JP2012200617A - Aerosol conveying flow passage and powder classifier - Google Patents

Aerosol conveying flow passage and powder classifier Download PDF

Info

Publication number
JP2012200617A
JP2012200617A JP2011064472A JP2011064472A JP2012200617A JP 2012200617 A JP2012200617 A JP 2012200617A JP 2011064472 A JP2011064472 A JP 2011064472A JP 2011064472 A JP2011064472 A JP 2011064472A JP 2012200617 A JP2012200617 A JP 2012200617A
Authority
JP
Japan
Prior art keywords
powder
channel
section
flow path
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011064472A
Other languages
Japanese (ja)
Inventor
Hiroaki Masuda
弘昭 増田
Shungyo Cho
春暁 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawata Manufacturing Co Ltd
Original Assignee
Kawata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawata Manufacturing Co Ltd filed Critical Kawata Manufacturing Co Ltd
Priority to JP2011064472A priority Critical patent/JP2012200617A/en
Publication of JP2012200617A publication Critical patent/JP2012200617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out conversion of a circular cross section to a rectangular cross section of a flow passage or conversion of the rectangular cross section to the circular cross section of the flow passage while maintaining uniformity of flow of raw material powder at the flow passage cross section, in powder classifying processing for classifying the raw material powder conveyed in a state of being mixed with gas into a plurality of kinds of powder according to sizes or density of the powder.SOLUTION: A raw material powder flow passage for supplying having a circular flow passage cross section is connected to a raw material powder flow passage for classifying having a rectangular flow passage cross section at a classifying part via a coat hanger type flow passage. The coat hanger type flow passage converts the circular cross section to the rectangular cross section of the flow passage while maintaining uniformity of flow of aerosol at the flow passage cross section.

Description

本発明は、エアロゾルを搬送するための流路構造に関し、特に、気体と混合状態にて搬送される原料粉体(エアロゾル)を、粉体のサイズまたは密度(もしくは比重)に応じて分離することで、原料粉体を複数種類の粉体に分級する粉体分級装置に関する。   The present invention relates to a flow channel structure for transporting an aerosol, and in particular, separates a raw material powder (aerosol) transported in a mixed state with a gas according to the size or density (or specific gravity) of the powder. Thus, the present invention relates to a powder classification apparatus for classifying raw material powders into a plurality of types of powders.

従来、原料粉体を気体に混合させて搬送して、粉体のサイズまたは密度に応じて複数の種類の粉体に分級するような粉体分級装置として様々な構成のものが知られている。   2. Description of the Related Art Conventionally, various types of powder classification apparatuses are known in which raw material powders are mixed and transported in a gas and classified into a plurality of types of powders according to the size or density of the powders. .

例えば、原料粉体を細粉と粗粉とに分級処理するような粉体分級装置では、原料粉体として例えばミクロンオーダーの粒径分布を含む、いわゆる微細な粉体が取り扱われる。また、このような原料粉体では凝集作用が生じ易いため、細粉と粗粉とに分級処理を行う前に原料粉体を解砕して分散させるような分散処理が行われる。   For example, in a powder classifying apparatus that classifies raw material powder into fine powder and coarse powder, so-called fine powder containing a particle size distribution on the order of microns, for example, is handled as the raw material powder. In addition, since such a raw material powder is likely to agglomerate, a dispersion process is performed in which the raw material powder is pulverized and dispersed before the fine powder and the coarse powder are classified.

粉体分級システムにおいて、原料粉体の投入装置(例えば、定量フィーダなど)から原料粉体の分級装置までの間に例えばエジェクタを配置させ、エジェクタ内に原料粉体を通過させることで原料粉体の分散処理を行うような構成が従来知られている(例えば、特許文献1参照)。   In a powder classification system, for example, an ejector is disposed between a raw material powder input device (for example, a quantitative feeder) and a raw material powder classification device, and the raw material powder is allowed to pass through the ejector. A configuration that performs the distributed processing is conventionally known (see, for example, Patent Document 1).

このような従来の分級システムでは、原料粉体の投入装置に比較的近い位置にエジェクタを備えた分散機が配置され、エジェクタにて分散処理が行われた状態の原料粉体が管路内を通って分級装置に供給される。そのため、分級装置では、解砕して分散された状態の原料粉体に対して分級処理を行うことができる。   In such a conventional classification system, a disperser having an ejector is disposed at a position relatively close to the raw material powder input device, and the raw material powder in a state in which the dispersion processing is performed by the ejector passes through the inside of the pipeline. And supplied to the classifier. Therefore, in the classification device, classification processing can be performed on the raw material powder in a crushed and dispersed state.

特開昭62−68577号公報Japanese Patent Application Laid-Open No. Sho 62-68777

近年、分級処理が行われる原料粉体の対象が多様化しており、さらに原料粉体から細粉や粗粉(あるいは高密度粉体や低密度粉体)を高い分級精度でもって分級し、所定の粒径(あるいは密度)範囲の粉体を選択的に確実に取り出したいという要望が増えつつある。また、このような分級精度の向上とともに、分級の処理能力についても向上させることが求められている。   In recent years, the target of raw material powder to be classified has been diversified, and fine powder and coarse powder (or high-density powder and low-density powder) are classified with high classification accuracy from the raw material powder. There is an increasing demand to selectively and reliably take out powder having a particle size (or density) in the range. In addition to such improvement in classification accuracy, it is also required to improve the classification processing capability.

分級システムにおいて、処理能力を向上させるためには、長方形状流路断面を有する分級装置を用いることが好ましい。一般的には、他の形状に比して流路内壁面の表面積が小さい円形状流路(管路)を通じて原料粉体が分級装置に供給されることが多い。そのため、分級の処理能力に加えて精度についても向上させるためには、円形状流路断面を長方形状流路断面に円滑に変換して、流路断面における原料粉体の流れの均一性を保つ必要がある。また、原料粉体以外のエアロゾルの搬送においてもこのような流路断面の形状変換に際して、エアロゾルの流れの均一性が保たれることが望ましい。   In order to improve the processing capacity in the classification system, it is preferable to use a classification device having a rectangular channel cross section. In general, the raw material powder is often supplied to the classifier through a circular channel (pipe) having a smaller surface area on the inner wall surface of the channel than other shapes. Therefore, in order to improve the accuracy in addition to the classification processing capacity, the circular flow channel cross section is smoothly converted to the rectangular flow channel cross section, and the uniformity of the raw material powder flow in the flow channel cross section is maintained. There is a need. In addition, it is desirable to maintain the uniformity of the aerosol flow during such a change in the shape of the cross-section of the flow path in the transportation of the aerosol other than the raw material powder.

従って、本発明の目的は、上記問題を解決することにあって、気体と混合状態にて搬送される原料粉体を、粉体のサイズまたは密度(もしくは比重)に応じて複数種類の粉体に分級する粉体分級処理において、円形状から長方形状への流路断面の変換、または長方形状から円形状への流路断面の変換を、流路断面における原料粉体の流れの均一性を保ちながら行うことができる粉体分級装置を提供することにある。
また、本発明の目的は、このような流路断面の変換を行うことができるエアロゾル搬送用流路を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problem, and the raw material powder conveyed in a mixed state with a gas is divided into a plurality of types of powders according to the size or density (or specific gravity) of the powder In the powder classification process to classify the flow path, change the flow path cross section from a circular shape to a rectangular shape, or convert the flow path cross section from a rectangular shape to a circular shape. An object of the present invention is to provide a powder classifying apparatus that can be carried out while maintaining.
Moreover, the objective of this invention is providing the flow path for aerosol conveyance which can perform such conversion of a flow-path cross section.

上記目的を達成するために、本発明は以下のように構成する。   In order to achieve the above object, the present invention is configured as follows.

本発明の第1態様によれば、円形状流路断面を有する第1エアロゾル流路と、長方形状流路断面を有する第2エアロゾル流路と、第1エアロゾル流路と第2エアロゾル流路とを接続するコートハンガー型流路と、コートハンガー型流路は、流路断面におけるエアロゾルの流れの均一性を保ちながら、円形状流路断面から長方形状流路断面に、または、長方形状流路断面から円形状流路断面に流路断面を変換する、エアロゾル搬送用流路を提供する。   According to the first aspect of the present invention, the first aerosol channel having a circular channel cross section, the second aerosol channel having a rectangular channel cross section, the first aerosol channel and the second aerosol channel, The coat hanger type flow path and the coat hanger type flow path connecting the circular flow path cross section to the rectangular flow path cross section or the rectangular flow path while maintaining the uniformity of the aerosol flow in the flow path cross section Provided is an aerosol transport channel that converts a channel cross section from a cross section to a circular channel cross section.

