JP2012200773A - Welding joint and turbine rotor - Google Patents

Welding joint and turbine rotor Download PDF

Info

Publication number
JP2012200773A
JP2012200773A JP2011068842A JP2011068842A JP2012200773A JP 2012200773 A JP2012200773 A JP 2012200773A JP 2011068842 A JP2011068842 A JP 2011068842A JP 2011068842 A JP2011068842 A JP 2011068842A JP 2012200773 A JP2012200773 A JP 2012200773A
Authority
JP
Japan
Prior art keywords
joint
welded
joining
welding
welded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011068842A
Other languages
Japanese (ja)
Other versions
JP5893841B2 (en
Inventor
Jo Horie
丞 堀江
Kenji Kawasaki
憲治 川崎
Yujiro Watabe
裕二郎 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011068842A priority Critical patent/JP5893841B2/en
Publication of JP2012200773A publication Critical patent/JP2012200773A/en
Application granted granted Critical
Publication of JP5893841B2 publication Critical patent/JP5893841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent the matters of burn through and the falling of sagging to the inside caused by welding, and also, to prevent the generation of cracks after welding.SOLUTION: In the welding joint in which the inside is made hollow in a state where the joining face 11a of a first member 11 and the joining face 12a of a second member 12 are butted and are joined by welding, the welding joint is provided with a projection 15 to be provided projectingly from the inner fall face 11b forming into the hollow of the first member 11, the tip 15a is extensively formed to cover the inside of a melting part 13 at which the respective faces 11a, 12a are melted while being separated from the internal edges of the respective joining faces 11a, 12a in a state where the respective joining faces 11a, 12a are butted, further, the base end 15b projecting from the inner wall face 11b is continued to the inner wall face 11b via a curbed face 15c, and is continuously formed over the whole circumference of the inside of the respective joining faces 11a, 12a.

Description

本発明は、溶接によって接合された状態で内部が中空となる溶接接合体およびタービンロータに関するものである。   The present invention relates to a welded joined body and a turbine rotor that are hollow inside when joined by welding.

従来、例えば、特許文献1に記載の溶接プレップジョイントは、一対の軸方向に位置合わせした第一ロータ鍛造品および第二ロータ鍛造品を溶接してタービンロータをなすためのものである。この溶接プレップジョイントは、第一ロータ鍛造品の端部において、第一半径方向溶接面および第一軸方向ラベット面を備えた第一溶接ジョイント構成部と、第二ロータ鍛造品の端部において、第一半径方向溶接面に係合する第二半径方向溶接面、第一軸方向ラベット面に係合する第二軸方向ラベット面、および第二ラベット面の半径方向内側で延びかつ第二半径方向溶接面から軸方向にオフセットした第三半径方向非溶接面を備えた第二溶接ジョイント構成部とを含む。この溶接プレップジョイントは、溶接することになる各半径方向溶接面が、各軸方向ラベット面からオフセットしており、各軸方向ラベット面が支持面として作用することから、溶接による溶落ちや垂下がタービンロータ内部に落下することを防止している。   Conventionally, for example, a weld prep joint described in Patent Document 1 is for welding a first rotor forged product and a second rotor forged product aligned in a pair of axial directions to form a turbine rotor. This weld prep joint has, at the end of the first rotor forging, a first weld joint component with a first radial weld surface and a first axial lavet surface, and an end of the second rotor forging, A second radial welding surface that engages the first radial welding surface, a second axial lavet surface that engages the first axial rabbet surface, and a second radial direction that extends radially inward of the second rabbet surface And a second weld joint component having a third radial non-weld surface offset axially from the weld surface. In this welded prep joint, each radial welding surface to be welded is offset from each axial rabbet surface, and each axial rabbet surface acts as a support surface, so that welding melts and droops. Prevents falling into the turbine rotor.

特開2006−289500号公報JP 2006-289500 A

しかし、各軸方向ラベット面は、溶接されない部分であり、溶接後には互いに面合わせされて存在することになる。このため、各軸方向ラベット面が接合当初から亀裂のごとく存在することから、タービンロータの回転による遠心力などによって各軸方向ラベット面を起点として新たな亀裂が発生するおそれがある。   However, each of the axial rabbet surfaces is a portion that is not welded, and is present in a face-to-face relationship after welding. For this reason, since each axial direction rabbet surface exists like a crack from the beginning of joining, there is a possibility that a new crack may be generated starting from each axial direction rabbet surface due to centrifugal force caused by the rotation of the turbine rotor.

本発明は上述した課題を解決するものであり、溶接によって接合された後に内部が中空となる構成において、溶接による溶落ちおよび垂下が内部に落下する事態を防ぎ、かつ溶接後の亀裂の発生を防止することのできる溶接接合体およびタービンロータを提供することを目的とする。   The present invention solves the above-mentioned problems, and prevents the situation where the melt-down and drooping due to welding fall into the interior in a configuration in which the interior is hollow after being joined by welding, and the occurrence of cracks after welding is prevented. It is an object to provide a welded joint and a turbine rotor that can be prevented.

上述の目的を達成するために、本発明の溶接接合体は、第一部材の接合面と第二部材の接合面とを突き合わせて溶接によって接合した状態で内部が中空となる溶接接合体において、前記第一部材または前記第二部材の中空となる内壁面から突出して設けられ、各前記接合面を突き合わせた状態で各前記接合面の内側縁から離隔しつつ、各前記接合面が溶融される溶融部の内側を覆って先端が延在して形成されているとともに、前記内壁面から突出する基端が当該内壁面に対して湾曲面を介して連続し、各前記接合面の内側の全周に渡って連続して形成された突片を備えることを特徴とする。   In order to achieve the above-described object, the welded joint of the present invention is a welded joint in which the inside is hollow in a state where the joint surface of the first member and the joint surface of the second member are butted and joined by welding. Protruding from the hollow inner wall surface of the first member or the second member, each joining surface is melted while being separated from the inner edge of each joining surface in a state where each joining surface is abutted. A distal end extending from the inner wall surface is formed so as to cover the inner side of the melted portion, and a base end protruding from the inner wall surface continues to the inner wall surface via a curved surface, It is characterized by comprising a projecting piece formed continuously over the circumference.

この溶接接合体によれば、各内壁面の位置において溶融部に生じる溶落ちおよび垂下を、溶融部を覆う突片によって受け止めるため、溶融部に生じる溶落ちおよび垂下が中空内部に落下する事態を防ぐことができる。しかも、突片は、各接合面の内側縁から離隔して設けられているとともに、第一部材または第二部材の内壁面から突出する基端が、内壁面に対して湾曲面を介して連続して形成されているため、溶接後において、突片の基端(付け根部分)に局所的に大きな応力がかからず、突片を起点とした亀裂の発生を防ぐことができる。   According to this welded joint, in order to receive the melt-down and droop generated in the melted part at the position of each inner wall surface by the projecting piece covering the melted part, the melt-down and droop generated in the melted part falls into the hollow interior. Can be prevented. Moreover, the projecting piece is provided apart from the inner edge of each joint surface, and the base end protruding from the inner wall surface of the first member or the second member is continuous with the inner wall surface via the curved surface. Therefore, after welding, a large stress is not locally applied to the base end (base portion) of the projecting piece, and it is possible to prevent generation of a crack starting from the projecting piece.

また、本発明の溶接接合体は、前記溶融部の範囲内であって、前記第一部材の接合面と前記第二部材の接合面とに、相互に嵌め合う凹凸部を備えることを特徴とする。   In addition, the welded joint of the present invention is provided with an uneven portion that fits in the joint surface of the first member and the joint surface of the second member within the range of the melted portion. To do.

この溶接接合体によれば、第一部材の接合面と、第二部材の接合面との突き合わせ位置を、凹凸部の嵌め合いによって位置合わせできる。このため、溶接接合体を溶接する際、第一部材と第二部材を相互に位置合わせして、溶接作業を容易に行うことができ、精度良く接合を行うことができる。   According to this welded joined body, the butting position between the joining surface of the first member and the joining surface of the second member can be aligned by fitting the concavo-convex portions. For this reason, when welding a welded joined body, a 1st member and a 2nd member can be aligned mutually, welding work can be performed easily and it can join accurately.

また、本発明の溶接接合体は、前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、一方の前記接合面に対して凸状に形成されているとともに他方の前記接合面に対して凹状に形成され、かつ各前記接合面の周方向に沿う円の軌跡で連続して形成されていることを特徴とする。   In the welded joint of the present invention, the joint surface of the first member and the joint surface of the second member are both formed in an annular shape, and the concavo-convex portion is convex with respect to one of the joint surfaces. And is formed in a concave shape with respect to the other joining surface, and is continuously formed by a circular locus along the circumferential direction of each joining surface.

この溶接接合体によれば、第一部材の接合面と、第二部材の接合面とを、凹凸部の嵌め合いによって円環状の中心に位置合わせすることができる。しかも、凹凸部は、凸状および凹状が、各接合面の周方向に沿う円の軌跡で連続して形成されていることから、第一部材と第二部材との接合に際して相互の周方向の位置を微調整することができる。   According to this welded joint, the joint surface of the first member and the joint surface of the second member can be aligned with the center of the annular shape by fitting the concavo-convex portions. In addition, since the concavo-convex part is formed continuously with a locus of a circle along the circumferential direction of each joint surface, the convex and concave parts are formed in the circumferential direction of each other when the first member and the second member are joined. The position can be finely adjusted.

また、本発明の溶接接合体は、前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、一方の前記接合面に対して凸状に形成されているとともに他方の前記接合面に対して凹状に形成され、かつ各前記接合面の周方向に沿う円の軌跡の一部に形成されていることを特徴とする。   In the welded joint of the present invention, the joint surface of the first member and the joint surface of the second member are both formed in an annular shape, and the concavo-convex portion is convex with respect to one of the joint surfaces. And is formed in a part of a locus of a circle along the circumferential direction of each of the joint surfaces.

この溶接接合体によれば、第一部材の接合面と、第二部材の接合面とを、凹凸部の嵌め合いによって円環状の中心に位置合わせすることができる。しかも、凹凸部は、凸状および凹状が、各接合面の周方向に沿う円の軌跡の一部に形成されていることから、第一部材と第二部材との接合に際して相互の周方向の位置を位置決めすることができる。   According to this welded joint, the joint surface of the first member and the joint surface of the second member can be aligned with the center of the annular shape by fitting the concavo-convex portions. In addition, since the concavo-convex portion is formed in a part of a locus of a circle along the circumferential direction of each joint surface, the convex shape and the concave shape are formed in the mutual circumferential direction when the first member and the second member are joined. The position can be determined.

また、本発明の溶接接合体は、前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、各前記接合面に対し、各前記接合面の周方向に沿う円の軌跡で連続する鋸歯状に形成されていることを特徴とする。   In the welded joint of the present invention, the joint surface of the first member and the joint surface of the second member are both formed in an annular shape, and the concave and convex portions are connected to the joint surfaces. It is formed in the shape of a sawtooth that is continuous along a circular locus along the circumferential direction of the surface.

この溶接接合体によれば、第一部材の接合面と、第二部材の接合面とを、凹凸部の嵌め合いによって円環状の中心に位置合わせすることができる。しかも、凹凸部は、鋸歯状であることから、第一部材と第二部材との接合に際して相互の周方向の位置を位置決めすることができる。   According to this welded joint, the joint surface of the first member and the joint surface of the second member can be aligned with the center of the annular shape by fitting the concavo-convex portions. In addition, since the concavo-convex portion has a sawtooth shape, the positions in the circumferential direction can be positioned when the first member and the second member are joined.

また、本発明の溶接接合体は、前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、各前記接合面に対し、各前記接合面の周方向に沿う円の軌跡の一部で鋸歯状に形成されていることを特徴とする。   In the welded joint of the present invention, the joint surface of the first member and the joint surface of the second member are both formed in an annular shape, and the concave and convex portions are connected to the joint surfaces. A part of a circular locus along the circumferential direction of the surface is formed in a sawtooth shape.

この溶接接合体によれば、第一部材の接合面と、第二部材の接合面とを、凹凸部の嵌め合いによって円環状の中心に位置合わせすることができる。しかも、凹凸部は、鋸歯状であることから、第一部材と第二部材との接合に際して相互の周方向の位置を位置決めすることができる。しかも、凹凸部は、鋸歯状が、各接合面の周方向に沿う円の軌跡の一部で鋸歯状に形成されていることから、その成形を各接合面の周方向の一部にできるため、製造コストを低減することができる。   According to this welded joint, the joint surface of the first member and the joint surface of the second member can be aligned with the center of the annular shape by fitting the concavo-convex portions. In addition, since the concavo-convex portion has a sawtooth shape, the positions in the circumferential direction can be positioned when the first member and the second member are joined. Moreover, since the concave and convex portions are formed in a sawtooth shape with a part of a circular locus along the circumferential direction of each joint surface, the molding can be performed in a part in the circumferential direction of each joint surface. The manufacturing cost can be reduced.

また、本発明の溶接接合体は、前記凹凸部は、各前記接合面において最外側縁に設けられていることを特徴とする。   Moreover, the welded assembly of the present invention is characterized in that the concavo-convex portion is provided at the outermost edge in each of the joint surfaces.

溶接接合体は、溶接機によって外側から溶接されることになり、内壁面を溶融した溶融部が、外側が最も幅が広く、内壁面の位置において最も幅が小さくなる。この溶接接合体によれば、溶融部の最も幅が広い最外側縁に凹凸部を設けることで、凹凸部を十分に溶融させることができ、溶接部分の健全性に影響を与えることがない。しかも、この溶接接合体によれば、凹凸部の嵌め合いを外側から目視やカメラで確認できるため、突き合わせ時の作業性を向上することができる。   The welded joint is welded from the outside by a welding machine, and the melted portion obtained by melting the inner wall surface has the largest width on the outer side and the smallest width at the position of the inner wall surface. According to this welded joint, by providing an uneven portion at the outermost edge having the widest width of the melted portion, the uneven portion can be sufficiently melted, and the soundness of the welded portion is not affected. Moreover, according to this welded assembly, the fitting of the concavo-convex portions can be confirmed from the outside by visual observation or a camera, so that the workability at the time of matching can be improved.

上述の目的を達成するために、本発明のタービンロータは、軸方向で第一部材と第二部材とに分割形成され、前記第一部材の接合面と前記第二部材の接合面とを突き合わせて溶接によって接合した状態で軸方向に連続する円筒状をなすタービンロータにおいて、上述したいずれか1つの溶接接合体として構成されることを特徴とする。   In order to achieve the above-described object, the turbine rotor of the present invention is divided into a first member and a second member in the axial direction, and a joining surface of the first member and a joining surface of the second member are butted together. A turbine rotor having a cylindrical shape that is continuous in the axial direction in a state of being joined by welding is configured as any one of the above-described welded joints.

このタービンロータによれば、溶接による溶落ちおよび垂下がタービンロータ内部に落下する事態を防ぎ、かつ溶接後の亀裂の発生を防止することができる。   According to this turbine rotor, it is possible to prevent the melting and drooping due to welding from falling into the turbine rotor and to prevent the occurrence of cracks after welding.

本発明によれば、溶接による溶落ちおよび垂下が内部に落下する事態を防ぎ、かつ溶接後の亀裂の発生を防止することができる。   According to the present invention, it is possible to prevent melting and dripping due to welding from falling into the inside, and to prevent generation of cracks after welding.

図1は、本発明の実施の形態に係る溶接接合体(タービンロータ)が適用されるガスタービンの概略構成図である。FIG. 1 is a schematic configuration diagram of a gas turbine to which a welded assembly (turbine rotor) according to an embodiment of the present invention is applied. 図2は、本発明の実施の形態1に係る溶接接合体(タービンロータ)の一部の断面図である。FIG. 2 is a partial cross-sectional view of the welded assembly (turbine rotor) according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る溶接接合体(タービンロータ)の溶接を示す一部の断面図である。FIG. 3 is a partial cross-sectional view showing welding of the welded assembly (turbine rotor) according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2に係る溶接接合体(タービンロータ)の一部の断面図である。FIG. 4 is a partial cross-sectional view of a welded assembly (turbine rotor) according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2に係る溶接接合体(タービンロータ)の第一部材の端面図である。FIG. 5 is an end view of the first member of the welded assembly (turbine rotor) according to Embodiment 2 of the present invention. 図6は、本発明の実施の形態2に係る溶接接合体(タービンロータ)の他の第一部材の端面図である。FIG. 6 is an end view of another first member of the welded assembly (turbine rotor) according to Embodiment 2 of the present invention. 図7は、本発明の実施の形態3に係る溶接接合体(タービンロータ)の一部の側面図である。FIG. 7 is a side view of a part of a welded assembly (turbine rotor) according to Embodiment 3 of the present invention. 図8は、本発明の実施の形態3に係る溶接接合体(タービンロータ)の第一部材の端面図である。FIG. 8 is an end view of the first member of the welded assembly (turbine rotor) according to the third embodiment of the present invention. 図9は、本発明の実施の形態3に係る溶接接合体(タービンロータ)の他の第一部材の端面図である。FIG. 9 is an end view of another first member of the welded assembly (turbine rotor) according to Embodiment 3 of the present invention.

以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、本実施の形態に係るガスタービンの概略構成図である。ガスタービンは、図1に示すように、圧縮機111と燃焼器112とタービン113と排気室114により構成され、タービン113に図示しない発電機が連結されている。圧縮機111は、空気を取り込む空気取入口115を有し、圧縮機車室116内に複数の静翼117と動翼118が交互に配設されている。燃焼器112は、圧縮機111で圧縮された圧縮空気に対して燃料を供給し、バーナで点火することで燃焼可能となっている。タービン113は、タービン車室120内に複数の静翼121と動翼122が交互に配設されている。排気室114は、タービン113に連続する排気ディフューザ123を有している。また、圧縮機111、燃焼器112、タービン113、排気室114の中心部を貫通するようにロータ(タービンロータ)124が位置しており、圧縮機111側の端部が軸受部125により回転自在に支持される一方、排気室114側の端部が軸受部126により回転自在に支持されている。そして、このタービンロータ124に複数のディスクプレートが固定され、各動翼118,122が連結されると共に、排気室114側の端部に図示しない発電機の駆動軸が連結されている。なお、図1において一点鎖線で示す符号Sは、タービンロータ124の中心軸である。   FIG. 1 is a schematic configuration diagram of a gas turbine according to the present embodiment. As shown in FIG. 1, the gas turbine includes a compressor 111, a combustor 112, a turbine 113, and an exhaust chamber 114, and a generator (not shown) is connected to the turbine 113. The compressor 111 has an air intake 115 for taking in air, and a plurality of stationary blades 117 and moving blades 118 are alternately arranged in the compressor casing 116. The combustor 112 is combustible by supplying fuel to the compressed air compressed by the compressor 111 and igniting it with a burner. In the turbine 113, a plurality of stationary blades 121 and moving blades 122 are alternately arranged in a turbine casing 120. The exhaust chamber 114 has an exhaust diffuser 123 that is continuous with the turbine 113. Further, a rotor (turbine rotor) 124 is positioned so as to pass through the center of the compressor 111, the combustor 112, the turbine 113, and the exhaust chamber 114, and the end on the compressor 111 side is freely rotatable by the bearing portion 125. On the other hand, an end portion on the exhaust chamber 114 side is rotatably supported by a bearing portion 126. A plurality of disk plates are fixed to the turbine rotor 124, the rotor blades 118 and 122 are connected to each other, and a drive shaft of a generator (not shown) is connected to an end portion on the exhaust chamber 114 side. In FIG. 1, a symbol S indicated by a one-dot chain line is a central axis of the turbine rotor 124.

従って、圧縮機111の空気取入口115から取り込まれた空気が、複数の静翼121と動翼122を通過して圧縮されることで高温・高圧の圧縮空気となり、燃焼器112にて、この圧縮空気に対して所定の燃料が供給されることで燃焼する。そして、この燃焼器112で生成された作動流体である高温・高圧の燃焼ガスが、タービン113を構成する複数の静翼121と動翼122を通過することでタービンロータ124を駆動回転し、このタービンロータ124に連結された発電機を駆動する一方、排気ガスは排気室114の排気ディフューザ123で静圧に変換されてから大気に放出される。   Therefore, the air taken in from the air intake 115 of the compressor 111 passes through the plurality of stationary blades 121 and the moving blades 122 and is compressed into high-temperature and high-pressure compressed air. Combustion occurs when a predetermined fuel is supplied to the compressed air. The high-temperature and high-pressure combustion gas that is the working fluid generated by the combustor 112 passes through the plurality of stationary blades 121 and the moving blades 122 constituting the turbine 113 to drive and rotate the turbine rotor 124. While the generator connected to the turbine rotor 124 is driven, the exhaust gas is converted into a static pressure by the exhaust diffuser 123 in the exhaust chamber 114 and then released to the atmosphere.

[実施の形態1]
図2は、実施の形態1に係る溶接接合体(タービンロータ)の一部の断面図であり、図3は、溶接接合体(タービンロータ)の溶接を示す一部の断面図である。
[Embodiment 1]
FIG. 2 is a partial cross-sectional view of the welded assembly (turbine rotor) according to Embodiment 1, and FIG. 3 is a partial cross-sectional view showing welding of the welded assembly (turbine rotor).

上述したガスタービンのタービンロータ124としての溶接接合体は、図2および図3に示すように、第一部材11と第二部材12とに分割して形成されており、第一部材11の接合面11aと第二部材12の接合面12aとを突き合わせ、当該各接合面11a,12aを溶接によって溶融することによって接合される。この溶融された部分を溶融部13という。そして、溶接接合体は、第一部材11の接合面11aと第二部材12の接合面12aとを接合した状態で、内部に中空部14が形成される。各接合面11a,12aは、溶接接合体がタービンロータ124である場合、タービンロータ124が円筒状に形成されていることから、相互が同じ円環状に形成されている。   The welded assembly as the turbine rotor 124 of the gas turbine described above is formed by dividing the first member 11 and the second member 12 as shown in FIGS. 2 and 3. The surface 11a and the joint surface 12a of the second member 12 are brought into contact with each other, and the joint surfaces 11a and 12a are joined by welding. This melted part is referred to as a melting part 13. The welded joint is formed with a hollow portion 14 in a state where the joint surface 11a of the first member 11 and the joint surface 12a of the second member 12 are joined. When the welded joint body is the turbine rotor 124, the joint surfaces 11a and 12a are formed in the same annular shape because the turbine rotor 124 is formed in a cylindrical shape.

この溶接接合体は、第一部材11または第二部材12に、突片15が設けられている。本実施の形態においては、図2および図3に示すように、突片15が第一部材11に設けられている例を示す。突片15は、第一部材11の中空部14側となる内壁面11bから突出して設けられている。突片15は、各接合面11a,12aを突き合わせた状態で、各接合面11a,12aの内側縁(内壁面11b,12b)から距離Aをおいて離隔しつつ、溶融部13の内側を覆って先端15aが中心軸Sに沿う軸方向に延在して形成されている。突片15の先端15aは、溶融部13を覆うにあたり、突き合わせた各接合面11a,12aの位置から軸方向に距離Bの位置まで延在されている。また、突片15は、第一部材11の内壁面11bから突出する基端15bが、第一部材11の内壁面11bに対して湾曲面15cを介して連続して形成されている。この湾曲面15cが内壁面11bに連続する位置は、突き合わせた各接合面11a,12aの位置から軸方向に距離Cの位置とされている。また、突片15は、中心軸Sに直交する径方向での厚さをDとして形成されている。そして、突片15は、突き合わせた各接合面11a,12aの内側の全周に渡って連続して形成されている。   In this welded assembly, a projecting piece 15 is provided on the first member 11 or the second member 12. In the present embodiment, as shown in FIGS. 2 and 3, an example in which the projecting piece 15 is provided on the first member 11 is shown. The protruding piece 15 is provided so as to protrude from the inner wall surface 11 b on the hollow portion 14 side of the first member 11. The projecting piece 15 covers the inner side of the melting portion 13 while being spaced apart from the inner edges (inner wall surfaces 11b, 12b) of the respective joint surfaces 11a, 12a with the joint surfaces 11a, 12a being in contact with each other. The tip 15a is formed to extend in the axial direction along the central axis S. The tip 15a of the projecting piece 15 extends from the position of the butted joint surfaces 11a and 12a to the position of the distance B in the axial direction when covering the melting portion 13. Further, the projecting piece 15 is formed such that a base end 15 b protruding from the inner wall surface 11 b of the first member 11 is continuously formed with respect to the inner wall surface 11 b of the first member 11 via a curved surface 15 c. The position where the curved surface 15c continues to the inner wall surface 11b is a position of a distance C in the axial direction from the position of each of the joined surfaces 11a and 12a. Further, the projecting piece 15 is formed with a thickness D in the radial direction orthogonal to the central axis S. And the protrusion 15 is continuously formed over the inner periphery of each joined surface 11a, 12a.

このような溶接接合体は、図3に示すように、各接合面11a,12aを突き合わせた状態で、かつ突片15を有した第一部材11を下側として突片15の先端15aを上向きとし、外側から電子ビーム溶接機やレーザ溶接機などの溶接機10によって溶接される。溶接の際は、溶接機10と溶接接合体とを中心軸S周りに相対的に回転させる。このように、溶接機10によって外側から溶接される溶接接合体は、内壁面11b,12bを溶融した溶融部13が、図2に示すように、外側が最も幅が広く、内壁面11b,12bの位置において最も幅が小さくなる。そして、溶融部13が内壁面11b,12bに到達した場合、そこから生じる溶落ちおよび垂下が、溶融部13を覆う突片15によって受け止められる。また、突片15の先端を上向きとしていることで、内壁面11b,12bの位置において溶融部13に生じる溶落ちおよび垂下が、内壁面11bから突出する突片15の基端15bで受け止められる。このため、溶融部13に生じる溶落ちおよび垂下が中空部14の内部に落下する事態を防ぐ。しかも、突片15は、各接合面11a,12aの内側縁から離隔して設けられているとともに、第一部材11の内壁面11bから突出する基端15bが、第一部材11の内壁面11bに対して湾曲面15cを介して連続して形成されている。このため、溶接後において、タービンロータ124の回転による遠心力などによって突片15の基端(付け根部分)15cに局所的に大きな応力がかからないため、突片15を起点とした亀裂の発生を防ぐ。   As shown in FIG. 3, such a welded joint is in a state in which the joint surfaces 11 a and 12 a are in contact with each other, and the tip 15 a of the projecting piece 15 faces upward with the first member 11 having the projecting piece 15 as the lower side. And welded from the outside by a welding machine 10 such as an electron beam welding machine or a laser welding machine. At the time of welding, the welding machine 10 and the welded joint are relatively rotated around the central axis S. In this way, the welded joint that is welded from the outside by the welding machine 10 has a melted portion 13 in which the inner wall surfaces 11b and 12b are melted, as shown in FIG. The width becomes the smallest at the position. And when the fusion | melting part 13 reaches | attains the inner wall surfaces 11b and 12b, the fall and droop resulting from there are received by the protrusion 15 which covers the fusion | melting part 13. FIG. Moreover, by making the front end of the projecting piece 15 upward, the burn-out and drooping that occurs in the melted part 13 at the positions of the inner wall surfaces 11b and 12b are received by the base end 15b of the projecting piece 15 protruding from the inner wall surface 11b. For this reason, the situation where the melt-down and drooping generated in the melting part 13 falls into the hollow part 14 is prevented. Moreover, the projecting piece 15 is provided apart from the inner edge of each joint surface 11a, 12a, and the base end 15b protruding from the inner wall surface 11b of the first member 11 is the inner wall surface 11b of the first member 11. On the other hand, it is formed continuously via the curved surface 15c. For this reason, after welding, since a large stress is not locally applied to the base end (base portion) 15c of the projecting piece 15 due to the centrifugal force caused by the rotation of the turbine rotor 124, the generation of cracks starting from the projecting piece 15 is prevented. .

