JP2012199554A - Light-receiving device - Google Patents

Light-receiving device Download PDF

Info

Publication number
JP2012199554A
JP2012199554A JP2012092981A JP2012092981A JP2012199554A JP 2012199554 A JP2012199554 A JP 2012199554A JP 2012092981 A JP2012092981 A JP 2012092981A JP 2012092981 A JP2012092981 A JP 2012092981A JP 2012199554 A JP2012199554 A JP 2012199554A
Authority
JP
Japan
Prior art keywords
light receiving
light
receiving element
monitor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012092981A
Other languages
Japanese (ja)
Other versions
JP5435065B2 (en
Inventor
Hiroshi Inada
博史 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012092981A priority Critical patent/JP5435065B2/en
Publication of JP2012199554A publication Critical patent/JP2012199554A/en
Application granted granted Critical
Publication of JP5435065B2 publication Critical patent/JP5435065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light-receiving device in which image formation disabled state does not occur even for an optical input of high luminance or the instantaneous increase in brightness of a subject.SOLUTION: The light-receiving device comprises a light-receiving element array 10, and a multiplexer having a signal input part and a body part for receiving a signal passing through the signal input part. In the light-receiving element array 10, a monitor light-receiving part M is located between light-receiving elements S and forms a pin-type photodiode. Electrodes of the monitor light-receiving part and the light-receiving element are connected separately with the signal input part. In the signal input part, a signal direct from the light-receiving element is subjected to gain control or on/off control based on a signal direct from the monitor light-receiving part, and then output to the body part.

Description

本発明は、受光装置に関し、より具体的には、長波長側が近赤外域にまで受光感度を有する受光装置に関するものである。   The present invention relates to a light receiving device, and more specifically to a light receiving device having a light receiving sensitivity on the long wavelength side even in the near infrared region.

近赤外域の波長域またはそれより長波長側に対応するバンドギャップエネルギを持つ化合物半導体として、III−V族化合物半導体が注目され、研究開発が進行している。たとえばInPに格子整合するInGaAsを受光層に持つ受光素子を、上記InP基板上に配列した受光素子アレイを用いて、宇宙からの自然光を受光する暗視カメラが開示されている(非特許文献1)。これにより、夜間、雨天にかかわらず人工照明を用いることなく、自然光により撮像することが可能となる。
MarshallJ.Cohen and Gregory H. Olsen "Near-IR imaging cameras operate at roomtemperature", LASER FOCUS WORLD, June 1993, pp.109-113
Group III-V compound semiconductors have attracted attention as compound semiconductors having band gap energy corresponding to the near-infrared wavelength region or longer wavelength side, and research and development are in progress. For example, a night vision camera is disclosed that receives natural light from the universe using a light receiving element array in which light receiving elements having InGaAs lattice-matched to InP in a light receiving layer are arranged on the InP substrate (Non-Patent Document 1). ). As a result, it is possible to capture images with natural light without using artificial lighting at night and in the rain.
Marshall J. Cohen and Gregory H. Olsen "Near-IR imaging cameras operate at roomtemperature", LASER FOCUS WORLD, June 1993, pp.109-113

上記の暗視カメラは、しかしながら比較的小さい入力光で画像出力を形成しているとき、輝度の高い光が視野に入るとハレーションを起こし、キャリアが受光素子から無くなるまで画像を得ることができない。このため、たとえば動画を撮像中に輝度が大きく変わる場合、画像形成が不能となる状態が生じやすい。今後、多種多様の用途が見込まれる近赤外域の撮像装置(センサ)において、上記のような画像形成不能状態が発生することは好ましくなく、克服しておくべきことである。   However, when the above-mentioned night vision camera forms an image output with relatively small input light, halation occurs when light with high luminance enters the field of view, and an image cannot be obtained until the carrier disappears from the light receiving element. For this reason, for example, when the luminance changes greatly during imaging of a moving image, a state in which image formation becomes impossible tends to occur. In the near-infrared imaging devices (sensors) that are expected to be used in a variety of applications in the future, it is not preferable that the above-mentioned image formation impossible state occurs, and it should be overcome.

本発明は、高輝度の光入力または被写体の瞬時の明るさ上昇に対しても、画像形成不能状態を生じない受光装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a light receiving device that does not cause a state in which an image cannot be formed even when a light input with high luminance or an instantaneous brightness increase of a subject is generated.

本発明の受光装置は、受光層を含む半導体積層体に、複数の受光素子が配列された受光素子アレイと、信号入力部および該信号入力部を経由する信号を受ける本体部を有するマルチプレクサとを備える受光装置である。この受光装置は、受光素子アレイにおいて、複数の受光素子の間に位置する1つまたは2つ以上のモニタ受光部を備え、複数の受光素子およびモニタ受光部は、いずれも、半導体積層体の一方の面である表面から受光層に届くように位置する不純物領域と、当該不純物領域にオーミック接触する電極と、を持ち、受光素子およびモニタ受光部は、いずれも、各自pin型フォトダイオードを形成し、半導体積層体の表面と反対側の裏面から光を入射する裏面入射型であり、モニタ受光部および受光素子の電極は、各別にマルチプレクサの信号入力部に接続され、該信号入力部において、受光素子からの直の信号は、モニタ受光部からの直の信号に基づいてゲイン制御またはオンオフ制御されて、マルチプレクサの本体部へ出力されることを特徴とする。
ここで、受光層の導電型は問わず、第1導電型でもイントリンシックでもよい。
The light-receiving device of the present invention includes a light-receiving element array in which a plurality of light-receiving elements are arranged in a semiconductor laminate including a light-receiving layer, and a multiplexer having a signal input unit and a main body unit that receives a signal passing through the signal input unit. A light receiving device. The light receiving device includes one or more monitor light receiving units positioned between the plurality of light receiving elements in the light receiving element array, and each of the plurality of light receiving elements and the monitor light receiving unit is one of the semiconductor stacked bodies. And an electrode in ohmic contact with the impurity region, and each of the light receiving element and the monitor light receiving part forms a pin type photodiode. The back-illuminated type in which light is incident from the back surface opposite to the front surface of the semiconductor laminate, and the monitor light-receiving unit and the electrode of the light-receiving element are individually connected to the signal input unit of the multiplexer. The direct signal from the element is subjected to gain control or on / off control based on the direct signal from the monitor light receiving unit, and is output to the main body of the multiplexer. To.
Here, the conductivity type of the light receiving layer is not limited and may be the first conductivity type or intrinsic.

上記の構成により、モニタ受光部は、受光素子と同様に、pn接合部に空乏層を形成した状態で、入射光を受光してその光の強度をモニタして出力することができる。この光の強度出力信号に基づき、外部回路(駆動回路)では、受光素子のゲインまたはオンオフを制御する信号を発することができる。すなわち、受光素子およびモニタ受光部は、いずれも、各自pin型フォトダイオードを形成することで、pn接合またはpi接合からの空乏層を低い逆バイアス電圧または無電圧印加で大きく拡げて、各受光素子における受光感度を高めつつ、一方高輝度入力に起因する画像形成不能状態の回避は、モニタ受光部と外部の駆動回路とにより、ゲイン等の制御により行うことができる。
この結果、高輝度光入力によるキャリア飽和状態の持続に起因する画像形成不能状態の発生を回避した受光装置を得ることができる。
With the above configuration, the monitor light-receiving unit can receive incident light and monitor and output the intensity of the light in a state where a depletion layer is formed at the pn junction as in the light-receiving element. Based on this light intensity output signal, an external circuit (driving circuit) can issue a signal for controlling the gain or on / off of the light receiving element. In other words, each of the light receiving element and the monitor light receiving unit forms a pin type photodiode, thereby greatly expanding the depletion layer from the pn junction or the pi junction by applying a low reverse bias voltage or no voltage. On the other hand, avoiding an image formation impossible state due to high luminance input while increasing the light receiving sensitivity in the image sensor can be performed by controlling the gain or the like with the monitor light receiving unit and an external drive circuit.
As a result, it is possible to obtain a light receiving device that avoids the occurrence of an image formation impossible state due to the persistence of the carrier saturation state due to the input of high luminance light.

信号入力部において、モニタ受光部からの直の信号を、増幅+微分回路に通して明るさの時間勾配をとり、その時間勾配の信号の、(1)高さが予め決めた基準値を超えたときに受光素子からの直の信号をオフとする出力、または、(2)高さに応じてオートゲイン制御する出力、を行うことができる。
マルチプレクサ本体部に入る前に、受光素子アレイの出力を、即座に制御することができる。
In the signal input unit, the direct signal from the monitor light receiving unit is passed through an amplification + differentiation circuit to obtain a time gradient of brightness, and (1) the height of the signal of the time gradient exceeds a predetermined reference value. In this case, an output for turning off the direct signal from the light receiving element or an output for performing automatic gain control according to the height can be performed.
Before entering the multiplexer body, the output of the light receiving element array can be controlled immediately.

平面的に見て、モニタ受光部において受光する面積を、受光素子におけるそれより小さくすることができる。これによってモニタ受光部は、受光素子よりも飽和が早期に生じ、マイコン制御によらずワイヤードロジック回路により信号処理を高速で行うことができる。また、マイコン制御による場合は、マイコン制御が行い易くなる。   As viewed in a plan view, the area of light received by the monitor light receiving unit can be made smaller than that of the light receiving element. As a result, the monitor light receiving unit is saturated earlier than the light receiving element, and signal processing can be performed at high speed by the wired logic circuit regardless of microcomputer control. Further, when the microcomputer control is performed, the microcomputer control is easily performed.

上記の半導体積層体をIII−V族化合物半導体により構成し、第2導電型不純物をZnとすることができる。これによって、これまで実績のあるZnを半導体積層体内に選択拡散して、受光層にpn接合を形成することを容易化する。   Said semiconductor laminated body can be comprised with a III-V group compound semiconductor, and a 2nd conductivity type impurity can be made into Zn. This facilitates selective diffusion of Zn, which has been proven so far, into the semiconductor stack to form a pn junction in the light receiving layer.

上記の受光層を、近赤外域またはそれより長波長側に対応するバンドギャップエネルギをもつIII−V族化合物半導体から構成することができる。
これによって、近赤外域またはそれより長波長側に感度をもち、かつ高輝度光入力によるキャリア飽和状態の持続に起因する画像形成不能状態の発生を回避した受光装置を得ることができる。
The light-receiving layer can be composed of a III-V group compound semiconductor having band gap energy corresponding to the near infrared region or longer wavelength side.
As a result, it is possible to obtain a light receiving device that has sensitivity in the near-infrared region or a longer wavelength side and that avoids the occurrence of an image incapable state due to the continuation of the carrier saturation state due to high-luminance light input.

本発明の受光装置によれば、高輝度光入力によるキャリア飽和状態の持続に起因する画像形成不能状態の発生を回避することができる。   According to the light receiving device of the present invention, it is possible to avoid the occurrence of an image formation impossible state due to the persistence of the carrier saturation state due to the high luminance light input.

図1は、本発明の実施の形態の受光装置における受光素子アレイ10の端部の部分断面図である。図1において、受光素子アレイ10は、1つの半導体積層体の(InP基板1/n型(第1導電型)InPバッファ層2/GaInNAs受光層3/InP窓層4)を備える。図2は、受光素子アレイ10の上面図である。受光素子アレイ10は、平面的には、周期的に配置される受光素子であるセンシング部Sと、その中に1つまたは2つ以上配置されるモニタ受光部Mとで構成される。ここで、本発明における受光装置は、撮像装置、検出装置など、本発明の構成を備えている限り名称にはこだわらず、何でもよい。   FIG. 1 is a partial cross-sectional view of an end portion of a light receiving element array 10 in a light receiving device according to an embodiment of the present invention. In FIG. 1, the light receiving element array 10 includes (InP substrate 1 / n type (first conductivity type) InP buffer layer 2 / GaInNAs light receiving layer 3 / InP window layer 4) of one semiconductor laminate. FIG. 2 is a top view of the light receiving element array 10. The light receiving element array 10 includes a sensing unit S, which is a light receiving element periodically disposed, and a monitor light receiving unit M disposed in one or more in the plan view. Here, the light receiving device in the present invention is not limited to the name as long as it has the configuration of the present invention, such as an imaging device and a detection device, and may be anything.

図1において、不純物拡散用マスクパターン5はSiNで形成され、センシング部Sおよびモニタ受光部Mに開口部を持つように、InP窓層4上にわたって位置している。センシング部Sおよびモニタ受光部Mともに、マスクパターン5の開口部から拡散導入されたZnが分布するp型(第2導電型)領域16が形成されている。図1および図2に示すように、モニタ受光部Mの面積はセンシング部Sの面積より小さく形成されているが、制御回路での制御によって調節できるので、同じ面積であってもよいし、大きい面積であってもよい。モニタ受光部Mのサイズをセンシング部Sのそれより小さくすることにより、(1)大入力の光の入射に際し、モニタ受光部Mでは、センシング部Sよりも早期に飽和しやすく、入力光の強度を割り出して、センシング部にマイコン制御をかけなくても、ワイヤードロジック回路(ハード)のみでハレーションを防止できる利点、および(2)周期配列のセンシングSの間に、モニタ受光部Mを配置するのが容易になる利点、を生じる。   In FIG. 1, the impurity diffusion mask pattern 5 is made of SiN, and is located on the InP window layer 4 so that the sensing part S and the monitor light-receiving part M have openings. Both the sensing unit S and the monitor light receiving unit M are formed with a p-type (second conductivity type) region 16 in which Zn diffused and introduced from the opening of the mask pattern 5 is distributed. As shown in FIGS. 1 and 2, the area of the monitor light receiving unit M is formed smaller than the area of the sensing unit S, but can be adjusted by the control of the control circuit. It may be an area. By making the size of the monitor light-receiving part M smaller than that of the sensing part S, (1) the monitor light-receiving part M is more likely to saturate earlier than the sensing part S when large input light is incident, and the intensity of the input light The advantage that the halation can be prevented only by the wired logic circuit (hardware) without applying the microcomputer control to the sensing unit, and (2) the monitor light receiving unit M is arranged between the sensing S of the periodic array. Produces the advantage, which becomes easier.

図3は、受光素子アレイとマルチプレクサとを組み合わせた撮像装置50を示す平面図であり、センシング部Sおよびモニタ受光部Mを実線で示している。図3に示すように、モニタ受光部Mは、センシング部Sの数とは無関係であり、受光素子アレイ全体で1つでもよいし、中央部および四隅などに、入力モニタをするのに適当な位置に配置することができる。要は、高輝度光入力により電荷充満状態の期間、画像形成不能状態が持続することを回避できるように、光入射をモニタできる配置であればよい。   FIG. 3 is a plan view showing an imaging device 50 in which a light receiving element array and a multiplexer are combined, and the sensing unit S and the monitor light receiving unit M are indicated by solid lines. As shown in FIG. 3, the monitor light receiving unit M is irrelevant to the number of sensing units S, and may be one for the entire light receiving element array, or suitable for input monitoring at the center and four corners. Can be placed in position. In short, any arrangement that can monitor the incidence of light may be used so that it is possible to avoid a state in which an image cannot be formed during a charge full state due to high luminance light input.

図4は、図3中のIV−IV線に沿う断面図である。各センシング部のp部電極11はそれぞれマルチプレクサ51の入力端子56に、図示しないはんだバンプ等を用いて電気的に接続され、また共通の接地電位が印加されるn部電極(図示せず)は、マルチプレクサ51の接地電位用端子(図示せず)に、同様に、電気的に接続される。マルチプレクサ51にはCMOSマルチプレクサを用いるのがよい。   4 is a cross-sectional view taken along line IV-IV in FIG. The p-part electrode 11 of each sensing part is electrically connected to the input terminal 56 of the multiplexer 51 using a solder bump (not shown), and an n-part electrode (not shown) to which a common ground potential is applied is provided. Similarly, a ground potential terminal (not shown) of the multiplexer 51 is electrically connected. The multiplexer 51 is preferably a CMOS multiplexer.

モニタ受光部Mのp部電極11は、マルチプレクサ51のモニタ端子59に、図示しないはんだバンプ等を用いて電気的に接続される。マルチプレクサ51には、信号処理回路(制御回路)が設けられ、モニタ受光部Mからp部電極11を経由して入力される受光信号に基づき、センシング部Sの受光動作を制御する。センシング部Sの受光動作の制御は、センシング部Sからのマルチプレクサ51の本体への受光信号を遮断するオンオフ制御でもよいし、センシング部Sのゲイン制御でもよい。   The p-part electrode 11 of the monitor light-receiving part M is electrically connected to the monitor terminal 59 of the multiplexer 51 using a solder bump or the like (not shown). The multiplexer 51 is provided with a signal processing circuit (control circuit), and controls the light receiving operation of the sensing unit S based on the light receiving signal input from the monitor light receiving unit M via the p unit electrode 11. The control of the light receiving operation of the sensing unit S may be an on / off control that blocks a light reception signal from the sensing unit S to the main body of the multiplexer 51, or may be a gain control of the sensing unit S.

図5は、センシング部Sからのマルチプレクサ51の本体への受光信号を遮断するオンオフ制御を行う場合の回路図である。被写体が瞬時に非常に明るくなった場合、信号処理回路はモニタ受光部M(受光素子またはフォトダイオード)の出力に基づき、センシング部Sのスイッチの制御、またはオンオフ制御を行う。モニタ受光部Mの出力は、信号処理において、瞬時の明るさ増大の程度を定量化するために、図5に示すように、増幅+微分回路により明るさの増大の時間勾配をとるのがよい。明るさの増大の時間勾配は、微分回路を経てスパイク状になるので、スパイクの高さが予め定めた基準値を超えた場合に、マルチプレクサ51本体部への出力Soutをオフにする。   FIG. 5 is a circuit diagram in the case of performing on / off control for blocking the light reception signal from the sensing unit S to the main body of the multiplexer 51. When the subject becomes very bright instantaneously, the signal processing circuit performs control of the switch of the sensing unit S or on / off control based on the output of the monitor light receiving unit M (light receiving element or photodiode). In order to quantify the degree of instantaneous brightness increase in the signal processing, the output of the monitor light receiving unit M should have a time gradient of brightness increase by an amplification + differential circuit as shown in FIG. . Since the time gradient of the increase in brightness becomes a spike through the differentiation circuit, the output Sout to the main body of the multiplexer 51 is turned off when the height of the spike exceeds a predetermined reference value.

図6は、センシング部Sからのマルチプレクサ51の本体への受光信号の強度を、モニタ受光部Mの受光信号に基づいて制御する場合の回路図である。モニタ受光部Mの出力について、増幅+微分回路により明るさの増大の時間勾配をとるのは、図5の場合と同じである。明るさの増大の時間勾配は、微分回路を経てスパイク状になるので、スパイクの高さに応じて、マルチプレクサ51本体部への出力Soutのオートゲイン制御(AGC Auto Gain Control)を行う。マルチプレクサ51またはその他の駆動部に搭載される制御回路については、常用されている制御方式を用いることができる。   FIG. 6 is a circuit diagram in the case where the intensity of the light reception signal from the sensing unit S to the main body of the multiplexer 51 is controlled based on the light reception signal of the monitor light reception unit M. As for the output of the monitor light receiving unit M, the time gradient for increasing the brightness by the amplification + differential circuit is the same as in the case of FIG. Since the time gradient of the increase in brightness becomes a spike after passing through the differentiation circuit, the automatic gain control (AGC Auto Gain Control) of the output Sout to the multiplexer 51 main body is performed according to the height of the spike. A commonly used control method can be used for the control circuit mounted in the multiplexer 51 or other driving unit.

図5および図6は、1つのモニタ受光部Mによって、1つのセンシング部Sの出力制御を行う場合を示している。しかし、1つのセンシング部Sを受光素子アレイの任意の1つの受光素子と見て、1つのモニタ受光部Mによってすべての受光素子Sの出力制御を行うと見ることもできる。また、1つのモニタ受光部Mがカバーする範囲内の複数個のセンシング部Sの出力制御を行っていると見ることもできる。いずれにしても、モニタ受光部Mによってセンシング部Sの出力は制御されるので、大入力光入射に対して、高輝度光入力による画像形成不能期間の発生を防止することができる。   5 and 6 show a case where the output control of one sensing unit S is performed by one monitor light receiving unit M. FIG. However, it can be considered that one sensing unit S is regarded as any one light receiving element of the light receiving element array and output control of all the light receiving elements S is performed by one monitor light receiving unit M. It can also be considered that output control of a plurality of sensing units S within the range covered by one monitor light receiving unit M is performed. In any case, since the output of the sensing unit S is controlled by the monitor light receiving unit M, it is possible to prevent the occurrence of an image formation impossible period due to high luminance light input with respect to large input light incidence.

次に、上記の受光素子アレイ10および撮像装置50の製造方法について説明する。まず、n型InP基板1上に、n型InPバッファ層2を形成する。n型InP基板1およびn型InPバッファ層2は、n型不純物Siをドープして、キャリア濃度3×1018cm−3の高濃度となるようにするのがよい。n型InP基板1は、Feをドープしたものであってもよい。n型InPバッファ層2の成膜法は、MBE(Molecular Beam Epitaxy)法、OMVPE(Organo Metallic Vapor Phase Epitaxy)法など周知の方法を用いることができる。ただし、OMVPE法など水素濃度が高くなる成膜法を用いた場合には、脱水素のための熱処理を行なうのがよい。 Next, a method for manufacturing the light receiving element array 10 and the imaging device 50 will be described. First, the n-type InP buffer layer 2 is formed on the n-type InP substrate 1. The n-type InP substrate 1 and the n-type InP buffer layer 2 are preferably doped with n-type impurity Si so as to have a high carrier concentration of 3 × 10 18 cm −3 . The n-type InP substrate 1 may be doped with Fe. The n-type InP buffer layer 2 can be formed by a known method such as MBE (Molecular Beam Epitaxy) method or OMVPE (Organo Metallic Vapor Phase Epitaxy) method. However, in the case of using a film formation method that increases the hydrogen concentration, such as the OMVPE method, it is preferable to perform heat treatment for dehydrogenation.

次いで、n型InPバッファ層2上に、GaInNAs受光層3を成長する。不純物はとくに添加しなくてもよいが、n型不純物のSiを、キャリア濃度3×1015cm−3程度となるように添加してもよい。水素濃度を低くする点からはMBE法で成長するのがよいが、OMVPE法等で成長して、水素濃度が高い場合には熱処理で脱水素処理をしてもよい。GaInNAs受光層3は、結晶性を向上するためにSbを含んだものでもよい。GaInNAs受光層3に接してInP窓層4を成長させる。GaInNAs受光層3は、近赤外域の長波長側に受光感度を有するものであるが、Sbおよび/またはPを含有してもよい。Sbは結晶性の向上のために添加する。また、近赤外域の長波長側の受光感度がそれほど必要ない場合には、Nを含まずGaInAs受光層としてもよい。窓層4についてもInP以外に、受光層3と格子整合し、受光層3よりもバンドギャップが大きいものであれば何でもよい。上記の半導体積層体は、つぎのような化合物半導体層で形成されている。
半導体積層体:(InP基板1/nInGaAsバッファ層2/GaInNAs受光層3/InP窓層4)
各層の厚みは、大雑把に、InGaAsバッファ層2は1μm〜2μm程度、GaInNAs受光層3は2μm〜3μm、InP窓層4は0.5μm〜1.5μmである。InP窓層4上に、センシング部Sおよびモニタ受光部Mに開口部を有するマスクパターン5をSiNにより形成し、p型不純物のZnを各開口部からInP窓層4を通して導入してp型領域16を形成する。p型領域16は、GaInNAs受光層3に届いており、先端部にpn接合またはpin接合を形成する。その後、InP窓層4のp型領域16上にオーミック接触のp部電極11をPtTi等により、またInP基板1またはInGaAsバッファ層2の周縁部にオーミック接続するn部電極12をAuGeNi等により、それぞれ形成する。
Next, a GaInNAs light receiving layer 3 is grown on the n-type InP buffer layer 2. Impurities need not be added, but n-type impurity Si may be added so as to have a carrier concentration of about 3 × 10 15 cm −3 . From the point of reducing the hydrogen concentration, it is preferable to grow by the MBE method. However, if the hydrogen concentration is high, the dehydrogenation treatment may be performed by heat treatment. The GaInNAs light receiving layer 3 may contain Sb in order to improve crystallinity. An InP window layer 4 is grown in contact with the GaInNAs light receiving layer 3. The GaInNAs light receiving layer 3 has light receiving sensitivity on the long wavelength side in the near infrared region, but may contain Sb and / or P. Sb is added to improve crystallinity. In addition, in the case where the light receiving sensitivity on the long wavelength side in the near infrared region is not so much required, it may be a GaInAs light receiving layer that does not contain N. The window layer 4 may be anything other than InP as long as it is lattice-matched with the light receiving layer 3 and has a larger band gap than the light receiving layer 3. The semiconductor stacked body is formed of the following compound semiconductor layers.
Semiconductor laminated body: (InP substrate 1 / n + InGaAs buffer layer 2 / GaInNAs light receiving layer 3 / InP window layer 4)
The thickness of each layer is roughly 1 μm to 2 μm for the InGaAs buffer layer 2, 2 μm to 3 μm for the GaInNAs light receiving layer 3, and 0.5 μm to 1.5 μm for the InP window layer 4. On the InP window layer 4, a mask pattern 5 having openings in the sensing part S and the monitor light receiving part M is formed of SiN, and p-type impurity Zn is introduced from each opening through the InP window layer 4 to form a p-type region. 16 is formed. The p-type region 16 reaches the GaInNAs light receiving layer 3 and forms a pn junction or a pin junction at the tip. Thereafter, the p-type electrode 11 in ohmic contact is formed on the p-type region 16 of the InP window layer 4 by PtTi or the like, and the n-part electrode 12 that is ohmically connected to the peripheral part of the InP substrate 1 or the InGaAs buffer layer 2 by AuGeNi or the like. Form each one.

上記の受光素子アレイおよびこれを用いた撮像装置によれば、被写体の瞬時の明るさの上昇または高輝度光入力があっても、モニタ受光部のモニタリングによって受光素子(センシング部)の受光信号の出力を制御するので、画像形成不能状態を回避することができ、常に被写体等の鮮明な画像を得ることができる。   According to the above light receiving element array and an image pickup apparatus using the same, even if there is an instantaneous increase in brightness of the subject or high luminance light input, the light receiving signal of the light receiving element (sensing unit) is monitored by monitoring the monitor light receiving unit. Since the output is controlled, it is possible to avoid a state where an image cannot be formed, and a clear image such as a subject can always be obtained.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の受光素子アレイおよび撮像装置によれば、高輝度光入力または被写体の瞬時の明るさ上昇に対して、画像形成不能状態を生じることなく、鮮明な画像を得ることができる。   According to the light receiving element array and the imaging device of the present invention, it is possible to obtain a clear image without causing a state incapable of forming an image with respect to high luminance light input or instantaneous brightness increase of a subject.