本発明の第2態様によれば、気体と混合された状態で供給される原料粉体を、慣性力を用いて第1粉体と第2粉体とに分級する粉体分級装置において、長方形状流路断面を有する分級用原料粉体流路を、長方形状流路断面を有する第1粉体流路と第2粉体流路とのそれぞれに分岐して、原料粉体を第1粉体と第2粉体とに分級する分級部と、円形状流路断面を有する供給用原料粉体流路と、供給用原料粉体流路と分級用原料粉体流路とを接続するコートハンガー型流路と、を備え、コートハンガー型流路は、流路断面におけるエアロゾルの流れの均一性を保ちながら、円形状流路断面から長方形状流路断面に流路断面を変換する、粉体分級装置を提供する。   According to the second aspect of the present invention, in the powder classification apparatus for classifying the raw material powder supplied in a mixed state with the gas into the first powder and the second powder using inertial force, a rectangular shape is provided. The raw material powder channel for classification having a cross-sectional channel section is branched into a first powder channel and a second powder channel each having a rectangular channel cross section, and the raw material powder is divided into the first powder. A classification part for classifying the body and the second powder, a feed raw material powder channel having a circular channel cross section, and a coat connecting the feed raw material powder channel and the classification raw material powder channel A hanger-type channel, and the coat hanger-type channel is a powder that converts a channel cross-section from a circular channel cross-section to a rectangular channel cross-section while maintaining the uniformity of the aerosol flow in the channel cross-section. A body classification device is provided.

本発明の第3態様によれば、気体と混合された状態で供給される原料粉体を、慣性力を用いて第1粉体と第2粉体とに分級する粉体分級装置において、長方形状流路断面を有する分級用原料粉体流路を、長方形状流路断面を有する第1粉体流路と第2粉体流路とのそれぞれに分岐して、原料粉体を第1粉体と第2粉体とに分級する分級部と、円形状流路断面を有する回収用粉体流路と、第1粉体流路または第2粉体流路と、回収用粉体流路とを接続するコートハンガー型流路と、を備え、コートハンガー型流路は、流路断面におけるエアロゾルの流れの均一性を保ちながら、長方形状流路断面から円形状流路断面に流路断面を変換する、粉体分級装置を提供する。   According to the third aspect of the present invention, in the powder classifying apparatus for classifying the raw material powder supplied in a mixed state with the gas into the first powder and the second powder using the inertial force, a rectangular shape is provided. The raw material powder channel for classification having a cross-sectional channel section is branched into a first powder channel and a second powder channel each having a rectangular channel cross section, and the raw material powder is divided into the first powder. A classification part for classifying the body and the second powder, a recovery powder channel having a circular channel cross section, a first powder channel or a second powder channel, and a recovery powder channel A coat hanger-type flow path connecting the flow path from the rectangular flow path cross section to the circular flow path cross section while maintaining the uniformity of the aerosol flow in the flow path cross section. Provided is a powder classification device for converting

本発明の第4態様によれば、コートハンガー型流路として、複数のコートハンガー型流路がトーナメント方式にて連結された連結流路が用いられる、第2態様または第3態様に記載の粉体分級装置を提供する。   According to the fourth aspect of the present invention, the powder according to the second aspect or the third aspect, wherein a connected flow path in which a plurality of coat hanger type flow paths are connected by a tournament method is used as the coat hanger type flow path. A body classification device is provided.

本発明の第5態様によれば、連結流路において、隣接するコートハンガー型流路のそれぞれの長方形状流路断面の一辺が接するように、複数のコートハンガー型流路がトーナメント方式にて連結されている、第4態様に記載の粉体分級装置を提供する。   According to the fifth aspect of the present invention, a plurality of coat hanger-type channels are connected by a tournament method so that one side of each rectangular channel cross section of adjacent coat hanger-type channels is in contact with the connected channel. The powder classifying apparatus according to the fourth aspect is provided.

本発明の第6態様によれば、コートハンガー型流路は、両端縁部分の流路断面の厚さが中央部分の流路断面の厚さよりも大きく、流路断面の中心に対して対称形状を有する、第2態様から第5態様のいずれか1つに記載の粉体分級装置を提供する。   According to the sixth aspect of the present invention, the coat hanger type flow path has a shape in which the thickness of the flow path cross section at both edge portions is larger than the thickness of the flow path cross section at the center part and is symmetrical with respect to the center of the flow path cross section A powder classifying apparatus according to any one of the second to fifth aspects is provided.

本発明の一の態様によれば、円形状流路断面を有する第1エアロゾル流路と、長方形状流路断面を有する第2エアロゾル流路とがコートハンガー型流路により接続され、コートハンガー型流路が、流路断面におけるエアロゾルの流れの均一性を保ちながら、円形状流路断面から長方形状流路断面に流路断面を変換している。また、長方形状流路断面から円形状流路断面に流路断面を変換している。したがって、流路断面におけるエアロゾルの流れの均一性を保ちながら、流路断面の形状を円形状と長方形状との間で円滑に変換できる。   According to one aspect of the present invention, a first aerosol channel having a circular channel cross section and a second aerosol channel having a rectangular channel cross section are connected by a coat hanger type channel, and a coat hanger type The channel converts the channel cross section from the circular channel cross section to the rectangular channel cross section while maintaining the uniformity of the aerosol flow in the channel cross section. Further, the channel cross section is converted from the rectangular channel cross section to the circular channel cross section. Therefore, the shape of the channel cross section can be smoothly changed between a circular shape and a rectangular shape while maintaining the uniformity of the aerosol flow in the channel cross section.

本発明の別の態様によれば、円形状流路断面を有する供給用原料粉体流路と、分級部における長方形状流路断面の分級用原料粉体流路とが、コートハンガー型流路により接続され、コートハンガー型流路は、流路断面におけるエアロゾルの流れの均一性を保ちながら、円形状流路断面から長方形状流路断面に流路断面を変換している。したがって、分級部において長方形状流路断面を採用して処理能力の向上を図ることができる。それとともに、流路断面における原料粉体の流れの均一性を保ちながら流路断面の形状を円形状と長方形状との間で円滑に変換でき、分級部における分級精度を向上できる。   According to another aspect of the present invention, the feed raw material powder channel having a circular channel cross section and the classification raw material powder channel having a rectangular channel cross section in the classification section are coated hanger type channels. The coat hanger type channels convert the channel cross section from the circular channel cross section to the rectangular channel cross section while maintaining the uniformity of the aerosol flow in the channel cross section. Therefore, the processing capability can be improved by adopting a rectangular channel cross section in the classification part. At the same time, the shape of the cross section of the flow path can be smoothly changed between a circular shape and a rectangular shape while maintaining the uniformity of the flow of the raw material powder in the cross section of the flow path, and the classification accuracy in the classification section can be improved.

本発明の一の実施の形態にかかる粉体分級システムのフロー図The flowchart of the powder classification system concerning one embodiment of the present invention 本発明の実施の形態の粉体分級装置の外観正面図FIG. 2 is an external front view of a powder classification apparatus according to an embodiment of the present invention. 本発明の実施の形態の粉体分級装置の外観側面図External view of powder classification apparatus according to an embodiment of the present invention 本発明の実施の形態の粉体分級装置の分解図Exploded view of a powder classifier according to an embodiment of the present invention 本発明の実施の形態の粉体分級装置内における各流れの模式図Schematic diagram of each flow in the powder classification apparatus of the embodiment of the present invention 本発明の実施の形態の分級部の外観側面図External side view of classification unit according to an embodiment of the present invention 図5Aの分級部のA−A線断面図AA line sectional view of a classification part of Drawing 5A 本発明の実施の形態のコートハンガー型流路の外観図および断面図FIG. 1 is an external view and a cross-sectional view of a coat hanger type flow channel according to an embodiment of the present invention. 図6のコートハンガー型流路の断面図(上流側)Sectional view (upstream side) of coat hanger type flow path of FIG. 図6のコートハンガー型流路の断面図(中間部分)Sectional view (middle part) of coat hanger type flow path of FIG. 図6のコートハンガー型流路の断面図(下流側)Sectional view (downstream side) of coat hanger type flow path of FIG. 本発明の実施の形態の変形例にかかるコートハンガー型流路の外観図および断面図External view and cross-sectional view of a coat hanger type channel according to a modification of the embodiment of the present invention 本発明の実施の形態の変形例にかかるコートハンガー型流路の模式図The schematic diagram of the coat hanger type channel concerning the modification of an embodiment of the invention

以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

本発明の一の実施の形態にかかる粉体分級装置を備える粉体分級システムの主要な構成について、図1に示すフロー図を用いて説明する。   A main configuration of a powder classification system including a powder classification apparatus according to an embodiment of the present invention will be described with reference to the flowchart shown in FIG.

図1に示すように、粉体分級システム1は、定量フィーダ2と、分散機3と、粉体分級装置4と、細粉回収用バグフィルタ5と、粗粉回収用バグフィルタ6と、真空ポンプ7と、クリーンエア供給部8とを備えている。   As shown in FIG. 1, a powder classification system 1 includes a quantitative feeder 2, a disperser 3, a powder classification device 4, a fine powder collecting bag filter 5, a coarse powder collecting bag filter 6, and a vacuum. A pump 7 and a clean air supply unit 8 are provided.

本実施の形態にかかる粉体分級システム1では、例えば0.1μm〜数十μmの粒径分布を含むような原料粉体を気体に混合させた状態(すなわち、固気混合状態)にて搬送して、粉体分級装置4にて細粉(第2粉体:例えば粒径0.1μm〜1μm程度)と粗粉(第1粉体:例えば1μmを超える粒径)に分級して回収するシステムである。   In the powder classification system 1 according to the present embodiment, the raw material powder having a particle size distribution of 0.1 μm to several tens of μm, for example, is conveyed in a mixed state (that is, a solid-gas mixed state). Then, fine powder (second powder: for example, particle diameter of about 0.1 μm to 1 μm) and coarse powder (first powder: for example, particle diameter exceeding 1 μm) are classified and collected by the powder classifier 4. System.

このような原料粉体としては、ファインセラミックス、金属材料、高分子材料、電池・電子材料、複合材料、医薬品材料、食品材料など、電子、エネルギ、医療、食品などの各種技術分野にて用いられる無機物および有機物の微粉を対象とするものである。原料粉体から特定の仕様(サイズ、密度など)の粉体を選択的に取り出す処理が本発明の粉体分級処理である。また、原料粉体に含まれる特定の仕様の粉体以外の異物を、原料粉体から取り除く処理についても本発明の粉体分級処理に含まれる。   Such raw material powders are used in various technical fields such as fine ceramics, metal materials, polymer materials, batteries / electronic materials, composite materials, pharmaceutical materials, food materials, etc., such as electronics, energy, medicine, and food. It is intended for inorganic and organic fine powders. The process of selectively taking out powder having specific specifications (size, density, etc.) from the raw material powder is the powder classification process of the present invention. Further, the process of removing foreign substances other than the powder having a specific specification contained in the raw material powder from the raw material powder is also included in the powder classification process of the present invention.

定量フィーダ2は、粉体分級システム1内に対して、原料粉体を定量供給する装置であり、本実施の形態では、例えばマイクロフィーダが用いられる。   The quantitative feeder 2 is a device that quantitatively supplies the raw material powder into the powder classification system 1. In the present embodiment, for example, a micro feeder is used.

分散機3はエジェクタを備え、定量フィーダ2にて定量供給された原料粉体をエジェクタ内に通過させることにより解砕して分散させる。分散機3としてはこのように原料粉体を解砕・分散する機能を有する装置であればよく、エジェクタ以外の構成を採用しても良い。   The disperser 3 includes an ejector, and pulverizes and disperses the raw material powder supplied by the quantitative feeder 2 through the ejector. The disperser 3 may be an apparatus having a function of crushing and dispersing the raw material powder as described above, and a configuration other than the ejector may be employed.

粉体分級装置4は、分散機3にて分散されて気体と混合状態にて搬送される原料粉体に対して、慣性力を用いて細粉と粗粉とに選択的に分級する装置である。この粉体分級装置4には、分散部9および分級部10が備えられおり、装置内に供給された原料粉体に対して、分散部9にて再度分散処理を行った後、分級部10にて分級処理を行う。また、粉体分級装置4には、クリーンエア供給部8が接続されており、装置内にクリーンエアが供給される。クリーンエア供給部8より供給されるクリーンエアの流れにより原料粉体が取り囲まれた状態にて分級部10にて分級処理が行われるため、分級部10の内壁面に原料粉体が付着することが防止され、高い分級精度を得ることができる。なお、粉体分級装置4の詳細な構成については後述する。   The powder classifier 4 is an apparatus that selectively classifies the raw material powder dispersed in the disperser 3 and conveyed in a mixed state with gas into fine powder and coarse powder using inertial force. is there. The powder classifying device 4 includes a dispersing unit 9 and a classifying unit 10. After the dispersion processing is performed again on the raw material powder supplied into the device by the dispersing unit 9, the classifying unit 10 is provided. Classification is performed at In addition, a clean air supply unit 8 is connected to the powder classifier 4 so that clean air is supplied into the apparatus. Since the classification process is performed in the classification unit 10 in a state where the raw material powder is surrounded by the flow of clean air supplied from the clean air supply unit 8, the raw material powder adheres to the inner wall surface of the classification unit 10. Is prevented, and high classification accuracy can be obtained. The detailed configuration of the powder classifier 4 will be described later.

細粉回収用バグフィルタ5は、粉体分級装置4にて分級された細粉を含む粉体気流を濾過して細粉を回収する。同様に、粗粉回収用バグフィルタ6は、粉体分級装置4にて分級された粗粉を含む粉体気流を濾過して粗粉を回収する。   The fine powder collecting bag filter 5 collects fine powder by filtering the powder airflow containing the fine powder classified by the powder classifying device 4. Similarly, the coarse powder collecting bag filter 6 collects the coarse powder by filtering the powder airflow containing the coarse powder classified by the powder classifier 4.

図1に示すように、粉体分級システム1において、上述したそれぞれの装置構成は管路(原料粉体の搬送用配管)にて接続されている。真空ポンプ7は、粉体分級システム1の管路全体の下流側端部に接続されており、管路内を吸引することにより、管路内が負圧に保たれて原料粉体の気流による搬送が行われる。なお、本実施の形態では、真空ポンプ7を用いた真空吸引搬送方式を採用した例について説明するが、原料粉体の搬送方法はその他方式を採用しても良く、例えば、圧縮空気を用いた圧送方式を採用しても良い。   As shown in FIG. 1, in the powder classification system 1, each of the above-described device configurations is connected by a pipe line (pipe for conveying raw material powder). The vacuum pump 7 is connected to the downstream end of the entire pipe line of the powder classification system 1. By sucking the inside of the pipe line, the inside of the pipe line is maintained at a negative pressure, and is caused by the air flow of the raw material powder. Transport is performed. In this embodiment, an example in which a vacuum suction conveyance method using the vacuum pump 7 is adopted will be described. However, other methods may be adopted as the raw material powder conveyance method, for example, compressed air is used. A pressure feeding method may be adopted.

細粉回収用バグフィルタ5および粗粉回収用バグフィルタ6のそれぞれの出口の管路上には、開度調節弁5a、6a、流量計5b、6b、および圧力計5c、6cが設けられている。また、クリーンエア供給部8の管路上においても開度調節弁8a、流量計8b、および圧力計8cが設けられている。それぞれの流量計および圧力計が適切な値を示すようにそれぞれの開度調節弁を調節することで、クリーンエア、細粉、粗粉の各流れのバランスを制御できる。   Opening control valves 5a and 6a, flow meters 5b and 6b, and pressure gauges 5c and 6c are provided on the outlet pipes of the fine powder collecting bag filter 5 and the coarse powder collecting bag filter 6, respectively. . In addition, an opening adjustment valve 8a, a flow meter 8b, and a pressure gauge 8c are also provided on the pipeline of the clean air supply unit 8. The balance of each flow of clean air, fine powder, and coarse powder can be controlled by adjusting each opening degree control valve so that each flow meter and pressure gauge show appropriate values.

次に、粉体分級装置4の構成について図面を参照しながら説明する。粉体分級装置4の外観図(正面図)を図2Aに示し、外観図(側面図)を図2Bに示し、分解図を図3に示す。なお、図3の分解図では、図2Aおよび図2Bの粉体分級装置4の外観図に示す構成部材の中の主要な構成部材について示している。   Next, the configuration of the powder classifier 4 will be described with reference to the drawings. An external view (front view) of the powder classifier 4 is shown in FIG. 2A, an external view (side view) is shown in FIG. 2B, and an exploded view is shown in FIG. In addition, in the exploded view of FIG. 3, it has shown about the main structural members in the structural member shown to the external view of the powder classification apparatus 4 of FIG. 2A and 2B.

図2A、図2Bおよび図3に示すように、粉体分級装置4は、原料粉体導入部11と、分散板押さえ部材12と、分散板13と、分散板受け部材14と、整流板15と、整流板押さえ部材16と、合流部17と、分離部18と、クリーンエア導入部19と、細粉排出部20と、粗粉排出部21とを備えている。   As shown in FIGS. 2A, 2B and 3, the powder classifier 4 includes a raw material powder introducing section 11, a dispersion plate pressing member 12, a dispersion plate 13, a dispersion plate receiving member 14, and a current plate 15. A rectifying plate pressing member 16, a merging portion 17, a separating portion 18, a clean air introducing portion 19, a fine powder discharging portion 20, and a coarse powder discharging portion 21.

原料粉体導入部11は、定量フィーダ2および分散機3より管路を経由して搬送される原料粉体の投入口となっている。原料粉体導入部11は、管路との接続部分である円形状断面の原料粉体の流路を長方形状断面の流路に変換する、いわゆるコートハンガー型流路を有する。   The raw material powder introduction unit 11 serves as an inlet for raw material powder conveyed from the quantitative feeder 2 and the disperser 3 via a pipeline. The raw material powder introducing section 11 has a so-called coat hanger type flow path for converting a flow path of the raw material powder having a circular cross section, which is a connection portion with the pipe, into a flow path having a rectangular cross section.

本実施の形態では、分散板13と、この分散板13を上流側および下流側から挟むようにして保持する分散板押さえ部材12および分散板受け部材14とにより、分散部9が構成されている。分散板押さえ部材12は原料粉体導入部11に接続されており、原料粉体導入部11よりの長方形状断面の流れにて原料粉体が分散部9に供給される。分散板13は複数のエジェクタが横一列に隣接配置された構成を有しており、それぞれのエジェクタ内に原料粉体を通過させることで、原料粉体を解砕して分散させる機能を有する。   In the present embodiment, the dispersion plate 9 and the dispersion plate holding member 12 and the dispersion plate receiving member 14 that hold the dispersion plate 13 so as to sandwich the dispersion plate 13 from the upstream side and the downstream side constitute the dispersion portion 9. The dispersion plate pressing member 12 is connected to the raw material powder introduction unit 11, and the raw material powder is supplied to the dispersion unit 9 in a rectangular cross-section flow from the raw material powder introduction unit 11. The dispersion plate 13 has a configuration in which a plurality of ejectors are arranged adjacent to each other in a horizontal row, and has a function of crushing and dispersing the raw material powder by passing the raw material powder through each ejector.

クリーンエア導入部19はクリーンエア供給部8と管路にて接続され、粉体分級装置4におけるクリーンエアの導入口となっている。分散板押さえ部材12および整流板押さえ部材16は、クリーンエア導入部19に接続されたクリーンエアの流路を形成する。クリーンエア流路は、分散部9の原料粉体流路の外周全体を囲み、原料粉体流路と区分された流路として形成される。クリーンエア流路には整流板15が配置され、整流板15は上流側および下流側から分散板押さえ部材12および整流板押さえ部材16により挟まれて保持される。なお、整流板15は、例えば網状の金属部材を積層して構成される。   The clean air introduction unit 19 is connected to the clean air supply unit 8 through a pipe line and serves as a clean air introduction port in the powder classifier 4. The dispersion plate pressing member 12 and the rectifying plate pressing member 16 form a clean air flow path connected to the clean air introducing portion 19. The clean air channel surrounds the entire outer periphery of the raw material powder channel of the dispersion unit 9 and is formed as a channel separated from the raw material powder channel. A rectifying plate 15 is disposed in the clean air flow path, and the rectifying plate 15 is sandwiched and held by the dispersion plate pressing member 12 and the rectifying plate pressing member 16 from the upstream side and the downstream side. The rectifying plate 15 is configured by laminating a net-like metal member, for example.

合流部17は分散板受け部材14と接続され、その内側に原料粉体流路を有するとともに、分離部18の内側に配置されることにより、分離部18との内壁面との間で原料粉体流路を囲むクリーンエア流路を形成する。合流部17の下流側先端にて、原料粉体流路とクリーンエア流路とが連通され、分離部18内にて原料粉体の流れを囲むようなクリーンエアの流れが形成される。   The merging portion 17 is connected to the dispersion plate receiving member 14, has a raw material powder flow path inside thereof, and is disposed inside the separation portion 18, thereby providing a raw material powder between the inner wall surface of the separation portion 18 and the raw material powder. A clean air channel surrounding the body channel is formed. The raw material powder flow path and the clean air flow path are communicated with each other at the downstream end of the merging portion 17, and a clean air flow surrounding the flow of the raw material powder is formed in the separation portion 18.

特に図2Bに示すように、分離部18内では、図示下方側へ向かう原料粉体流路22が、下方へ向かう粗粉流路24(第1粉体流路)と大略横方向に分岐された細粉流路23(第2粉体流路)とに分岐されている。この流路の分岐部分において、慣性力を利用した原料粉体の分級処理が行われ、細粉流れおよび粗粉流れの分離が行われる。なお、本実施の形態では、合流部17および分離部18により分級部10が構成されている。分級部10の詳細な構成については後述する。   In particular, as shown in FIG. 2B, in the separation unit 18, the raw material powder flow path 22 heading downward in the figure is branched into a coarse powder flow path 24 (first powder flow path) heading downward substantially in the lateral direction. Branching into a fine powder passage 23 (second powder passage). At the branch portion of the flow path, the raw material powder is classified using inertia, and the fine powder flow and the coarse powder flow are separated. In the present embodiment, the classification unit 10 is configured by the merging unit 17 and the separation unit 18. The detailed configuration of the classification unit 10 will be described later.

分離部18の細粉流路23は細粉排出部20に接続され、粗粉流路24は粗粉排出部21に接続される。また、細粉排出部20は管路を介して細粉回収用バグフィルタ5に接続され、粗粉排出部21は管路を介して粗粉回収用バグフィルタ6に接続される。   The fine powder flow path 23 of the separation unit 18 is connected to the fine powder discharge part 20, and the coarse powder flow path 24 is connected to the coarse powder discharge part 21. Further, the fine powder discharge unit 20 is connected to the fine powder collecting bag filter 5 through a pipe line, and the coarse powder discharge unit 21 is connected to the coarse powder collecting bag filter 6 through a pipe line.

ここで、粉体分級装置4における原料粉体およびクリーンエアなどのそれぞれの流路について、概略的に図4に示す。   Here, each flow path, such as raw material powder and clean air, in the powder classifier 4 is schematically shown in FIG.

図4に示すように、粉体分級装置4に供給された原料粉体の流路は、原料粉体導入部11にて、円形状断面の流路25から長方形状断面の流路26へと変換されて、分散板13へと導かれる。分散板13内のそれぞれのエジェクタを通過した原料粉体は、合流部17(および分散板受け部材14)内の長方形状断面の流路27へと吐出される。   As shown in FIG. 4, the flow path of the raw material powder supplied to the powder classifier 4 is changed from the circular cross-section flow path 25 to the rectangular cross-section flow path 26 in the raw material powder introduction section 11. It is converted and guided to the dispersion plate 13. The raw material powders that have passed through the respective ejectors in the dispersion plate 13 are discharged to the flow path 27 having a rectangular cross section in the merging portion 17 (and the dispersion plate receiving member 14).

一方、クリーンエア導入部19から粉体分級装置4に供給されたクリーンエアは、分散板押さえ部材12内にて、長方形状断面の原料粉体流路26を囲むような枠断面状の流路28となって、合流部17の外周へと導かれる。   On the other hand, the clean air supplied from the clean air introduction unit 19 to the powder classifier 4 is a flow channel having a frame cross section surrounding the raw material powder flow channel 26 having a rectangular cross section in the dispersion plate pressing member 12. 28 and led to the outer periphery of the merging portion 17.

合流部17の外周では、下流側へ向かって枠状断面のクリーンエア流路28の外径が絞られて、合流部17の先端にて原料粉体流路27とクリーンエア流路28とが合流し、その外周全体がクリーンエアにより囲まれた原料粉体流路22となる。   At the outer periphery of the merging portion 17, the outer diameter of the clean air passage 28 having a frame-shaped cross section is narrowed toward the downstream side, and the raw material powder passage 27 and the clean air passage 28 are formed at the tip of the merging portion 17. The material powder flow path 22 is formed by merging and the entire outer periphery thereof being surrounded by clean air.

その後、分離部18内において、原料粉体流路22が細粉流路23と粗粉流路24とに分岐され、この分岐部分にて原料粉体が細粉と粗粉とに分級される。   Thereafter, in the separation unit 18, the raw material powder channel 22 is branched into a fine powder channel 23 and a coarse powder channel 24, and the raw material powder is classified into a fine powder and a coarse powder at this branch portion. .

次に、分級部10(合流部17および分離部18)の詳細な構成について、図5Aおよび図5Bを用いて説明する。図5Aは分級部10の外観側面図であり、図5Bは図5AにおけるA−A線断面図である。   Next, the detailed configuration of the classifying unit 10 (the merging unit 17 and the separating unit 18) will be described with reference to FIGS. 5A and 5B. 5A is an external side view of the classifying unit 10, and FIG. 5B is a cross-sectional view taken along line AA in FIG. 5A.

図5Aおよび図5Bに示すように、分級部10は、分離部18の内部空間に合流部17が挿入配置されることにより構成されている。合流部17は、その中央に上下方向に貫通する原料粉体流路27を有しており、分散部9からの原料粉体がこの原料粉体流路27を通じて分離部18内に供給される。また、合流部17の外壁部と分離部18の内壁部との間に枠状断面を有するクリーンエア流路28が形成されており、分離部18内に供給される原料粉体の流れの外周全体を囲むように、このクリーンエア流路28を通じてクリーンエアが分離部18内に供給される。なお、クリーンエア流路28の気流は、整流板15を通過する際に整流されて、気流の乱れが抑制される。   As shown in FIGS. 5A and 5B, the classifying unit 10 is configured by inserting and merging the merging unit 17 into the internal space of the separating unit 18. The merging portion 17 has a raw material powder passage 27 penetrating in the vertical direction at the center thereof, and the raw material powder from the dispersion portion 9 is supplied into the separation portion 18 through the raw material powder passage 27. . Further, a clean air flow path 28 having a frame-like cross section is formed between the outer wall portion of the merging portion 17 and the inner wall portion of the separation portion 18, and the outer periphery of the flow of the raw material powder supplied into the separation portion 18 Clean air is supplied into the separation unit 18 through the clean air channel 28 so as to surround the whole. Note that the airflow in the clean air channel 28 is rectified when passing through the rectifying plate 15, and the turbulence of the airflow is suppressed.

分離部18内の原料粉体とクリーンエアの合流部分では、長方形状断面の原料粉体流路22が形成されている。この原料粉体流路22は、分岐部分30にて、同じく長方形状断面の粗粉流路24と細粉流路23とに分岐されている。   A raw material powder flow path 22 having a rectangular cross section is formed at a joining portion of the raw material powder and clean air in the separation unit 18. The raw material powder flow path 22 is branched at a branch portion 30 into a coarse powder flow path 24 and a fine powder flow path 23 having a rectangular cross section.

図5Aに示すように、分離部18内の内壁部である互いに対向する第1壁部(壁面)と第2壁部(壁面)とにより、原料粉体流路22はその長方形状断面におけるそれぞれの長辺が画定されている。第1壁部には、分岐部分30にて長方形状開口部33が形成されており(特に、図5B参照)、この開口部33を通じて細粉流路23が原料粉体流路22に連通されている。また、第1壁部および第2壁部は分岐部分30よりもさらに図示下方に延在しており、粗粉流路24の長方形状断面におけるそれぞれの長辺が第1壁部および第2壁部により画定されている。   As shown in FIG. 5A, the raw material powder flow path 22 in the rectangular cross section is formed by the first wall portion (wall surface) and the second wall portion (wall surface) facing each other, which are inner walls in the separation portion 18. The long side of is defined. A rectangular opening 33 is formed in the first wall portion at the branch portion 30 (see in particular FIG. 5B), and the fine powder passage 23 is communicated with the raw material powder passage 22 through the opening 33. ing. Further, the first wall portion and the second wall portion extend further downward in the drawing than the branch portion 30, and the long sides in the rectangular cross section of the coarse powder flow path 24 are the first wall portion and the second wall. It is demarcated by the part.

なお、図4および図5Bでは、粗粉流路24の長辺方向の幅が略一定状態にて図示下方に向けて延在するような場合、すなわち直線状の流路として延在する場合を例として説明している。なお、このような粗粉流路24の形態は直線状の流路に限られず、例えば、図2Aおよび図3に示すように下方に向かって長辺方向の幅が減少するように絞られた流路としても良い。また、所定の距離だけ直線状の流路として、その後絞られた流路としても良い。   4 and 5B, when the width of the long side direction of the coarse powder flow path 24 extends downward in the figure in a substantially constant state, that is, when it extends as a linear flow path. It is described as an example. Note that the form of the coarse powder channel 24 is not limited to a linear channel, and is narrowed so that the width in the long side direction decreases downward as shown in FIGS. 2A and 3, for example. A flow path may be used. Moreover, it is good also as a flow path narrowed after that as a linear flow path only for predetermined distance.

次に、粉体分級装置4における原料粉体導入部11について詳細に説明する。上述したように原料粉体導入部11は、円形状断面の流路25を長方形状断面の流路26に変換して、長方形状流路断面を有する原料粉体の流れを分散板13へ導入する、いわゆるコートハンガー型流路を構成している。ここで、原料粉体導入部11においてコートハンガー型流路を形成する流路形成部材51を図6に示す。なお、図6に示す流路形成部材51が2個、対向して重ね合わせることにより、その内側にコートハンガー型流路50が形成される。   Next, the raw material powder introducing section 11 in the powder classifying device 4 will be described in detail. As described above, the raw material powder introduction unit 11 converts the circular cross-section flow path 25 into the rectangular cross-section flow path 26 and introduces the flow of the raw material powder having the rectangular cross-section into the dispersion plate 13. The so-called coat hanger type flow path is configured. Here, a flow path forming member 51 that forms a coat hanger type flow path in the raw material powder introducing portion 11 is shown in FIG. In addition, when the two flow path forming members 51 shown in FIG. 6 are overlapped with each other, the coat hanger type flow path 50 is formed inside thereof.

図6において、(A)は流路形成部材51の正面図(流路形成側)、(B)は上面図、(C)は下面図、(D)は(A)におけるB−B線断面図、(E)は(A)におけるC−C線断面図を示す。また、図6(A)に示す流路形成部材51を2個、対向して重ね合わせて形成したコートハンガー型流路50の断面図(流れ方向に直交する断面)を図7A〜図7Cに示す。図7Aは、図6(A)のD−D線断面に相当する断面図であり、図7Bは、図6(A)のE−E線断面に相当する断面図であり、図7Cは、図6(A)のF−F線断面に相当する断面図である。   6A is a front view of the flow path forming member 51 (flow path forming side), FIG. 6B is a top view, FIG. 6C is a bottom view, and FIG. 6D is a cross-sectional view taken along line BB in FIG. The figure and (E) show the CC sectional view taken on the line in (A). 7A to 7C are cross-sectional views (cross-sections orthogonal to the flow direction) of the coat hanger type flow channel 50 formed by overlapping two flow channel forming members 51 shown in FIG. Show. 7A is a cross-sectional view corresponding to the cross section along line DD in FIG. 6A, FIG. 7B is a cross-sectional view corresponding to the cross section along line EE in FIG. 6A, and FIG. FIG. 7 is a cross-sectional view corresponding to a cross section taken along line FF in FIG.

図6に示すように、流路形成部材51には、円形状断面の流路25を長方形状断面の流路26に変換する正面視にて大略三角形状の流路(コートハンガー型流路)50が形成されている。この大略三角形状の流路50により、円形状断面の流路25における流路幅が、この流路幅よりも大きな長方形状断面の流路26における流路幅となるように拡大される。流路50の拡大角(大略三角形の頂角)は、例えば鋭角に設定される。   As shown in FIG. 6, the flow path forming member 51 has a generally triangular flow path (coat hanger type flow path) in a front view in which a circular cross-section flow path 25 is converted into a rectangular cross-section flow path 26. 50 is formed. By this generally triangular channel 50, the channel width in the circular cross-sectional channel 25 is expanded to be the channel width in the rectangular cross-sectional channel 26 larger than the channel width. The expansion angle (generally triangular apex angle) of the channel 50 is set to an acute angle, for example.

図6(A)に特に示すように、流路形成部材51は、流路50の中央部分において平面視にて三角形状の平面として形成された平面部52と、平面部52の両端部分に沿って形成された溝部53とにより画定される。図6(E)に示すように、それぞれの溝部53は、平面部52よりも深く掘り下げられて形成されている。また、図6(A)に示すように、それぞれの溝部53は、上流側から下流側へと向かうにしたがって、その幅が減少するように形成されており、流路50の下流側端部の手前にて溝部53が終端する。   As shown particularly in FIG. 6 (A), the flow path forming member 51 includes a flat portion 52 formed as a triangular plane in plan view at the center portion of the flow path 50, and along both end portions of the flat portion 52. Defined by the groove 53 formed in the above manner. As shown in FIG. 6E, each groove 53 is formed deeper than the flat portion 52. Further, as shown in FIG. 6A, each groove 53 is formed so that its width decreases as it goes from the upstream side to the downstream side. The groove 53 terminates in front.

流路50の断面形状は、図7Aに示すように上流部分では円形状断面となっており、図7Cに示すように下流部分では長方形状断面となっている。また、上流部分と下流部分との中間部分では、図7Bに示すように、対向する平面部52にて画定される長方形状流路54の両端縁部分に、対向する溝部53にて画定される長方形状流路55が配置された一体的な断面形状を有している。両端縁側の流路55の厚みD1は、中央側の流路54の厚みD2よりも大きく形成されており、流路50は流路断面の中心に対して対称形状を有する。   The cross-sectional shape of the flow path 50 is a circular cross section in the upstream portion as shown in FIG. 7A, and a rectangular cross section in the downstream portion as shown in FIG. 7C. Further, in the intermediate portion between the upstream portion and the downstream portion, as shown in FIG. 7B, the opposite end portions of the rectangular channel 54 defined by the opposed flat portions 52 are defined by the opposed groove portions 53. It has an integral cross-sectional shape in which a rectangular channel 55 is disposed. The thickness D1 of the flow path 55 on both edge sides is formed larger than the thickness D2 of the flow path 54 on the center side, and the flow path 50 has a symmetrical shape with respect to the center of the cross section of the flow path.

このようなコートハンガー型流路50では、流路50の入口から出口に至るまで、流路50の中央部分を通過する流れと端縁部分を通過する流れとの圧力損失に大きな差が生じないようにその断面形状が設定される。したがって、コートハンガー型流路50では、円形状断面の流路25にて導入される原料粉体の流れを、流路断面において流れの均一性を保ちながら、円形状から長方形状の流れへと徐々に変換し、最終的に長方形状断面の流路26に合致した原料粉体の流れを形成することができる。したがって、原料粉体の流れの均一性を保ちながら原料粉体を分散板13に導入することができ、分散板13にて効率的な分散処理を行うことができる。また、このような分散処理が行われた原料粉体の流れを、長方形状断面の原料粉体流路27を通じて分級部10に導入することができるため、分級部10では均一な原料粉体の流れに対して分級処理を行えるため、分級精度を向上できる。   In such a coat hanger type flow channel 50, there is no significant difference in pressure loss between the flow passing through the central portion of the flow channel 50 and the flow passing through the edge portion from the inlet to the outlet of the flow channel 50. The cross-sectional shape is set as follows. Therefore, in the coat hanger type flow path 50, the flow of the raw material powder introduced in the flow path 25 having a circular cross section is changed from a circular shape to a rectangular flow while maintaining the flow uniformity in the cross section of the flow path. It is possible to form a flow of raw material powder that gradually transforms and finally matches the flow path 26 having a rectangular cross section. Therefore, the raw material powder can be introduced into the dispersion plate 13 while maintaining the uniformity of the flow of the raw material powder, and the dispersion plate 13 can perform an efficient dispersion process. Moreover, since the flow of the raw material powder subjected to such a dispersion treatment can be introduced into the classification unit 10 through the raw material powder flow path 27 having a rectangular cross section, the classification unit 10 generates a uniform raw material powder. Since classification processing can be performed on the flow, classification accuracy can be improved.

なお、本実施の形態のコートハンガー型流路50は、上述のような構成のみに限定されず、その他様々な構成を採用できる。例えば、図8(A)〜(C)に示すように、同一形状を有する2つのコートハンガー型流路をトーナメント方式にて連結した連結流路60としても良い。なお、図8において、(A)は連結流路60の正面図、(B)は連結流路60の上面図、(C)は(A)の連結流路60におけるG−G線断面図である。   In addition, the coat hanger type flow path 50 of this Embodiment is not limited only to the above structures, Various other structures can be employ | adopted. For example, as shown in FIGS. 8A to 8C, a connection channel 60 in which two coat hanger type channels having the same shape are connected by a tournament method may be used. 8A is a front view of the connection channel 60, FIG. 8B is a top view of the connection channel 60, and FIG. 8C is a cross-sectional view taken along the line GG in the connection channel 60 of FIG. is there.

具体的には、図8に示すように、連結流路60は、流路形成部材61を2個対向させて重ね合わせて形成される。流路形成部材61には、図6にて説明したコートハンガー型流路50が隣接して配置されている(なお、図6の流路50と同じ構成については同じ参照符号を付してその説明を省略する)。さらに、2つのコートハンガー型流路50の入口であるそれぞれの円形状断面の流路62は、その上流側にて1つの円形状断面の流路25として連結されている。また、2つのコートハンガー型流路50の出口である長方形状断面の流路63は、その下流側にて、長方形状断面の一辺が接するように互いに隣接して配置されている。そのため、それぞれの流路63から吐出される原料粉体の流れを、一体的な流れとすることができる。また、連結流路60は、その断面中心に対して対称形状にて形成されている。   Specifically, as shown in FIG. 8, the connection channel 60 is formed by overlapping two channel forming members 61 so as to face each other. The coat hanger type flow channel 50 described in FIG. 6 is disposed adjacent to the flow channel forming member 61 (the same components as those of the flow channel 50 in FIG. (The explanation is omitted.) Furthermore, the circular cross-section flow paths 62 that are the inlets of the two coat hanger-type flow paths 50 are connected as one circular cross-section flow path 25 on the upstream side. Further, the rectangular cross-section flow paths 63 that are the outlets of the two coat hanger-type flow paths 50 are arranged adjacent to each other so that one side of the rectangular cross-section is in contact with the downstream side. Therefore, the flow of the raw material powder discharged from each flow path 63 can be integrated. Moreover, the connection flow path 60 is formed in the symmetrical shape with respect to the center of the cross section.

このように、複数のコートハンガー型流路をトーナメント方式にて連結した連結流路60では、比較的大流量の流れを短い流路長さにて、流れの均一性を保ちながら、円形状断面から長方形状断面の流路へと変換することができる。したがって、長方形状流路断面のアスペクト比(短辺長さに対する長辺長さの比)が大きいような流路に対して、このような連結流路60を適用することが効果的である。また、流路の対称性、すなわち、流路断面の各位置における圧力損失の均一性を考慮すれば、トーナメント方式にて連結させるコートハンガー型流路の個数は、2の乗数(例えば、2個、4個、8個)の個数であることが好ましい。   In this way, in the connection channel 60 in which a plurality of coat hanger type channels are connected by the tournament method, a relatively large flow rate is maintained with a short channel length, while maintaining a uniform flow, To a channel having a rectangular cross section. Therefore, it is effective to apply such a connection channel 60 to a channel having a large aspect ratio (ratio of long side length to short side length) of the rectangular channel cross section. Also, considering the symmetry of the flow path, that is, the uniformity of pressure loss at each position of the flow path cross section, the number of coat hanger type flow paths connected by the tournament method is a multiplier of 2 (for example, 2) The number is preferably 4 or 8).

なお、図8では、同一形状のコートハンガー型流路50をトーナメント方式にて連結するような場合について説明したが、トーナメント方式にて連結する場合には、必ずしも同一形状のコートハンガー型流路を用いる場合に限らず、異なる形状を用いるような場合であっても良い。例えば、原料粉体の流れの慣性を考慮して、流れが均一となるように各流路間や一対の溝部53間において流れの抵抗の差異を個別に設定しても良い。例えば、図9に示す4つのコートハンガー型流路50をトーナメント方式にて連結した連結流路70を用いて具体的に説明する。なお、図9では、各流路やコートハンガー型流路などを模式的に示している。   In addition, in FIG. 8, although the case where the coat hanger type flow path 50 of the same shape was connected by a tournament system was demonstrated, when connecting by a tournament system, the coat hanger type flow path of the same shape is not necessarily required. Not only the case of using but also the case of using a different shape may be used. For example, in consideration of the flow inertia of the raw material powder, the difference in flow resistance may be set individually between each flow path or between the pair of grooves 53 so that the flow is uniform. For example, a specific description will be given using a connection channel 70 in which four coat hanger type channels 50 shown in FIG. 9 are connected by a tournament method. In addition, in FIG. 9, each flow path, a coat hanger type flow path, etc. are shown typically.

図9に示すように、連結流路70は、4つのコートハンガー型流路50A〜50Dがトーナメント方式にて連結された構成を有している。最上流における1つの円形状断面の流路71は、2つの円形状断面の流路72A、72Bに分岐され、さらにそれぞれの流路72A、72Bは、2つの円形状断面の流路73A〜73D(すなわち、合計4つの流路)に分岐され、個々の流路73A〜73Dが、4つのコートハンガー型流路50A〜50Dの入口に接続されている。   As shown in FIG. 9, the connection channel 70 has a configuration in which four coat hanger type channels 50A to 50D are connected by a tournament method. One circular cross-section flow path 71 in the uppermost stream is branched into two circular cross-section flow paths 72A and 72B, and each of the flow paths 72A and 72B has two circular cross-section flow paths 73A to 73D. (I.e., a total of four flow paths), and the individual flow paths 73A to 73D are connected to the inlets of the four coat hanger type flow paths 50A to 50D.

このような構成の連結流路70では、流路が分岐されているため、分岐された後の流路において、分岐前の流れによる慣性の影響を受けることになる。例えば、流路72Aから流路73A、73Bへの分岐を参照すると、流路72Aにおける流れの慣性の影響により、流路73Bよりも流路73Aの方が、原料粉体が流れやすくなる。また、流路73Aからコートハンガー型流路50A内へ導入された原料粉体の流れは、流路73Aにおける流れの慣性の影響を受けて、左右の溝部53a、53b間では、溝部53bよりも溝部53aの方が、原料粉体が流れやすくなる。さらに、4つのコートハンガー型流路50A〜50Dの間では、流路50B、50Cよりも流路50A、50Dの方が、原料粉体が流れやすくなる。   In the connection flow path 70 having such a configuration, since the flow path is branched, the flow path after being branched is affected by inertia due to the flow before branching. For example, referring to the branch from the flow path 72A to the flow paths 73A and 73B, the raw material powder flows more easily in the flow path 73A than in the flow path 73B due to the influence of the flow inertia in the flow path 72A. In addition, the flow of the raw material powder introduced from the flow path 73A into the coat hanger type flow path 50A is affected by the inertia of the flow in the flow path 73A, so that the gap between the left and right groove portions 53a and 53b is greater than that of the groove portion 53b. The raw material powder flows more easily in the groove 53a. Furthermore, between the four coat hanger-type channels 50A to 50D, the raw material powder flows more easily in the channels 50A and 50D than in the channels 50B and 50C.

このような流れの慣性による影響を考慮して、流路73Aの流路断面積を流路73Bの流路断面積よりも小さく設定して流れの抵抗を設けることにより、流路73A、73Bにおける流れを均一にできる。また、コートハンガー型流路50Aにおいて、溝部53aの流路断面積を溝部53bの流路断面積よりも小さく設定することで、それぞれの流れを均一にできる。さらに、4つのコートハンガー型流路50A〜50Dにおいて、それぞれの出口である長方形状断面の流路63A〜63Dの流路断面積(開口面面積)を、流路63A、63Dが、流路63B、63Cよりも小さく設定することで、それぞれの流れを均一にできる。   In consideration of the influence of the flow inertia, the flow path 73A is set to be smaller than the flow path cross-sectional area of the flow path 73B to provide flow resistance. The flow can be made uniform. Further, in the coat hanger type flow channel 50A, each flow can be made uniform by setting the flow channel cross-sectional area of the groove 53a smaller than the flow channel cross-sectional area of the groove 53b. Further, in the four coat hanger-type channels 50A to 50D, the channel cross-sectional areas (opening surface areas) of the channels 63A to 63D having rectangular cross-sections that are the respective outlets are represented by the channels 63A and 63D. , 63C can be set smaller than each other, so that each flow can be made uniform.

特に、このような原料粉体の流れは、粘性が低く高速の流れであるため、バルブなどの流量調整装置を用いずに、それぞれの流路断面積などを調整して流れを均一化することが好ましい。   In particular, since the flow of the raw material powder is a low-viscosity and high-speed flow, the flow can be made uniform by adjusting the cross-sectional area of each channel without using a flow rate adjusting device such as a valve. Is preferred.

なお、上述の説明では、コートハンガー型流路を用いて、円形状流路断面から長方形状流路断面へと流路形状を変換するような場合を例として説明したが、コートハンガー型流路において上流側と下流側とを逆向きに用いて、長方形状流路断面から円形状流路断面へと流路形状を変換するようにしても良い。例えば、原料粉体の分級処理が行われた後、長方形状流路断面を有する細粉流路23や粗粉流路24に、このようなコートハンガー型流路を接続して、円形状流路断面へと流路形状を変換することができる。また、トーナメント方式を採用した連結流路についても、このように逆向きに用いても良い。   In the above description, the case where the channel shape is converted from the circular channel cross section to the rectangular channel cross section using the coat hanger type channel has been described as an example. In FIG. 5, the upstream side and the downstream side may be used in opposite directions to convert the channel shape from a rectangular channel section to a circular channel section. For example, after the raw material powder is classified, such a coat hanger type flow path is connected to the fine powder flow path 23 or the coarse powder flow path 24 having a rectangular flow path cross section so that the circular flow The flow path shape can be converted into a road cross section. In addition, the connection channel adopting the tournament method may be used in the reverse direction as described above.

また、上述の実施の形態では、コートハンガー型流路50の入口に接続される管路(円形状断面流路)が、粉体分級装置4に原料粉体を供給する供給用原料粉体流路となっており、細粉流路23および粗粉流路24に接続されるそれぞれのバグフィルタ5、6へ向かう管路(円形状断面流路)が、粉体分級装置4にて分級された粉体を回収する回収用粉体流路となっている。また、細粉流路23と粗粉流路24とに分岐される分岐部分30よりも上流側に位置される長方形状断面を有する流路22、26、27が、分級用原料粉体流路となっている。   Further, in the above-described embodiment, the pipe line connected to the inlet of the coat hanger type flow path 50 (circular cross-sectional flow path) supplies the raw material powder flow for supplying the raw material powder to the powder classifier 4. The pipes (circular cross-section flow paths) heading to the bag filters 5 and 6 connected to the fine powder flow path 23 and the coarse powder flow path 24 are classified by the powder classifying device 4. This is a collecting powder passage for collecting the collected powder. Further, the flow paths 22, 26, 27 having a rectangular cross section located upstream from the branch portion 30 branched into the fine powder flow path 23 and the coarse powder flow path 24 are classified raw material powder flow paths. It has become.

また、本実施の形態では、粉体分級装置4が、分散部9を備えるような場合を例としたが、分散部を備えない粉体分級装置にも本発明のコートハンガー型流路を適用できる。すなわち、コートハンガー型流路にて長方形状流路断面に変換された原料粉体の流れを、分級部10に直接導入しても良い。   In the present embodiment, the powder classification device 4 is provided with a dispersion unit 9 as an example. However, the coat hanger type flow channel of the present invention is also applied to a powder classification device without a dispersion unit. it can. That is, the raw material powder flow converted into the rectangular channel cross section in the coat hanger type channel may be directly introduced into the classification unit 10.

上述の実施の形態では、粉体分級装置4が、原料粉体を粉体サイズに応じて分離して、粗粉(第1粉体)と細粉(第2粉体)とに分級するような場合を例として説明したが、本発明の粉体分級装置は、このような場合についてのみ限定されない。本発明の粉体分級装置にて、原料粉体を粉体密度に応じて分離して、原料粉体を高密度粉体(第1粉体)と低密度粉体(第2粉体)とに分級するような場合であっても良い。   In the above-described embodiment, the powder classification device 4 separates the raw material powder according to the powder size and classifies it into coarse powder (first powder) and fine powder (second powder). However, the powder classification device of the present invention is not limited to such a case. In the powder classifying apparatus of the present invention, the raw material powder is separated according to the powder density, and the raw material powder is divided into a high density powder (first powder) and a low density powder (second powder). It may be a case where classification is performed.

また、本発明のコートハンガー型流路は、粉体分級装置に適用する場合のみに限定されず、上述した原料粉体の流れ以外のエアロゾルの流れ(エアロゾル搬送用流路)にも適用することができる。   Further, the coat hanger type flow path of the present invention is not limited to the case where it is applied to a powder classifier, but is also applicable to an aerosol flow (aerosol transfer flow path) other than the above-described raw material powder flow. Can do.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

1 粉体分級システム
2 定量フィーダ
3 分散機
4 粉体分級装置
5 細粉回収用バグフィルタ
6 粗粉回収用バグフィルタ
7 真空ポンプ
8 クリーンエア供給部
9 分散部
10 分級部
13 分散板
17 合流部
18 分離部
22 原料粉体流路
23 細粉流路
24 粗粉流路
30 分岐部分
33 開口部
50 コートハンガー型流路
51 流路形成部材
52 平面部
53 溝部
60 連結流路
DESCRIPTION OF SYMBOLS 1 Powder classification system 2 Fixed quantity feeder 3 Dispersing machine 4 Powder classification apparatus 5 Bag filter for fine powder collection 6 Bag filter for coarse powder collection 7 Vacuum pump 8 Clean air supply part 9 Dispersing part 10 Classifying part 13 Dispersing plate 17 Junction part 18 Separation part 22 Raw material powder flow path 23 Fine powder flow path 24 Coarse powder flow path 30 Branching portion 33 Opening part 50 Coat hanger type flow path 51 Flow path forming member 52

Claims (6)

円形状流路断面を有する第1エアロゾル流路と、
長方形状流路断面を有する第2エアロゾル流路と、
第1エアロゾル流路と第2エアロゾル流路とを接続するコートハンガー型流路と、
コートハンガー型流路は、流路断面におけるエアロゾルの流れの均一性を保ちながら、円形状流路断面から長方形状流路断面に、または、長方形状流路断面から円形状流路断面に流路断面を変換する、エアロゾル搬送用流路。
A first aerosol channel having a circular channel cross section;
A second aerosol channel having a rectangular channel cross section;
A coat hanger type channel connecting the first aerosol channel and the second aerosol channel;
The coat hanger type flow path is a flow path from a circular flow path cross section to a rectangular flow path cross section or from a rectangular flow path cross section to a circular flow path cross section while maintaining the uniformity of the aerosol flow in the flow path cross section. Aerosol flow path that converts the cross section.
気体と混合された状態で供給される原料粉体を、慣性力を用いて第1粉体と第2粉体とに分級する粉体分級装置において、
長方形状流路断面を有する分級用原料粉体流路を、長方形状流路断面を有する第1粉体流路と第2粉体流路とのそれぞれに分岐して、原料粉体を第1粉体と第2粉体とに分級する分級部と、
円形状流路断面を有する供給用原料粉体流路と、
供給用原料粉体流路と分級用原料粉体流路とを接続するコートハンガー型流路と、を備え、
コートハンガー型流路は、流路断面におけるエアロゾルの流れの均一性を保ちながら、円形状流路断面から長方形状流路断面に流路断面を変換する、粉体分級装置。
In a powder classification apparatus for classifying raw material powder supplied in a mixed state with gas into a first powder and a second powder using inertial force,
The raw material powder channel for classification having a rectangular channel cross section is branched into a first powder channel and a second powder channel having a rectangular channel cross section, and the raw material powder is divided into the first powder channel and the first powder channel. A classification part for classifying the powder and the second powder;
A raw material powder channel for supply having a circular channel cross section;
A coat hanger type channel connecting the raw material powder channel for supply and the raw material powder channel for classification;
The coat hanger type flow path is a powder classification device that converts the flow path cross section from the circular flow path cross section to the rectangular flow path cross section while maintaining the uniformity of the aerosol flow in the flow path cross section.
気体と混合された状態で供給される原料粉体を、慣性力を用いて第1粉体と第2粉体とに分級する粉体分級装置において、
長方形状流路断面を有する分級用原料粉体流路を、長方形状流路断面を有する第1粉体流路と第2粉体流路とのそれぞれに分岐して、原料粉体を第1粉体と第2粉体とに分級する分級部と、
円形状流路断面を有する回収用粉体流路と、
第1粉体流路または第2粉体流路と、回収用粉体流路とを接続するコートハンガー型流路と、を備え、
コートハンガー型流路は、流路断面におけるエアロゾルの流れの均一性を保ちながら、長方形状流路断面から円形状流路断面に流路断面を変換する、粉体分級装置。
In a powder classification apparatus for classifying raw material powder supplied in a mixed state with gas into a first powder and a second powder using inertial force,
The raw material powder channel for classification having a rectangular channel cross section is branched into a first powder channel and a second powder channel having a rectangular channel cross section, and the raw material powder is divided into the first powder channel and the first powder channel. A classification part for classifying the powder and the second powder;
A collecting powder channel having a circular channel cross section;
A coat hanger type flow path connecting the first powder flow path or the second powder flow path and the recovery powder flow path,
The coat hanger type flow path is a powder classification device that converts the flow path cross section from the rectangular flow path cross section to the circular flow path cross section while maintaining the uniformity of the aerosol flow in the flow path cross section.
コートハンガー型流路として、複数のコートハンガー型流路がトーナメント方式にて連結された連結流路が用いられる、請求項2または3に記載の粉体分級装置。   The powder classification apparatus according to claim 2 or 3, wherein a connection channel in which a plurality of coat hanger channels are connected by a tournament method is used as the coat hanger channel. 連結流路において、隣接するコートハンガー型流路のそれぞれの長方形状流路断面の一辺が接するように、複数のコートハンガー型流路がトーナメント方式にて連結されている、請求項4に記載の粉体分級装置。   The plurality of coat hanger-type channels are connected by a tournament method so that one side of each rectangular channel cross section of adjacent coat hanger-type channels is in contact with each other in the connection channel. Powder classifier. コートハンガー型流路は、両端縁部分の流路断面の厚さが中央部分の流路断面の厚さよりも大きく、流路断面の中心に対して対称形状を有する、請求項2から5のいずれか1つに記載の粉体分級装置。   6. The coat hanger type channel has a thickness of a channel cross section at both edge portions larger than a thickness of a channel cross section of a central portion, and has a symmetrical shape with respect to the center of the channel cross section. The powder classification apparatus as described in any one.
JP2011064472A 2011-03-23 2011-03-23 Aerosol conveying flow passage and powder classifier Pending JP2012200617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011064472A JP2012200617A (en) 2011-03-23 2011-03-23 Aerosol conveying flow passage and powder classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011064472A JP2012200617A (en) 2011-03-23 2011-03-23 Aerosol conveying flow passage and powder classifier

Publications (1)

Publication Number Publication Date
JP2012200617A true JP2012200617A (en) 2012-10-22

Family

ID=47182152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064472A Pending JP2012200617A (en) 2011-03-23 2011-03-23 Aerosol conveying flow passage and powder classifier

Country Status (1)

Country Link
JP (1) JP2012200617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073938A (en) * 2013-10-08 2015-04-20 株式会社日清製粉グループ本社 Swirl vortex flow type classifier and classification method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610344A (en) * 1984-03-26 1986-09-09 Lagrison Industries Ltd. Filling attachment for a feed tube
JPS6268577A (en) * 1985-09-19 1987-03-28 株式会社神戸製鋼所 Sorter for powdered body
JPH09300430A (en) * 1996-05-14 1997-11-25 Toshiba Mach Co Ltd T-die equipped with combination type manifold
JPH11276996A (en) * 1998-03-31 1999-10-12 Nittetsu Mining Co Ltd Powdery raw material feeder for pneumatic classifier
JP2004089898A (en) * 2002-09-02 2004-03-25 Hyogo Prefecture Method and apparatus for isolating suspended particle in fluid
JP2009113483A (en) * 2007-10-15 2009-05-28 Asahi Fiber Glass Co Ltd Thermoplastic resin foam and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610344A (en) * 1984-03-26 1986-09-09 Lagrison Industries Ltd. Filling attachment for a feed tube
JPS6268577A (en) * 1985-09-19 1987-03-28 株式会社神戸製鋼所 Sorter for powdered body
JPH09300430A (en) * 1996-05-14 1997-11-25 Toshiba Mach Co Ltd T-die equipped with combination type manifold
JPH11276996A (en) * 1998-03-31 1999-10-12 Nittetsu Mining Co Ltd Powdery raw material feeder for pneumatic classifier
JP2004089898A (en) * 2002-09-02 2004-03-25 Hyogo Prefecture Method and apparatus for isolating suspended particle in fluid
JP2009113483A (en) * 2007-10-15 2009-05-28 Asahi Fiber Glass Co Ltd Thermoplastic resin foam and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073938A (en) * 2013-10-08 2015-04-20 株式会社日清製粉グループ本社 Swirl vortex flow type classifier and classification method

Similar Documents

Publication Publication Date Title
US11634286B2 (en) Multilayer hydrodynamic sheath flow structure
TWI654029B (en) Cyclone separation device and classification method
WO2012009450A3 (en) Pulverizer classifier
WO2008148028A3 (en) Methods and apparatuses for separating biological particles
US9033155B2 (en) Screening device and method of screening
AU2013388348A1 (en) Classifier
JP6283021B2 (en) Powder classification device and powder classification system
CN206882167U (en) A kind of segmentation screening plant of silicon carbide powder
JP2012200617A (en) Aerosol conveying flow passage and powder classifier
JP5885953B2 (en) Powder dispersion apparatus and method
JP5491029B2 (en) Equipment for classifying input materials
JP6081112B2 (en) Powder classifier
JP2012187514A (en) Powder classifying apparatus
CA2910608C (en) Classifier
JP2012187479A (en) Powder classifying apparatus
JP2012187480A (en) Powder classifying apparatus
JP2014117279A (en) Device and method for collecting and discharging free particles that occur during conveying of rod-shaped items for the tobacco industry
KR20140026528A (en) Device and method for separating feedstock into at least one light material fraction and a heavy material fraction
JP2014057909A (en) Powder classifying device
CA2797751A1 (en) Facility for grinding inorganic material, having a roller press
TW473402B (en) Cone separator and method for separating bulk material which is pourable to a limited extent or which is non-pourable
JP2014057910A (en) Powder classifying device
JP6666206B2 (en) Cyclone device and classification method
CN202778752U (en) Dual-gradient intake-air-adjustable cyclone dust collector
JP3660956B2 (en) Classification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303