral rib (rib that is formed from one end of the duct to the other end and makes one round around the duct), expansion ratio of 2.7 times The duct which is is produced by foam blow molding. This duct is mainly made of PP resin mainly composed of WB140 manufactured by BOREALIS. In the sound pressure measurement test using this duct, the overall value at the duct outlet when the sound source sound pressure was 42 dB was 35.1 dB, and the overall value at the duct outlet when the sound source sound pressure was 62 dB was 56.2 dB.

(比較例1)
ポリプロピレンを主原料とする、リブ高さ約20mm、リブ取付角度40°の実施例1と同形状の螺旋状リブを有する非発泡ダクトをブロー成形により作成した。なお、本ダクトはBOREALIS社製WB140を主成分とするPP系樹脂を主原料としている。本ダクトを使用した音圧測定試験では、音源音圧42dB設定時におけるダクト出口のオーバーオール値は39.3dBであり、音源音圧62dB設定時におけるダクト出口のオーバーオール値は59.1dBであった。
(Comparative Example 1)
A non-foamed duct having a spiral rib having the same shape as that of Example 1 and having a rib height of about 20 mm and a rib mounting angle of 40 °, mainly made of polypropylene, was formed by blow molding. This duct is mainly made of PP resin mainly composed of WB140 manufactured by BOREALIS. In the sound pressure measurement test using this duct, the overall value at the duct outlet when the sound source sound pressure was 42 dB was 39.3 dB, and the overall value at the duct outlet when the sound source sound pressure was 62 dB was 59.1 dB.

(比較例2)
ポリプロピレンを主原料とするリブを持たない発泡倍率2.7倍であるダクトを、発泡ブロー成形により作成した。なお、本ダクトはBOREALIS社製WB140を主成分とするPP系樹脂を主原料としている。本ダクトを使用した音圧測定試験では、音源音圧42dB設定時におけるダクト出口のオーバーオール値は40.3dBであり、音源音圧62dB設定時におけるダクト出口のオーバーオール値は60.0dBであった。
(Comparative Example 2)
A duct made of polypropylene as a main material and having no ribs and having an expansion ratio of 2.7 times was prepared by foam blow molding. This duct is mainly made of PP resin mainly composed of WB140 manufactured by BOREALIS. In the sound pressure measurement test using this duct, the overall value at the duct outlet when the sound source sound pressure was set to 42 dB was 40.3 dB, and the overall value at the duct outlet when the sound source sound pressure was set to 62 dB was 60.0 dB.

(比較例3)
ポリプロピレンを主原料とするリブを持たない非発泡ダクトをブロー成形により作成した。なお、本ダクトはBOREALIS社製WB140を主成分とするPP系樹脂を主原料としている。本ダクトを使用した音圧測定試験では、音源音圧42dB設定時におけるダクト出口のオーバーオール値は40.9dBであり、音源音圧62dB設定時におけるダクト出口のオーバーオール値は60.7dBであった。
(Comparative Example 3)
A non-foamed duct having no ribs made mainly of polypropylene was produced by blow molding. This duct is mainly made of PP resin mainly composed of WB140 manufactured by BOREALIS. In the sound pressure measurement test using this duct, the overall value at the duct outlet when the sound source sound pressure was 42 dB was 40.9 dB, and the overall value at the duct outlet when the sound source sound pressure was 62 dB was 60.7 dB.

樹脂を発泡化させリブを配することでオーバーオール値が減衰したことが確認された。また、音源音圧を変化させても各ダクト間での音圧減衰傾向は同一であることが判明した。   It was confirmed that the overall value was attenuated by foaming the resin and arranging the ribs. It was also found that the sound pressure attenuation tendency between the ducts was the same even when the sound source sound pressure was changed.