本発明の実施の形態における受光素子アレイを示す断面図である。It is sectional drawing which shows the light receiving element array in embodiment of this invention. 図1の受光素子アレイの上面図である。FIG. 2 is a top view of the light receiving element array in FIG. 1. 受光素子アレイとマルチプレクサとを組み合わせた撮像装置を示す平面図である。It is a top view which shows the imaging device which combined the light receiving element array and the multiplexer. 図3のIV−IV線に沿う断面図である。It is sectional drawing which follows the IV-IV line of FIG. 本発明の撮像装置において、モニタ受光部の受光信号に基づき、センシング部の受光信号出力をオンオフ制御する場合の回路図である。In the imaging device of the present invention, it is a circuit diagram in the case of performing on / off control of the light reception signal output of the sensing unit based on the light reception signal of the monitor light reception unit. 本発明の撮像装置において、モニタ受光部の受光信号に基づき、センシング部の受光信号出力の自動ゲイン制御をする場合の回路図である。FIG. 6 is a circuit diagram in the case of performing automatic gain control of the light reception signal output of the sensing unit based on the light reception signal of the monitor light reception unit in the imaging apparatus of the present invention.

1 InP基板、2 n型InPバッファ層、3 GaInNAs受光層、4 InP窓層、5 マスクパターン、10 受光素子アレイ、11 p部電極、12 n部電極、16 p型領域、50 撮像装置、51 マルチプレクサ、56 マルチプレクサ入力端子、59 マルチプレクサのモニタ入力端子、S センシング部(受光素子)、M モニタ受光部。 1 InP substrate, 2 n-type InP buffer layer, 3 GaInNAs light-receiving layer, 4 InP window layer, 5 mask pattern, 10 light-receiving element array, 11 p-part electrode, 12 n-part electrode, 16 p-type area, 50 imaging device, 51 Multiplexer, 56 Multiplexer input terminal, 59 Monitor input terminal of multiplexer, S sensing unit (light receiving element), M Monitor light receiving unit.

Claims (5)

受光層を含む半導体積層体に、複数の受光素子が配列された受光素子アレイと、信号入力部および該信号入力部を経由する信号を受ける本体部を有するマルチプレクサとを備える受光装置であって、
前記受光素子アレイにおいて、前記複数の受光素子の間に位置する1つまたは2つ以上のモニタ受光部を備え、
前記複数の受光素子および前記モニタ受光部は、いずれも、前記半導体積層体の一方の面である表面から前記受光層に届くように位置する不純物領域と、当該不純物領域にオーミック接触する電極と、を持ち、
前記受光素子および前記モニタ受光部は、いずれも、各自pin型フォトダイオードを形成し、
前記半導体積層体の表面と反対側の裏面から光を入射する裏面入射型であり、
前記モニタ受光部および前記受光素子の電極は、各別に前記マルチプレクサの信号入力部に接続され、該信号入力部において、前記受光素子からの直の信号は、前記モニタ受光部からの直の信号に基づいてゲイン制御またはオンオフ制御されて、前記マルチプレクサの本体部へ出力されることを特徴とする、受光装置。
A light receiving device including a light receiving element array in which a plurality of light receiving elements are arranged in a semiconductor stacked body including a light receiving layer, and a multiplexer having a signal input unit and a main body unit that receives a signal passing through the signal input unit,
In the light receiving element array, comprising one or more monitor light receiving units located between the plurality of light receiving elements,
Each of the plurality of light receiving elements and the monitor light receiving unit includes an impurity region positioned so as to reach the light receiving layer from a surface that is one surface of the semiconductor stacked body, and an electrode that is in ohmic contact with the impurity region; Have
Each of the light receiving element and the monitor light receiving unit forms a pin type photodiode,
It is a back-side incident type in which light is incident from the back side opposite to the surface of the semiconductor laminate,
The monitor light receiving unit and the electrode of the light receiving element are separately connected to the signal input unit of the multiplexer, and in the signal input unit, a direct signal from the light receiving element is a direct signal from the monitor light receiving unit. Gain control or on / off control based on the output and output to the main body of the multiplexer.
前記信号入力部において、前記モニタ受光部からの直の信号を、増幅+微分回路に通して明るさの時間勾配をとり、その時間勾配の信号の、(1)高さが予め決めた基準値を超えたときに前記受光素子からの直の信号をオフとする出力、または、(2)高さに応じてオートゲイン制御する出力、を行うことを特徴とする、請求項1に記載の受光装置。   In the signal input unit, a direct signal from the monitor light receiving unit is passed through an amplification + differential circuit to obtain a time gradient of brightness, and (1) a reference value having a predetermined height of the signal of the time gradient 2. The light receiving device according to claim 1, wherein an output for turning off a direct signal from the light receiving element when exceeding a value or (2) an output for performing an automatic gain control according to a height is performed. apparatus. 平面的に見て、前記モニタ受光部において受光する面積は、前記受光素子におけるそれより小さいことを特徴とする、請求項1または2に記載の受光装置。   3. The light receiving device according to claim 1, wherein an area of light received by the monitor light receiving unit is smaller than that of the light receiving element when viewed in a plan view. 前記受光素子アレイの半導体積層体がIII−V族化合物半導体から構成され、前記不純物が亜鉛(Zn)であることを特徴とする、請求項1〜3のいずれか1項に記載の受光装置。   4. The light receiving device according to claim 1, wherein the semiconductor stacked body of the light receiving element array is made of a group III-V compound semiconductor, and the impurity is zinc (Zn). 5. 前記受光層が、近赤外域またはそれより長波長側に対応するバンドギャップエネルギをもつIII−V族化合物半導体から構成されることを特徴とする、請求項1〜4のいずれか1項に記載の受光装置。
The said light receiving layer is comprised from the III-V group compound semiconductor which has the band gap energy corresponding to a near-infrared region or a long wavelength side from it, The any one of Claims 1-4 characterized by the above-mentioned. Light receiving device.
JP2012092981A 2012-04-16 2012-04-16 Receiver Expired - Fee Related JP5435065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092981A JP5435065B2 (en) 2012-04-16 2012-04-16 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092981A JP5435065B2 (en) 2012-04-16 2012-04-16 Receiver

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007272568A Division JP2009099914A (en) 2007-10-19 2007-10-19 Light receiving element array and imaging device

Publications (2)

Publication Number Publication Date
JP2012199554A true JP2012199554A (en) 2012-10-18
JP5435065B2 JP5435065B2 (en) 2014-03-05

Family

ID=47181416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092981A Expired - Fee Related JP5435065B2 (en) 2012-04-16 2012-04-16 Receiver

Country Status (1)

Country Link
JP (1) JP5435065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014187840A1 (en) * 2013-05-22 2014-11-27 New Imaging Technologies Photodiode array having adjustable charge-absorption

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219278A (en) * 2002-01-21 2003-07-31 Hamamatsu Photonics Kk Solid-state imaging apparatus
JP2007201432A (en) * 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Imaging apparatus, visibility aid device, night vision device, navigation aid device, and monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219278A (en) * 2002-01-21 2003-07-31 Hamamatsu Photonics Kk Solid-state imaging apparatus
JP2007201432A (en) * 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Imaging apparatus, visibility aid device, night vision device, navigation aid device, and monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014187840A1 (en) * 2013-05-22 2014-11-27 New Imaging Technologies Photodiode array having adjustable charge-absorption
FR3006105A1 (en) * 2013-05-22 2014-11-28 New Imaging Technologies Sas PHOTODIODE MATRIX WITH ADJUSTABLE LOAD ABSORPTION

Also Published As

Publication number Publication date
JP5435065B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
TWI593092B (en) Visible and infrared image sensor
US9111830B1 (en) Perforated blocking layer for enhanced broad band response in a focal plane array
JP2011222874A (en) Semiconductor wafer, photo detector, photo detector array, hybrid type detector device, optical sensor device, and manufacturing method of semiconductor wafer
US11205668B2 (en) Light receiving device, method of manufacturing light receiving device, imaging device, and electronic apparatus
TWI670978B (en) Imaging sensor with boosted photodiode drive
US20130043372A1 (en) Multi-Band Position Sensitive Imaging Arrays
JP2014521216A (en) InGaAs photodiode array
WO2015130351A1 (en) Simultaneous dual-band detector
TW201626554A (en) Solid-state imaging element and electronic device
US7968963B2 (en) Photodiode array and image pickup device using the same
US20070075224A1 (en) Two coluor photon detector
US20140175286A1 (en) High Operating Temperature Quantum Dot Infrared Detector
JP6904017B2 (en) Image sensor and image sensor
JP2012216727A (en) Light receiving element, method for manufacturing the same, and detection device
JP5435065B2 (en) Receiver
US9685477B2 (en) Two-terminal multi-mode detector
US10068942B2 (en) Photodiode array having a charge-absorbing doped region
US20230018071A1 (en) Dual band photodiode element and method of making the same
US20130009045A1 (en) Self-Aligned Contacts for Photosensitive Detection Devices
US20150021731A1 (en) Solid-state imaging device and manufacturing method thereof
US8039780B2 (en) Photodiode array and image pickup device using the same
JP2009099914A (en) Light receiving element array and imaging device
JP2009283603A (en) Detection apparatus, light-receiving element array, and fabrication process therefor
JP5298499B2 (en) Light receiving element array and imaging device
JP2011215046A (en) Infrared sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5435065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees