JP2012196189A - Cell detection device - Google Patents

Cell detection device Download PDF

Info

Publication number
JP2012196189A
JP2012196189A JP2011063908A JP2011063908A JP2012196189A JP 2012196189 A JP2012196189 A JP 2012196189A JP 2011063908 A JP2011063908 A JP 2011063908A JP 2011063908 A JP2011063908 A JP 2011063908A JP 2012196189 A JP2012196189 A JP 2012196189A
Authority
JP
Japan
Prior art keywords
electrode
substrate
cell
detection device
cell detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011063908A
Other languages
Japanese (ja)
Inventor
Isamu Kimura
錬 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2011063908A priority Critical patent/JP2012196189A/en
Publication of JP2012196189A publication Critical patent/JP2012196189A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cell detection device detecting presence/absence of a target cell type with high accuracy.SOLUTION: This cell detection device includes a substrate 1, and a capacitance detection element disposed on the substrate 1. The capacitance detection element comprises: a first electrode P1 disposed in a state that one portion thereof contacts with the substrate 1, that the other portion is separated from the substrate 1, and that an end part on the opposite side to the one portion that is an end part of the other portion contacts with the substrate 1; and a second electrode P2 disposed in a state that the second electrode P2 at least partially faces to the separated portion of the first electrode P1 and that the second electrode P2 contacts with the substrate 1. The cell detection device includes a flow passage for cells formed between the separated portion of the first electrode P1 and the substrate 1.

Description

本発明は、細胞検出装置に関する。より詳細は、細胞の大きさ毎にその存在を感知する装置、または細胞の大きさ毎の細胞数を計測する装置に関する。   The present invention relates to a cell detection device. More specifically, the present invention relates to a device that senses the presence of each cell size, or a device that measures the number of cells for each cell size.

従来、目的物質を感知するために2つの電極間の容量及びその周波数特性を計測する技術が用いられてきた。具体的には特許文献1に示される技術がある。この技術では基板に溝を形成し、溝の壁面に平行な電極を形成する。溝の底部に目的物質特異的に結合するプローブ分子を配置することで電極間に目的物質を留め、目的物質が存在することで生じる電極間の容量変化を検出し、目的物質の検知を行っている。   Conventionally, a technique for measuring a capacitance between two electrodes and a frequency characteristic thereof has been used to sense a target substance. Specifically, there is a technique disclosed in Patent Document 1. In this technique, a groove is formed in the substrate, and an electrode parallel to the wall surface of the groove is formed. By placing probe molecules that bind specifically to the target substance at the bottom of the groove, the target substance is retained between the electrodes, the capacitance change between the electrodes caused by the presence of the target substance is detected, and the target substance is detected. Yes.

また、細胞を大きさ毎にふるい分ける技術としては特許文献2に示される技術がある。この技術では、大きさの異なる流路を形成し、細胞が含まれる液体を該流路に流し込むことで細胞がその大きさに応じた流路に流れ、その結果として細胞の大きさ毎に分画を作ることができる。   Moreover, there exists a technique shown by patent document 2 as a technique which sifts a cell for every magnitude | size. In this technique, channels having different sizes are formed, and a cell-containing liquid is poured into the channel, so that the cells flow into the channel according to the size, and as a result, the cells are separated for each cell size. You can make a picture.

特表2009−529683号公報JP-T 2009-529683 特開8−23967号公報JP-A-8-23967

先に示した2つの技術のうち、特許文献1の技術については、目的物質が球状の場合、目的物質と電極又は目的物質と溝の底が接触する場合に点接触となるため、目的物質を捕捉するプローブ分子数が少ない。その結果、目的物質が電極間外に遊離し易くなってしまう。従って、電極間の容量変化を感知することが難しくなり、装置の目的物質検出能力は小さいものとなる。また、特許文献2の技術については、サンプルに含まれる細胞の大きさ毎に分画を行えるが、目的とする細胞種の有無を感知することはできない。   Of the two technologies described above, in the technique of Patent Document 1, when the target substance is spherical, point contact occurs when the target substance and the electrode or the target substance and the bottom of the groove are in contact with each other. There are few probe molecules to capture. As a result, the target substance is likely to be released between the electrodes. Therefore, it becomes difficult to sense the capacitance change between the electrodes, and the target substance detection capability of the apparatus becomes small. In the technique of Patent Document 2, fractionation can be performed for each cell size contained in a sample, but the presence or absence of a target cell type cannot be detected.

そこで、本発明の目的は、目的とする細胞種の有無を、高精度に検出することが可能な細胞検出装置を提供することである。   Accordingly, an object of the present invention is to provide a cell detection device capable of detecting the presence or absence of a target cell type with high accuracy.

本出願の発明者は上記課題を解決するために鋭意検討した結果、基板及び前記基板上に配置される容量検出素子を備える細胞検出装置であって、前記容量検出素子は、前記基板に対してその一部が接して及び他の部分が離間して及び該他の部分の端部であって前記一部と反対側の端部が前記基板に接して配置される第1の電極、及び、該第1の電極の該離間した部分と対向して且つ前記基板と接して配置される第2の電極からなり、該第1の電極の該離間した部分と前記基板の間に形成される細胞の流路を備えることを特徴とする細胞検出装置により、上記課題を解決できることを見出し、本発明を完成させた。   The inventor of the present application has intensively studied to solve the above problems, and as a result, is a cell detection device including a substrate and a capacitance detection element disposed on the substrate, wherein the capacitance detection element is relative to the substrate. A first electrode disposed in contact with the substrate, a part of which is in contact with and part of the other part is spaced apart and an end of the other part opposite to the part; and A cell formed between the spaced apart portion of the first electrode and the substrate, the second electrode disposed opposite the spaced apart portion of the first electrode and in contact with the substrate; The present invention has been completed by finding that the above-mentioned problems can be solved by a cell detection device characterized by comprising the above-mentioned flow path.

本発明によれば、目的とする細胞種の有無を、高精度に検出することが可能な細胞検出装置を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the cell detection apparatus which can detect the presence or absence of the target cell type with high precision.

本発明に係る細胞検出装置の具体的な構造の一実施例を概略的に示す斜視図(a)及び側面図(b)である。It is the perspective view (a) and side view (b) which show roughly one Example of the specific structure of the cell detection apparatus concerning this invention. 本発明に係る細胞検出装置における電極対の断面または側面形状の種々変形例を概略的に示す側面図である。It is a side view which shows roughly the various modifications of the cross section or side surface shape of an electrode pair in the cell detection apparatus concerning this invention. 本発明に係る細胞検出装置に用いる電極対の形成方法のフローを表す図である。It is a figure showing the flow of the formation method of the electrode pair used for the cell detection apparatus which concerns on this invention. 図3に表されたフローに続く、第1の電極の形状が異なる種々電極対の形成方法のフローを表す図である。It is a figure showing the flow of the formation method of the various electrode pair from which the shape of a 1st electrode differs following the flow represented by FIG. 本発明に係る細胞検出装置が備える目標物特異性のメカニズムを説明する図である。It is a figure explaining the target specific mechanism with which the cell detection device concerning the present invention is provided. 本発明に係る細胞検出装置の一応用例である診断装置を表す側面図である。It is a side view showing the diagnostic apparatus which is one application example of the cell detection apparatus concerning this invention.

以下、本発明による細胞検出装置の一実施例を説明する。本発明に係る細胞検出装置は、任意の材料からなる基板と基板上に配置される容量検出素子とを備える。容量検出素子は、基板に対してその一部が接して及び他の部分が離間して及び該他の部分の端部であって該一部と反対側の端部が該基板に接して配置される第1の電極、及び、第1の電極の離間した部分と少なくとも一部が対向して且つ該基板と接して配置される第2の電極からなる。第1の電極及び第2の電極を、以下、電極対と称することがある。本発明に係る細胞検出装置は第1の電極の離間した部分と基板の間に形成される細胞の流路を備え、第2の電極の少なくとも一部が細胞の流路内に存在する。   Hereinafter, an embodiment of a cell detection device according to the present invention will be described. The cell detection device according to the present invention includes a substrate made of an arbitrary material and a capacitance detection element arranged on the substrate. The capacitance detection element is arranged such that a part thereof is in contact with the substrate and the other part is separated and an end of the other part is in contact with the substrate. And a second electrode disposed so as to be in contact with the substrate and at least a part of the first electrode spaced apart from the first electrode. Hereinafter, the first electrode and the second electrode may be referred to as an electrode pair. The cell detection device according to the present invention includes a cell flow path formed between the separated portion of the first electrode and the substrate, and at least a part of the second electrode exists in the cell flow path.

図1は本発明に係る細胞検出装置の具体的な構造の一実施例を示す。図1では基板1と一部が平坦で他の部分が湾曲した第1の電極(P1)とで、第2の電極(P2)を挟み込むような形状を採っている。図1に表された例では第1の電極(P1)と基板1とで形成する細胞の流路の断面または側面は弧形状になっているが、流路の断面形状または側面形状はこのような形状に限らない。曲線状でなく角を持つ形状であっても良く、例えば、図2(a)に示すような矩形であっても、図2(b)に示すような三角形であっても良い。   FIG. 1 shows an embodiment of a specific structure of a cell detection apparatus according to the present invention. In FIG. 1, the substrate 1 and the first electrode (P1) having a flat part and a curved part are sandwiched between the second electrode (P2). In the example shown in FIG. 1, the cross section or the side surface of the cell flow path formed by the first electrode (P1) and the substrate 1 has an arc shape. The shape is not limited. It may be a shape having a corner instead of a curved shape, and may be, for example, a rectangle as shown in FIG. 2A or a triangle as shown in FIG.

本発明において、細胞の流路とは、細胞を含む溶液が浸入することが可能な空間を意味する。すなわち、第1の電極P1と基板1との間の空間を、それ以外の空間と連通させる部分(以下、開口部と称する)が存在することで細胞の流路が形成される。開口部は少なくとも1つあればよく、2つ以上あることが好ましい。すなわち、開口部を2つ以上有し、一の開口部から他の開口部に溶液が流れる形態であることが、検出効率の観点から好ましい。このとき、常に一の開口部から他の開口部に溶液が流れる形態であることがより好ましい。   In the present invention, the cell flow path means a space in which a solution containing cells can enter. That is, a cell flow path is formed by the presence of a portion (hereinafter referred to as an opening) that communicates the space between the first electrode P1 and the substrate 1 with other spaces. There may be at least one opening, and preferably two or more openings. That is, it is preferable from the viewpoint of detection efficiency that it has two or more openings and the solution flows from one opening to another. At this time, it is more preferable that the solution always flows from one opening to another opening.

この第1の電極および/または第2の電極の表面には、図1及び2に示したように、目的物質を第1の電極P1と第2の電極P2の間に留めるためのプローブ分子4が固定されていても良い。プローブ分子4の具体例としては、無機能性分子、単一の機能性分子、2機能性分子、多機能性分子、オリゴマー、ポリマー、触媒、細胞、バクテリア、ウイルス、酵素、タンパク質、ヘプタン、糖類、脂質、グリコーゲン、酵素阻害剤、酵素基質、神経伝達物質、ホルモン、抗原、抗体、DNA,RNAが挙げられる。また基板1の材質の具体例としては例えばSi、GaAsといった半導体材料や、SiO2、SiN、TiO2等の酸化物、窒化物絶縁体やアクリル板といった有機構造物が挙げられ、これらが積層された構造とすることができる。 On the surface of the first electrode and / or the second electrode, as shown in FIGS. 1 and 2, the probe molecule 4 for retaining the target substance between the first electrode P1 and the second electrode P2 is provided. May be fixed. Specific examples of the probe molecule 4 include non-functional molecules, single functional molecules, bifunctional molecules, multifunctional molecules, oligomers, polymers, catalysts, cells, bacteria, viruses, enzymes, proteins, heptanes and saccharides. , Lipids, glycogen, enzyme inhibitors, enzyme substrates, neurotransmitters, hormones, antigens, antibodies, DNA, RNA. Specific examples of the material of the substrate 1 include semiconductor materials such as Si and GaAs, oxides such as SiO 2 , SiN, and TiO 2 , and organic structures such as nitride insulators and acrylic plates. Structure.

細胞検出には、時間依存電圧を第1の電極P1および第2の電極P2のうちの少なくとも一つの電極に印加し、該電圧印加により生じる電流を測定する。その結果、電圧の振幅及び位相に対する電流の振幅及び位相を測定することができる。このような測定を行なうことによって、電極対の容量を測定することができる。このとき、電極対間に細胞が存在すれば電極対の容量に変化が生じる。この容量変化を測定することによって、細胞を検出することができる。   For cell detection, a time-dependent voltage is applied to at least one of the first electrode P1 and the second electrode P2, and a current generated by the voltage application is measured. As a result, the current amplitude and phase relative to the voltage amplitude and phase can be measured. By performing such measurement, the capacity of the electrode pair can be measured. At this time, if cells exist between the electrode pairs, the capacitance of the electrode pair changes. Cells can be detected by measuring this change in volume.

次に、第1の電極P1および第2の電極P2の形成方法の一例を、図3及び図4を用いて説明する。まず図3に示すように、基板1上にフォトレジストを用いて第2の電極(P2)を形成するため、1次現像によるパターニングを行う。続いて、蒸着やスパッタ等の金属成膜法を用いて金属6a,6bを積層して下部電極を成膜氏した後に、リフトオフまたはエッチングによって余分な金属6aとフォトレジスト2を基板1上から除去することにより第2の電極6b(P2)が形成される。に続いて、再度フォトレジスト3を塗布する。   Next, an example of a method for forming the first electrode P1 and the second electrode P2 will be described with reference to FIGS. First, as shown in FIG. 3, in order to form the second electrode (P2) on the substrate 1 using a photoresist, patterning is performed by primary development. Subsequently, after depositing the metals 6a and 6b by using a metal deposition method such as vapor deposition or sputtering, the lower electrode is deposited, and then the excess metal 6a and the photoresist 2 are removed from the substrate 1 by lift-off or etching. Thus, the second electrode 6b (P2) is formed. Subsequently, the photoresist 3 is applied again.

フォトレジスト3を塗布した後、図4のフローに進んでフォトレジスト3のパターニングを行うが、この際に第1の電極P1の形状を決定するための操作を行う。すなわち、このフォトレジスト3のパターンサイズにより第1の電極のサイズを決定することができ、フォトレジスト3のパターンの立体構造により細胞の流路の空間形状を決定することができる。   After applying the photoresist 3, the process proceeds to the flow of FIG. 4 to perform patterning of the photoresist 3. At this time, an operation for determining the shape of the first electrode P1 is performed. That is, the size of the first electrode can be determined by the pattern size of the photoresist 3, and the spatial shape of the cell flow path can be determined by the three-dimensional structure of the pattern of the photoresist 3.

例えば、第1の電極P1を湾曲させ、細胞の流路の断面形状または側面形状を弧形状とする際には、図4(a)に表されるフローに従ってフォトレジストパターニング後に加熱処理を行うことにより、パターニング形状を所望の弧形状とすることができる。   For example, when the first electrode P1 is curved and the cross-sectional shape or side surface shape of the cell channel is an arc shape, the heat treatment is performed after the photoresist patterning according to the flow shown in FIG. Thus, the patterning shape can be a desired arc shape.

また、細胞の流路の断面形状または側面形状を三角形とする第1の電極P12のパターニングの場合には、図4(b)に表されるフローに従ってフォトレジストに照射する露光光線7の照射量に変化を持たせ、三角形の頂点としたい部位の露光量を最も少なくすることで所望の三角形のパターニング形状を得ることができる。   Further, in the case of patterning the first electrode P12 having a triangular cross-sectional shape or side surface shape of the cell flow path, the irradiation amount of the exposure light beam 7 that irradiates the photoresist according to the flow shown in FIG. The desired patterning shape of the triangle can be obtained by giving a change to the above and minimizing the exposure amount of the portion desired to be the vertex of the triangle.

所望のパターニング形状が得られた後は、第1の電極P1,P12を形成するためのフォトレジストパターンを形成した後に、第2の電極6b(P2)を形成したときと同様に、蒸着やスパッタ等の金属成膜法を用いて金属を積層し、リフトオフまたはエッチングによって余分な金属とフォトレジストを基板1上から除去することで任意の形状を持つ第1の電極P1,P12が形成される。第1の電極P1,P12および/または第2の電極6b(P2)の表面にプローブ分子4を形成する場合は、さらに電極の任意に部分が露出するようにパターニングを行い、プローブ分子4を電極表面に固定すればよい。   After a desired patterning shape is obtained, after forming a photoresist pattern for forming the first electrodes P1 and P12, vapor deposition or sputtering is performed in the same manner as when the second electrode 6b (P2) is formed. The first electrodes P1 and P12 having arbitrary shapes are formed by laminating metals using a metal film forming method such as the above, and removing excess metal and photoresist from the substrate 1 by lift-off or etching. When the probe molecule 4 is formed on the surface of the first electrode P1, P12 and / or the second electrode 6b (P2), the probe molecule 4 is further patterned so that an arbitrary part of the electrode is exposed. What is necessary is just to fix to the surface.

本発明の細胞検出装置の使用時のメカニズムを、図5を用いて説明する。例えば血液中の好酸球を検出対象の細胞(目標物)とする場合、電極対表面のプローブ分子4を好酸球に特異的に結合する抗好酸球抗体8とすることで、好酸球9が選択的に電極対間に長時間留まることができる。そしてこの効果は、図1に示した湾曲した上部電極である第1の電極P1の構造により、より強められるものとなる。すなわち、湾曲した第1の電極P1の曲率半径を好酸球9の直径である15μmとすることで、直径15μm以上の細胞は電極対間に侵入することができなくなる。従って本発明の構造とすることで、電極対間に侵入しうる物質に大きさの制限を課することができる。その結果、目標物に対する特異性が向上する。さらに、図5(a)に示す湾曲した第1の電極P1の構造は、球形である好酸球9の表面に沿うような電極構造を採るため、図5(b)に示す第1の電極P13が第2の電極P2に対して平行な場合と比べて、好酸球9に結合できる電極上の抗体数が増加する。その結果、電極対間に目標物である好酸球9を極めて強く保持することができるようになり、好酸球細胞に対するセンシング能力を格段に向上させることができる。   The mechanism at the time of using the cell detection apparatus of this invention is demonstrated using FIG. For example, when eosinophils in the blood are used as detection target cells (targets), the eosinophil antibody 8 that specifically binds the eosinophils to the probe molecule 4 on the surface of the electrode pair is used as an eosinophil. The sphere 9 can selectively stay between the electrode pair for a long time. This effect is further enhanced by the structure of the first electrode P1, which is the curved upper electrode shown in FIG. That is, by setting the curvature radius of the curved first electrode P1 to 15 μm which is the diameter of the eosinophil 9, cells having a diameter of 15 μm or more cannot enter between the electrode pairs. Therefore, with the structure of the present invention, a size limit can be imposed on a substance that can enter between electrode pairs. As a result, the specificity for the target is improved. Further, since the structure of the curved first electrode P1 shown in FIG. 5 (a) is an electrode structure along the surface of the eosinophil 9 which is spherical, the first electrode shown in FIG. 5 (b). Compared to the case where P13 is parallel to the second electrode P2, the number of antibodies on the electrode that can bind to the eosinophil 9 increases. As a result, the target eosinophil 9 can be held very strongly between the electrode pairs, and the sensing ability for eosinophil cells can be significantly improved.

以上のような電極対についてそのサイズ、形状及びプローブ分子を変え、縦横に並べることで細胞の選別、スクリーニングに応用することが可能である。具体例として、血液を用いた疾病診断検査に用いることが可能な診断装置の例を図6に示す。   The electrode pairs as described above can be applied to cell selection and screening by changing the size, shape and probe molecules and arranging them vertically and horizontally. As a specific example, FIG. 6 shows an example of a diagnostic apparatus that can be used for a disease diagnostic test using blood.

健康管理、疾病診断において血液検査はよく用いられる検査である。この血中に含まれうる病原細胞として、例えば肝炎ウイルス13、結核菌17、ガン細胞21はその直径がそれぞれ40nm、400nm、5μmである。これらのサイズと同程度の曲率半径を持つ湾曲した第1の電極P1a,P1b,P1cをそれぞれ有する3つの電極対を1つの基板1上に形成し、さらに各電極表面に各病原細胞に対応した抗体12,16,20などのプローブ分子を結合させ、これらの電極対を縦横に並べたいわばアレイを形成することによって少量の血液からその血液に含まれる病原細胞を高精度にセンシングすることができる。従って、本発明に係る細胞検出装置を用い、少量の血液から他項目の病原細胞について簡便に且つ高精度に疾病診断を行うことが可能な診断装置を構成することができる。   Blood tests are frequently used in health care and disease diagnosis. As pathogenic cells that can be contained in the blood, for example, hepatitis virus 13, Mycobacterium tuberculosis 17, and cancer cell 21 have diameters of 40 nm, 400 nm, and 5 μm, respectively. Three electrode pairs each having curved first electrodes P1a, P1b, and P1c having a radius of curvature comparable to these sizes are formed on one substrate 1, and each electrode surface corresponds to each pathogenic cell. By binding probe molecules such as antibodies 12, 16, and 20 and arranging these electrode pairs vertically and horizontally, it is possible to sense pathogenic cells contained in the blood with high accuracy from a small amount of blood. . Therefore, it is possible to configure a diagnostic apparatus that can easily and accurately perform disease diagnosis on pathogenic cells of other items from a small amount of blood using the cell detection apparatus according to the present invention.

1:基板
2,3:フォトレジスト
4:プローブ分子
6a,6b:金属
7:露光光線
8:抗好酸球抗体
9:好酸球
12:抗肝炎ウイルス抗体
13:肝炎ウイルス
16:抗結核菌抗体
17:結核菌
20:抗ガン細胞抗体
21:ガン細胞
P1,P11,P1a,P1b,P1c,P12,P13:第1の電極
P2、P2a,P2b,P2c:第2の電極
1: Substrate 2, 3: Photoresist 4: Probe molecule 6a, 6b: Metal 7: Exposure light 8: Anti-eosinophil antibody 9: Eosinophil 12: Anti-hepatitis virus antibody 13: Hepatitis virus 16: Anti-tuberculosis antibody 17: Mycobacterium tuberculosis 20: Anti-cancer cell antibody 21: Cancer cells P1, P11, P1a, P1b, P1c, P12, P13: First electrode P2, P2a, P2b, P2c: Second electrode

Claims (2)

前記第2の電極の少なくとも一部が、前記細胞の流路内に存在し、
基板及び前記基板上に配置される容量検出素子を備える細胞検出装置であって、
前記容量検出素子は、前記基板に対してその一部が接して及び他の部分が離間して及び該他の部分の端部であって前記一部と反対側の端部が前記基板に接して配置される第1の電極、及び、該第1の電極の該離間した部分と少なくとも一部対向して且つ前記基板と接して配置される第2の電極からなり、
該第1の電極の該離間した部分と前記基板の間に形成される細胞の流路を備えることを特徴とする細胞検出装置。
At least a portion of the second electrode is present in the flow path of the cell;
A cell detection device comprising a substrate and a capacitance detection element disposed on the substrate,
A part of the capacitance detecting element is in contact with the substrate and another part is separated from the substrate, and an end of the other part is in contact with the substrate. And a second electrode disposed at least partially opposite to the spaced apart portion of the first electrode and in contact with the substrate,
A cell detection device comprising a cell channel formed between the spaced apart portion of the first electrode and the substrate.
前記容量検出素子が前記基板上に2つ以上配置され、
各容量検出素子が備える前記第1の電極の前記他の部分の形状が夫々異なることで、2つ以上の前記細胞の流路が夫々異なった形状で提供されることを特徴とする請求項1に記載の細胞検出装置。
Two or more capacitance detection elements are disposed on the substrate;
The shape of the other part of the first electrode included in each capacitance detection element is different, whereby two or more flow paths of the cells are provided in different shapes. The cell detection apparatus according to 1.
JP2011063908A 2011-03-23 2011-03-23 Cell detection device Withdrawn JP2012196189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011063908A JP2012196189A (en) 2011-03-23 2011-03-23 Cell detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011063908A JP2012196189A (en) 2011-03-23 2011-03-23 Cell detection device

Publications (1)

Publication Number Publication Date
JP2012196189A true JP2012196189A (en) 2012-10-18

Family

ID=47179100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011063908A Withdrawn JP2012196189A (en) 2011-03-23 2011-03-23 Cell detection device

Country Status (1)

Country Link
JP (1) JP2012196189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023146404A1 (en) * 2022-01-31 2023-08-03 Technische Universiteit Eindhoven A microfluidic device for detecting and characterizing at least one analyte, for example a cell, in a sample fluid.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023146404A1 (en) * 2022-01-31 2023-08-03 Technische Universiteit Eindhoven A microfluidic device for detecting and characterizing at least one analyte, for example a cell, in a sample fluid.

Similar Documents

Publication Publication Date Title
JP4932860B2 (en) Biosensor including a three-dimensional metal nanowire electrode forming a nanochannel, a manufacturing method thereof, and a biodisc system including the biosensor
Viefhues et al. DNA dielectrophoresis: Theory and applications a review
Gupta et al. Label-free detection of C-reactive protein using a carbon nanofiber based biosensor
CA2238003C (en) Impedimetric detection system and method of production thereof
Pan et al. 3D microgroove electrical impedance sensing to examine 3D cell cultures for antineoplastic drug assessment
Harms et al. Single-particle electrophoresis in nanochannels
Esfandyarpour et al. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device
US11009482B1 (en) Whole virus quantum mechanical tunneling current and electronic sensors
Ali et al. N protein‐based ultrasensitive SARS‐CoV‐2 antibody detection in seconds via 3D nanoprinted, microarchitected array electrodes
Zhou et al. Gold nanoparticle layer: a promising platform for ultra-sensitive cancer detection
Hatanaka et al. Detection of surface antigens on living cells through incorporation of immunorecognition into the distinct positioning of cells with positive and negative dielectrophoresis
US11592415B2 (en) Bio-sensor having interdigitated microelectrode using response of receptor and target bioproducts
Partel et al. Lift-off free fabrication approach for periodic structures with tunable nano gaps for interdigitated electrode arrays
Harms et al. Conductivity-based detection techniques in nanofluidic devices
Zhang et al. Kinetic studies of microfabricated biosensors using local adsorption strategy
Urrego et al. Biomicrosystem design and fabrication for the human papilloma virus 16 detection
Kim et al. Computational Method‐Based Optimization of Carbon Nanotube Thin‐Film Immunosensor for Rapid Detection of SARS‐CoV‐2 Virus
JP2017526915A (en) Sensing device
Agarwal et al. Sensitive detection of cardiac troponin-I protein using fabricated piezoresistive microcantilevers by a novel method of asymmetric biofunctionalization
JP2012196189A (en) Cell detection device
Aoyama et al. Enhanced immunoadsorption on imprinted polymeric microstructures with nanoengineered surface topography for lateral flow immunoassay systems
de Lange et al. Twist on protein microarrays: layering wax-patterned nitrocellulose to create customizable and separable arrays of multiplexed affinity columns
JP6061429B2 (en) Method for manufacturing apparatus for detecting specimen
JP2021526638A (en) Graphene-based dielectrophoresis sensors and methods
JP6309950B2 (en) Processing sample fluids with target components

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603