JP2012198187A - Micro pressure sensor - Google Patents

Micro pressure sensor Download PDF

Info

Publication number
JP2012198187A
JP2012198187A JP2011085772A JP2011085772A JP2012198187A JP 2012198187 A JP2012198187 A JP 2012198187A JP 2011085772 A JP2011085772 A JP 2011085772A JP 2011085772 A JP2011085772 A JP 2011085772A JP 2012198187 A JP2012198187 A JP 2012198187A
Authority
JP
Japan
Prior art keywords
pressure sensor
temperature
polymer film
sensor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011085772A
Other languages
Japanese (ja)
Inventor
Yukiko Okano
夕紀子 岡野
Shuichi Tajiri
修一 田尻
Takashi Aozono
隆司 青園
Soichi Ogawa
倉一 小川
Koji Mima
宏司 美馬
Akio Okamoto
昭夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKANO SEISAKUSHO KK
Technology Research Institute of Osaka Prefecture
Original Assignee
OKANO SEISAKUSHO KK
Technology Research Institute of Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKANO SEISAKUSHO KK, Technology Research Institute of Osaka Prefecture filed Critical OKANO SEISAKUSHO KK
Priority to JP2011085772A priority Critical patent/JP2012198187A/en
Publication of JP2012198187A publication Critical patent/JP2012198187A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure a pressure value in a vacuum environment without disturbing the environment.SOLUTION: A micro pressure sensor is composed of a heat conduction type pressure sensor part 2 arranged on a necessary position in a vacuum device and a control part 3 arranged on an outer wall of the vacuum device. The pressure sensor part 2 includes: a polymeric film support having a cavity part formed by a bottom and a cylindrical or square frame; a polymeric film 21 stuck to the upper surface of the frame of the polymeric film support by adhesive; one pressure sensor 22 arranged on a center part of the polymeric film 21; and one or more temperature sensors 23 arranged on the periphery of the pressure sensor 22. The pressure sensor 22 and the temperature sensors 23 are connected to a control part 3 respectively through electrodes. The control part 3 applies heating power to the pressure sensor 22 to control heating to a fixed temperature, the temperature sensors 23 measure the peripheral temperatures of the pressure sensor 22 by resistance changes, and a pressure value corresponding to the heating power in the vacuum device is corrected by the resistance changes to measure an accurate pressure value in the vacuum device.

Description

本発明は、気体により奪われる熱量をセンサ材料の温度変化として計測する熱伝導型真空計に用いることができるマイクロ圧力センサに関する。  The present invention relates to a micro pressure sensor that can be used in a heat conduction vacuum gauge that measures the amount of heat taken away by a gas as a temperature change of a sensor material.

真空応用加工装置を用いた種々の薄膜形成プロセスにおいて、装置内の適正な真空の質と量は形成される薄膜の特性に大きく影響する。  In various thin film forming processes using a vacuum applied processing apparatus, the proper vacuum quality and quantity in the apparatus greatly affects the characteristics of the thin film to be formed.

従来の真空応用加工装置を用いた薄膜形成においては、装置内の圧力を計測する真空計のサイズの問題から装置外にしか取り付けられないため、時間的・場所的平均値しか知ることができない。薄膜形成前もしくは加工中にあらかじめ設定した適正な真空の質と量に何らかの違いが生じても、計測器等の圧力値からでは明確な差が見られないことが多く、形成が完了した薄膜特性を評価して初めてその不具合を知る場合が多い。真空応用加工装置において薄膜を形成する場合は、大気圧(10Pa)から10−5Paの広範囲にわたる圧力を計測する必要があり、現状の測定機器においてはそれぞれの計測器における計測可能な圧力範囲が狭いために、複数の異なる方式により圧力を計測するための測定機器を併用する必要がある。
その上、先に述べたように既存の圧力を計測する真空計のサイズが大きいため、配管内や排気口前後などの狭小空間における圧力をリアルタイムで計測することはできない。また、気体の熱伝導変化を検出するセンサのマイクロ化には特許文献1のように、シリコンを基板材料とした微細加工技術が用いられることが一般的であるが、複雑な作成プロセスを必要とする上に架橋構造が脆弱であり、使用可能な温度範囲等に制約がある。
In forming a thin film using a conventional vacuum processing apparatus, it can be attached only outside the apparatus because of the size of a vacuum gauge for measuring the pressure in the apparatus, so that only a temporal / location average value can be known. Even if there is some difference in the proper vacuum quality and quantity set in advance before or during thin film formation, there is often no clear difference from the pressure value of the measuring instrument, etc. It is often the case that the defect is known only after the evaluation. When forming a thin film in a vacuum applied processing apparatus, it is necessary to measure pressure over a wide range from atmospheric pressure (10 5 Pa) to 10 −5 Pa, and in the current measuring equipment, the pressure that can be measured by each measuring instrument. Since the range is narrow, it is necessary to use a measuring device for measuring pressure by a plurality of different methods.
In addition, as described above, since the size of the existing vacuum gauge for measuring the pressure is large, it is impossible to measure the pressure in a narrow space such as in the pipe or before and after the exhaust port in real time. In addition, as described in Patent Document 1, a microfabrication technique using silicon as a substrate material is generally used for micronization of a sensor that detects a change in heat conduction of a gas. However, a complicated production process is required. In addition, the cross-linked structure is fragile and the usable temperature range is limited.

気体分子はMaxwell分布に従い、真空装置のすべての箇所で、圧力は均一であるという前提に基づいて圧力計測を行っていた。しかし実際は、電子部品デバイス形成のための真空装置内には各種ガスが導入されるため、真空装置外壁に取り付けた真空計で圧力値を計測していた。また、センササイズが大きいため真空装置内部にセンサを設置することができず、良くてシミュレーションが出来ていたに過ぎない。
実際に薄膜を形成する際の圧力状態は、出来上がった薄膜特性に大きく影響すると考えられるが、今までは計測する手段がなかった。マイクロ圧力センサにより真空環境内の圧力分布が計測できれば、電子部品デバイス形成分野の発展に大きく貢献できる。
The gas molecules follow the Maxwell distribution, and pressure measurement was performed based on the premise that the pressure is uniform at all points in the vacuum apparatus. However, in actuality, various gases are introduced into the vacuum apparatus for forming the electronic component device, so that the pressure value is measured with a vacuum gauge attached to the outer wall of the vacuum apparatus. In addition, since the sensor size is large, the sensor cannot be installed inside the vacuum apparatus, and it is only possible to perform a simulation.
Although the pressure state when actually forming a thin film is thought to greatly affect the properties of the thin film, there has been no means to measure so far. If the pressure distribution in the vacuum environment can be measured by the micro pressure sensor, it can greatly contribute to the development of the electronic component device forming field.

特開2005−308676公報  JP 2005-308676 A

真空応用加工装置を用いた薄膜形成プロセスにおいて、計測が必要な大気圧(10Pa)から10−5Paの広範囲にわたる圧力を単一のセンサのみで計測可能な測定機器は存在せず、また現状ではセンササイズの問題から真空装置外壁の特定の場所に設置せざるを得ず、実際に薄膜が形成されている装置内部や、配管部等の狭小スペースの圧力値を知ることはできない。気体の熱伝導変化を検出するセンサのマイクロ化にはシリコンを基板材料とした微細加工技術が用いられることが一般的であるが、複雑な作成プロセスを必要とする上に架橋構造が脆弱であり、使用可能な温度範囲等に制約がある。
また、真空環境という特殊空間内においてその環境を乱さずに圧力値を計測する方法は現在確立されていない。
In a thin film formation process using a vacuum applied processing apparatus, there is no measuring instrument that can measure a wide range of pressures from atmospheric pressure (10 5 Pa) to 10 −5 Pa with a single sensor. At present, due to the problem of sensor size, it must be installed at a specific location on the outer wall of the vacuum device, and the pressure value in the narrow space such as the inside of the device where the thin film is actually formed or the piping part cannot be known. Microfabrication technology that uses silicon as a substrate material is generally used to make sensors that detect changes in the heat conduction of gas, but it requires a complicated fabrication process and the bridging structure is fragile. There are restrictions on the usable temperature range.
In addition, a method for measuring a pressure value in a special space called a vacuum environment without disturbing the environment has not been established.

真空装置内の必要な箇所に配置される熱伝導型方式の圧力センサ部2と真空装置外壁に配置される制御部3からなるマイクロ圧力センサであって、
圧力センサ部2は、底面と円筒状または四角状の枠で形成され空洞部25を有する高分子フィルム支持体24と、その高分子フィルム支持体24の枠の上面に、高分子フィルム21が接着剤26で貼られ、その高分子フィルム21の中央部に一つの圧力センサ22と、その圧力センサ22の周辺に、一つ又は複数の温度センサ23を備え、各圧力センサ22と、温度センサ23はそれぞれ、電極を介して制御部3に接続され、
制御部3は圧力センサ22に、加熱電力を与え一定温度に加熱制御し、温度センサ23で圧力センサ22の周りの温度を抵抗変化で計測し、その計測した抵抗変化で加熱電力に対応する真空装置内の圧力値を補正することで正確な真空装置内の圧力値を計測するようにしたことを特徴とするマイクロ圧力センサ。
A micro pressure sensor comprising a heat conduction type pressure sensor unit 2 disposed at a required location in a vacuum device and a control unit 3 disposed on an outer wall of the vacuum device,
The pressure sensor unit 2 includes a polymer film support 24 formed of a bottom surface and a cylindrical or square frame and having a cavity 25, and the polymer film 21 is bonded to the upper surface of the frame of the polymer film support 24. The pressure sensor 22 is attached to the central portion of the polymer film 21, and one or a plurality of temperature sensors 23 are provided around the pressure sensor 22. Are respectively connected to the control unit 3 via electrodes,
The control unit 3 applies heating power to the pressure sensor 22 to control heating to a constant temperature, measures the temperature around the pressure sensor 22 with the temperature sensor 23 by a resistance change, and vacuum corresponding to the heating power by the measured resistance change. A micro pressure sensor characterized in that an accurate pressure value in a vacuum apparatus is measured by correcting a pressure value in the apparatus.

圧力センサ22はタンタルーアルミニウム複合窒化物であることを特徴とするマイクロ圧力センサ。  The micro pressure sensor, wherein the pressure sensor 22 is a tantalum-aluminum composite nitride.

圧力センサ22が搭載された高分子フィルム21の下部は、高分子フィルム支持体24の空洞部25にすることにより、熱容量を小さくして、圧力センサ22感度と応答性を向上させたことを特徴とするマイクロ圧力センサ。  The lower portion of the polymer film 21 on which the pressure sensor 22 is mounted is a hollow portion 25 of the polymer film support 24, thereby reducing the heat capacity and improving the pressure sensor 22 sensitivity and responsiveness. A micro pressure sensor.

高分子フィルム21の材料はポリイミドであることを特徴とするマイクロ圧力センサ。  A micro pressure sensor characterized in that the material of the polymer film 21 is polyimide.

1)有効熱交換面積を確保したまま微小化が可能な上に、薄膜ならびに高分子フィルムの使用によるセンサ熱容量の低減により応答速度も速いことから、装置内の適正な真空の質と量の計測・制御が実現できる。
2)大気圧(10Pa)から10−5Paの広範囲にわたる圧力を計測できる。
3)薄膜を用いるため、有効熱交換面積を保持したまま、小型化できる。
4)実際に薄膜が形成されている真空装置におけるチャンバ内における圧力値の位置的・時間的変化ならびに、配管部等の狭小スペースの圧力値をリアルタイムで計測することが可能となる
5)圧力センサの材料であるタンタルーアルミニウム複合窒化物材料の特性より、単純なセンサパターンを用いることができ、基板に極薄の耐熱性高分子フィルムを用いたセンサ形成プロセスで、必要に応じて有効熱交換面積の変更やセンサパターンの変更を容易に行うことができる。
1) Miniaturization is possible while ensuring an effective heat exchange area, and the response speed is fast due to the reduction of sensor heat capacity by using thin film and polymer film.・ Control can be realized.
2) The pressure over a wide range from atmospheric pressure (10 5 Pa) to 10 −5 Pa can be measured.
3) Since a thin film is used, it is possible to reduce the size while maintaining an effective heat exchange area.
4) It is possible to measure in real time the positional and temporal changes in the pressure value in the chamber of the vacuum apparatus in which the thin film is actually formed, and the pressure value in a narrow space such as a pipe section. 5) Pressure sensor Because of the characteristics of the tantalum-aluminum composite nitride material, a simple sensor pattern can be used, and in the sensor formation process using an ultra-thin heat-resistant polymer film on the substrate, effective heat exchange is performed as necessary. It is possible to easily change the area and the sensor pattern.

本発明のマイクロ圧力センサの構成Configuration of the micro pressure sensor of the present invention 本発明のマイクロ圧力センサの図1のA−A断面図1 is a cross-sectional view of the micro pressure sensor of the present invention taken along line AA in FIG. 本発明のマイクロ圧力センサの原理Principle of the micro pressure sensor of the present invention 本発明のマイクロ圧力センサの温度補正の原理Principle of temperature correction of the micro pressure sensor of the present invention 本発明のマイクロ圧力センサの制御回路Control circuit for micro pressure sensor of the present invention

本発明のマイクロ圧力センサは、高い抵抗温度係数を持つ薄膜材料を高分子フィルム上に形成し、センサ温度と周囲温度(温度定点)との差を精密に測定できる構造を有することにより、従来型では不可能であった大気圧から10−5Paまでの広い圧力範囲を単一の熱伝導センサにより計測するものである。The micro pressure sensor of the present invention has a structure in which a thin film material having a high temperature coefficient of resistance is formed on a polymer film and has a structure capable of accurately measuring the difference between the sensor temperature and the ambient temperature (temperature fixed point). Thus, it is possible to measure a wide pressure range from atmospheric pressure to 10 −5 Pa using a single heat conduction sensor.

高い抵抗温度係数を持つセンサ材料の薄膜化と、高分子フィルムとして非常に薄いポリイミドの基板を用いることにより熱容量の低減をはかり、センサ温度と周囲温度(温度定点)との差を精密に測定できる構造とし、小型、広範囲、高速応答を実現した。成膜にメタルマスクを用いることで、複雑な微細加工技術を必要としない簡単な作製プロセスであるため、必要に応じて有効熱交換面積の変更やセンサパターンの変更を容易に行うことができる。  By using a thin sensor material with a high temperature coefficient of resistance and using a very thin polyimide substrate as a polymer film, the heat capacity can be reduced and the difference between the sensor temperature and the ambient temperature (temperature fixed point) can be accurately measured. The structure is small, wide range, and high speed response. By using a metal mask for film formation, since it is a simple manufacturing process that does not require a complicated fine processing technique, it is possible to easily change the effective heat exchange area and the sensor pattern as necessary.

図1と図2で本発明のマイクロ圧力センサの構成を示す。
本発明のマイクロ圧力センサ1は、真空装置内の必要な箇所に配置される熱伝導型方式の圧力センサ部2と真空装置外壁に配置される制御部3からなる。
圧力センサ部2は、高分子フィルム21、圧力センサ22、温度センサ23、高分子フィルム支持体24、空洞部25、接着剤26からなる。
高分子フィルム支持体24は、底面と円筒状または四角状の枠で形成され、内部に空洞部25を形成する容器形状である。その高分子フィルム支持体24の枠の上面に、高分子フィルム支持体24の上面全体を覆うように高分子フィルム21を接着剤26で貼り、その高分子フィルム21の中央部に一つの圧力センサ22と、その周辺、例えば、高分子フィルム支持体24の枠の上面に一つ又は複数の温度センサ23を設ける。各圧力センサ22と、温度センサ23はそれぞれ、電極221,222と電極231、232を介してリード線4により制御部3に接続される。
高い抵抗温度係数を持つ圧力センサ22は、高分子フィルム21の中央部に搭載され、その置かれる高分子フィルム21の下は、高分子フィルム支持体24の空洞部25にすることにより、熱容量を小さくし、感度を応答性を向上させている。
1 and 2 show the configuration of the micro pressure sensor of the present invention.
The micro pressure sensor 1 according to the present invention includes a heat conduction type pressure sensor unit 2 disposed at a necessary position in a vacuum apparatus and a control unit 3 disposed on an outer wall of the vacuum apparatus.
The pressure sensor unit 2 includes a polymer film 21, a pressure sensor 22, a temperature sensor 23, a polymer film support 24, a cavity 25, and an adhesive 26.
The polymer film support 24 is formed of a bottom surface and a cylindrical or square frame, and has a container shape in which a hollow portion 25 is formed. The polymer film 21 is attached to the upper surface of the frame of the polymer film support 24 with an adhesive 26 so as to cover the entire upper surface of the polymer film support 24, and one pressure sensor is provided at the center of the polymer film 21. 22 and its periphery, for example, one or more temperature sensors 23 are provided on the upper surface of the frame of the polymer film support 24. Each pressure sensor 22 and the temperature sensor 23 are connected to the control unit 3 by a lead wire 4 via electrodes 221, 222 and electrodes 231, 232, respectively.
The pressure sensor 22 having a high temperature coefficient of resistance is mounted at the center of the polymer film 21, and the heat capacity is reduced by forming a cavity 25 of the polymer film support 24 under the polymer film 21 to be placed. The sensitivity is improved by reducing the sensitivity.

高い抵抗温度係数を持つ温度センサ23を、高分子フィルム21の中央部に設けた圧力センサ22から、距離をとり、高分子フィルム支持体24の筒型の枠の上部に配置しているので、真空装置の内部温度の計測の精度を得て、後述するような圧力センサの温度補正を正確に行うことができる。
このように、圧力センサ22と温度センサ23を、同一高分子フィルム21上に配置し、センサ温度と周囲温度(温度定点)との差を精密に測定できる構造にすることで、従来型では不可能であった大気圧から10−5Paまでの広い圧力範囲を単一の熱伝導センサにより計測可能としている。
Since the temperature sensor 23 having a high resistance temperature coefficient is arranged at a distance from the pressure sensor 22 provided in the central portion of the polymer film 21 and arranged on the upper part of the cylindrical frame of the polymer film support 24, The accuracy of measuring the internal temperature of the vacuum apparatus can be obtained, and the temperature correction of the pressure sensor as described later can be performed accurately.
In this way, the pressure sensor 22 and the temperature sensor 23 are arranged on the same polymer film 21 and have a structure that can accurately measure the difference between the sensor temperature and the ambient temperature (temperature fixed point). A wide pressure range from atmospheric pressure to 10 −5 Pa, which was possible, can be measured by a single heat conduction sensor.

圧力センサ22の材料は、タンタルとアルミニウムからなる複合窒化物で、高い抵抗温度係数をもっている。圧力センサ22は、制御部3で電圧駆動し、電極21,22を介して一定温度に加熱制御する。加熱された圧力センサ22は気体により熱量を奪われるが、制御部3の圧力センサ駆動部31より一定温度に加熱制御する。
圧力センサ22の材料であるタンタルとアルミニウムからなる複合窒化物は、高い抵抗温度係数をもっている。センサ材料である複合窒化物材料の抵抗温度係数は−7000〜−14000ppm/℃であるが、特に−12000〜−14000ppm/℃であることが好ましい。また、比抵抗は1.0×10−1〜2.0Ω・cmであるが、特に1.0×10−1〜1.0Ω・cmであることが好ましい。圧力センサ22の薄膜の厚みは、200〜500nm程度が好ましい。
The material of the pressure sensor 22 is a composite nitride made of tantalum and aluminum, and has a high resistance temperature coefficient. The pressure sensor 22 is voltage-driven by the control unit 3 and controlled to be heated to a constant temperature via the electrodes 21 and 22. The heated pressure sensor 22 is deprived of heat by the gas, but is heated and controlled at a constant temperature by the pressure sensor driving unit 31 of the control unit 3.
The composite nitride made of tantalum and aluminum, which is the material of the pressure sensor 22, has a high resistance temperature coefficient. The temperature coefficient of resistance of the composite nitride material as the sensor material is −7000 to −14000 ppm / ° C., and particularly preferably −12000 to −14000 ppm / ° C. The specific resistance is 1.0 × 10 −1 to 2.0 Ω · cm, and particularly preferably 1.0 × 10 −1 to 1.0 Ω · cm. The thickness of the thin film of the pressure sensor 22 is preferably about 200 to 500 nm.

温度センサ23の材料は、圧力センサ22と同じタンタルとアルミニウムからなる複合窒化物で、高い抵抗温度係数をもっている。微小電流を印加し、得られた抵抗値より周囲温度を算出し補正に用いる。  The material of the temperature sensor 23 is the same composite nitride made of tantalum and aluminum as the pressure sensor 22 and has a high resistance temperature coefficient. A minute current is applied, the ambient temperature is calculated from the obtained resistance value, and used for correction.

高分子フィルム21の材料は、ポリイミドで、厚みは1から50μm程である。  The material of the polymer film 21 is polyimide, and the thickness is about 1 to 50 μm.

電極221、222、231、232の材料は、Pt、Ni、Cu、Ag、Au、Alなどの金属薄膜を用いる。センサの使用環境(雰囲気や温度、腐食性ガスの有無など)に応じて1種もしくは複数選択する。これらの電極の薄膜は、スパッタリング法、イオンプレーティング法、CVD法等の気相法で形成する、その中でも、スパッタリング法が好ましい。 スパッタリング完了後、必要に応じて、得られた薄膜を150〜500℃で熱処理し、使用する基板材料に応じて適宜選択する。例えば、高分子フィルム21を基板に用いた場合は、フィルムの耐熱温度を考慮して150〜300℃程度であることが好ましい。  As a material of the electrodes 221, 222, 231, 232, a metal thin film such as Pt, Ni, Cu, Ag, Au, Al is used. Select one or more according to the sensor environment (atmosphere, temperature, presence of corrosive gas, etc.). The thin film of these electrodes is formed by a vapor phase method such as sputtering, ion plating, or CVD. Among these, sputtering is preferable. After the sputtering is completed, the obtained thin film is heat-treated at 150 to 500 ° C. as necessary, and is appropriately selected according to the substrate material to be used. For example, when the polymer film 21 is used as a substrate, it is preferably about 150 to 300 ° C. in consideration of the heat resistant temperature of the film.

高分子フィルム支持体24は、底面と円筒状または四角状の枠で形成され、内部に空洞部25を形成する容器形状である。材質はステンレスである。  The polymer film support 24 is formed of a bottom surface and a cylindrical or square frame, and has a container shape in which a hollow portion 25 is formed. The material is stainless steel.

接着剤26は、高分子フィルム支持体24に高分子フィルム21を貼るのに用いる。接着剤26は熱可塑性の熱伝導接着剤である。  The adhesive 26 is used to attach the polymer film 21 to the polymer film support 24. The adhesive 26 is a thermoplastic heat conductive adhesive.

リード線は10〜100μmのニッケル線、Ag線、Au線、Al線、Cu線もしくはそれらを原材料とした金属箔をIn、半田、Agペースト等を用いて気密素子に接続し、計測対象外に取り出す。線径100μmのニッケル線もしくは5μm以下のニッケル箔を用い、Inもしくは半田で接続することが好ましい。  Lead wires are nickel, Ag wires, Au wires, Al wires, Cu wires, or metal foils made of these as raw materials, connected to hermetic elements using In, solder, Ag paste, etc. Take out. It is preferable to use a nickel wire with a wire diameter of 100 μm or a nickel foil with a thickness of 5 μm or less and connect with In or solder.

図3は、本発明のマイクロ圧力センサの原理図である。真空装置の気体分子Pが、圧力センサ22の熱量を奪うと温度が変化して抵抗値が変化する。その抵抗値の変化を圧力値として検出する。  FIG. 3 is a principle diagram of the micro pressure sensor of the present invention. When the gas molecules P of the vacuum device take away the amount of heat from the pressure sensor 22, the temperature changes and the resistance value changes. The change in resistance value is detected as a pressure value.

図4は、本発明のマイクロ圧力センサの温度補正原理を示す。
横軸は基準圧力、縦軸は圧力センサの加熱電力から求められた圧力値である。圧力センサ22を一定温度に保つ加熱制御を行い、その加熱電力から圧力値へ対応付けしている。圧力センサ22の加熱電力は気体分子Pの温度に依存し、温度が低ければ圧力センサ22から奪う熱量は多いため加熱電力は大きくなり、温度が高ければ圧力センサ22から奪う熱量は少ないため加熱電力は小さくなる。そのため圧力センサ温度と、気体分子Pの温度とを精密に測定し、正規化した温度への補正を行っている。
FIG. 4 shows the temperature correction principle of the micro pressure sensor of the present invention.
The horizontal axis represents the reference pressure, and the vertical axis represents the pressure value obtained from the heating power of the pressure sensor. Heating control is performed to keep the pressure sensor 22 at a constant temperature, and the heating power is associated with the pressure value. The heating power of the pressure sensor 22 depends on the temperature of the gas molecule P. If the temperature is low, the amount of heat taken away from the pressure sensor 22 is large, so that the heating power is large. If the temperature is high, the amount of heat taken away from the pressure sensor 22 is small. Becomes smaller. Therefore, the pressure sensor temperature and the temperature of the gas molecule P are precisely measured and corrected to a normalized temperature.

図5は本発明のマイクロ圧力センサの制御部の構成を示す。制御部3は圧力センサ駆動部31、温度計測部32、温度補正部33及び表示部34から構成される。
高分子フィルム21の中央部に配置した圧力センサ22を、電極221、222を介して一定温度に加熱制御する。加熱された圧力センサは22気体により熱量を奪われるが、圧力センサ駆動部31により一定温度に加熱制御する。
FIG. 5 shows the configuration of the control unit of the micro pressure sensor of the present invention. The control unit 3 includes a pressure sensor drive unit 31, a temperature measurement unit 32, a temperature correction unit 33, and a display unit 34.
The pressure sensor 22 arranged at the center of the polymer film 21 is controlled to be heated to a constant temperature via the electrodes 221 and 222. The heated pressure sensor is deprived of heat by 22 gases, but is heated to a constant temperature by the pressure sensor driving unit 31.

温度センサ計測部32は、温度センサ23の抵抗変化を、電極231,232を介して計測する。温度センサ23は高分子フィルム支持体24の枠の高分子フィルム21上に配置しているため、高分子フィルム21の中央に配置した圧力センサ22が加熱しても、その温度の影響を受けない。この構造により気体の温度を正確に計測することが出来る。
温度補正部33は、圧力センサ駆動部31で加熱制御した圧力センサ22は気体により熱量を奪われるが、気体の温度により奪われる熱量が異なる。その気体の温度の変化を温度センサ23の抵抗変化として温度計測部32で計測し温度補正部33で温度の補正演算を行う。温度補正部33が行った圧力センサ駆動部31の加熱電力に対応付けされた真空装置の圧力値(予め得られた加熱電力と真空装置の圧力値の対応表に基づく)として表示部34に表示する。
このように、制御部3は圧力センサ22を、真空装置内の圧力値と対応付けられる加熱電力で一定温度に加熱制御し、温度センサ23で圧力センサ22の周りの温度を抵抗変化で計測し、その計測した抵抗変化で加熱電力と対応する真空装置内の圧力の値を補正することで正確な真空装置内の圧力を測定できる。
The temperature sensor measurement unit 32 measures the resistance change of the temperature sensor 23 via the electrodes 231 and 232. Since the temperature sensor 23 is disposed on the polymer film 21 of the frame of the polymer film support 24, even if the pressure sensor 22 disposed in the center of the polymer film 21 is heated, it is not affected by the temperature. . With this structure, the temperature of the gas can be accurately measured.
The temperature correction unit 33 is controlled by the pressure sensor driving unit 31 and the pressure sensor 22 is deprived of heat by the gas, but the amount of heat deprived by the temperature of the gas is different. A change in the temperature of the gas is measured by the temperature measurement unit 32 as a resistance change of the temperature sensor 23, and the temperature correction unit 33 performs a temperature correction calculation. Displayed on the display unit 34 as the pressure value of the vacuum device associated with the heating power of the pressure sensor driving unit 31 performed by the temperature correction unit 33 (based on the correspondence table of the heating power and the pressure value of the vacuum device obtained in advance) To do.
In this way, the control unit 3 controls the pressure sensor 22 to be heated to a constant temperature with the heating power associated with the pressure value in the vacuum apparatus, and the temperature sensor 23 measures the temperature around the pressure sensor 22 by resistance change. The pressure in the vacuum apparatus can be accurately measured by correcting the pressure value in the vacuum apparatus corresponding to the heating power by the measured resistance change.

センサ材料の温度変化として計測するので真空計への応用だけではなく、幅広い分野へ適用可能である。例えば、赤外線センサ、気体の流速・流量計センサ、水分計測センサなど分野において、従来型では困難な狭小スペースへの設置や、微少温度変化の検出にも有効である。  Since it is measured as the temperature change of the sensor material, it can be applied not only to vacuum gauges but also to a wide range of fields. For example, in fields such as infrared sensors, gas flow velocity / flow meter sensors, moisture measurement sensors, etc., it is also effective for installation in a narrow space, which is difficult with the conventional type, and for detecting minute temperature changes.

1 マイクロ圧力センサ
2 圧力センサ部
21 高分子フィルム
22 圧力センサ
221、222 電極
23 温度センサ
231、232 電極
24 高分子フィルム支持体
25 空洞部
26 接着剤
3 制御部
31 圧力センサ駆動部
32 温度計測部
33 温度補正部
34 表示部
4 リード線
5 P 気体分子
DESCRIPTION OF SYMBOLS 1 Micro pressure sensor 2 Pressure sensor part 21 Polymer film 22 Pressure sensor 221, 222 Electrode 23 Temperature sensor 231, 232 Electrode 24 Polymer film support body 25 Cavity part 26 Adhesive 3 Control part 31 Pressure sensor drive part 32 Temperature measurement part 33 Temperature Correction Unit 34 Display Unit 4 Lead Wire 5 P Gas Molecule

Claims (4)

真空装置内の必要な箇所に配置される熱伝導駆動方式の圧力センサ部2と真空装置外に配置される制御部3からなるマイクロ圧力センサであって、
圧力センサ部2は、底面と円筒状または四角状の枠で形成され空洞部25を有する高分子フィルム支持体24と、その高分子フィルム支持体24の枠の上面に、高分子フィルム21が接着剤26で貼られ、その高分子フィルム21の中央部に一つの圧力センサ22と、その圧力センサ22の周辺に、一つ又は複数の温度センサ23を備え、各圧力センサ22と、温度センサ23はそれぞれ、電極を介して制御部3に接続され、
制御部3は圧力センサ22に、加熱電力を与え一定温度に加熱制御し、温度センサ23で圧力センサ22の周りの温度を抵抗変化で計測し、その計測した抵抗変化で加熱電力に対応する真空装置内の圧力値を補正することで正確な真空装置内の圧力値を測定するようにしたことを特徴とするマイクロ圧力センサ。
A micro pressure sensor comprising a pressure sensor unit 2 of a heat conduction drive type disposed at a required location in a vacuum apparatus and a control unit 3 disposed outside the vacuum apparatus,
The pressure sensor unit 2 includes a polymer film support 24 formed of a bottom surface and a cylindrical or square frame and having a cavity 25, and the polymer film 21 is bonded to the upper surface of the frame of the polymer film support 24. The pressure sensor 22 is attached to the central portion of the polymer film 21, and one or a plurality of temperature sensors 23 are provided around the pressure sensor 22. Are respectively connected to the control unit 3 via electrodes,
The control unit 3 applies heating power to the pressure sensor 22 to control heating to a constant temperature, measures the temperature around the pressure sensor 22 with the temperature sensor 23 by a resistance change, and vacuum corresponding to the heating power by the measured resistance change. A micro pressure sensor characterized in that an accurate pressure value in a vacuum apparatus is measured by correcting a pressure value in the apparatus.
圧力センサ22はタンタルーアルミニウム複合窒化物であることを特徴とする請求項1記載のマイクロ圧力センサ。  2. The micro pressure sensor according to claim 1, wherein the pressure sensor is a tantalum-aluminum composite nitride. 圧力センサ22が搭載された高分子フィルム21の下部は、高分子フィルム支持体24の空洞部25にすることにより、熱容量を小さくして、圧力センサ22感度と応答性を向上させたことを特徴とする請求項1又は請求項2に記載のマイクロ圧力センサ。  The lower portion of the polymer film 21 on which the pressure sensor 22 is mounted is a hollow portion 25 of the polymer film support 24, thereby reducing the heat capacity and improving the pressure sensor 22 sensitivity and responsiveness. The micro pressure sensor according to claim 1 or 2. 高分子フィルム21の材料はポリイミドであることを特徴とする請求項1から請求項3の何れかに記載のマイクロ圧力センサ。  The micro pressure sensor according to any one of claims 1 to 3, wherein the material of the polymer film 21 is polyimide.
JP2011085772A 2011-03-22 2011-03-22 Micro pressure sensor Withdrawn JP2012198187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085772A JP2012198187A (en) 2011-03-22 2011-03-22 Micro pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085772A JP2012198187A (en) 2011-03-22 2011-03-22 Micro pressure sensor

Publications (1)

Publication Number Publication Date
JP2012198187A true JP2012198187A (en) 2012-10-18

Family

ID=47180551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085772A Withdrawn JP2012198187A (en) 2011-03-22 2011-03-22 Micro pressure sensor

Country Status (1)

Country Link
JP (1) JP2012198187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424224A (en) * 2013-07-24 2013-12-04 无锡微奇科技有限公司 Micro-machined vacuum sensor
JP2017508976A (en) * 2014-03-25 2017-03-30 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated Micro Pirani vacuum gauge
CN107436205A (en) * 2017-08-14 2017-12-05 中北大学 Temperature-compensating graphene pressure sensor in a kind of piece
JP2018132433A (en) * 2017-02-16 2018-08-23 セイコーインスツル株式会社 Pressure change measuring apparatus, altitude measuring apparatus, and pressure change measuring method
CN113758614A (en) * 2021-08-26 2021-12-07 重庆大学 Liquid metal pressure sensor and pressure value calibration method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424224A (en) * 2013-07-24 2013-12-04 无锡微奇科技有限公司 Micro-machined vacuum sensor
JP2017508976A (en) * 2014-03-25 2017-03-30 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated Micro Pirani vacuum gauge
JP2018132433A (en) * 2017-02-16 2018-08-23 セイコーインスツル株式会社 Pressure change measuring apparatus, altitude measuring apparatus, and pressure change measuring method
CN107436205A (en) * 2017-08-14 2017-12-05 中北大学 Temperature-compensating graphene pressure sensor in a kind of piece
CN107436205B (en) * 2017-08-14 2023-10-13 中北大学 On-chip temperature compensation graphene pressure sensor
CN113758614A (en) * 2021-08-26 2021-12-07 重庆大学 Liquid metal pressure sensor and pressure value calibration method thereof

Similar Documents

Publication Publication Date Title
JP2012198187A (en) Micro pressure sensor
JP6253662B2 (en) Method and apparatus for measuring vacuum pressure using a measurement cell configuration
Zhao et al. A fully packaged CMOS interdigital capacitive humidity sensor with polysilicon heaters
TW200907315A (en) Method for calibration and operation of a measuring cell arrangement
JP2008304463A (en) Micro mechanical vacuum sensor and infrared bolometer element
JP6898605B2 (en) Dew point measurement method and dew point measurement device
JP2012524900A (en) Capacitance pressure sensor with vacuum dielectric
CN104990968A (en) Humidity sensor device based on film volume acoustic wave resonator
HUE026046T2 (en) Capacitative pressure measurement cell for detecting the pressure of a medium adjacent to the measurement cell
TW201315980A (en) Diaphragm barometer
JP2018146530A (en) Pressure sensor
JP2011252834A (en) Sensor and method for manufacturing the same
CN108844990B (en) MEMS (micro-electromechanical system) process based film strain thermal conductivity testing device and method
CN109141728A (en) Fixed capacitive pressure transducer and production method among a kind of pressure sensitive film
JP2015152348A (en) Capacitance type pressure sensor
JP3137252U (en) Pressure sensor for sealed container and sealed container
JP5764723B2 (en) Pressure sensor and vacuum processing apparatus using the sensor
EP3028022B1 (en) Wide-range precision constant volume gas thermometer
CN107941409B (en) Resistance-type gas pressure gauge based on nano particle dot matrix
JP3756919B2 (en) How to measure dead volume fluctuation
JP6397072B2 (en) Inspection method for thin film gas sensor
CN209470806U (en) A kind of high sensitivity capacitor thin film vacuum meter
WO2017110270A1 (en) Pressure sensor
CN210166258U (en) Magnetic fluid thermal expansion coefficient measuring system
JP2012078246A (en) Electric element, integrated element and electronic circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603