ここで、突片15に係る各寸法の一例について説明する。溶接接合体をタービンロータ124とした場合に、図2に示すように、外半径Eが600[mm]〜3000[mm]とされ、第一部材11および第二部材12(接合面11a,12a)の径方向の厚みFが100[mm]〜200[mm]とされている。この場合、十分な接合強度を得るため、各接合面11a,12aを溶融した溶融部13の幅Gは、最も幅が小さくなる内壁面11b,12bの位置において6[mm]〜10[mm]とすることが好ましい。このような、タービンロータ124において、突片15の各接合面11a,12aの内側縁(内壁面11b,12b)からの距離Aは、溶融部13から生じる溶落ちおよび垂下を適宜受け止めるとともに、湾曲面15cの加工性を損なわないようにするため、10[mm]〜20[mm]とすることが好ましい。また、突き合わせた各接合面11a,12aの位置から突片15の先端15aまでの距離Bは、溶融部13を覆って溶融部13から生じる溶落ちおよび垂下を適宜受け止めるため、10[mm]以上とすることが好ましい。また、突き合わせた各接合面11a,12aの位置から湾曲面15cが内壁面11bに連続する位置までの距離Cは、溶融部13から距離をおいて突片15に大きな応力がかからないようにするため、20[mm]以上とすることが好ましい。また、突片15の厚さDは、突片15の強度を維持する一方で中空部14の領域を阻害しないため、10[mm]〜30[mm]とすることが好ましい。なお、溶接機10として電子ビーム溶接機を用いた場合、その溶接条件の例は、溶接接合体の材質(例えば、低合金鋼)と板厚(厚みF)から、電流値300[mA]、電圧150[kV]、溶接速度(溶接機10と溶接接合体との相対回転速度)150[mm/min]のように決定できる。   Here, an example of each dimension related to the projecting piece 15 will be described. When the welded joined body is the turbine rotor 124, as shown in FIG. 2, the outer radius E is set to 600 [mm] to 3000 [mm], and the first member 11 and the second member 12 (joint surfaces 11a and 12a). ) In the radial direction is 100 [mm] to 200 [mm]. In this case, in order to obtain sufficient bonding strength, the width G of the molten portion 13 obtained by melting the bonding surfaces 11a and 12a is 6 [mm] to 10 [mm] at the positions of the inner wall surfaces 11b and 12b where the width is the smallest. It is preferable that In such a turbine rotor 124, the distance A from the inner edges (inner wall surfaces 11 b, 12 b) of the joint surfaces 11 a, 12 a of the projecting piece 15 appropriately receives the melting and drooping generated from the melting part 13 and is curved. In order not to impair the workability of the surface 15c, the thickness is preferably set to 10 [mm] to 20 [mm]. Further, the distance B from the position of each of the joined joint surfaces 11a and 12a to the tip 15a of the projecting piece 15 is 10 [mm] or more so as to cover the melting portion 13 and appropriately receive the melting and drooping generated from the melting portion 13. It is preferable that Further, the distance C from the position of each of the joined surfaces 11a and 12a to the position where the curved surface 15c continues to the inner wall surface 11b is distanced from the melting portion 13 so that no large stress is applied to the projecting piece 15. 20 [mm] or more is preferable. Further, the thickness D of the projecting piece 15 is preferably set to 10 [mm] to 30 [mm] in order to maintain the strength of the projecting piece 15 while not inhibiting the region of the hollow portion 14. In addition, when an electron beam welding machine is used as the welding machine 10, the example of the welding conditions is based on the material (for example, low alloy steel) and plate thickness (thickness F) of the welded joint, and a current value of 300 [mA] The voltage 150 [kV] and the welding speed (relative rotational speed between the welding machine 10 and the welded joint) 150 [mm / min] can be determined.

このように、本実施の形態の溶接接合体は、第一部材11の接合面11aと第二部材12の接合面12aとを突き合わせて溶接によって接合した状態で内部が中空となる溶接接合体であり、第一部材11(第二部材12)の中空となる内壁面11b(12b)から突出して設けられ、各接合面11a,12aを突き合わせた状態で各接合面11a,12aの内側縁から離隔しつつ、各接合面11a,12aが溶融される溶融部13の内側を覆って先端15aが延在して形成されているとともに、内壁面11b(12b)から突出する基端15bが内壁面11b(12b)に対して湾曲面15cを介して連続し、各接合面11a,12aの内側の全周に渡って連続して形成された突片15を備える。   Thus, the welded joint of the present embodiment is a welded joint that has a hollow inside in a state where the joint surface 11a of the first member 11 and the joint surface 12a of the second member 12 are abutted and joined by welding. Yes, provided protruding from the hollow inner wall surface 11b (12b) of the first member 11 (second member 12) and spaced from the inner edge of each joint surface 11a, 12a with the joint surfaces 11a, 12a butted together However, the joint surface 11a, 12a is formed by extending the tip 15a so as to cover the inside of the melted part 13 where the melted surfaces 13a, 12a are melted, and the base end 15b protruding from the inner wall surface 11b (12b) is the inner wall surface 11b. (12b) is provided with a projecting piece 15 which is continuous through the curved surface 15c and continuously formed over the entire inner circumference of each joint surface 11a, 12a.

この溶接接合体によれば、内壁面11b,12bの位置において溶融部13に生じる溶落ちおよび垂下を、溶融部13を覆う突片15によって受け止めるため、溶融部13に生じる溶落ちおよび垂下が中空部14の内部に落下する事態を防ぐことが可能である。しかも、突片15は、各接合面11a,12aの内側縁から離隔して設けられているとともに、第一部材11(第二部材12)の内壁面11b(12b)から突出する基端15bが、内壁面11b(12b)に対して湾曲面15cを介して連続して形成されているため、溶接後において、突片15の基端(付け根部分)15cに局所的に大きな応力がかからず、突片15を起点とした亀裂の発生を防ぐことが可能になる。   According to this welded joint, since the melted-down and drooping that occurs in the melted part 13 at the positions of the inner wall surfaces 11b and 12b are received by the projecting pieces 15 that cover the melted part 13, the melted-down and drooping that occurs in the melted part 13 is hollow. It is possible to prevent the situation of falling into the portion 14. Moreover, the projecting piece 15 is provided apart from the inner edges of the joint surfaces 11a and 12a, and a base end 15b protruding from the inner wall surface 11b (12b) of the first member 11 (second member 12) is provided. Since the inner wall surface 11b (12b) is continuously formed through the curved surface 15c, a large stress is not locally applied to the base end (base portion) 15c of the projecting piece 15 after welding. It becomes possible to prevent the occurrence of cracks starting from the protruding piece 15.

[実施の形態2]
図4は、実施の形態2に係る溶接接合体(タービンロータ)の一部の断面図であり、図5は、溶接接合体(タービンロータ)の第一部材の端面図である。
[Embodiment 2]
FIG. 4 is a partial cross-sectional view of the welded assembly (turbine rotor) according to Embodiment 2, and FIG. 5 is an end view of the first member of the welded assembly (turbine rotor).

本実施の形態の溶接接合体は、実施の形態1の溶接接合体において、溶融部13の範囲内であって、第一部材11の接合面11aと第二部材12の接合面12aとに、相互に嵌め合う凹凸部16を備える。   The welded joint of the present embodiment is within the range of the fusion zone 13 in the welded joint of the first embodiment, and on the joint surface 11a of the first member 11 and the joint surface 12a of the second member 12, Concave and convex portions 16 that fit together are provided.

この溶接接合体によれば、第一部材11の接合面11aと、第二部材12の接合面12aとの突き合わせ位置を、凹凸部16の嵌め合いによって位置合わせすることが可能である。このため、溶接接合体を溶接する際、第一部材11と第二部材12を相互に位置合わせして、溶接作業を容易に行うことが可能であり、精度良く接合を行うことが可能である。   According to this welded joined body, the abutting position between the joining surface 11 a of the first member 11 and the joining surface 12 a of the second member 12 can be aligned by fitting the concavo-convex portion 16. For this reason, when welding a welded joined body, the first member 11 and the second member 12 can be aligned with each other so that the welding operation can be easily performed, and the joining can be performed with high accuracy. .

また、本実施の形態における凹凸部16は、第一部材11の接合面11aおよび第二部材12の接合面12aがともに円環状に形成されている。そして、凹凸部16は、一方の接合面(図4では接合面11a)に対して凸状16aにて形成されているとともに、他方の接合面(図4では接合面12a)に対して凹状16bにて形成されている。さらに、凹凸部16は、図5に示すように、各接合面11a,12aの周方向に沿う円の軌跡で連続して形成されている。   Moreover, as for the uneven | corrugated | grooved part 16 in this Embodiment, both the joint surface 11a of the 1st member 11 and the joint surface 12a of the 2nd member 12 are formed in the annular | circular shape. The concavo-convex portion 16 is formed in a convex shape 16a with respect to one joining surface (the joining surface 11a in FIG. 4), and concave 16b with respect to the other joining surface (the joining surface 12a in FIG. 4). It is formed by. Furthermore, as shown in FIG. 5, the concavo-convex portion 16 is continuously formed with a circular locus along the circumferential direction of each joint surface 11a, 12a.

この溶接接合体によれば、第一部材11の接合面11aと、第二部材12の接合面12aとを、凹凸部16の嵌め合いによって円環状の中心(中心軸S)に位置合わせすることが可能である。しかも、凹凸部16は、凸状16aおよび凹状16bが、各接合面11a,12aの周方向に沿う円の軌跡で連続して形成されていることから、第一部材11と第二部材12との接合に際して相互の周方向の位置を微調整することが可能である。   According to this welded assembly, the joining surface 11a of the first member 11 and the joining surface 12a of the second member 12 are aligned with the center of the annular shape (central axis S) by fitting the concavo-convex portion 16. Is possible. In addition, since the concavo-convex portion 16 is formed such that the convex shape 16a and the concave shape 16b are continuously formed in a circular locus along the circumferential direction of each joint surface 11a, 12a, the first member 11 and the second member 12 It is possible to finely adjust the positions in the circumferential direction at the time of joining.

また、凹凸部16は、各接合面11a,12aにおいて最外側縁に設けられていることが好ましい。   Moreover, it is preferable that the uneven | corrugated | grooved part 16 is provided in the outermost edge in each joining surface 11a, 12a.

上述したように、溶接機10によって外側から溶接される溶接接合体は、内壁面11b,12bを溶融した溶融部13が、外側が最も幅が広く、内壁面11b,12bの位置において最も幅が小さくなる。この溶接接合体によれば、溶融部13の最も幅が広い最外側縁に凹凸部16を設けることで、凹凸部16を十分に溶融させることが可能であり、溶接部分の健全性に影響を与えることがない。しかも、この溶接接合体によれば、凹凸部16の嵌め合いを外側から目視やカメラで確認できるため、突き合わせ時の作業性を向上することが可能である。   As described above, in the welded joint that is welded from the outside by the welding machine 10, the melted portion 13 that melts the inner wall surfaces 11b and 12b has the widest width on the outer side and the widest width at the position of the inner wall surfaces 11b and 12b. Get smaller. According to this welded joint, it is possible to sufficiently melt the concavo-convex portion 16 by providing the concavo-convex portion 16 at the outermost edge having the widest width of the melting portion 13, which affects the soundness of the welded portion. Never give. Moreover, according to this welded assembly, the fitting of the concavo-convex portion 16 can be confirmed from the outside by visual observation or a camera, so that the workability at the time of matching can be improved.

ここで、凹凸部16の凸状16aおよび凹状16bの軸方向寸法Hおよび径方向寸法Iの一例について説明する。この寸法は、溶融部13の最小幅Gが6[mm]〜10[mm]とされていることから、凹凸部16を十分に溶融させるため、軸方向寸法Hを1[mm]〜4[mm]とし、径方向寸法Iを2[mm]〜10[mm]としている。   Here, an example of the axial dimension H and the radial dimension I of the convex shape 16a and the concave shape 16b of the concavo-convex portion 16 will be described. Since the minimum width G of the melting part 13 is 6 [mm] to 10 [mm], the dimension H in the axial direction is 1 [mm] to 4 [4] in order to sufficiently melt the uneven part 16. mm] and the radial dimension I is 2 [mm] to 10 [mm].

図6は、実施の形態2に係る溶接接合体(タービンロータ)の他の第一部材の端面図である。図6に示す溶接接合体は、凹凸部16(凸状16aおよび凹状16b)が、各接合面11a,12aの周方向に沿う円の軌跡の一部で断続して形成されている。   FIG. 6 is an end view of another first member of the welded assembly (turbine rotor) according to the second embodiment. In the welded joint shown in FIG. 6, the concavo-convex portion 16 (convex shape 16 a and concave shape 16 b) is formed intermittently at a part of a circular locus along the circumferential direction of each joint surface 11 a, 12 a.

この溶接接合体によれば、第一部材11の接合面11aと、第二部材12の接合面12aとを、凹凸部16の嵌め合いによって円環状の中心(中心軸S)に位置合わせすることが可能である。しかも、凹凸部16は、凸状16aおよび凹状16bが、各接合面11a,12aの周方向に沿う円の軌跡の一部で断続して形成されていることから、第一部材11と第二部材12との接合に際して相互の周方向の位置を位置決めすることが可能である。   According to this welded assembly, the joining surface 11a of the first member 11 and the joining surface 12a of the second member 12 are aligned with the center of the annular shape (central axis S) by fitting the concavo-convex portion 16. Is possible. In addition, the concavo-convex portion 16 is formed such that the convex shape 16a and the concave shape 16b are intermittently formed at a part of the locus of the circle along the circumferential direction of each joint surface 11a, 12a. It is possible to position the positions in the circumferential direction when joining to the member 12.

[実施の形態3]
図7は、実施の形態3に係る溶接接合体(タービンロータ)の一部の側面図であり、図8は、溶接接合体(タービンロータ)の第一部材の端面図である。
[Embodiment 3]
FIG. 7 is a side view of a part of the welded assembly (turbine rotor) according to Embodiment 3, and FIG. 8 is an end view of the first member of the welded assembly (turbine rotor).

本実施の形態の溶接接合体は、実施の形態1の溶接接合体において、溶融部13の範囲内であって、第一部材11の接合面11aと第二部材12の接合面12aとに、相互に嵌め合う凹凸部16を備える。   The welded joint of the present embodiment is within the range of the fusion zone 13 in the welded joint of the first embodiment, and on the joint surface 11a of the first member 11 and the joint surface 12a of the second member 12, Concave and convex portions 16 that fit together are provided.

この溶接接合体によれば、第一部材11の接合面11aと、第二部材12の接合面12aとの突き合わせ位置を、凹凸部16の嵌め合いによって位置合わせすることが可能である。このため、溶接接合体を溶接する際、第一部材11と第二部材12を相互に位置合わせして、溶接作業を容易に行うことが可能であり、精度良く接合を行うことが可能である。   According to this welded joined body, the abutting position between the joining surface 11 a of the first member 11 and the joining surface 12 a of the second member 12 can be aligned by fitting the concavo-convex portion 16. For this reason, when welding a welded joined body, the first member 11 and the second member 12 can be aligned with each other so that the welding operation can be easily performed, and the joining can be performed with high accuracy. .

また、本実施の形態における凹凸部16は、第一部材11の接合面11aおよび第二部材12の接合面12aがともに円環状に形成されている。そして、凹凸部16は、各接合面11a,12aに対し、各接合面11a,12aの周方向に沿う円の軌跡で連続する鋸歯状16cにて形成されている。   Moreover, as for the uneven | corrugated | grooved part 16 in this Embodiment, both the joint surface 11a of the 1st member 11 and the joint surface 12a of the 2nd member 12 are formed in the annular | circular shape. And the uneven | corrugated | grooved part 16 is formed in the sawtooth shape 16c which follows the locus | trajectory of the circle along the circumferential direction of each joint surface 11a, 12a with respect to each joint surface 11a, 12a.

この溶接接合体によれば、第一部材11の接合面11aと、第二部材12の接合面12aとを、凹凸部16の嵌め合いによって円環状の中心(中心軸S)に位置合わせすることが可能である。しかも、凹凸部16は、鋸歯状16cであることから、第一部材11と第二部材12との接合に際して相互の周方向の位置を位置決めすることが可能である。   According to this welded assembly, the joining surface 11a of the first member 11 and the joining surface 12a of the second member 12 are aligned with the center of the annular shape (central axis S) by fitting the concavo-convex portion 16. Is possible. Moreover, since the concavo-convex portion 16 has a sawtooth shape 16 c, it is possible to position the positions in the circumferential direction when the first member 11 and the second member 12 are joined.

また、凹凸部16は、各接合面11a,12aにおいて最外側縁に設けられていることが好ましい。   Moreover, it is preferable that the uneven | corrugated | grooved part 16 is provided in the outermost edge in each joining surface 11a, 12a.

上述したように、溶接機10によって外側から溶接される溶接接合体は、内壁面11b,12bを溶融した溶融部13が、外側が最も幅が広く、内壁面11b,12bの位置において最も幅が小さくなる。この溶接接合体によれば、溶融部13の最も幅が広い最外側縁に凹凸部16を設けることで、凹凸部16を十分に溶融させることが可能であり、溶接部分の健全性に影響を与えることがない。しかも、この溶接接合体によれば、凹凸部16の嵌め合いを外側から目視やカメラで確認できるため、突き合わせ時の作業性を向上することが可能である。   As described above, in the welded joint that is welded from the outside by the welding machine 10, the melted portion 13 that melts the inner wall surfaces 11b and 12b has the widest width on the outer side and the widest width at the position of the inner wall surfaces 11b and 12b. Get smaller. According to this welded joint, it is possible to sufficiently melt the concavo-convex portion 16 by providing the concavo-convex portion 16 at the outermost edge having the widest width of the melting portion 13, which affects the soundness of the welded portion. Never give. Moreover, according to this welded assembly, the fitting of the concavo-convex portion 16 can be confirmed from the outside by visual observation or a camera, so that the workability at the time of matching can be improved.

ここで、凹凸部16の凸状16aおよび凹状16bの軸方向寸法Hおよび径方向寸法Iの一例について説明する。この寸法は、溶融部13の最小幅Gが6[mm]〜10[mm]とされていることから、凹凸部16を十分に溶融させるため、図3に示したように、軸方向寸法Hを1[mm]〜4[mm]とし、径方向寸法Iを2[mm]〜10[mm]としている。   Here, an example of the axial dimension H and the radial dimension I of the convex shape 16a and the concave shape 16b of the concavo-convex portion 16 will be described. This dimension is such that the minimum width G of the melting part 13 is 6 [mm] to 10 [mm]. Therefore, as shown in FIG. Is 1 [mm] to 4 [mm], and the radial dimension I is 2 [mm] to 10 [mm].

図9は、実施の形態3に係る溶接接合体(タービンロータ)の他の第一部材の端面図である。図9に示す溶接接合体は、凹凸部16が、各接合面11a,12aに対し、各接合面11a,12aの周方向に沿う円の軌跡の一部で鋸歯状に形成されている。   FIG. 9 is an end view of another first member of the welded assembly (turbine rotor) according to the third embodiment. In the welded joint shown in FIG. 9, the concavo-convex portion 16 is formed in a sawtooth shape with a part of a circular locus along the circumferential direction of each joint surface 11a, 12a with respect to each joint surface 11a, 12a.

この溶接接合体によれば、第一部材11の接合面11aと、第二部材12の接合面12aとを、凹凸部16の嵌め合いによって円環状の中心(中心軸S)に位置合わせすることが可能である。しかも、凹凸部16は、鋸歯状16cであることから、第一部材11と第二部材12との接合に際して相互の周方向の位置を位置決めすることが可能である。しかも、凹凸部16は、鋸歯状16cが、各接合面11a,12aの周方向に沿う円の軌跡の一部で鋸歯状に形成されていることから、その成形を各接合面11a,12aの周方向の一部にできるため、製造コストを低減することが可能になる。   According to this welded assembly, the joining surface 11a of the first member 11 and the joining surface 12a of the second member 12 are aligned with the center of the annular shape (central axis S) by fitting the concavo-convex portion 16. Is possible. Moreover, since the concavo-convex portion 16 has a sawtooth shape 16 c, it is possible to position the positions in the circumferential direction when the first member 11 and the second member 12 are joined. In addition, since the concave and convex portion 16 has a sawtooth shape 16c formed in a sawtooth shape with a part of a circular locus along the circumferential direction of each joint surface 11a, 12a, the molding of the joint surface 11a, 12a is performed. Since it can be a part in the circumferential direction, it is possible to reduce the manufacturing cost.

また、上述した各実施の形態のいずれか1つの溶接接合体として構成されたタービンロータ124によれば、溶接による溶落ちおよび垂下がタービンロータ内部に落下する事態を防ぎ、かつ溶接後の亀裂の発生を防止することが可能になる。   In addition, according to the turbine rotor 124 configured as any one of the above-described welded joints of the above-described embodiments, the situation where the welding melt-down and drooping fall into the turbine rotor is prevented, and cracks after welding are prevented. Occurrence can be prevented.

なお、上述した各実施の形態では、タービンとしてガスタービンを例に説明したが、蒸気タービンのタービンロータにおいても、溶接接合体として同様の構成を適用し、同様の効果を得ることが可能である。   In each of the above-described embodiments, the gas turbine is described as an example of the turbine. However, in the turbine rotor of the steam turbine, a similar configuration can be applied as a welded joint to obtain the same effect. .

11 第一部材
11a 接合面
11b 内壁面
12 第二部材
12a 接合面
12b 内壁面
13 溶融部
14 中空部
15 突片
15a 先端
15b 基端
15c 湾曲面
16 凹凸部
16a 凸状
16b 凹状
16c 鋸歯状
124 タービンロータ
DESCRIPTION OF SYMBOLS 11 1st member 11a Joining surface 11b Inner wall surface 12 Second member 12a Joining surface 12b Inner wall surface 13 Melting part 14 Hollow part 15 Protrusion piece 15a Tip 15b Base end 15c Curved surface 16 Concavity and convexity part 16a Convex shape 16b Concave shape 16c Serrated 124 Turbine Rotor

Claims (8)

第一部材の接合面と第二部材の接合面とを突き合わせて溶接によって接合した状態で内部が中空となる溶接接合体において、
前記第一部材または前記第二部材の中空となる内壁面から突出して設けられ、各前記接合面を突き合わせた状態で各前記接合面の内側縁から離隔しつつ、各前記接合面が溶融される溶融部の内側を覆って先端が延在して形成されているとともに、前記内壁面から突出する基端が当該内壁面に対して湾曲面を介して連続し、各前記接合面の内側の全周に渡って連続して形成された突片を備えることを特徴とする溶接接合体。
In the welded joint in which the inside is hollow in a state where the joint surface of the first member and the joint surface of the second member are butted and joined by welding,
Protruding from the hollow inner wall surface of the first member or the second member, each joining surface is melted while being separated from the inner edge of each joining surface in a state where each joining surface is abutted. A distal end extending from the inner wall surface is formed so as to cover the inner side of the melted portion, and a base end protruding from the inner wall surface continues to the inner wall surface via a curved surface, A welded joint comprising a projecting piece formed continuously over a circumference.
前記溶融部の範囲内であって、前記第一部材の接合面と前記第二部材の接合面とに、相互に嵌め合う凹凸部を備えることを特徴とする請求項1に記載の溶接接合体。   2. The welded joint according to claim 1, wherein the welded joint is provided with a concave and convex portion that fits in the joint surface of the first member and the joint surface of the second member within the range of the melted portion. . 前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、一方の前記接合面に対して凸状に形成されているとともに他方の前記接合面に対して凹状に形成され、かつ各前記接合面の周方向に沿う円の軌跡で連続して形成されていることを特徴とする請求項2に記載の溶接接合体。   The joining surface of the first member and the joining surface of the second member are both formed in an annular shape, and the uneven portion is formed in a convex shape with respect to one of the joint surfaces and the other of the joints The welded joint according to claim 2, wherein the welded joint is formed in a concave shape with respect to a surface and continuously formed by a circular locus along a circumferential direction of each joint surface. 前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、一方の前記接合面に対して凸状に形成されているとともに他方の前記接合面に対して凹状に形成され、かつ各前記接合面の周方向に沿う円の軌跡の一部に形成されていることを特徴とする請求項2に記載の溶接接合体。   The joining surface of the first member and the joining surface of the second member are both formed in an annular shape, and the uneven portion is formed in a convex shape with respect to one of the joint surfaces and the other of the joints The welded joint according to claim 2, wherein the welded joint is formed in a concave shape with respect to a surface and part of a locus of a circle along a circumferential direction of each joint surface. 前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、各前記接合面に対し、各前記接合面の周方向に沿う円の軌跡で連続する鋸歯状に形成されていることを特徴とする請求項2に記載の溶接接合体。   The joining surface of the first member and the joining surface of the second member are both formed in an annular shape, and the uneven portion is a circular locus along the circumferential direction of each joining surface with respect to each joining surface. The welded joint according to claim 2, wherein the welded joint is formed in a continuous sawtooth shape. 前記第一部材の接合面および前記第二部材の接合面がともに円環状に形成されており、前記凹凸部は、各前記接合面に対し、各前記接合面の周方向に沿う円の軌跡の一部で鋸歯状に形成されていることを特徴とする請求項2に記載の溶接接合体。   The joint surface of the first member and the joint surface of the second member are both formed in an annular shape, and the concave and convex portions have a locus of a circle along the circumferential direction of the joint surface with respect to the joint surface. The welded joint according to claim 2, wherein the welded joint is partially formed in a sawtooth shape. 前記凹凸部は、各前記接合面において最外側縁に設けられていることを特徴とする請求項2〜6のいずれか1つに記載の溶接接合体。   The welded joint according to any one of claims 2 to 6, wherein the uneven portion is provided on an outermost edge of each joint surface. 軸方向で第一部材と第二部材とに分割形成され、前記第一部材の接合面と前記第二部材の接合面とを突き合わせて溶接によって接合した状態で軸方向に連続する円筒状をなすタービンロータにおいて、
請求項1〜7のいずれか1つに記載の溶接接合体として構成されることを特徴とするタービンロータ。
It is divided into a first member and a second member in the axial direction, and forms a cylindrical shape that is continuous in the axial direction in a state where the joint surface of the first member and the joint surface of the second member are butted and joined by welding. In the turbine rotor,
A turbine rotor configured as the welded assembly according to any one of claims 1 to 7.
JP2011068842A 2011-03-25 2011-03-25 Welded joint and turbine rotor Expired - Fee Related JP5893841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068842A JP5893841B2 (en) 2011-03-25 2011-03-25 Welded joint and turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068842A JP5893841B2 (en) 2011-03-25 2011-03-25 Welded joint and turbine rotor

Publications (2)

Publication Number Publication Date
JP2012200773A true JP2012200773A (en) 2012-10-22
JP5893841B2 JP5893841B2 (en) 2016-03-23

Family

ID=47182282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068842A Expired - Fee Related JP5893841B2 (en) 2011-03-25 2011-03-25 Welded joint and turbine rotor

Country Status (1)

Country Link
JP (1) JP5893841B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859521B1 (en) * 2016-11-03 2018-05-18 이성빈 Kitchen container and thereof manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138449A (en) * 1976-05-17 1977-11-18 Hitachi Ltd Electron beam welder
JPH03275293A (en) * 1990-03-23 1991-12-05 Tokai Rika Co Ltd Welding method
JPH04113701U (en) * 1991-03-22 1992-10-06 三菱重工業株式会社 steam turbine rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138449A (en) * 1976-05-17 1977-11-18 Hitachi Ltd Electron beam welder
JPH03275293A (en) * 1990-03-23 1991-12-05 Tokai Rika Co Ltd Welding method
JPH04113701U (en) * 1991-03-22 1992-10-06 三菱重工業株式会社 steam turbine rotor

Also Published As

Publication number Publication date
JP5893841B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
CA2715596C (en) Fabricated static vane ring
JP4623463B2 (en) How to repair and replace combustor liner panels
JP5653476B2 (en) Turbine diaphragm configuration
JP6184173B2 (en) gas turbine
JP6395833B2 (en) Bearing holder with axisymmetric sealable gimlet
KR101671603B1 (en) Stator blade segment and axial flow fluid machine with same
WO2016031393A1 (en) Gas turbine exhaust member, and exhaust chamber maintenance method
JP6234478B2 (en) Nozzle vane / lever joining structure, joining method, and variable capacity turbocharger
JP2017031970A (en) Compressor patch ring, and method of attaching compressor patch ring
JP2011142806A (en) Device and method for use in low distortion welding for rotors
JP4481823B2 (en) Method for manufacturing stationary blade or moving blade constituent member
EP2613007B1 (en) Seal assembly and methods for assembling a turbine
JP5893841B2 (en) Welded joint and turbine rotor
JP2012057577A (en) Rotor with shaft
CA2823519C (en) Method for repairing compressor or turbine drums
WO2016021324A1 (en) High-temperature component of gas turbine, gas turbine equipped with same, and method for manufacturing high-temperature component of gas turbine
US20140290252A1 (en) Gas turbine engine provided with scroll
JP2015158187A (en) Centrifugal compressor and diffuser manufacturing method
JP2013160228A (en) Rotating assembly for turbine assembly
KR20170122668A (en) Turbine seal repair patch and methods of repairing turbine seals
JP6115318B2 (en) Rotor
US9416671B2 (en) Bimetallic turbine shroud and method of fabricating
CN103608566B (en) The method for repairing and mending of gas turbine and gas turbine
CA2598333C (en) Welded gas turbine engine parts with different thicknesses and method
US10927688B2 (en) Steam turbine nozzle segment for partial arc application, related assembly and steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R151 Written notification of patent or utility model registration

Ref document number: 5893841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees