JP2012200077A - Piezoelectric generator and electronic apparatus provided with the same - Google Patents

Piezoelectric generator and electronic apparatus provided with the same Download PDF

Info

Publication number
JP2012200077A
JP2012200077A JP2011062526A JP2011062526A JP2012200077A JP 2012200077 A JP2012200077 A JP 2012200077A JP 2011062526 A JP2011062526 A JP 2011062526A JP 2011062526 A JP2011062526 A JP 2011062526A JP 2012200077 A JP2012200077 A JP 2012200077A
Authority
JP
Japan
Prior art keywords
elastic
piezoelectric
weight
elastic member
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011062526A
Other languages
Japanese (ja)
Other versions
JP5760561B2 (en
Inventor
Yasuhiro Ono
泰弘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011062526A priority Critical patent/JP5760561B2/en
Publication of JP2012200077A publication Critical patent/JP2012200077A/en
Application granted granted Critical
Publication of JP5760561B2 publication Critical patent/JP5760561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric generator capable of efficiently converting mechanical energy applied in a direction intersecting with a direction in which piezoelectric plates undergo deflections into electrical energy.SOLUTION: A piezoelectric generator 100 is a piezoelectric generator that converts mechanical energy applied from an outside into electrical energy. The piezoelectric generator 100 comprises: a supporting section 10; a plurality of elastic members 21 of which one end portions are fixed to the supporting section 10; piezoelectric plates 22 that are bonded with the plurality of elastic members 21 and have electrodes on front and rear surfaces; an elastic coupling member 30 for coupling the other end portions of the plurality of elastic members 21 to each other; and a weight 40 formed at a substantially center portion of the elastic coupling member 30. Since the mechanical energy applied in an unspecified direction is transmitted such that the piezoelectric plates 22 undergo flexural vibration due to movement of the weight 40, the piezoelectric generator 100 can more efficiently convert the mechanical energy into the electrical energy.

Description

本発明は、圧電発電装置、および圧電発電装置を備えた電子機器に関する。   The present invention relates to a piezoelectric power generator and an electronic apparatus including the piezoelectric power generator.

従来、例えば、特許文献1に記載されているように、片持ち梁状の板に圧電板を貼り付け、板を振動によりたわませることで圧電板を伸縮させ、圧電板に設けた電極対に交流電圧を発生させる圧電発電装置が知られていた。   Conventionally, for example, as described in Patent Document 1, a piezoelectric plate is attached to a cantilever plate, and the piezoelectric plate is expanded and contracted by bending the plate by vibration. There has been known a piezoelectric power generation device that generates an alternating voltage.

特開平7−107752号公報JP-A-7-107752

しかしながら、特許文献1に記載の圧電発電装置では、板を振動させることで、板に貼り付けられた圧電板を伸縮させて電気エネルギーに変換するが、振動による力学的エネルギーが、板のたわむ方向と同じ方向のエネルギー成分に限られる。つまり、板のたわむ方向と交差する方向に加えられた力学的エネルギーの内、板のたわむ方向と同一方向のエネルギー成分のみが、板をたわませることができるため、力学的エネルギーの方向が定まらず様々な方向から振動が加えられる環境下では、電気エネルギーへの変換効率が低いという課題があった。   However, in the piezoelectric power generation device described in Patent Document 1, by vibrating the plate, the piezoelectric plate attached to the plate is expanded and contracted to convert it into electric energy. Is limited to energy components in the same direction. That is, only the energy component in the same direction as the bending direction of the plate out of the mechanical energy applied in the direction intersecting with the bending direction of the plate can deflect the plate, so the direction of the mechanical energy is not fixed. However, in an environment where vibration is applied from various directions, there is a problem that the conversion efficiency to electric energy is low.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]振動を電気エネルギーに変換する圧電発電装置であって、振動によって繰返し変形可能な第1の弾性部材と、振動によって繰返し変形可能な第2の弾性部材と、前記第1の弾性部材の一方の端部と前記第2の弾性部材の一方の端部とを支持する支持部と、前記第1の弾性部材の一方の面に備えられる第1の圧電板と、前記第2の弾性部材の一方の面に備えられる第2の圧電板と、前記第1の弾性部材の他方の端部と前記第2の弾性部材の他方の端部とを連結し、振動によって繰返し変形可能な弾性連結部材と、前記弾性連結部材に備えられる錘と、を備えることを特徴とする。   Application Example 1 A piezoelectric power generation apparatus that converts vibration into electric energy, the first elastic member that can be repeatedly deformed by vibration, the second elastic member that can be repeatedly deformed by vibration, and the first elasticity A support portion that supports one end portion of the member and one end portion of the second elastic member, a first piezoelectric plate provided on one surface of the first elastic member, and the second A second piezoelectric plate provided on one surface of the elastic member, the other end of the first elastic member and the other end of the second elastic member are connected, and can be repeatedly deformed by vibration. An elastic connecting member and a weight provided in the elastic connecting member are provided.

本適用例によれば、第1および第2の弾性部材を変形させることで第1および第2の圧電板が伸縮し、第1および第2の圧電板が電気エネルギーを発生する。錘に加えられた力学的エネルギーが、弾性連結部材を通じて第1および第2の弾性部材に伝達され、第1および第2の弾性部材を変形させる。この際、錘に対して不特定方向に加えられた力学的エネルギーは、錘が継続して運動することによって第1および第2の弾性部材に伝達され、様々な方向からの振動でも第1および第2の弾性部材を変形させることができるため、より効率的に電気エネルギーへの変換をすることができる。   According to this application example, the first and second piezoelectric plates expand and contract by deforming the first and second elastic members, and the first and second piezoelectric plates generate electrical energy. The mechanical energy applied to the weight is transmitted to the first and second elastic members through the elastic connecting member, and deforms the first and second elastic members. At this time, the mechanical energy applied to the weight in an unspecified direction is transmitted to the first and second elastic members by continuously moving the weight, and the first and second vibrations from various directions are also transmitted to the first and second elastic members. Since the second elastic member can be deformed, it can be more efficiently converted into electric energy.

具体的には、弾性連結部材に備えられる錘は、振動により力学的エネルギーを加えられると、一定の期間、弾性連結部材の持つ弾性作用により、運動を継続する。錘に加えられた力学的エネルギーの方向が、第1および第2の弾性部材の変形方向と交差する方向であっても、その運動エネルギーは、錘が運動する期間は、弾性連結部材を介して、第1および第2の弾性部材に伝達される。すなわち、錘は、往復運動あるいは円運動あるいはそれらの組み合わせの運動をしながら、弾性連結部材によって連結された第1および第2の弾性部材の変形方向のエネルギー成分としてエネルギーの伝達を継続し、その運動を減衰させていく。空気抵抗や摩擦、支持部から外部に漏れ出る力学的エネルギーなどのエネルギー損失分を除き、錘が運動を減衰してゆく減衰期間を通して、錘の持つ力学的エネルギーの多くが第1および第2の弾性部材の変形方向のエネルギー成分として繰り返し伝達される。このため、第1の弾性部材が備える第1の圧電板および第2の弾性部材が備える第2の圧電板は伸縮を繰り返し、より効率的にエネルギーの変換を行うことができる。   Specifically, when the mechanical energy is applied by vibration, the weight provided in the elastic connecting member continues to move due to the elastic action of the elastic connecting member for a certain period. Even if the direction of the mechanical energy applied to the weight is a direction that intersects the deformation direction of the first and second elastic members, the kinetic energy is transmitted through the elastic connecting member during the period during which the weight moves. , Transmitted to the first and second elastic members. That is, the weight continues to transmit energy as an energy component in the deformation direction of the first and second elastic members connected by the elastic connecting member while reciprocating or circularly moving or a combination thereof. Reduce the movement. Except for energy loss such as air resistance, friction, and mechanical energy leaking outside from the support part, most of the mechanical energy of the weight is the first and second throughout the decay period during which the weight is damped. It is repeatedly transmitted as an energy component in the deformation direction of the elastic member. For this reason, the 1st piezoelectric board with which the 1st elastic member is provided, and the 2nd piezoelectric board with which the 2nd elastic member is provided can repeat expansion and contraction, and can perform energy conversion more efficiently.

[適用例2]上記適用例に係る圧電発電装置において、前記第1および第2の弾性部材の弾性率は、前記弾性連結部材の弾性率よりも大きいことを特徴とする。   Application Example 2 In the piezoelectric power generation device according to the application example described above, the elastic modulus of the first and second elastic members is larger than the elastic modulus of the elastic coupling member.

本適用例によれば、一般に弾性率は変形のしにくさを表す物性値のため、外部からの振動に対する第1および第2の弾性部材の変形量は、弾性連結部材に比較して小さくなる。そのため、支持部から第1および第2の弾性部材を通じて加えられる振動が、弾性連結部材や錘に伝達しやすくなる。つまり、力学的エネルギーをより効率的に錘を含む弾性連結部材に伝達することができる。   According to this application example, since the elastic modulus is generally a physical property value indicating difficulty of deformation, the deformation amount of the first and second elastic members with respect to external vibration is smaller than that of the elastic coupling member. . Therefore, the vibration applied from the support portion through the first and second elastic members is easily transmitted to the elastic connecting member and the weight. That is, mechanical energy can be more efficiently transmitted to the elastic connecting member including the weight.

[適用例3]上記適用例に係る圧電発電装置において、前記第1の弾性部材の一方の端部と前記第2の弾性部材の一方の端部とが接合されて前記支持部に支持されていることを特徴とする。   Application Example 3 In the piezoelectric power generation device according to the application example, one end portion of the first elastic member and one end portion of the second elastic member are joined and supported by the support portion. It is characterized by being.

本適用例によれば、第1および第2の弾性部材の端部同士が支持部で接合される構成となるため、支持部をよりコンパクトに構成することができる。その結果、発電装置の小型化を図ることができる。また、第1および第2の弾性部材の接合箇所では剛性が増し、大きい振動を受けたときでも破損されにくい圧電発電装置を提供することができる。   According to this application example, since the end portions of the first and second elastic members are joined by the support portion, the support portion can be configured more compactly. As a result, the power generator can be downsized. In addition, the piezoelectric power generating apparatus can be provided that has increased rigidity at the joint between the first and second elastic members and is not easily damaged even when subjected to large vibrations.

[適用例4]上記適用例に係る圧電発電装置において、前記第1の弾性部材の、前記一方の面に向かい合う他方の面に備えられる第3の圧電板と、前記第2の弾性部材の、前記一方の面に向かい合う他方の面に備えられる第4の圧電板と、をさらに備えることを特徴とする。   Application Example 4 In the piezoelectric power generation apparatus according to the application example described above, a third piezoelectric plate provided on the other surface of the first elastic member facing the one surface, and the second elastic member, And a fourth piezoelectric plate provided on the other surface facing the one surface.

本適用例によれば、第1の弾性部材の向かい合う両面に第1の圧電板と第3の圧電板とが備えられているため、第1の弾性部材の変形に対して、一方の圧電板は伸び、他方の圧電板は縮むことでそれぞれが逆位相の電気エネルギーを同時に発生させることができる。同様に、第2の弾性部材の向かい合う両面に第2の圧電板と第4の圧電板とが備えられているため、第2の弾性部材の変形に対して、一方の圧電板は伸び、他方の圧電板は縮むことでそれぞれが逆位相の電気エネルギーを同時に発生させることができる。このため、より効率的に発電をすることができる。   According to this application example, since the first piezoelectric plate and the third piezoelectric plate are provided on both opposing surfaces of the first elastic member, one piezoelectric plate against the deformation of the first elastic member. The other piezoelectric plate is contracted, so that electric energy in opposite phases can be generated simultaneously. Similarly, since the second piezoelectric plate and the fourth piezoelectric plate are provided on both sides of the second elastic member facing each other, one piezoelectric plate extends with respect to the deformation of the second elastic member, and the other Each of the piezoelectric plates can be contracted to generate electric energy in opposite phases at the same time. For this reason, it is possible to generate power more efficiently.

[適用例5]本適用例に係る電子機器は、上記に記載の圧電発電装置を用いたことを特徴とする。   Application Example 5 An electronic apparatus according to this application example uses the piezoelectric power generation device described above.

電子機器として上記の圧電発電装置を用いることにより、電源供給源を必須構成としない電子機器として提供することができる。例えば、振動の方向が定まらない人体や動物に装着して使用する電子機器や、自然エネルギーに起因して発生する振動(風や波など)を利用して発電することが可能な環境で使用される電子機器に最適である。   By using the above-described piezoelectric power generation device as an electronic device, it can be provided as an electronic device that does not have a power supply source as an essential component. For example, it is used in electronic devices that are worn on human bodies or animals where the direction of vibration is not fixed, or in an environment where power can be generated using vibrations (wind, waves, etc.) generated by natural energy. Ideal for electronic equipment.

実施形態1に係る圧電発電装置の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of a piezoelectric power generation device according to Embodiment 1. FIG. (a)〜(c);実施形態1に係る圧電発電装置の動作を示す説明図である。(A)-(c); It is explanatory drawing which shows operation | movement of the piezoelectric electric power generating apparatus which concerns on Embodiment 1. FIG. 実施形態2に係る圧電発電装置の構成を示す概略図である。FIG. 3 is a schematic diagram illustrating a configuration of a piezoelectric power generation device according to a second embodiment. 変形例1に係る圧電発電装置の構成を示す概略図である。FIG. 6 is a schematic diagram illustrating a configuration of a piezoelectric power generation device according to Modification 1. 圧電発電装置の利用例を示す回路図である。It is a circuit diagram which shows the usage example of a piezoelectric generator.

以下、本発明を具体化した実施形態について、図面を参照して説明する。なお、以下の各図においては、説明を分かりやすくするため、実際とは異なる尺度で記載している場合がある。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Embodiments of the invention will be described below with reference to the drawings. In the following drawings, the scale may be different from the actual scale for easy understanding.

(実施形態1)
図1は、実施形態1に係る圧電発電装置100の構成を示す概略図である。
圧電発電装置100は、2つの圧電素子を利用した圧電発電装置で、支持部10、弾性部材21、圧電素子20、弾性連結部材30、錘40などから構成されている。
(Embodiment 1)
FIG. 1 is a schematic diagram illustrating a configuration of a piezoelectric power generation device 100 according to the first embodiment.
The piezoelectric power generation apparatus 100 is a piezoelectric power generation apparatus using two piezoelectric elements, and includes a support portion 10, an elastic member 21, a piezoelectric element 20, an elastic connecting member 30, a weight 40, and the like.

支持部10は、圧電発電装置100のベースとなる略直方体のブロックで、2つの弾性部材21のそれぞれの一方の端部21bを支持し固定している。支持部10は、外部からの力学的エネルギーを受けて、弾性部材21を経由し、弾性部材21の他方の端部21tに連結されている弾性連結部材30および錘40にそのエネルギーを伝達する。   The support unit 10 is a substantially rectangular parallelepiped block serving as a base of the piezoelectric power generation device 100, and supports and fixes one end portion 21 b of each of the two elastic members 21. The support portion 10 receives mechanical energy from the outside, and transmits the energy to the elastic connecting member 30 and the weight 40 connected to the other end 21 t of the elastic member 21 via the elastic member 21.

支持部10は非圧電材料からなり、本実施形態では好適例としてアルミナ(Al23)を用いている。非圧電材料としては、アルミナの他、ジルコニア(ZrO2)、シリコン、窒化シリコン、シリコンカーバイト、石英、有機ポリマーなどが挙げられる。 The support portion 10 is made of a non-piezoelectric material, and alumina (Al 2 O 3 ) is used as a suitable example in this embodiment. Examples of non-piezoelectric materials include alumina, zirconia (ZrO 2 ), silicon, silicon nitride, silicon carbide, quartz, and organic polymers.

圧電素子20は、圧電板22、電極板23、配線24などから構成され、弾性部材21に備えられる。2つの弾性部材21は、互いに向き合うように、間隔を有して略平行に、また支持部10に対して略垂直方向に延出するように配置され、それぞれの端部21bは支持部10に挿嵌され、固定されている。2つの弾性部材21の配置は特に限定されるものではなく、間隔を有して略平行に配置すれば、2つの弾性部材21は振動に対し同じような変形をするため、圧電板22から発生する電気エネルギーも等しくなる。よって、振動で発生する電気エネルギーの発生量を予測することが容易となる。   The piezoelectric element 20 includes a piezoelectric plate 22, an electrode plate 23, a wiring 24 and the like, and is provided in the elastic member 21. The two elastic members 21 are arranged so as to face each other and are substantially parallel to each other and extend in a substantially vertical direction with respect to the support portion 10, and each end portion 21 b is formed on the support portion 10. It is inserted and fixed. The arrangement of the two elastic members 21 is not particularly limited. If the two elastic members 21 are arranged substantially parallel to each other with a gap therebetween, the two elastic members 21 are deformed in the same manner with respect to vibration, and thus are generated from the piezoelectric plate 22. The electric energy to be equalized. Therefore, it becomes easy to predict the amount of electric energy generated by vibration.

圧電板22は電極板23を備え、弾性部材21に1つの振動が入力されたとき、伸張する部位と収縮する部位とに貼り付けられている。弾性部材21のたわみによって、一方の圧電板22は伸び、他方の圧電板22は縮むことでそれぞれが逆位相の電気エネルギーを同時に発生させることができる構成となっている。   The piezoelectric plate 22 includes an electrode plate 23 and is attached to a portion that expands and contracts when one vibration is input to the elastic member 21. Due to the bending of the elastic member 21, one piezoelectric plate 22 is extended and the other piezoelectric plate 22 is contracted, so that each can generate electric energy in opposite phases at the same time.

電極板23は、圧電板22と略同面積の広さを有する金属板であり、圧電板22の表裏面に貼り付けられている。電極板23は、圧電板22で発生する電気エネルギーを配線24によって端子A、A’、B、B’に導出する。   The electrode plate 23 is a metal plate having the same area as the piezoelectric plate 22, and is attached to the front and back surfaces of the piezoelectric plate 22. The electrode plate 23 leads the electrical energy generated by the piezoelectric plate 22 to the terminals A, A ′, B, B ′ through the wiring 24.

弾性部材21には、好適例として、SUS(Stainless Used Steel)を用いている。なおこれに限ることなく、アルミナ、ジルコニアなどのセラミックスや、真鍮、燐青銅などを用いても良い。   As a suitable example, SUS (Stainless Used Steel) is used for the elastic member 21. However, the present invention is not limited to this, and ceramics such as alumina and zirconia, brass, phosphor bronze, and the like may be used.

圧電板22には、好適例としてチタン酸ジルコン酸鉛(PZT)を用いている。なお、これに限定するものではなく、マグネシウム酸ニオブ酸鉛(PMN)−PZT、ニッケル酸ニオブ酸鉛(PNN)−PZT、PMN−チタン酸鉛(PT)、チタン酸バリウム(BaTiO3)などの圧電性セラミックスや、ポリフッ化ビニリデン(PVDF)のような圧電性高分子などを用いても良い。
また、圧電板22は、延在方向の収縮により厚み方向に電圧が発生するように、予め分極させておく。
For the piezoelectric plate 22, lead zirconate titanate (PZT) is used as a preferred example. In addition, it is not limited to this, Lead magnesium niobate (PMN) -PZT, Lead nickel niobate (PNN) -PZT, PMN-Lead titanate (PT), Barium titanate (BaTiO 3 ), etc. Piezoelectric ceramics or piezoelectric polymers such as polyvinylidene fluoride (PVDF) may be used.
The piezoelectric plate 22 is previously polarized so that a voltage is generated in the thickness direction due to contraction in the extending direction.

弾性連結部材30は、2つの弾性部材21の端部21tを連結している。つまり、弾性部材21の支持部10に固定されていない自由端同士を、弾性連結部材30によって連結している。   The elastic connecting member 30 connects the end portions 21 t of the two elastic members 21. That is, the free ends that are not fixed to the support portion 10 of the elastic member 21 are connected by the elastic connecting member 30.

錘40は、弾性連結部材30の略中央部に形成されている。錘40の運動エネルギーは、弾性連結部材30の持つ弾性エネルギーとの間で授受を繰り返し、弾性連結部材30を介して、連結された弾性部材21に伝達される構成となっている。錘40を弾性連結部材30の略中央部に形成することにより、2つの弾性部材21は振動に対し同じような変形をするため、圧電板22から発生する電気エネルギーも等しくなる。よって、振動で発生する電気エネルギーの発生量を予測することが容易となる。
錘40には、好適例として、SUSを用いている。なおこれに限ることなく、アルミナ、ジルコニアなどのセラミックスや、真鍮、燐青銅などを用いても良く、また、よりコンパクトに構成する上では、より密度(比重)の高いものが好ましい。
The weight 40 is formed at a substantially central portion of the elastic connecting member 30. The kinetic energy of the weight 40 is transferred between the elastic energy of the elastic connecting member 30 and transmitted to the connected elastic member 21 through the elastic connecting member 30. By forming the weight 40 substantially at the center of the elastic connecting member 30, the two elastic members 21 are deformed in the same manner with respect to vibration, so that the electric energy generated from the piezoelectric plate 22 is also equal. Therefore, it becomes easy to predict the amount of electric energy generated by vibration.
As the weight 40, SUS is used as a preferable example. However, the present invention is not limited to this, and ceramics such as alumina and zirconia, brass, phosphor bronze, and the like may be used. In addition, a higher density (specific gravity) is preferable for a more compact configuration.

なお、錘40は、2つの端部21tを連結する弾性連結部材30の略中央部に周設するように形成しても良いし、錘40を2つの端部21tの中間位置に配置して、2つ弾性連結部材30によって錘40を両側の端部21tに連結させる構成であってもよい。また、弾性連結部材30の中央部分の形状を変えること(厚くする、太くするなど)により、弾性連結部材30自身に錘40の機能を持たせる構成であっても良い。   The weight 40 may be formed so as to be provided around the substantially central portion of the elastic connecting member 30 that connects the two end portions 21t, or the weight 40 is disposed at an intermediate position between the two end portions 21t. The structure which connects the weight 40 with the edge parts 21t of both sides by the two elastic connection members 30 may be sufficient. Moreover, the structure which gives the function of the weight 40 to elastic connection member 30 itself by changing the shape of the center part of the elastic connection member 30 (thickening, making it thick etc.) may be sufficient.

弾性連結部材30には、好適例としてSUSで作られたバネを用いている。なお、バネの材料は、これに限定するものではなく、チタン、リン青銅、ピアノ線(炭素鋼)などを用いても良い。また弾性連結部材30は、必ずしもバネである必要はなく、ゴムなどを含め、錘40の運動エネルギーを、弾性エネルギーとして吸収し、また錘40や弾性部材21にエネルギーを発散し伝達できる弾性体であれば良い。
弾性連結部材30の材料、弾性率、長さ、重さ、また錘40の材料、形状、重さ、大きさなどは、発電に利用する力学的エネルギーの発生環境や、発電エネルギーの仕様により、圧電素子20の仕様と共に、適宜最適な仕様として選定することが好ましい。
For the elastic connecting member 30, a spring made of SUS is used as a preferred example. The material of the spring is not limited to this, and titanium, phosphor bronze, piano wire (carbon steel), etc. may be used. The elastic connecting member 30 is not necessarily a spring, and is an elastic body that can absorb the kinetic energy of the weight 40 including elastic material as elastic energy, and can diverge and transmit the energy to the weight 40 and the elastic member 21. I just need it.
The material, elastic modulus, length, and weight of the elastic connecting member 30 and the material, shape, weight, size, and the like of the weight 40 depend on the generation environment of mechanical energy used for power generation and the specifications of the power generation energy. It is preferable to select the optimum specification as appropriate together with the specification of the piezoelectric element 20.

なお、弾性部材21の弾性率は、弾性連結部材30の弾性率と同等か、あるいは弾性連結部材30の弾性率より大きいことが好ましい。弾性部材21を弾性連結部材30に比較して変形しにくい構成とすることで、支持部10に入力され、弾性部材21を経由して加えられる外部からの応力が、より弾性連結部材30に伝達しやすくなる。   Note that the elastic modulus of the elastic member 21 is preferably equal to or greater than the elastic modulus of the elastic connecting member 30. By configuring the elastic member 21 to be harder to be deformed than the elastic connecting member 30, external stress input to the support portion 10 and applied via the elastic member 21 is transmitted to the elastic connecting member 30 more. It becomes easy to do.

以上の構成によれば、支持部10に外力として力学的エネルギーが加わると、弾性部材21を振動するようにたわみ、圧電板22が伸縮し電気エネルギーが発生する。具体的には、支持部10に入力された外力は、弾性部材21および弾性連結部材30を経由して錘40に伝達される。錘40は、伝達された力学的エネルギーにより、一定の期間、弾性連結部材30の持つ弾性エネルギーとの間でエネルギーの授受を繰り返して運動を継続する。錘40が運動する期間を通じて、その運動エネルギーは、弾性部材21をたわませる方向のエネルギー成分として、継続的に弾性部材21に伝達される。
より具体的な動作を以下に説明する。
According to the above configuration, when mechanical energy is applied to the support portion 10 as an external force, the elastic member 21 is flexed so as to vibrate, and the piezoelectric plate 22 expands and contracts to generate electrical energy. Specifically, the external force input to the support portion 10 is transmitted to the weight 40 via the elastic member 21 and the elastic connecting member 30. The weight 40 continues to move by repeatedly exchanging energy with the elastic energy of the elastic connecting member 30 for a certain period of time by the transmitted mechanical energy. Throughout the period in which the weight 40 moves, the kinetic energy is continuously transmitted to the elastic member 21 as an energy component in the direction of bending the elastic member 21.
A more specific operation will be described below.

図2(a)〜(c)は、本実施形態に係る圧電発電装置100の動作を示す説明図である。それぞれの図において直交するXYZの3軸方向は、圧電素子20が端部21b(固定端)から端部21t(自由端)に延出している方向をZ方向、端部21t同士を結ぶ方向をY方向、ZおよびY方向に交差する方向をX方向としている。   2A to 2C are explanatory views showing the operation of the piezoelectric power generation apparatus 100 according to this embodiment. In each of the drawings, the XYZ triaxial directions orthogonal to each other are the direction in which the piezoelectric element 20 extends from the end 21b (fixed end) to the end 21t (free end), and the direction connecting the ends 21t. A direction intersecting the Y direction, the Z direction, and the Y direction is defined as an X direction.

図2(a)は、外力を受けた錘40がZ方向に往復運動をしている状態を、X方向から見た側面図である。図から明らかなように、弾性連結部材30によって錘40に連結された端部21tは、Z方向に往復運動する錘40に引かれて、あるいは戻されてY方向に往復運動する。端部21tの往復運動は、圧電素子20をたわませる往復運動となり、その結果、圧電板22には、電気エネルギーが発生する。   FIG. 2A is a side view of the state in which the weight 40 receiving an external force is reciprocating in the Z direction as viewed from the X direction. As is apparent from the drawing, the end 21t connected to the weight 40 by the elastic connecting member 30 is pulled or returned by the weight 40 that reciprocates in the Z direction and reciprocates in the Y direction. The reciprocating motion of the end portion 21t is a reciprocating motion that deflects the piezoelectric element 20, and as a result, electric energy is generated in the piezoelectric plate 22.

図2(b)は、外力を受けた錘40がX方向に往復運動をしている状態を、Z方向から見た上面図である。図から明らかなように、弾性連結部材30によって錘40に連結された端部21tは、X方向に往復運動する錘40に引かれて、あるいは戻されてY方向に往復運動する。端部21tの往復運動は、圧電素子20をたわませる往復運動となり、その結果、圧電板22には、電気エネルギーが発生する。   FIG. 2B is a top view of the state in which the weight 40 receiving an external force is reciprocating in the X direction, as viewed from the Z direction. As is apparent from the figure, the end 21t connected to the weight 40 by the elastic connecting member 30 is pulled or returned by the weight 40 that reciprocates in the X direction and reciprocates in the Y direction. The reciprocating motion of the end portion 21t is a reciprocating motion that deflects the piezoelectric element 20, and as a result, electric energy is generated in the piezoelectric plate 22.

図2(c)は、外力を受けた錘40がY方向に往復運動をしている状態を、X方向から見た側面図である。図から明らかなように、弾性連結部材30によって錘40に連結された端部21tは、Y方向に往復運動する錘40に押し引きされてY方向に往復運動する。端部21tの往復運動は、圧電素子20をたわませる往復運動となり、その結果、圧電板22には、電気エネルギーが発生する。   FIG. 2C is a side view of the state in which the weight 40 receiving an external force is reciprocating in the Y direction as viewed from the X direction. As is apparent from the drawing, the end 21t connected to the weight 40 by the elastic connecting member 30 is pushed and pulled by the weight 40 that reciprocates in the Y direction and reciprocates in the Y direction. The reciprocating motion of the end portion 21t is a reciprocating motion that deflects the piezoelectric element 20, and as a result, electric energy is generated in the piezoelectric plate 22.

実際の錘40の運動は、上記のような単一方向の往復運動に限られることはなく、外力が与えられる方向や、弾性部材21のたわみなどの影響によってX、Y、Zの各方向成分の動きが複合された3次元空間での複雑な動きとなる。つまり、往復運動、円運動、振動などが組み合わせられた運動となる。しかし、3次元空間におけるいずれの運動も端部21tのY方向の往復運動を促すことになる。錘40は、弾性連結部材30によって連結された弾性部材21をたわませる方向のエネルギー成分としてエネルギーを伝達しながら、その運動を減衰させていく。   The actual movement of the weight 40 is not limited to the reciprocating movement in the single direction as described above, and the X, Y, and Z direction components are influenced by the direction in which the external force is applied and the deflection of the elastic member 21. It becomes a complicated movement in a three-dimensional space in which the movements are combined. That is, the movement is a combination of reciprocating movement, circular movement, vibration and the like. However, any movement in the three-dimensional space prompts the end portion 21t to reciprocate in the Y direction. The weight 40 attenuates its movement while transmitting energy as an energy component in a direction in which the elastic member 21 connected by the elastic connecting member 30 is bent.

以上述べたように、本実施形態による圧電発電装置100によれば、以下の効果を得ることができる。
錘40に加えられた力学的エネルギーの方向が、弾性部材21のたわむ方向と交差する方向であっても、錘40が運動する期間の運動エネルギーは、弾性部材21をたわみにより振動させる方向のエネルギー成分として、継続的に弾性部材21に伝達される。この際、錘40に対して、弾性部材21がたわむ方向のみならず不特定方向に加えられた力学的エネルギーは、錘40が継続運動することにより弾性部材21に伝達されるため、より効率的に電気エネルギーへの変換をすることができる。
As described above, according to the piezoelectric power generation device 100 according to the present embodiment, the following effects can be obtained.
Even if the direction of the mechanical energy applied to the weight 40 intersects the direction in which the elastic member 21 bends, the kinetic energy during the period in which the weight 40 moves is the energy in the direction in which the elastic member 21 is vibrated by the deflection. As a component, it is continuously transmitted to the elastic member 21. At this time, the mechanical energy applied to the weight 40 not only in the direction in which the elastic member 21 bends but also in an unspecified direction is transmitted to the elastic member 21 by the continuous movement of the weight 40, and thus more efficient. Can be converted into electrical energy.

すなわち、空気抵抗や摩擦、支持部10から外部に漏れ出る力学的エネルギーなどのエネルギー損失分を除き、錘40の持つ力学的エネルギーの多くが弾性部材21をたわみにより振動させる方向のエネルギー成分として繰り返し伝達される。このため、弾性部材21に貼り合わされた圧電板22は伸縮を繰り返すため、より効率的にエネルギーの変換を行うことができる。
以上のように、本実施形態によると、圧電板22のたわむ方向と交差する方向に加えられる力学的エネルギーを効率的に電気エネルギーに変換できる圧電発電装置を提供することができる。
That is, except for energy loss such as air resistance, friction, and mechanical energy leaking to the outside from the support portion 10, most of the mechanical energy of the weight 40 is repeatedly used as an energy component in the direction in which the elastic member 21 is vibrated by deflection. Communicated. For this reason, since the piezoelectric plate 22 bonded to the elastic member 21 repeatedly expands and contracts, energy conversion can be performed more efficiently.
As described above, according to the present embodiment, it is possible to provide a piezoelectric power generation apparatus that can efficiently convert mechanical energy applied in a direction intersecting with the bending direction of the piezoelectric plate 22 into electric energy.

また、本実施形態によれば、錘40の重さや、弾性連結部材30の弾性率を変えることにより、錘40の運動特性を変化させることができる。具体的には、錘40の円運動や往復運動の周期や減衰振動の半減期間を調整することができる他、外部からの振動の大きさに対して効率的な発電が得られる。また、以下の効果も得ることができる。
上記仕様の異なる錘40や弾性連結部材30に代えるだけで、発電に利用する力学的エネルギー発生源の環境に合わせた圧電発電装置の最適化を行うことができる。つまり、圧電発電装置としてのバリエーションを、簡便に提供することができる。例えば、それぞれの環境に特有の振動範囲が既知の場合(波の周期運動、人の歩行、鳥類の羽ばたきなど)に、予め、それぞれの振動に合わせて効率的な発電を行う構成にしておくことができる。
また、振動の共振点において発電量がピークとなることを利用して、特有の振動を検出し発信するセンサー機能としても活用することができる。その際にも、錘40や弾性連結部材30を代えるだけで、検出範囲を予め設定することができる。
Further, according to the present embodiment, the motion characteristics of the weight 40 can be changed by changing the weight of the weight 40 and the elastic modulus of the elastic connecting member 30. Specifically, the cycle of the circular motion and reciprocation of the weight 40 and the half-life period of the damped vibration can be adjusted, and efficient power generation can be obtained with respect to the magnitude of external vibration. The following effects can also be obtained.
By simply replacing the weight 40 and the elastic connecting member 30 with different specifications, the piezoelectric power generation apparatus can be optimized in accordance with the environment of the mechanical energy generation source used for power generation. That is, variations as a piezoelectric power generation device can be provided simply. For example, when the vibration range specific to each environment is known (periodic motion of waves, walking of people, flapping of birds, etc.), a configuration that efficiently generates power in accordance with each vibration should be set in advance. Can do.
Moreover, it can also be utilized as a sensor function for detecting and transmitting a specific vibration by utilizing the fact that the amount of power generation reaches a peak at the vibration resonance point. Even in this case, the detection range can be set in advance simply by changing the weight 40 and the elastic connecting member 30.

(実施形態2)
次に、実施形態2に係る圧電発電装置について説明する。なお、説明にあたり、実施形態1と同一の構成部位については、同一の番号を使用し、重複する説明は省略する。
(Embodiment 2)
Next, the piezoelectric power generator according to Embodiment 2 will be described. In the description, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図3は、実施形態2に係る圧電発電装置200の構成を示す概略図である。
実施形態2は、互いに向かい合う2つの弾性部材21のそれぞれの一方の端部21bが接合部Jで接合され、接合部Jが支持部10に固定されていることを特徴とする。
実施形態1では、2つの弾性部材21は、間隔を有して略平行に、支持部10に対して略垂直方向に延出するように配置されているとして説明したが、本実施形態では、2つの端部21bが接合部Jで一箇所に接合され、2つの端部21tと、接合部Jとの3点で三角形を成すような構成となっている。
FIG. 3 is a schematic diagram illustrating a configuration of the piezoelectric power generation apparatus 200 according to the second embodiment.
The second embodiment is characterized in that one end portion 21 b of each of the two elastic members 21 facing each other is joined by the joint portion J, and the joint portion J is fixed to the support portion 10.
In the first embodiment, the two elastic members 21 have been described as being arranged so as to extend in a substantially vertical direction with respect to the support portion 10 in a substantially parallel manner with a gap therebetween, but in the present embodiment, The two end portions 21b are joined at one place by the joint portion J, and the two end portions 21t and the joint portion J form a triangle.

本実施例によれば、2つの弾性部材21のそれぞれの端部21bがひとつの接合部Jに接合される構成となるため、接合部Jを固定する支持部10をよりコンパクトに構成することができるため、発電機自体を小型化できる。また、2つの弾性部材21の端部21bが接合されているため、端部21bの剛性が増し、大きい振動を受けたときでも破損されにくい発電機を提供することができる。また、弾性部材21が、互いに向かい合う方向に逆位相でたわむ、あるいは逆位相で振動する場合には、接合部Jでその応力が打ち消しあうため、接合部Jから支持部10に漏れ出るエネルギーが減少して、圧電板22に、より効果的にエネルギーの伝達をすることができる。結果として、より効率的に発電をすることができる。   According to the present embodiment, since the respective end portions 21b of the two elastic members 21 are joined to one joint portion J, the support portion 10 that fixes the joint portion J can be configured more compactly. Therefore, the generator itself can be downsized. Further, since the end portions 21b of the two elastic members 21 are joined, the rigidity of the end portions 21b is increased, and a generator that is not easily damaged even when subjected to large vibrations can be provided. Further, when the elastic member 21 bends in the opposite phase in the opposite directions or vibrates in the opposite phase, the stress cancels out at the joint portion J, so that energy leaking from the joint portion J to the support portion 10 is reduced. Thus, energy can be transmitted to the piezoelectric plate 22 more effectively. As a result, power can be generated more efficiently.

なお、本発明は、上述した実施形態に限定されず、上述した実施形態に種々の変更や改良などを加えることが可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be added to the above-described embodiment.

(変形例1)
変形例1に係る圧電発電装置について、以下に説明する。なお、実施形態1と同一の構成部位については、同一の符号を使用し、重複する説明は省略する。
(Modification 1)
A piezoelectric power generator according to Modification 1 will be described below. In addition, about the component same as Embodiment 1, the same code | symbol is used and the overlapping description is abbreviate | omitted.

図4は、変形例1に係る圧電発電装置300の構成を示す概略図である。
実施形態1および実施形態2では、2つの圧電素子を利用した圧電発電装置として説明したが、この構成に限定するものではなく、3つ以上の圧電素子で構成されても良い。
FIG. 4 is a schematic diagram illustrating a configuration of a piezoelectric power generation device 300 according to the first modification.
In the first and second embodiments, the piezoelectric power generation apparatus using two piezoelectric elements has been described. However, the present invention is not limited to this configuration, and may be configured by three or more piezoelectric elements.

本変形例では、支持部10に略垂直方向に3つの圧電素子20が互いに中央を向き合うように配置されている。支持部10は、3つの圧電素子20のそれぞれの一方の端部21bを支持し固定している。また、弾性連結部材30は、3つの弾性部材21のそれぞれの端部21tを連結している。錘40は、3つの端部21tを連結している弾性連結部材30の略中央部に形成されている。錘40の運動エネルギーは、弾性連結部材30の持つ弾性エネルギーとの間でエネルギーの授受を繰り返し、弾性連結部材30を介して、連結された弾性部材21に伝達される構成となっている。   In the present modification, three piezoelectric elements 20 are arranged on the support portion 10 in a substantially vertical direction so that the centers thereof face each other. The support portion 10 supports and fixes one end portion 21 b of each of the three piezoelectric elements 20. The elastic connecting member 30 connects the end portions 21 t of the three elastic members 21. The weight 40 is formed at a substantially central portion of the elastic connecting member 30 that connects the three end portions 21t. The kinetic energy of the weight 40 is configured to be transferred to and from the connected elastic member 21 through the elastic connecting member 30 by repeatedly exchanging energy with the elastic energy of the elastic connecting member 30.

本変形例に係る圧電発電装置300によれば、実施形態1での効果に加えて、以下の効果を得ることができる。
錘40は、3つの端部21tを連結する弾性連結部材30の略中央部に形成されており、3方向から支えられる構成となるために、力学的エネルギーを受けた場合の錘40の運動範囲を、3つの圧電素子20に囲まれる空間内に治め易くなる。また、錘40が受ける力学的エネルギーを3方向の弾性連結部材30および3つの圧電素子20の弾性エネルギーとの間で授受を行えるため、実施形態1および実施形態2の場合と比較して、大きな力学的エネルギーを加えることができる。従って、より大きな加速度を持つ自然エネルギーなどを利用して発電する場合に効果的に使用することができる。
According to the piezoelectric power generation apparatus 300 according to this modification, in addition to the effects in the first embodiment, the following effects can be obtained.
The weight 40 is formed at a substantially central portion of the elastic connecting member 30 that connects the three end portions 21t. Since the weight 40 is supported from three directions, the movement range of the weight 40 when receiving mechanical energy. Can easily be controlled in a space surrounded by the three piezoelectric elements 20. Further, since the mechanical energy received by the weight 40 can be exchanged between the elastic energy of the elastic connecting member 30 and the three piezoelectric elements 20 in the three directions, it is larger than in the case of the first and second embodiments. Mechanical energy can be added. Therefore, it can be effectively used when generating power using natural energy having a larger acceleration.

また、図示していないが、3つの圧電素子20の端部21bは、接合部で一箇所に接合され、接合部が支持部10に固定される構成であっても良い。   Further, although not shown, the end portions 21b of the three piezoelectric elements 20 may be bonded to one place at the bonding portion, and the bonding portion may be fixed to the support portion 10.

(電子機器)
次に、本実施形態の圧電発電装置を利用した電子機器について説明する。
図5は、圧電発電装置100ないし圧電発電装置300のいずれかの圧電発電装置を利用した一例としての充電回路400を示す回路図である。
充電回路400は、前記圧電発電装置、ブリッジ整流器50、充電用容量51、ツェナーダイオード52などから構成される。
前記圧電発電装置の発電する電気エネルギーは交流であるため、ブリッジ整流器50で整流して充電用容量51に蓄電する。ツェナーダイオード52は、過電圧保護用に設けている。
(Electronics)
Next, an electronic device using the piezoelectric power generation device of this embodiment will be described.
FIG. 5 is a circuit diagram showing a charging circuit 400 as an example using any one of the piezoelectric power generation devices 100 to 300.
The charging circuit 400 includes the piezoelectric power generation device, a bridge rectifier 50, a charging capacitor 51, a Zener diode 52, and the like.
Since the electric energy generated by the piezoelectric power generator is alternating current, it is rectified by the bridge rectifier 50 and stored in the charging capacitor 51. The Zener diode 52 is provided for overvoltage protection.

充電用容量51に蓄電された電気エネルギーは、接続された負荷53の電力源として活用することができ、端子C、C’に接続される負荷53の部分には、本充電回路を電力源とした様々な電子機器を接続することができる。すなわち、バッテリーなどの電源を有さずに動作させることができる電子機器としての優れた特性を、より効果的なものとして提供することができる。例えば、運動の方向が定まらない人体や動物に装着して使用する電子機器や、自然エネルギーによる運動(風や波など)を利用して発電することが可能な環境で使用される電子機器に最適である。   The electrical energy stored in the charging capacity 51 can be used as a power source for the connected load 53. The charging circuit is connected to the power source of the load 53 connected to the terminals C and C ′. Various electronic devices can be connected. That is, it is possible to provide more excellent characteristics as an electronic device that can be operated without a power source such as a battery. For example, it is ideal for electronic devices that are used by attaching to human bodies and animals whose direction of movement is not fixed, and electronic devices that are used in environments that can generate power using natural energy movement (wind, waves, etc.) It is.

10…支持部、20…圧電素子、21…弾性部材、21b,21t…端部、22…圧電板、23…電極板、24…配線、30…弾性連結部材、40…錘、100,200,300…圧電発電装置、400…充電回路。   DESCRIPTION OF SYMBOLS 10 ... Support part, 20 ... Piezoelectric element, 21 ... Elastic member, 21b, 21t ... End, 22 ... Piezoelectric plate, 23 ... Electrode plate, 24 ... Wiring, 30 ... Elastic coupling member, 40 ... Weight, 100, 200, 300 ... piezoelectric generator, 400 ... charge circuit.

Claims (5)

振動を電気エネルギーに変換する圧電発電装置であって、
振動によって繰返し変形可能な第1の弾性部材と、
振動によって繰返し変形可能な第2の弾性部材と、
前記第1の弾性部材の一方の端部と前記第2の弾性部材の一方の端部とを支持する支持部と、
前記第1の弾性部材の一方の面に備えられる第1の圧電板と、
前記第2の弾性部材の一方の面に備えられる第2の圧電板と、
前記第1の弾性部材の他方の端部と前記第2の弾性部材の他方の端部とを連結し、振動によって繰返し変形可能な弾性連結部材と、
前記弾性連結部材に備えられる錘と、を備えることを特徴とする圧電発電装置。
A piezoelectric generator that converts vibration into electrical energy,
A first elastic member that can be repeatedly deformed by vibration;
A second elastic member that can be repeatedly deformed by vibration;
A support portion that supports one end portion of the first elastic member and one end portion of the second elastic member;
A first piezoelectric plate provided on one surface of the first elastic member;
A second piezoelectric plate provided on one surface of the second elastic member;
An elastic connecting member that connects the other end of the first elastic member and the other end of the second elastic member, and can be repeatedly deformed by vibration;
And a weight provided on the elastic connecting member.
前記第1および第2の弾性部材の弾性率は、前記弾性連結部材の弾性率よりも大きいことを特徴とする、請求項1に記載の圧電発電装置。   2. The piezoelectric power generation apparatus according to claim 1, wherein an elastic modulus of the first and second elastic members is larger than an elastic modulus of the elastic coupling member. 前記第1の弾性部材の一方の端部と前記第2の弾性部材の一方の端部とが接合されて前記支持部に支持されていることを特徴とする、請求項1あるいは請求項2に記載の圧電発電装置。   The one end portion of the first elastic member and the one end portion of the second elastic member are joined to each other and supported by the support portion. The piezoelectric power generation device described. 前記第1の弾性部材の、前記一方の面に向かい合う他方の面に備えられる第3の圧電板と、
前記第2の弾性部材の、前記一方の面に向かい合う他方の面に備えられる第4の圧電板と、
をさらに備えることを特徴とする、請求項1ないし請求項3のいずれか一項に記載の圧電発電装置。
A third piezoelectric plate provided on the other surface of the first elastic member facing the one surface;
A fourth piezoelectric plate provided on the other surface of the second elastic member facing the one surface;
The piezoelectric power generator according to claim 1, further comprising:
請求項1ないし請求項4のいずれか一項に記載の圧電発電装置を用いたことを特徴とする電子機器。   An electronic apparatus using the piezoelectric power generation device according to any one of claims 1 to 4.
JP2011062526A 2011-03-22 2011-03-22 Piezoelectric power generator and electronic device including the piezoelectric power generator Active JP5760561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062526A JP5760561B2 (en) 2011-03-22 2011-03-22 Piezoelectric power generator and electronic device including the piezoelectric power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062526A JP5760561B2 (en) 2011-03-22 2011-03-22 Piezoelectric power generator and electronic device including the piezoelectric power generator

Publications (2)

Publication Number Publication Date
JP2012200077A true JP2012200077A (en) 2012-10-18
JP5760561B2 JP5760561B2 (en) 2015-08-12

Family

ID=47181732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062526A Active JP5760561B2 (en) 2011-03-22 2011-03-22 Piezoelectric power generator and electronic device including the piezoelectric power generator

Country Status (1)

Country Link
JP (1) JP5760561B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160065093A1 (en) * 2013-04-12 2016-03-03 Mitsumi Electric Co., Ltd. Power generator
KR20160039352A (en) 2014-10-01 2016-04-11 주식회사 엠플러스 Vibrator
KR20160041642A (en) 2014-10-08 2016-04-18 주식회사 엠플러스 Vibrator
CN105932905A (en) * 2016-06-02 2016-09-07 北京航空航天大学 Energy acquisition device based on dual sinking-floating freedom degree flow-induced vibration
JP6598280B1 (en) * 2018-08-27 2019-10-30 株式会社トライフォース・マネジメント Power generation element
CN113155258A (en) * 2021-04-26 2021-07-23 长春工业大学 Road piezoelectric sensing device for weighing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578909B (en) * 2015-01-07 2017-01-25 浙江师范大学 Axial-tension-energized rotary wind driven generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205781A (en) * 1995-02-01 1997-08-05 Seiko Epson Corp Piezoelectric generator, and portable power supplier equipped with the same, and portable electronic equipment
JPH11303726A (en) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd Piezoelectric wind power generator
JP2008526176A (en) * 2004-10-21 2008-07-17 ソシエテ ドゥ テクノロジー ミシュラン Miniaturized piezoelectric vibration energy recovery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205781A (en) * 1995-02-01 1997-08-05 Seiko Epson Corp Piezoelectric generator, and portable power supplier equipped with the same, and portable electronic equipment
JPH11303726A (en) * 1998-04-23 1999-11-02 Murata Mfg Co Ltd Piezoelectric wind power generator
JP2008526176A (en) * 2004-10-21 2008-07-17 ソシエテ ドゥ テクノロジー ミシュラン Miniaturized piezoelectric vibration energy recovery device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160065093A1 (en) * 2013-04-12 2016-03-03 Mitsumi Electric Co., Ltd. Power generator
KR20160039352A (en) 2014-10-01 2016-04-11 주식회사 엠플러스 Vibrator
US9827594B2 (en) 2014-10-01 2017-11-28 Mplus Co., Ltd. Vibration generating device
KR20160041642A (en) 2014-10-08 2016-04-18 주식회사 엠플러스 Vibrator
CN105932905A (en) * 2016-06-02 2016-09-07 北京航空航天大学 Energy acquisition device based on dual sinking-floating freedom degree flow-induced vibration
JP6598280B1 (en) * 2018-08-27 2019-10-30 株式会社トライフォース・マネジメント Power generation element
WO2020044395A1 (en) * 2018-08-27 2020-03-05 株式会社 トライフォース・マネジメント Power generation element
CN113155258A (en) * 2021-04-26 2021-07-23 长春工业大学 Road piezoelectric sensing device for weighing
CN113155258B (en) * 2021-04-26 2023-01-31 长春工业大学 Road piezoelectric sensing device for weighing

Also Published As

Publication number Publication date
JP5760561B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5760561B2 (en) Piezoelectric power generator and electronic device including the piezoelectric power generator
JP4048203B2 (en) Piezoelectric generator
JP5720703B2 (en) Piezoelectric generator
US20080252174A1 (en) Energy harvesting from multiple piezoelectric sources
US7245062B2 (en) Device for converting mechanical energy into electrical energy
JP5549164B2 (en) Piezoelectric generator
KR20080070629A (en) Energy harvesting using frequency rectification
JP2008211925A (en) Piezoelectric power generation device
JP2011097661A (en) Piezoelectric vibration power generator and power generating equipment using the same
JP2007143353A (en) Power generation system and electronic device applying the same
JP2010517285A (en) Self-contained piezoelectric device for generating voltage
CN102099940A (en) Autonomous piezoelectric device for generating an electrical voltage
JP2009165212A (en) Power generation element using piezoelectric material, and generating set using the power generation element
KR101060667B1 (en) Piezoelectric Generator
Nam et al. Resonant piezoelectric vibrator with high displacement at haptic frequency for smart devices
JP2017055594A (en) Power generation device mounting structure and power generation method
JP2017051005A (en) Power generation device and power generation method
Janphuang et al. Energy harvesting from a rotating gear using an impact type piezoelectric MEMS scavenger
WO2012164545A1 (en) Energy scavenging from a rotating gear using an impact type piezoelectric mems scavenger
JP7361300B2 (en) Power generator and transmitter
Abdal-Kadhim et al. Impact based piezoelectric energy harvesting: effect of single step’s force and velocity
Alaei Power enhancement in piezoelectric energy harvesting
KR20110006884A (en) Frequency converter, energy harvester using frequency converter and method for harvesting energy
KR20100092806A (en) Electric generator having piezoelectric device
RU2623445C1 (en) Piezoelectric cantilever-type converter of mechanical energy into electrical energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5760561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350