JP2012199031A - Cathode for electron tube - Google Patents

Cathode for electron tube Download PDF

Info

Publication number
JP2012199031A
JP2012199031A JP2011061691A JP2011061691A JP2012199031A JP 2012199031 A JP2012199031 A JP 2012199031A JP 2011061691 A JP2011061691 A JP 2011061691A JP 2011061691 A JP2011061691 A JP 2011061691A JP 2012199031 A JP2012199031 A JP 2012199031A
Authority
JP
Japan
Prior art keywords
cathode
heater
center
metal
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011061691A
Other languages
Japanese (ja)
Other versions
JP5711014B2 (en
Inventor
Akinori Umeda
昭則 梅田
Hiroyuki Miyamoto
洋之 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2011061691A priority Critical patent/JP5711014B2/en
Publication of JP2012199031A publication Critical patent/JP2012199031A/en
Application granted granted Critical
Publication of JP5711014B2 publication Critical patent/JP5711014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To minimize influence from cathode oscillation to stabilize characteristics of a magnetron, specifically stabilize oscillatory frequencies in pulses.SOLUTION: In a configuration where a heater 21 is disposed at an axial part in a cylindrical cathode sleeve 2, both ends of the heater 21 are fixed by end shields 4a, 4b, and the cathode sleeve 2 is supported by supporting electrode bodies 9 from an angled direction relative to the axial direction, an insulated member 27 for moving the center of gravity is provided so that the position of the center of gravity of the cathode is set at a position away from the axis of the cathode sleeve 2. The member 27 for moving the center of gravity, for example a member having a disc form with a circular cavity having a different axis from the axis of the cathode sleeve, reduces oscillations by moving the center of gravity in the disposed direction of the supporting electrode bodies with regard to the cathode sleeve axis. Also, a second insulation body 24 and a supporting metal member 25 are disposed at the end of a coil on the cathode potential side of the heater 21 so as to maintain weight balance of both ends of the cathode.

Description

本発明は電子管用カソード、特に耐振動及び固有振動数制御のためのカソード構造に関する。   The present invention relates to a cathode for an electron tube, and more particularly to a cathode structure for vibration resistance and natural frequency control.

電子管、例えばマグネトロンにおいては、カソードの組立位置の精度が極めて重要であり、その精度は0.01mm単位で制御されており、この組立位置が変化すると、カソードとアノード共振回路の電磁的結合状態が変わり、マグネトロンの様々な動作特性に変化が生じる。特に、マグネトロンを線形加速器の高周波源として使用する場合、マグネトロンのパルス内発振周波数に変化が大きいと、線形加速器が極めて高いQ値を有するために、電力反射が生じ、効率的に線形加速器を駆動できなくなる。   In an electron tube such as a magnetron, the accuracy of the assembly position of the cathode is extremely important, and the accuracy is controlled in units of 0.01 mm. When this assembly position changes, the electromagnetic coupling state between the cathode and the anode resonance circuit changes. This will change the various operating characteristics of the magnetron. In particular, when a magnetron is used as a high-frequency source of a linear accelerator, if the change in the oscillation frequency of the magnetron pulse is large, the linear accelerator has an extremely high Q value, so that power reflection occurs and drives the linear accelerator efficiently. become unable.

そこで、カソードの組立位置精度の向上のために、多くの検討がなされているが、カソードの組立位置精度は、カソード支持構造に大きく依存する。即ち、従来のマグネトロンのカソード支持構造としては、主に、図5(A)のような同軸支持構造、図5(B)のように軸を横方向から支持する構造(片持ち支持)の2つのタイプがある。   Thus, many studies have been made to improve the accuracy of the cathode assembly position, but the accuracy of the cathode assembly position greatly depends on the cathode support structure. That is, the conventional magnetron cathode support structure mainly includes a coaxial support structure as shown in FIG. 5A and a structure that supports the shaft from the side as shown in FIG. 5B (cantilever support). There are two types.

図5(A)のマグネトロンでは、カソード1は、円筒状のカソードスリーブ2、このカソードスリーブ2の外周に設けられた電子放出物3、カソードスリーブ2の両端に配置されたエンドシールド4a,4bからなり、このカソード1の外周方向にアノード5、上下方向にポールピース6a,6bが配置される。そして、このカソード1は、カソードスリーブ2に同軸で上方に取り付けられたカソード入力(電極)部7にて支持され、またカソード1の上下方向に磁気回路8a,8bが配置される。   In the magnetron of FIG. 5 (A), the cathode 1 includes a cylindrical cathode sleeve 2, an electron emission material 3 provided on the outer periphery of the cathode sleeve 2, and end shields 4 a and 4 b disposed at both ends of the cathode sleeve 2. Thus, an anode 5 is arranged in the outer peripheral direction of the cathode 1 and pole pieces 6a and 6b are arranged in the vertical direction. The cathode 1 is supported by a cathode input (electrode) portion 7 that is coaxially and upwardly attached to the cathode sleeve 2, and magnetic circuits 8 a and 8 b are arranged in the vertical direction of the cathode 1.

図5(B)のマグネトロンは、上記と同様の構造のカソード1がカソードスリーブ2の軸(円筒中心軸)に対し直角の方向に取り付けられた支持電極体9によって支持され、この支持電極体9はカソード入力部10にて固定される構造となっている。即ち、カソード1はカソード入力部10側から片持ち状態で支持される。   The magnetron of FIG. 5B is supported by a support electrode body 9 in which a cathode 1 having the same structure as described above is attached in a direction perpendicular to the axis of the cathode sleeve 2 (cylindrical center axis). Is fixed at the cathode input section 10. That is, the cathode 1 is supported in a cantilevered state from the cathode input unit 10 side.

上記図5(A)のマグネトロンは、カソード1の位置精度を比較的良好にすることができるが、電磁石による外付けの磁気回路8a,8bと組み合わせて使用する場合、その構造上、ポールピース6a,6bと同じ方向がカソード入力となるので、磁気回路8a,8bとマグネトロンの取付け、取外しには構造上の困難が生じる。また、ポールピース6a,6bの形状を両極で同じにすることが難しくなる場合もあり、この場合には、磁束密度分布の広がりによるマグネトロン特性の影響を考慮する必要が生じる。   The magnetron of FIG. 5A can make the positional accuracy of the cathode 1 relatively good. However, when used in combination with the external magnetic circuits 8a and 8b using electromagnets, the pole piece 6a is structurally used. , 6b is the cathode input, and structural difficulties arise when attaching and removing the magnetic circuits 8a, 8b and the magnetron. Further, it may be difficult to make the pole pieces 6a and 6b have the same shape in both poles. In this case, it is necessary to consider the influence of the magnetron characteristics due to the spread of the magnetic flux density distribution.

一方、図5(B)のマグネトロンは、カソード1の位置精度を変化させ易い構造を潜在的に持っているが、電磁石による外付けの磁気回路8a,8bと組み合わせて使用する場合、この磁気回路8a,8bとマグネトロンの取付け、取外しが容易であるという利便性から、線形加速器用マグネトロンでは良く利用されているカソード支持構造である。   On the other hand, the magnetron of FIG. 5 (B) potentially has a structure in which the positional accuracy of the cathode 1 can be easily changed, but when used in combination with external magnetic circuits 8a and 8b using electromagnets, It is a cathode support structure that is often used in linear accelerator magnetrons because of the convenience of easy attachment and removal of 8a and 8b and the magnetron.

しかし、この図5(B)のカソード支持(片持ち支持)構造においては、外部から荷電粒子の加速度をマグネトロンが受けた場合、カソード1自体が、図5(B)のカソード入力部10の取付け部を支点として、自重により振動し易いという問題がある。また、磁束と直交する方向からカソード1を支持するので、マグネトロン電流が流れたとき作用空間付近のカソード支持系がローレンツカを受け、パルスの繰り返し周波数で振動するという問題がある。   However, in the cathode support (cantilever support) structure of FIG. 5B, when the magnetron receives acceleration of charged particles from the outside, the cathode 1 itself is attached to the cathode input section 10 of FIG. 5B. There is a problem that it is easy to vibrate by its own weight with the part as a fulcrum. Further, since the cathode 1 is supported from the direction orthogonal to the magnetic flux, there is a problem that when the magnetron current flows, the cathode support system near the working space receives Lorentzka and vibrates at the repetition frequency of the pulse.

このようなカソード1の自重による振動及びローレンツカによる振動に対しては、カソード総重量の軽減化,支持系の剛性強化が設計上重要で、これらにより、振動の振幅抑制とカソード支持系の最低時の固有振動数を高くできることが知られている。特に、固有振動数はマグネトロンを駆動する高電圧パルスの繰り返し周波数よりも高くすることが重要である。   For such vibration due to the cathode 1's own weight and vibration due to Lorenzka, it is important in design to reduce the total weight of the cathode and to strengthen the rigidity of the support system. It is known that the natural frequency of the hour can be increased. In particular, it is important that the natural frequency be higher than the repetition frequency of the high voltage pulse that drives the magnetron.

更に、カソード1内部に具備しているヒータの振動影響も重要であり、カソード1が振動した際に、その内部のヒータが振動するとカソード1の振動が複雑化して制御が難しくなるばかりでなく、マグネトロンの特性の影響も複雑化する。このため、従来では、カソード1内のヒータの配置について図6のような構造が採用されている。   Furthermore, the vibration effect of the heater provided in the cathode 1 is also important, and when the cathode 1 vibrates, the vibration of the cathode 1 becomes complicated and difficult to control if the internal heater vibrates. The influence of magnetron characteristics is also complicated. For this reason, a structure as shown in FIG. 6 is conventionally used for the arrangement of the heaters in the cathode 1.

図6(A)の例では、ヒータ巻きピッチに合った溝を有する絶縁物12を設け、この絶縁物12に沿ってヒータ13を巻いて固定することで、振動を抑制している。また、図6(B)の例では、通し孔である中空の絶縁物14を設け、この絶縁物14の通し孔にヒータ13を通すと共に、両側のエンドシールド4a,4bでヒータ13を押すようにして(ヒータ13による付勢力を発生させて)ヒータ13を固定することで、振動の抑制が可能となる。   In the example of FIG. 6A, the insulator 12 having a groove matching the heater winding pitch is provided, and the heater 13 is wound and fixed along the insulator 12 to suppress vibration. Further, in the example of FIG. 6B, a hollow insulator 14 that is a through hole is provided, the heater 13 is passed through the through hole of the insulator 14, and the heater 13 is pushed by the end shields 4a and 4b on both sides. By fixing the heater 13 (by generating an urging force by the heater 13), vibration can be suppressed.

特開平6−260078号公報JP-A-6-260078

しかしながら、図6(A)のように、ヒータ巻きピッチの溝を有する絶縁物12でヒータ13を固定するものでは、カソード(1)自体の重量が重くなり、円筒軸の横方向から支持するカソード支持構造では、ヒータ13の振動は抑制できる反面、カソード自体の振動振幅は逆に大きくなる。また、重量が増えるとカソード支持系の固有振動数は下がり、パルスの繰り返し周波数と共振するおそれが生じるという問題があった。   However, in the case where the heater 13 is fixed by the insulator 12 having the heater winding pitch groove as shown in FIG. 6A, the cathode (1) itself becomes heavy and is supported from the side of the cylindrical axis. In the support structure, the vibration of the heater 13 can be suppressed, but the vibration amplitude of the cathode itself increases. Further, when the weight increases, the natural frequency of the cathode support system decreases, and there is a problem that resonance with the pulse repetition frequency may occur.

また、図6(B)のように、絶縁物14の通し孔にヒータ13を通すと共に、両端のエンドシールド4a,4bでヒータ13を押すようにしてヒータ13を固定するものでは、コイル状ヒータ13のカソード電位側の巻き始めの2〜3巻きまでは温度が上がらないため、この領域は実質的にヒータとして機能せず、この巻き始めの分がカソード1において余分な重量の増加になっている。   Further, as shown in FIG. 6B, the heater 13 is fixed by passing the heater 13 through the through hole of the insulator 14 and pressing the heater 13 with the end shields 4a and 4b at both ends. Since the temperature does not rise until the first to third turns on the cathode potential side of 13, this region does not substantially function as a heater, and the amount of this start of winding is an extra weight increase in the cathode 1. Yes.

更に、図6(B)の構造の場合、図示されるように、ヒータ13が上側(エンドシールド4a側)のヒータ電位側ではヒータ碍子15等が配置されるのに対し、下側(エンドシールド4b側)のカソード電位側ではヒータ碍子等が配置されない構造とされ、カソード電位側とヒータ電位側で構造上対称にならないため、カソード1において両端のバランスがとれず、振動を助長するという問題があった。即ち、重量の軽減は振動影響にとって有利であり、可能な限りカソード1を軽量化することが好ましく、またカソード1(或いはヒータ13及びその取付け)において両端のバランスをとることも、振動の抑制に重要な役割をすることになる。   Further, in the case of the structure of FIG. 6B, the heater 13 is arranged on the heater potential side on the upper side (end shield 4a side), while the heater insulator 15 and the like are arranged on the lower side (end shield). On the cathode potential side (4b side), the heater insulator and the like are not arranged, and the cathode potential side and the heater potential side are not symmetrical in structure. Therefore, the cathode 1 is not balanced at both ends and promotes vibration. there were. That is, weight reduction is advantageous for the influence of vibration, and it is preferable to reduce the weight of the cathode 1 as much as possible, and balancing both ends of the cathode 1 (or the heater 13 and its attachment) can also suppress vibration. Will play an important role.

本発明は上記問題点に鑑みてなされたものであり、その目的は、カソードの振動の影響を最少化して、マグネトロンの諸特性、特にパルス内発振周波数の安定化を図ることができる電子管用カソードを提供することにある。   The present invention has been made in view of the above problems, and its object is to minimize the influence of the vibration of the cathode and to stabilize the characteristics of the magnetron, in particular, the oscillation frequency within the pulse. Is to provide.

上記目的を達成するために、請求項1の発明に係る電子管用カソードは、電子放出物質を表面に塗布した円筒状の金属筒(カソードスリーブ)と、この金属筒内の軸部に配置したヒータと、このヒータの両端を上記金属筒の両端に固定するための円盤状金属(エンドシールド)とを有し、上記ヒータの電極及びカソード支持体として機能する支持電極体を上記金属筒の軸線方向に対し角度を持って配置した電子管用カソードにおいて、絶縁体からなり、カソード重心位置を上記金属筒の中心軸から離れた位置に設定するための重心移動部材を、上記金属筒内に設けたことを特徴とする。
請求項2の発明は、電子放出物質を表面に塗布した円筒状の金属筒と、この金属筒内の軸部に配置したヒータと、このヒータの両端を上記金属筒の両端に固定するための円盤状金属とを有し、上記ヒータの電極及びカソード支持体として機能する支持電極体を上記金属筒の軸線方向に対し角度を持って配置した電子管用カソードにおいて、上記金属筒と同電位となるカソード電位側のヒータ巻線端と上記円盤状金属との間に、上記金属筒のヒータ電位側との重量バランスをとるための第2絶縁体及び支持用部材を設けたことを特徴とする。
In order to achieve the above object, a cathode for an electron tube according to the invention of claim 1 includes a cylindrical metal tube (cathode sleeve) coated with an electron emitting material on the surface, and a heater disposed on a shaft portion in the metal tube. And a disk-like metal (end shield) for fixing both ends of the heater to both ends of the metal cylinder, and a support electrode body functioning as an electrode of the heater and a cathode support body in the axial direction of the metal cylinder In the cathode for an electron tube disposed at an angle with respect to the center, a center-of-gravity moving member made of an insulator and for setting the cathode center-of-gravity position away from the center axis of the metal cylinder is provided in the metal cylinder. It is characterized by.
According to a second aspect of the present invention, there is provided a cylindrical metal tube coated with an electron-emitting substance on a surface, a heater disposed on a shaft portion in the metal tube, and both ends of the heater for fixing the both ends of the metal tube. An electron tube cathode having a disk-like metal and having a support electrode body functioning as an electrode of the heater and a cathode support body arranged at an angle with respect to the axial direction of the metal cylinder has the same potential as the metal cylinder. A second insulator and a supporting member are provided between the heater potential end of the cathode potential side and the disk-like metal to balance the weight of the metal cylinder with the heater potential side.

上記請求項1の構成によれば、上記重心移動部材は、例えば金属筒内に嵌合する円盤状絶縁物であり、その円盤中に、金属筒中心軸と異なる中心軸を持ち、ヒータ通し孔を包含する大きめの円形空洞が形成されたもの、又は金属筒中心軸と同軸のヒータ通し孔を備え、そのヒータ通し孔の外周の一部から外側へ切り欠きを形成したもの、又は金属筒中心軸と同軸のヒータ通し孔を備え、そのヒータ通し孔の外側の一部に小孔や溝を形成したものとされ、この円盤状絶縁物が金属筒の軸線方向の中央に配置される。この重心移動部材は、例えば金属筒の中心軸から見て支持電極体が配置された方向(カソード軸線に垂直な方向で支持電極体による支持側)と逆方向のカソードの重量を軽くする、即ちカソードの重心が金属筒の中心軸から支持電極体配置方向へ移動することとなり、これによって、振動が抑制される。   According to the configuration of the first aspect, the center-of-gravity moving member is, for example, a disk-like insulator fitted into a metal cylinder, and the disk has a central axis different from the central axis of the metal cylinder, and has a heater through hole. With a large circular cavity that includes a heater through hole coaxial with the central axis of the metal cylinder, and with a notch formed outwardly from a part of the outer periphery of the heater through hole, or the center of the metal cylinder A heater through hole coaxial with the shaft is provided, and a small hole or a groove is formed in a part of the outside of the heater through hole, and this disk-shaped insulator is disposed at the center in the axial direction of the metal cylinder. This center-of-gravity moving member, for example, reduces the weight of the cathode in the direction opposite to the direction in which the support electrode body is disposed as viewed from the central axis of the metal cylinder (the support side by the support electrode body in the direction perpendicular to the cathode axis). The center of gravity of the cathode moves from the central axis of the metal cylinder in the support electrode body arrangement direction, thereby suppressing vibration.

上記請求項2の構成によれば、第2絶縁体及び支持用部材により、カソードの軸線方向におけるヒータのカソード電位側とヒータ電位側の重量バランスがとれることで、振動の抑制が可能となる。   According to the second aspect of the present invention, the weight balance between the cathode potential side and the heater potential side of the heater in the axial direction of the cathode can be achieved by the second insulator and the supporting member, so that vibration can be suppressed.

本発明の電子管用カソードによれば、外部から荷電粒子の加速度を受けた際のカソードの振動を小さくでき、またカソード及びその支持系の固有振動周波数をより高くでき、マグネトロンの諸特性、特に線形加速器用高出力パルスマグネトロン等におけるパルス内発振周波数の安定化を図ることが可能になる。   According to the cathode for an electron tube of the present invention, the vibration of the cathode when subjected to the acceleration of charged particles from the outside can be reduced, and the natural vibration frequency of the cathode and its supporting system can be further increased. It is possible to stabilize the oscillation frequency in the pulse in a high output pulse magnetron for an accelerator or the like.

本発明の実施例に係る電子管用カソードの構成を示し、図(A)は図(B)のI−I線断面図、図(B)は軸線方向の断面図である。The structure of the cathode for electron tubes which concerns on the Example of this invention is shown, FIG. (A) is II sectional view taken on the line of FIG. (B), FIG. (B) is sectional drawing of an axial direction. 実施例の電子管用カソードの円盤状絶縁物の他の構成例を示す図である。It is a figure which shows the other structural example of the disk shaped insulator of the cathode for electron tubes of an Example. 実施例の電子管用カソードを用いたマグネトロンの構成を示す一部断面図である。It is a partial cross section figure which shows the structure of the magnetron using the cathode for electron tubes of an Example. 実施例の電子管用カソードの振動を示すグラフ[図(A)]と、従来例の振動を示すグラフ図[図(B)]である。It is the graph (FIG. (A)) which shows the vibration of the cathode for electron tubes of an Example, and the graph [Figure (B)] which shows the vibration of a prior art example. 従来のマグネトロンにおける2つのカソード支持構造を示す図である。It is a figure which shows the two cathode support structures in the conventional magnetron. 従来のカソードにおけるヒータ配置の2つの構造を示す図である。It is a figure which shows two structures of the heater arrangement | positioning in the conventional cathode.

図1には、本発明の実施例に係る電子管用カソード(例えば線形加速器用高出力パルスマグネトロンのカソード)の構成が示され、図3には、実施例のカソードを配置したマグネトロンの構成が示されており、まずマグネトロンの構成から説明する。図3に示されるように、カソード18は、その両端がカソードスリーブ2の軸(円筒中心軸)に直角(90度以外の角度でもよい)となる方向に配置された2本の支持電極体(棒)9によって支持され、この2本の支持電極体9がカソード入力部10内のステム19により固定される。また、従来と同様に、カソード18の周囲にアノード5が設けられ、上下にはポールピース6a,6bが配置される。従って、カソード18は、ステム19に固定される支持電極体9にてその軸線方向に対し角度を持った方向から支持されるので、片持ち支持となり、ステム19の部分を支点として振動が生じることになる。   FIG. 1 shows the configuration of a cathode for an electron tube (for example, the cathode of a high output pulse magnetron for a linear accelerator) according to an embodiment of the present invention, and FIG. 3 shows the configuration of a magnetron in which the cathode of the embodiment is arranged. First, the structure of the magnetron will be described. As shown in FIG. 3, the cathode 18 has two supporting electrode bodies (both ends disposed in a direction perpendicular to the axis (cylindrical center axis) of the cathode sleeve 2 (may be an angle other than 90 degrees)). The two support electrode bodies 9 are fixed by a stem 19 in the cathode input section 10. As in the prior art, the anode 5 is provided around the cathode 18, and pole pieces 6a and 6b are arranged above and below. Accordingly, the cathode 18 is supported by the support electrode body 9 fixed to the stem 19 from a direction having an angle with respect to the axial direction thereof. become.

図1において、カソード18は、円筒状のカソードスリーブ(金属筒)2、このカソードスリーブ2の外表面に塗布された電子放出物3、カソードスリーブ2の両端のエンドシールド(円盤状金属)4a,4b、このエンドシールド4a,4bの中心に固定され、カソードスリーブ2の軸と同軸に配置されたコイル状ヒータ21を有して構成される。   In FIG. 1, a cathode 18 includes a cylindrical cathode sleeve (metal cylinder) 2, an electron emission material 3 applied to the outer surface of the cathode sleeve 2, end shields (disk-shaped metal) 4 a at both ends of the cathode sleeve 2, 4 b, a coil heater 21 fixed to the center of the end shields 4 a and 4 b and arranged coaxially with the axis of the cathode sleeve 2.

このヒータ21の上側のヒータ電位側巻線端には、内部のヒータ碍子22a、外側の金属部材22bで構成される中空円盤状の支持用部材22と絶縁体23が配置され、これらによってヒータ21が円盤状エンドシールド4aの中心部に取り付けられる。一方、下側のカソード電位側巻線端は、エンドシールド4bの中心に、比較的薄い中空円盤状の第2絶縁物24と中空円盤状の支持用金属部材25によって取り付けられる。ここで、コイル状のヒータ21は、第2絶縁物24及び支持用金属部材25を押すようにして、即ちヒータ21が付勢力を持つ状態で、両側のエンドシールド4a,4bの間にしっかりと取付け・固定される。なお、上記支持用金属部材25は、上記支持用部材22と同様の構成であってもよい。   At the upper end of the heater 21 on the side of the heater potential side, a hollow disk-shaped support member 22 and an insulator 23 constituted by an inner heater insulator 22a and an outer metal member 22b are arranged. Is attached to the center of the disc-shaped end shield 4a. On the other hand, the lower cathode potential side winding end is attached to the center of the end shield 4b by a relatively thin hollow disk-shaped second insulator 24 and a hollow disk-shaped supporting metal member 25. Here, the coil-shaped heater 21 is firmly placed between the end shields 4a and 4b on both sides so as to push the second insulator 24 and the supporting metal member 25, that is, in a state where the heater 21 has a biasing force. Installed and fixed. The supporting metal member 25 may have the same configuration as the supporting member 22.

そして、実施例では、カソードスリーブ2内の軸方向の中央に、絶縁体(碍子)からなり、内壁に嵌合する重心移動部材27を設ける。この重心移動部材27は、図1(A)に示されるように、その円盤中に、カソードスリーブ2の軸(中心軸)cと異なる軸(中心軸)cを持ち、ヒータ通し孔を包含する大きさの(従来の通し孔よりも大きい)円形空洞27Hが形成されており、この円形空洞27Hは、その軸cを金属筒2の軸cに対し支持電極体9側とは反対側に配置する。これにより、実施例では、支持電極体9による支持方向と逆方向のカソード18の重量を軽くし、カソード18の重心位置が支持電極体9側、即ちカソード支持側(カソード軸線に垂直な方向で支持電極体配置側)へ移動する。この結果、カソード支持系の固有振動数が高くなる方向に作用することになり、パルスの繰返し周波数よりもカソード支持系の固有振動数を高くすることがより容易となる。また、カソード18の重心が最適化されることで、マグネトロンが外部から加速度を受けた際のカソード振幅を最少化することが可能になる。 In the embodiment, a center-of-gravity moving member 27 made of an insulator (insulator) and fitted to the inner wall is provided in the center of the cathode sleeve 2 in the axial direction. As shown in FIG. 1A, the center-of-gravity moving member 27 has an axis (center axis) c 1 different from the axis (center axis) c 0 of the cathode sleeve 2 in the disk, and has a heater through hole. A circular cavity 27H having a size to be included (larger than the conventional through-hole) is formed, and this circular cavity 27H has its axis c 1 on the side of the support electrode body 9 with respect to the axis c 0 of the metal cylinder 2. Place on the opposite side. Thus, in the embodiment, the weight of the cathode 18 in the direction opposite to the direction supported by the support electrode body 9 is reduced, and the center of gravity position of the cathode 18 is on the support electrode body 9 side, that is, the cathode support side (in the direction perpendicular to the cathode axis). To the supporting electrode body arrangement side). As a result, the natural frequency of the cathode support system increases, and it becomes easier to make the natural frequency of the cathode support system higher than the pulse repetition frequency. In addition, by optimizing the center of gravity of the cathode 18, it is possible to minimize the cathode amplitude when the magnetron receives acceleration from the outside.

図2には、実施例の重心移動部材の他の例が示されており、図2(A)の重心移動部材28は、カソードスリーブ2の中心軸cと同軸のヒータ通し孔50を備え、そのヒータ通し孔50の外周の一部から外側(支持電極体配置側と反対の方向)へ切り欠いた長孔(又は楕円孔)28Hを形成し、図2(B)の重心移動部材29は、カソードスリーブ2の軸cと同軸のヒータ通し孔50を備え、そのヒータ通し孔50から外側(支持電極体配置側と反対の方向)の上下面に溝29Dを形成したものである。 FIG. 2 shows another example of the center-of-gravity moving member of the embodiment. The center-of-gravity moving member 28 of FIG. 2A includes a heater through hole 50 coaxial with the central axis c 0 of the cathode sleeve 2. A long hole (or elliptical hole) 28H cut out from a part of the outer periphery of the heater through hole 50 to the outside (in the direction opposite to the support electrode body arrangement side) is formed, and the gravity center moving member 29 in FIG. includes a shaft c 0 and coaxial heater through hole 50 of the cathode sleeve 2 is obtained by forming a groove 29D on the upper and lower surfaces of the outer side (the direction opposite to the supporting electrode material arrangement side) from the heater insertion hole 50.

また、図2(C)の重心移動部材30は、上記と同様のヒータ通し孔50を備え、そのヒータ通し孔50の外側円周方向の半面(支持電極体配置側と反対の方向)に5個(1個でもよい)の小孔30Hを形成し、図2(D)の重心移動部材31は、上記と同様のヒータ通し孔50を備え、そのヒータ通し孔50の外側(支持電極体配置側と反対の方向)に、凹部(段差部)31Dを形成したものである。このような重心移動部材28〜31によっても、例えば支持電極体配置側と反対の方向の重さを軽くして、カソード18の重心位置を電極支持棒9側、即ちカソード支持側へ移動させることができる。   Further, the center-of-gravity moving member 30 in FIG. 2C includes a heater through hole 50 similar to the above, and the heater through hole 50 has a half on the outer circumferential direction (direction opposite to the support electrode body arrangement side). 2 (or 1) small holes 30H are formed, and the center-of-gravity moving member 31 in FIG. 2D includes a heater through hole 50 similar to the above, and the outside of the heater through hole 50 (support electrode body arrangement). A concave portion (stepped portion) 31D is formed in the direction opposite to the side). Also by using the center-of-gravity moving members 28 to 31, for example, the weight in the direction opposite to the supporting electrode body arrangement side is reduced, and the position of the center of gravity of the cathode 18 is moved to the electrode support rod 9 side, that is, the cathode support side. Can do.

また、実施例では、上述したように、ヒータ21のカソード電位側巻線端(下側)を第2絶縁物24と支持用金属部材25を介して取り付けており、これによって、カソード18の両端(軸線方向)の重量バランスを均等にし、かつカソード18全体の軽量化ができると共に、ヒータ21のカソード電位側の温度低下を防止できるという利点がある。即ち、従来から設けられていたヒータ電位側巻線端の支持用部材22(ヒータ碍子22a,金属部材22b)及び絶縁体23を考慮して、カソード電位側巻線端にも、第2絶縁物24と支持用金属部材25を設けることで、カソード18の両端のバランスを均等にすることができ、またこの第2絶縁物24と支持用金属部材25を設けた領域の分だけ、比較的重量があるヒータ21の巻線数が減るので、カソード18全体の軽量化が可能となる。   Further, in the embodiment, as described above, the cathode potential side winding end (lower side) of the heater 21 is attached via the second insulator 24 and the supporting metal member 25, whereby the both ends of the cathode 18 are attached. There is an advantage that the weight balance in the (axial direction) can be made uniform, the weight of the entire cathode 18 can be reduced, and the temperature drop on the cathode potential side of the heater 21 can be prevented. That is, in consideration of the conventional support member 22 (heater insulator 22a, metal member 22b) and the insulator 23 at the heater potential side winding end, the second insulator is also provided at the cathode potential side winding end. By providing the metal member 24 and the supporting metal member 25, the balance of the both ends of the cathode 18 can be made uniform, and the weight of the region where the second insulator 24 and the supporting metal member 25 are provided is relatively heavy. Since the number of windings of the heater 21 is reduced, the entire cathode 18 can be reduced in weight.

そして、このカソード18の両端バランスの均等化と軽量化は、マグネトロンが外部から加速度を受けた際のカソード振幅を小さくする方向に作用し、またカソード支持系の固有振動数を高くする方向に作用する。この結果、パルスの繰り返し周波数よりもカソード支持系の固有振動数を高くすることがより容易となる。   The equalization and weight reduction of both ends of the cathode 18 acts to reduce the cathode amplitude when the magnetron receives acceleration from the outside, and acts to increase the natural frequency of the cathode support system. To do. As a result, it is easier to increase the natural frequency of the cathode support system than the pulse repetition frequency.

図4には、実施例の電子管用カソードの振動の状態[図(A)]と従来例の振動の状態[図(B)]が示されており、従来例が0.6mmに近い振幅の振動であるに対し、実施例では、0.1mm程度の振幅の振動が得られた。   FIG. 4 shows the vibration state (FIG. (A)) of the cathode for an electron tube of the example and the vibration state (FIG. (B)) of the conventional example, where the conventional example has an amplitude close to 0.6 mm. In contrast to the vibration, in the example, a vibration having an amplitude of about 0.1 mm was obtained.

更に、上述のように、ヒータ21のカソード電位側に、第2絶縁物24を設けたことで、ヒータ21の熱がエンドシールド4b側へ逃げないようにして、ヒータ21のカソード電位側巻線部の温度低下を防ぐことができるという利点がある。ここで、第2絶縁物24と支持用金属部材25を合せた全長は、ヒータ巻きピッチの5倍以下とすることが好ましい。即ち、この第2絶縁物24と支持用金属部材25は、温度が上がっていない若しくは十分でない部分であるカソード電位側からの巻き始めの5巻き分の置き換えとし、これにより、ヒータ21の電流−電圧特性や温度−電圧特性が良好となるにすることが好ましい。   Furthermore, as described above, the second insulator 24 is provided on the cathode potential side of the heater 21, so that the heat of the heater 21 does not escape to the end shield 4 b side, and the cathode potential side winding of the heater 21. There is an advantage that the temperature drop of the part can be prevented. Here, the total length of the second insulator 24 and the supporting metal member 25 is preferably 5 times or less the heater winding pitch. That is, the second insulator 24 and the supporting metal member 25 are replaced with five windings of the first winding from the cathode potential side where the temperature is not increased or not sufficient, and thereby the current − of the heater 21 − It is preferable that voltage characteristics and temperature-voltage characteristics are improved.

上記実施例では、ヒータ21のカソード電位側に設けた第2絶縁物24及び支持用金属部材25で、カソード電位側を軽くしたが、逆にカソード電位側を重くしてカソード18の軸方向の重量バランスを均等にするようにしてもよく、また重心移動部材27を軸方向の中央以外に設けることで、軸方向の重量バランスを調整することもできる。更に、実施例では、線形加速器用高出力パルスマグネトロンに用いた例を説明したが、本発明は、その他のマグネトロン等の電子管のカソードに適用することができる。   In the above-described embodiment, the cathode potential side is lightened by the second insulator 24 and the supporting metal member 25 provided on the cathode potential side of the heater 21, but conversely, the cathode potential side is heavy and the axial direction of the cathode 18 is increased. The weight balance may be made uniform, and the weight balance in the axial direction can be adjusted by providing the center-of-gravity moving member 27 other than the center in the axial direction. Furthermore, in the embodiment, the example used for the high-power pulse magnetron for the linear accelerator has been described, but the present invention can be applied to the cathode of an electron tube such as another magnetron.

1,18…カソード、 2…カソードスリーブ(金属筒)、
4a,4b…エンドシールド(円盤状金属)、
9…支持電極体、 10…カソード入力部、
13,21…ヒータ、 19…ステム、
15,22a…ヒータ碍子、 23…絶縁物、
24…第2絶縁物、 25…支持用金属部材、
27〜31…重心移動部材、 27H…円形空洞、
28H…長孔、 29D…溝、
30H…小孔、 31D…凹部、
50…ヒータ通し孔。
1, 18 ... cathode, 2 ... cathode sleeve (metal tube),
4a, 4b ... End shield (disk-shaped metal),
9 ... Support electrode body, 10 ... Cathode input part,
13, 21 ... heater, 19 ... stem,
15, 22a ... heater insulator, 23 ... insulator,
24 ... 2nd insulator, 25 ... Metal member for support,
27-31 ... gravity center moving member, 27H ... circular cavity,
28H ... slot, 29D ... groove,
30H ... Small hole, 31D ... Recess,
50: Heater through hole.

Claims (2)

電子放出物質を表面に塗布した円筒状の金属筒と、この金属筒内の軸部に配置したヒータと、このヒータの両端を上記金属筒の両端に固定するための円盤状金属とを有し、上記ヒータの電極及びカソード支持体として機能する支持電極体を上記金属筒の軸線方向に対し角度を持って配置した電子管用カソードにおいて、
絶縁体からなり、カソード重心位置を上記金属筒の中心軸から離れた位置に設定するための重心移動部材を、上記金属筒内に設けたことを特徴とする電子管用カソード。
It has a cylindrical metal tube coated with an electron emitting material on its surface, a heater disposed on the shaft in the metal tube, and a disk-shaped metal for fixing both ends of the heater to both ends of the metal tube. In the cathode for an electron tube in which the electrode of the heater and the support electrode functioning as a cathode support are disposed at an angle with respect to the axial direction of the metal cylinder,
A cathode for an electron tube comprising an insulator and provided in the metal cylinder with a center-of-gravity moving member for setting the center of gravity of the cathode at a position away from the central axis of the metal cylinder.
電子放出物質を表面に塗布した円筒状の金属筒と、この金属筒内の軸部に配置したヒータと、このヒータの両端を上記金属筒の両端に固定するための円盤状金属とを有し、上記ヒータの電極及びカソード支持体として機能する支持電極体を上記金属筒の軸線方向に対し角度を持って配置した電子管用カソードにおいて、
上記金属筒と同電位となるカソード電位側のヒータ巻線端と上記円盤状金属との間に、上記金属筒のヒータ電位側との重量バランスをとるための第2絶縁体及び支持用部材を設けたことを特徴とする電子管用カソード。
It has a cylindrical metal tube coated with an electron emitting material on its surface, a heater disposed on the shaft in the metal tube, and a disk-shaped metal for fixing both ends of the heater to both ends of the metal tube. In the cathode for an electron tube in which the electrode of the heater and the support electrode functioning as a cathode support are disposed at an angle with respect to the axial direction of the metal cylinder,
A second insulator and a supporting member for balancing the weight of the heater potential side of the metal cylinder between the heater winding end on the cathode potential side having the same potential as the metal cylinder and the disk-shaped metal A cathode for an electron tube characterized by being provided.
JP2011061691A 2011-03-18 2011-03-18 Electron tube cathode Active JP5711014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061691A JP5711014B2 (en) 2011-03-18 2011-03-18 Electron tube cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061691A JP5711014B2 (en) 2011-03-18 2011-03-18 Electron tube cathode

Publications (2)

Publication Number Publication Date
JP2012199031A true JP2012199031A (en) 2012-10-18
JP5711014B2 JP5711014B2 (en) 2015-04-30

Family

ID=47181079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061691A Active JP5711014B2 (en) 2011-03-18 2011-03-18 Electron tube cathode

Country Status (1)

Country Link
JP (1) JP5711014B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002088A (en) * 2013-06-15 2015-01-05 新日本無線株式会社 Magnetron
JP2016081574A (en) * 2014-10-09 2016-05-16 新日本無線株式会社 Magnetron
JP2021015669A (en) * 2019-07-10 2021-02-12 新日本無線株式会社 Magnetron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2408239A (en) * 1943-07-14 1946-09-24 Raytheon Mfg Co Electronic discharge device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2408239A (en) * 1943-07-14 1946-09-24 Raytheon Mfg Co Electronic discharge device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002088A (en) * 2013-06-15 2015-01-05 新日本無線株式会社 Magnetron
JP2016081574A (en) * 2014-10-09 2016-05-16 新日本無線株式会社 Magnetron
JP2021015669A (en) * 2019-07-10 2021-02-12 新日本無線株式会社 Magnetron
JP7304225B2 (en) 2019-07-10 2023-07-06 日清紡マイクロデバイス株式会社 magnetron

Also Published As

Publication number Publication date
JP5711014B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5711014B2 (en) Electron tube cathode
JP2004055510A (en) Magnetron
US4891557A (en) Magnetron device
JP4904877B2 (en) Magnetron
CN110970279B (en) Permanent magnet packaged radial strong current electron beam high-power microwave oscillator
JP2014526037A (en) Electron beam apparatus and method for manufacturing electron beam apparatus
KR101174363B1 (en) cold cathode magnetron employing secondary electron emission cathode of stripe structure
US8159137B2 (en) Magnetron
EP3029707B1 (en) Magnetron
JP6345472B2 (en) Variable frequency magnetron
JP2006260976A (en) Magnetron
JP2018074472A (en) Speaker
JP5162880B2 (en) Magnetron
JP3754033B2 (en) Gyrotron device
JP6171162B2 (en) Microwave equipment
JP2019186083A (en) Klystron
JP5055872B2 (en) Magnetron
RU2746441C1 (en) Loudspeaker
JPH0538520Y2 (en)
JPS5915005Y2 (en) magnetron
US2961562A (en) Oscillation suppression in high voltage electron guns
KR20160043821A (en) Variable capacity magnetron
JPS586135Y2 (en) magnetron
JP5562577B2 (en) Magnetron
JP2014067615A (en) Magnetron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5711014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250