図7に、音源音圧を42dBに設定したときの試験結果を示す。図7より、800Hz以下の周波数領域では発泡化による音圧低下が顕著に現れたことが確認できる。例えば、周波数500Hzでは、発泡樹脂を使用している実施例1が7.9dB、非発泡樹脂を使用している比較例1が21.1dBである。発泡化により13.2dBの音圧低減が確認された。   FIG. 7 shows the test results when the sound source sound pressure is set to 42 dB. From FIG. 7, it can be confirmed that the sound pressure drop due to foaming appears remarkably in the frequency region of 800 Hz or less. For example, at a frequency of 500 Hz, Example 1 using a foamed resin is 7.9 dB, and Comparative Example 1 using a non-foamed resin is 21.1 dB. A sound pressure reduction of 13.2 dB was confirmed by foaming.

発泡させることでダクト壁内に無数のセルが生じ、音圧の影響を受けセル壁が振動する。この際、セル壁の内部摩擦や、セル壁が有する弾性により音のエネルギーは吸収され、低周波領域での音圧低減が生じたものと予想される。   By foaming, countless cells are generated in the duct wall, and the cell wall vibrates under the influence of sound pressure. At this time, the energy of sound is absorbed by the internal friction of the cell wall and the elasticity of the cell wall, and it is expected that the sound pressure is reduced in the low frequency region.

また、図7に示すように、5000Hz以上の周波数領域では螺旋リブを配置することによる音圧低減が顕著に確認された。例えば、周波数5000Hzについてリブの有無を比べると、リブを有する実施例1が29.5dB、リブを持たない比較例2は37.2dBで、リブを配することにより7.7dBの音圧低減が確認された。   Moreover, as shown in FIG. 7, the sound pressure reduction by arrange | positioning a spiral rib was confirmed notably in the frequency area | region of 5000 Hz or more. For example, comparing the presence or absence of ribs at a frequency of 5000 Hz, Example 1 with ribs is 29.5 dB, Comparative Example 2 without ribs is 37.2 dB, and the ribs can reduce the sound pressure by 7.7 dB. confirmed.

これはリブの背後に空気層が存在していることで壁全体が振動しやすい状態になっており、音波がリブに衝突する際、リブを含む壁全体が振動することで、内部エネルギーが損失し、音圧が減衰するためと考えられる。   This is because the air layer exists behind the ribs, and the entire wall tends to vibrate, and when the sound wave collides with the ribs, the entire wall including the ribs vibrates, resulting in a loss of internal energy. However, it is considered that the sound pressure is attenuated.

高周波数領域では、セル壁の質量が音のエネルギーに対して優勢となるため、セル壁の振動が生じなくなり、発泡化による音圧低減は生じにくいものと予想される。   In the high frequency region, since the mass of the cell wall is dominant over the sound energy, it is expected that the vibration of the cell wall does not occur and the sound pressure is not reduced due to foaming.

なお、上述した実施形態及び実施例は、本発明の好適な実施形態及び実施例であり、上記実施形態及び実施例のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。   The above-described embodiments and examples are preferred embodiments and examples of the present invention, and the scope of the present invention is not limited only to the above-described embodiments and examples, and does not depart from the gist of the present invention. Implementation in a form in which various changes are made in the range is possible.

1 排気ダクト
2 リブ
2a ダクト内壁リブ表面
2b ダクト外壁リブ表面
3 ダクト壁面
3a ダクト内壁面
3b ダクト外壁面
4 ダクト内流路
5 リブ取付角度
6 リブ高さ
7 ダクト流路外空気
8 螺旋以外のリブ形状
81 ピン型リブ
82 衝立型リブ
9 角部
10 辺部
11 パーティングライン
1 exhaust duct 2 rib 2a duct inner wall rib surface 2b duct outer wall rib surface 3 duct wall surface 3a duct inner wall surface 3b duct outer wall surface 4 duct inner channel 5 rib mounting angle 6 rib height 7 duct channel outer air 8 rib other than spiral Shape 81 Pin type ribs 82 Screen type ribs 9 Corners 10 Sides 11 Parting line

Claims (2)

熱可塑性樹脂に発泡剤を添加して成形されたダクトであって、
ダクトの内側から見て凸形状、ダクトの外側から見て凹形状となるリブを有することを特徴とするダクト。
A duct formed by adding a foaming agent to a thermoplastic resin,
A duct having a rib having a convex shape when viewed from the inside of the duct and a concave shape when viewed from the outside of the duct.
前記リブが、ダクトの流路方向に延びる螺旋形状を有することを特徴とする請求項1記載のダクト。   The duct according to claim 1, wherein the rib has a spiral shape extending in a flow path direction of the duct.
JP2011069789A 2011-03-28 2011-03-28 duct Expired - Fee Related JP5906573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069789A JP5906573B2 (en) 2011-03-28 2011-03-28 duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069789A JP5906573B2 (en) 2011-03-28 2011-03-28 duct

Publications (2)

Publication Number Publication Date
JP2012201072A true JP2012201072A (en) 2012-10-22
JP5906573B2 JP5906573B2 (en) 2016-04-20

Family

ID=47182524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069789A Expired - Fee Related JP5906573B2 (en) 2011-03-28 2011-03-28 duct

Country Status (1)

Country Link
JP (1) JP5906573B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121204U (en) * 1988-02-08 1989-08-17
JPH08158963A (en) * 1994-11-30 1996-06-18 Tsuchiya Mfg Co Ltd Three-dimensional bent air duct
JPH09295339A (en) * 1996-04-30 1997-11-18 Kyoraku Co Ltd Heat insulation duct
JP2006069426A (en) * 2004-09-03 2006-03-16 Calsonic Kansei Corp Steering member for vehicle and its manufacturing method
JP2006272838A (en) * 2005-03-30 2006-10-12 Prime Polymer:Kk Manufacturing method for sound absorbing body, metal mold for use in the manufacturing method, and sound absorbing body and sound absorbing structure, obtained by the manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121204U (en) * 1988-02-08 1989-08-17
JPH08158963A (en) * 1994-11-30 1996-06-18 Tsuchiya Mfg Co Ltd Three-dimensional bent air duct
JPH09295339A (en) * 1996-04-30 1997-11-18 Kyoraku Co Ltd Heat insulation duct
JP2006069426A (en) * 2004-09-03 2006-03-16 Calsonic Kansei Corp Steering member for vehicle and its manufacturing method
JP2006272838A (en) * 2005-03-30 2006-10-12 Prime Polymer:Kk Manufacturing method for sound absorbing body, metal mold for use in the manufacturing method, and sound absorbing body and sound absorbing structure, obtained by the manufacturing method

Also Published As

Publication number Publication date
JP5906573B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US20210233507A1 (en) Soundproof system
ES2559052T3 (en) Conduit
JP6449095B2 (en) Ventilation duct
CA2957897A1 (en) Sound attenuating baffle including a non-eroding liner sheet
JP2006337886A (en) Acoustic material
JP5906573B2 (en) duct
JP2008096637A (en) Acoustic material
JP2014062465A (en) Cross-flow fan and air conditioner including the same
JP2015169050A (en) Sound absorbing panel and method of manufacturing the same
WO2023026788A1 (en) Ventilated silencer
RU2610497C1 (en) Body moulded from foamed material, pipeline for air conditioner and pipeline for vehicle air conditioner
JP4727608B2 (en) Intake silencer and silencer method
JP2006335125A (en) Duct of air-conditioner
JP2010053763A (en) Duct
JP4996535B2 (en) Sound absorption duct
JP2009175469A (en) Sonic velocity control member
JP6175689B2 (en) duct
JP2014005346A (en) Acoustic material and method for producing acoustic material
JP6092605B2 (en) Sound absorbing material and door structure of automobile using this sound absorbing material
JP2024072151A (en) Duct that delivers air into the living space
WO2023074199A1 (en) Ventilation silencer
JP2007263466A (en) Air conditioning duct
JP2006335124A (en) Duct of air-conditioner
WO2024070160A1 (en) Ventilation-type silencer
WO2021200870A1 (en) Molded body, sound absorbing material, vibration absorbing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5906573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees