JP2012195547A - Temporary building type aquatic life compartment cultivation aquarium by utilizing sunlight or photovoltaic generation method of agriculture horticultural facility - Google Patents

Temporary building type aquatic life compartment cultivation aquarium by utilizing sunlight or photovoltaic generation method of agriculture horticultural facility Download PDF

Info

Publication number
JP2012195547A
JP2012195547A JP2011080493A JP2011080493A JP2012195547A JP 2012195547 A JP2012195547 A JP 2012195547A JP 2011080493 A JP2011080493 A JP 2011080493A JP 2011080493 A JP2011080493 A JP 2011080493A JP 2012195547 A JP2012195547 A JP 2012195547A
Authority
JP
Japan
Prior art keywords
aquarium
building
power generation
facility
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011080493A
Other languages
Japanese (ja)
Inventor
Hiroshi Saito
浩 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUA KK
Original Assignee
YUA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUA KK filed Critical YUA KK
Priority to JP2011080493A priority Critical patent/JP2012195547A/en
Publication of JP2012195547A publication Critical patent/JP2012195547A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Greenhouses (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel method for generating economical power.SOLUTION: (1):A temporary building type aquatic life in square compartment cultivation aquarium of sunlight transmission type is constructed in a plurality of buildings in order and in colonial type on a beach or field with good sunlight. (2):A solar battery module of light weight is attached to a transparent roof appentice portion other than a light receiving surface in which the sunlight which enters from a temporary roof portion of each aquarium at least illuminates the entire water surface of the aquarium and almost all surfaces of at least two side wall outer surfaces of the temporary building square aquarium chamber. (3):A far-infrared ray minus ion generation paint is applied on at least an internal surface portion of the temporary building, and an appropriate blower is attached to an appropriate place so that a weak wind flows in the building at always, to create the atmosphere similar to the weather condition of a beach as the atmosphere in the building, arranging a training condition in a cultivation bath.(4):Fish and shellfish are cultivated in the aquarium while an economical power is generated outside the aquarium. A portion of it is re-used as an electric energy for the cultivation system while a remaining all portions are sold.

Description

本発明は、太陽光利用の架設建屋式方形水棲生物小割養殖水槽又は農業用園芸施設の如き軟弱構造の建物上での太陽光発電方式に関する。        The present invention relates to a solar power generation system on a building having a soft structure such as a building-type square aquatic organism small-scale aquaculture tank using sunlight or an agricultural horticultural facility.

近時、地球温暖化現象防止の為に、無尽蔵且つクリーンエネルギーたる太陽エネルギーを利用する発電技術が、日を追って隆盛に成り、種々な発電素子及び装置が提案され、種々な分野に利用されるに至っている。        Recently, in order to prevent global warming phenomenon, power generation technology that uses solar energy, which is inexhaustible and clean energy, has become popular day by day, and various power generation elements and devices have been proposed and used in various fields. Has reached.

本来、太陽電池例えばアモルフォス・シリコン電池に於いては、一枚の絶縁性基板の上に、多数の太陽電池セル(乾電池)を直列、並列に接続して、高電力を取り出す様にし、此れを長期に亘って保護する為に、透明なパッケージ内に封入して、一個の太陽電池モジュールを形成したものである。        Originally, in a solar cell such as an amorphous silicon battery, a large number of solar cells (dry cells) are connected in series and in parallel on a single insulating substrate so that high power can be taken out. In order to protect the battery over a long period of time, it is sealed in a transparent package to form a single solar cell module.

然しながら此のモジュールの裏面には、アルミ等をPVFでサンドウィッチ状の構造にして、高絶縁性と耐湿性とを維持し、更に其の全体を、アルミニュウム枠内に嵌装して、強度を高めた構造と成っているので、産業用の目的の場合は別として、社会生活用のもの、例えば家庭電力用太陽発電装置等では、所定電力以上の電力を得る為には、其の容積、重量、費用も嵩むので、其の取り付け場所は極めて限定されざるを得なく成っていた。        However, on the back of this module, aluminum is made of PVF in a sandwich-like structure to maintain high insulation and moisture resistance, and the whole is fitted into an aluminum frame to increase strength. Therefore, in the case of industrial use, for example, a solar power generation device for household electric power, in order to obtain electric power exceeding a predetermined electric power, its volume and weight are different from those for industrial purposes. Because of the increased cost, the installation location was inevitably limited.

斯くの如き理由から、近年では更に研究が加えられ、アモルフォス・シリコン太陽電池が、300℃以下の温度範囲で形成される事に着目し、耐熱性プラスチックフィルム上で此れを形成する事に成功し、更には曲げられる太陽電池等も生産する事に成功したので、此れ等を利用する事により、太陽電池ジャケットや、太陽電池パラソル等が市販されるに至っている。        For these reasons, further research has been added in recent years, focusing on the fact that amorphous silicon solar cells are formed in a temperature range of 300 ° C. or lower, and succeeding in forming them on a heat-resistant plastic film. In addition, since it has succeeded in producing solar cells that can be bent, solar cell jackets, solar cell parasols, and the like have become commercially available.

参考文献1Reference 1

[太陽電池を使いこなす](桑野幸徳著:講談社出版]  [Managing solar cells] (Yukinori Kuwano: Kodansha Publishing)

この様な技術情勢に鑑み、日当たりの良い家屋、建物等の屋上ばかりでなく、近時、日を追って増加しつつある太陽光利用仮設建屋式水棲生物小割養殖水槽[以下、太陽光利用水棲生物養殖水槽と呼称する]や、農業園芸ハウス、特にかまぼこ型ビニールハウス等の軟質構造物の屋根、又は透明な天蓋、或いは側壁等に、この種フィルム状太陽電池を装着して、火力発電、化石発電等の商業電力に代わる、クリーン・エコ・電気エネルギーを提供せんとする技術が、開示、散見されるに至っている。
特開2001−291888 特開2004−247429
In light of this technical situation, not only the rooftops of sunny houses, buildings, etc., but also solar-powered temporary building-type aquatic creature small-scale aquaculture tanks that have been increasing day by day [hereinafter referred to as solar-powered water tanks] This type of solar cell is attached to the roof of a soft structure such as an agricultural and horticultural house, in particular a kamaboko type greenhouse, or a transparent canopy, or a side wall, Technologies that provide clean, eco-friendly, and electrical energy to replace commercial power such as fossil power generation have been disclosed and scattered.
JP 2001-291888 A JP-A-2004-247429

発明が解決せんとする課題Problems to be solved by the invention

一方、前記太陽光利用水棲生物養殖水槽又は施設園芸ビニールハウス等での魚介類養殖、農産物栽培に於いては、地球温暖化の影響を受けて、夫々の季節の温度は上昇し続け、夏季以外でもこの種温室の温度は、通風、冷房、遮蔽無しには作業は不可能に近く、養殖魚介類又は作物等えの影響も、甚だ甚大となる状態である。
そこで、通常は温室の内外に太陽光遮断用の設備を設けて、入射する太陽からの光量を制御し、作業員、作物、養殖魚介類の健康及び正常な育成を維持しているのが実情である。
On the other hand, in the aquaculture and agricultural cultivation in the solar aquatic aquaculture tank or facility horticultural greenhouse, the temperature of each season continues to rise under the influence of global warming. However, the temperature of this kind of greenhouse is almost impossible without ventilation, cooling, and shielding, and the effects of farmed seafood or crops are extremely large.
Therefore, the actual situation is that facilities for blocking sunlight are usually installed inside and outside the greenhouse, and the amount of light from the incident sun is controlled to maintain the health and normal growth of workers, crops, and cultured seafood. It is.

然しながら、此の様な設備を設けるには、過剰な費用を必要とし、其の管理調節にも又多大な余剰労力を必要とするが、太陽光発電の点のみからすると、日照時間も長く、光の強さも強力な田園、原野、浜辺での此れ等施設上での発電は、フィルム状又は曲折自在な発電モジュールの実用化時代に即応して、太陽光発電の最適な利用場所と目されている。        However, in order to install such a facility, excessive costs are required, and the management and adjustment thereof also requires a great amount of extra labor. Power generation on these facilities in the countryside, wilderness, and beaches where the intensity of light is strong will be the most suitable place to use solar power generation in response to the practical use of film-like or bendable power generation modules. Has been.

此の様な現状にも関わらず、前記養殖施設又は農業園芸施設でのこの種技術の普及は、未だ甚だ不十分で、単に上記した特許文献に開示されているに過ぎない状態である。        Despite this situation, the spread of this kind of technology in the aquaculture facility or agricultural horticultural facility is still inadequate and is merely disclosed in the above-mentioned patent documents.

そこで本発明は、斯くの如き立地上、施設構造上の太陽エネルギー授与の恩恵を利用して、夫々の主生産物の生産性の向上を図ると同時に、大量の電力をも生産して、施設の化石燃料使用率ゼロを達成し、地球温暖化防止の一翼を担うと同時に、発電電力の販売による利益を以って、此の種主生産物の原価逓減を図らんとするものである。        Therefore, the present invention makes use of the benefits of solar energy transfer on such a location and on the facility structure to improve the productivity of each main product and at the same time produce a large amount of electric power. At the same time, we will achieve zero consumption of fossil fuels and play a part in preventing global warming. At the same time, we will try to reduce the cost of these main products with the profits from the sales of generated power.

課題を解決する為の手段Means to solve the problem

本来、水中植物、陸上植物共に光合成に依って成長するものであるから、太陽光線が不足すると成長する事が出来ない。
又一方、太陽光線には、可視光線、赤外線、紫外線、遠赤外線等、夫々の異なる波長を持つ光線を含んでおり、光合成には可視光線を必要とし、果肉、色彩、味等の成熟には,遠赤外線が甚だ強く関与していると言われている。
Originally, both underwater plants and terrestrial plants grow by photosynthesis, so they cannot grow if sunlight is insufficient.
On the other hand, the sun rays include rays having different wavelengths such as visible rays, infrared rays, ultraviolet rays, far infrared rays, etc., and photosynthesis requires visible rays, and for maturation of pulp, color, taste, etc. , Far infrared is said to be strongly involved.

一方、上記の太陽光利用の水棲生物養殖水槽や園芸ハウス等は、天井部又は天蓋部或いは其の全体が、透明なガラス、ビニールフィルム等で覆われており、光合成に必要な可視光線が、充分に行き渡る様に造成されているが、其の側部周辺は、建物の剛性を維持する為に、木材、プラスチック、金属等の補強部材で構築され、可及的に多く日光が入射する様に、透明な材質で覆われるのが普通である。        On the other hand, the above-mentioned solar aquatic aquaculture tank, horticultural house, etc. are covered with a transparent glass, vinyl film, etc. on the ceiling or canopy or the whole, and visible light necessary for photosynthesis is Although it is constructed so as to spread sufficiently, its side area is constructed with reinforcing members such as wood, plastic, metal, etc. in order to maintain the rigidity of the building, so that as much sunlight as possible enters In addition, it is usually covered with a transparent material.

従って、可視光線は、上部の透明被蓋部材、ガラス、ビニールフィルム等は自由に通過して、槽内若しくは室内の水棲植物、陸上植物を光合成する事が出来るが、此れ等植物の成熟作用、色付け作用を行う一因子である遠赤外線は、此れ等物質に吸収されて、前記水槽内或いは温室内に侵入する事が不可能である。
従って、遠赤外線の存在が必要な場所、例えば上記の如き温室内では、適当な方法で、此れを発生する手段を講ずる必要がある。
Therefore, visible light can freely pass through the upper transparent cover member, glass, vinyl film, etc., and photosynthesis of aquatic plants and land plants in the tank or in the room. The far-infrared rays, which are one factor for performing the coloring action, are absorbed by these substances and cannot enter the water tank or the greenhouse.
Therefore, in a place where the presence of far-infrared rays is necessary, for example, in the greenhouse as described above, it is necessary to take measures to generate this in an appropriate manner.

又一方、日照条件に依っては、夏季以外でも室内温度は、45℃以上にもなるので、適当な冷房施設が必要に成り、経費の面から冷房施設を使用出来ない場合には、日光遮蔽手段を講ずる必要がある。
本発明は、此の日光遮蔽手段の代わりに、所定寸法のフィルム状太陽電池モジュールを、目的とする温室の所定場所に装着して、透過入室する光量を制限せんとするものである。
On the other hand, depending on the sunshine conditions, the room temperature can be 45 ° C or higher even in the summer, so an appropriate cooling facility is necessary. It is necessary to take measures.
In the present invention, instead of this sunlight shielding means, a film-like solar cell module having a predetermined size is mounted at a predetermined place in a target greenhouse to limit the amount of light that enters through.

此の様な目的を達成する第一の特徴は、本発明の前記仮設建屋式小割養殖水槽の太陽光透過性仮設屋根の庇部と、此の水槽を囲む透明の仮設建屋水槽室側壁部とを、所定寸法の太陽電池モジュールで被覆し、水槽内の水棲植物例えば養殖昆布及び植物プランクトン等の光合成を助長するに充分な可視光線が入射し、少なくとも前記水槽水面全体を照射する様に構成する。        The first feature to achieve such an object is that the solar building-permeable temporary roof ridge of the temporary building-type small aquaculture tank of the present invention, and a transparent temporary building aquarium chamber side wall surrounding the tank. Is covered with a solar cell module of a predetermined size, and is configured so that sufficient visible light is incident to promote photosynthesis of aquatic plants in the aquarium such as cultured kelp and phytoplankton, and at least irradiates the entire water surface of the aquarium. To do.

次いで第二の特徴は、此れ等水槽又は温室を被覆する透明フィルム又はガラス等は、植物の熟成、味、色付け等に関係する遠赤外線を吸収するので、少なくとも上記太陽光電池モジュールの内側に、遠赤外線マイナスイオンを発生する塗料を塗布し、常時槽内若しくは仮設建屋温室内に、此のマイナスイオンが滞留して、光合成を活性化する様に構成する。        Next, the second feature is that the transparent film or glass that covers the water tank or the greenhouse absorbs far-infrared rays related to ripening, taste, coloring, etc. of the plant, so at least inside the solar cell module, A paint generating far-infrared negative ions is applied, and the negative ions stay in the tank or the temporary building greenhouse to activate photosynthesis.

発明の効果Effect of the invention

斯くの如き構成及び作用に依って本発明は、以下の如き効果を発揮する。
(1):光合成に必要な可視光線を、少なくとも水中植物又は陸上栽培植物の光合成に必要な入射面積を維持するように構成し、可能な限り太陽電池モジュールの取り付け面積も広く成る様に配慮しているので、其の発電能力は極めて高く、集落状に建設された仮設建屋式養殖水槽又は施設園芸ハウスからは、相当の電力を発電する事が出来、自家用電力の使用は言うに及ばず、商業電力としても相当の電力が販売可能なので、主生産商品、例えば養殖バナメイの生産原価の逓減、養殖資金の蓄積等に用立てすることが出来る。
(2):化石燃料を使用せず、クリーン電気エネルギーを使用して生産運転し得るので、地球温暖化防止の一助とも成っている。
(3):光合成に必要な最小限度の可視光線の入射が約束されているに加え、太陽電池モジュールの適当場所えの装着に依る室内温度と光量の調整、並びに遠赤外線マイナスイオンの発生及び其の室内滞留が確保されるので、植物の成長、品質の向上、作業員の健康の維持等が約束出来る。
(4):フィルム状太陽電池モジュールを使用するので、夫々の建設費並びに維持費が安価である。
According to such a configuration and operation, the present invention exhibits the following effects.
(1): The visible light necessary for photosynthesis is configured to maintain at least the incident area necessary for photosynthesis of underwater plants or land-grown plants, and the solar cell module mounting area should be as large as possible. Therefore, its power generation capacity is extremely high, and it can generate a considerable amount of power from the temporary building type aquaculture tank or facility horticulture house constructed in a village, not to mention the use of private power, Since considerable power can be sold as commercial power, it can be used for diminishing the production cost of main production products such as aquaculture Banamei, accumulating aquaculture funds, and the like.
(2): Since fossil fuels are not used and production can be performed using clean electrical energy, this also helps to prevent global warming.
(3): In addition to the minimum visible light incidence required for photosynthesis, the room temperature and light intensity are adjusted by installing the solar cell module at an appropriate location, and far-infrared negative ions are generated and As a result, plant growth, quality improvement, maintenance of worker's health, etc. can be promised.
(4): Since a film-like solar cell module is used, each construction cost and maintenance cost are low.

斯くて本発明を実施する為の最良の形態は、:
(a)・先ず第1に、取り付けられる仮設建屋式水棲生物養殖水槽又は農業用園芸施設が、総じて構造的に脆弱である上、太陽光透過性の物質特に合成樹脂フィルムで実質的に形成されるので、重質の太陽電池モジュールを使用せず、フィルム状又は曲折自在の電池モジュールを使用する事。
(b)・水中植物又は農作物等の光合成用の可視光線が、終始受光され得る様に養殖面又は栽培面を配置造成する事。
(c)・此れ等植物の成長、色彩、味旨味等には、遠赤外線の作用が必要なので、此れを吸収する温室内全体、特にその屋根庇及び側壁部に装着される太陽電池モジュールの裏側部分には、遠赤外線発生塗料を塗布する事。
(d)・温室内の温度を養殖生物、農作物、作業員の生長及び健康を阻害しない程度に、仮設屋根部又はビニールハウス天井部を、日光遮蔽部材又は太陽電池モジュールの装着位置具合で調節する事。
(e)・温室内の雰囲気を、可能な限り養殖又は栽培植物の成育自然環境、例えば海浜、田園の気象に近似した環境に造成する事。: 等の構成要素を考慮して、目的施設を敷設する事である。
以下に、図面を参照して本発明の好個の実施態様を説明する。
Thus, the best mode for carrying out the invention is:
(A) First of all, the temporary building type aquatic aquaculture tank or agricultural horticultural facility to be attached is generally structurally fragile and is substantially formed of a sunlight permeable substance, particularly a synthetic resin film. Therefore, use a film-like or bendable battery module instead of a heavy solar battery module.
(B)-Arranging and creating a culture surface or a cultivation surface so that visible light for photosynthesis of underwater plants or crops can be received from beginning to end.
(C) ・ Since the growth, color, taste, etc. of these plants require the action of far-infrared rays, the solar cell module to be installed in the entire greenhouse, particularly on the roof and side walls of the greenhouse Apply far-infrared generating paint on the back side.
(D)-Adjust the temperature of the greenhouse to the extent that the aquaculture organisms, crops, workers' growth and health are not hindered, depending on the position of the sunlight shielding member or solar cell module mounting position. Thing.
(E) To create the atmosphere in the greenhouse as close as possible to the natural environment of cultivation or cultivated plants, for example, the environment close to the weather on the beach or countryside. : To construct the target facility in consideration of the components such as
In the following, preferred embodiments of the present invention will be described with reference to the drawings.

図1及び図2には、原野例えば海浜等に敷設された仮設建屋式方形養殖水槽(1)での太陽光発電方式が示されている。        1 and 2 show a solar power generation system in a temporary building type square aquaculture tank (1) laid on a wilderness such as a beach.

この際の仮設建屋は、総じてガラス、合成樹脂等の太陽光透過性物質より成り、適当な軽質梁部材上に取り付けられた仮設屋根(4)と、不銹性の軽金属例えば硬質アルミ等の支柱(S),梁(B)等より成る建屋骨材上に、ガラス、光透過性合成物質等を装着若しくは貼着した仮設建屋養殖室(3)とを、適当な手段で組立連結し、其の内部に、コンクリート、合成樹脂、或いは不銹性金属等で形成した方形の小割養殖水槽本体(2)を据え付けた構造より成る。        In this case, the temporary building is generally made of a sunlight transmissive material such as glass or synthetic resin, and has a temporary roof (4) mounted on an appropriate light beam member, and a support made of an inferior light metal such as hard aluminum. (S), temporary building aquaculture room (3) with glass, light-transmitting synthetic material, etc. attached or pasted on building aggregate made of (S), beams (B), etc., assembled and connected by appropriate means, The structure is such that a rectangular small aquaculture tank main body (2) formed of concrete, synthetic resin, or an inferior metal or the like is installed inside.

更に又此の養殖水槽本体(2)は、以下の如き部材で構成され、植物性ヘドロと、水性シリコン並びに数種のミネラルを含む濾過床(13)との存在で発生した底質、即ち植物プランクトン及び動物プランクトン(14)の存在下に、水棲生物バナメイ(16)を養殖するエルトンの食物連鎖に基ずく養殖方式を実行する魚介類養殖手段である。
本件仮設建屋式養殖水槽本体の構成部材
(8) 方形水棲生物小割養殖水槽
(9) 養殖水保温パイプ手段
(10) 生物濾過マット
(11) 耕水機
(12) 養殖コンブ又は人工コンブ
(13) 水性シリコン及びミネラル類を含有する濾過床
(14) 底質
Further, this aquaculture tank main body (2) is composed of the following members, and the bottom sediment generated in the presence of the plant sludge and the filter bed (13) containing aqueous silicon and several minerals, that is, plants. In the presence of plankton and zooplankton (14), it is a seafood aquaculture means that implements an aquaculture system based on Elton's food chain that cultivates aquatic organisms Banamei (16).
Components of the temporary building aquaculture tank main body (8) Square aquatic organism small split aquaculture tank (9) Cultured water insulation pipe means (10) Biofiltration mat (11) Water cultivator (12) Aquaculture comb or artificial comb (13 ) Filter bed containing aqueous silicon and minerals (14) Bottom sediment

上記の如き水槽本体に於いて、前記透明仮設屋根(4)に降りかかる太陽光線(S)の可視光線部分は、点線矢印の如く、ガラス又は透明プラスチック製の仮設屋根(4)を透過して、槽内で養殖されているコンブ(12)と底質(14)内の植物プランクトン部の光合成を達成させ、発生した酸素は動物プランクトン及び養殖バナメイ(16)の呼吸を助けると同時に、耕水機(11)で取り込まれた酸素と共に、矢印(15)の如き湧昇流と成って、槽内の浄化と水質の均質化とを助長すると共に、動物プランクトンとバナメイ(16)の呼吸による炭酸ガスも同伴して、植物プランクトン及び養殖コンブ(12)に、他の窒素、リン等の成分と共に吸収される。
又一方、前記濾過床(13)では、槽内で発生した窒素、アンモニヤ等を吸収分解すると同時に、前記した如く、植物プランクトンの発生増殖に寄与して、エルトンのピラミットの基礎植物成分を発生させる。
In the aquarium body as described above, the visible light portion of the sunlight (S) falling on the transparent temporary roof (4) passes through the temporary roof (4) made of glass or transparent plastic, as indicated by the dotted arrow, The photosynthesis of the phytoplankton part in the kombu (12) and sediment (14) cultivated in the tank is achieved, and the generated oxygen helps respiration of the zooplankton and the cultivated vaname (16), and at the same time Together with the oxygen taken up in (11), it forms an upwelling flow as shown by arrow (15), which promotes purification and homogenization of water quality in the tank, and carbon dioxide by respiration of zooplankton and vanamey (16) Is also absorbed into the phytoplankton and the cultured comb (12) together with other components such as nitrogen and phosphorus.
On the other hand, the filter bed (13) absorbs and decomposes nitrogen, ammonia and the like generated in the tank and, at the same time, contributes to the generation and growth of phytoplankton and generates the basic plant components of the Elton pyramid. .

この様な環境に於いて発生した植物プランクトンは、動物プランクトンを発生させて其の餌と成り、更に此の動物プランクトンは、養殖バナメイ(16)の食餌と成って成長させ、斯くの如く成長したバナメイは、養殖コンブを食しながら隠遁揺籃されて成魚に成長し、出荷される。        The phytoplankton generated in such an environment generates zooplankton and becomes its feed, and this zooplankton grows and becomes the diet of the cultured banamei (16) and grows as such. Banamei is swayed and slaughtered while eating cultured kombu, grown into adult fish, and shipped.

他方、仮設建屋を構成する仮設屋根(4)の内側には、(7)で示す如き入射光量調節用の遮蔽手段を設けると同時に、仮説建屋養殖室(3)の内壁と共に、遠赤外線マイナスイオン発生塗料を塗布して、常時仮設建屋内全体に、遠赤外線マイナスイオンを存在させて、透明な仮設屋根(4)から入射する太陽光を活性化し、送風機(19)から送られる微風に依って、点線矢印の如く流動させ、仮設建屋室内を符号(20)で示す如き海洋天候型雰囲気に造成し、水中植物の光合成を促進させると同時に、養殖水棲生物バナメイ(16)のストレスを解消する如く作用させる。        On the other hand, on the inner side of the temporary roof (4) constituting the temporary building, a shielding means for adjusting the amount of incident light as shown in (7) is provided, and at the same time, the far-infrared negative ions together with the inner wall of the hypothetical building aquaculture room (3) Depending on the breeze sent from the blower (19), the generated paint is applied, the far-infrared negative ions are always present throughout the temporary building, and the sunlight incident from the transparent temporary roof (4) is activated. As indicated by the dotted arrow, the temporary building room is constructed in an ocean weather type atmosphere as indicated by reference numeral (20) to promote the photosynthesis of the underwater plants and at the same time to eliminate the stress of the cultured aquatic organism Banamei (16). Make it work.

この様な内部構造及び作用、効果を備えた此の仮設建屋は、適当な温度管理を行わない限り、室内温度が上昇し過ぎて、養殖生物の成長と作業員の健康とに悪影響を与えるので、適当に通風し、入射日光を適当に遮断すると共に、図1及び図2に示す如く、仮設建屋の屋根の一部と側壁部の全面に、フィルム状太陽電池モジュール(5)(6)を、図示はされていないが、適当な間隔

Figure 2012195547
面間に多少の空冷用隙間を形成する様に貼付する。This temporary building with such internal structure, function and effect will cause the indoor temperature to rise too much unless proper temperature control is performed, which will adversely affect the growth of aquaculture organisms and the health of workers. The solar cell module (5) (6) is formed on the entire roof and part of the side wall of the temporary building as shown in FIGS. Although not shown, suitable intervals
Figure 2012195547
Affix it so that some air-cooling gaps are formed between the faces.

前記した如く、此のフィルム状太陽電池モジュール(5)(6)は、アモルフォスシリコン太陽電池であり、脆弱な合成樹脂フィルム、布などの上にも貼着可能な発電部材である。
この様な太陽電池モジュールの特徴は、以下に詳述する本発明の仮設建屋式水棲生物養殖水槽又は農業園芸施設、特に図3及び図4に示す如き、脆弱なビニールハウス上での太陽光発電に必須不可欠の部材であるが、場合に依っては、此の簡便なモジュールも又、曲折自在の合成樹脂シート状の太陽電池モジュールで代用する事も可能である。
As described above, these film-like solar cell modules (5) and (6) are amorphous silicon solar cells, and are power generation members that can be attached to fragile synthetic resin films, cloths, and the like.
Such a solar cell module is characterized by the photovoltaic power generation on a fragile greenhouse as shown in FIG. 3 and FIG. In some cases, this simple module can also be replaced by a bendable synthetic resin sheet-like solar cell module.

翻って、図1に示す前記養殖水槽本体(2)は、使用する素材例えばコンクリート素材や、加熱保温手段の効率性、簡便性を考慮して、容積10m(好ましくは正方形)の物が使用されており、更に此の水槽の養殖温度維持と、養殖作業員の作業空間とを考えて、総体的に、水槽の周りに幅約1mの通路空間を設けているので、仮設建屋全体の敷地面積は、
12m X 12m = 144m・・・・・・・・・・[1]
を必要とする。
In turn, the aquaculture tank main body (2) shown in FIG. 1 uses a material having a volume of 10 m 2 (preferably square) in consideration of the material to be used, for example, a concrete material, and the efficiency and simplicity of the heating and heat retaining means. Furthermore, considering the maintenance of the culture temperature of this aquarium and the work space for the aquaculture workers, there is a passage space with a width of about 1 m around the aquarium, so the site of the entire temporary building The area is
12m X 12m = 144m 2 ... [1]
Need.

又、此の仮設建屋の庇までの高さは、作業員(17)の背丈を1・65mとし、其の作業能率を考慮すると、2mの高さとすれば充分であるので、左右壁面の面積は、
12m X 2m X 2 = 48m・・・・・・・[2]
と見積もられる。
In addition, the height of the temporary building to the ridge is 1.65m when the height of the worker (17) is set to 1.65m, and considering the work efficiency, the height of 2m is sufficient. Is
12 m X 2 m X 2 = 48 m 2 ... [2]
It is estimated.

更に又、前記した様に、養殖水槽(2)内の養殖コンブ(12)及びび植物プランクトンの光合成を維持する為には、少なくとも槽内水面上への可視光線(S)の照射が必要であり、その他の水槽外の斜線部分(18)は、直射日光を必要としないので、養殖バナメイ(16)のストレスや作業員の(19)の健康等を考慮して、此の部分の延長線上の屋根部分(庇部分)は、太陽光を遮断するのが好ましいと判断される。
従って此の部分にも、フィルム状太陽電池モジュール(5)を搭載して日陰を作るのが有利である。
Furthermore, as described above, in order to maintain the photosynthesis of the aquaculture comb (12) and the phytoplankton in the aquaculture tank (2), at least irradiation of visible light (S) on the water surface in the tank is necessary. Yes, the other shaded part (18) outside the aquarium does not require direct sunlight. Therefore, considering the stress of the aquaculture vaname (16) and the health of the workers (19), etc. It is judged that it is preferable to block sunlight in the roof portion (the ridge portion).
Therefore, it is advantageous to install a film-like solar cell module (5) in this portion to make a shade.

斯くの如くして、此の仮設建屋式養殖水槽(1)は、作業員の出入り用及び空調用の開閉自在のドアー(D)(D)が設けられた前後2面の側壁を除き、その左右側壁2面と、仮設屋根(4)の左右2庇部分(5‘)(5’)とは、光合成の為の太陽光入射必須水面への太陽光入射線外であるので、此の部分も又、以下の容積、即ち;
1m X 12m X 2 = 24m・・・・・・・・[3]
の太陽電池モジュールを装着する事が出来る。
但し、仮設屋根の傾斜が極めて緩やかであるので、庇上の太陽電池モジュールの幅寸法は、建屋内の作業員通路(18)の幅寸法と同一寸法と見做して計算されている。
In this way, this temporary building type aquaculture tank (1) has its front and rear side walls provided with doors (D) and (D) for opening and closing of workers and for air conditioning, except for its side walls. The two left and right side walls and the left and right two-sided portions (5 ′) and (5 ′) of the temporary roof (4) are outside the sunlight incident line to the sunlight incident essential water surface for photosynthesis. Also has the following volume:
1m X 12m X 2 = 24m 2 ... [3]
The solar cell module can be installed.
However, since the inclination of the temporary roof is extremely gentle, the width dimension of the solar cell module on the roof is calculated as the same dimension as the width dimension of the worker passage (18) in the building.

従って一方では、水棲生物バナメイを陸上養殖しながら、他方では、
[2]+[3]=(48m + 24m = 72m・・・・[4]
の面積の太陽電池モジュール(5)(6)を仮設屋根庇部分と仮設建屋養殖室両側壁面上とに装着して発電し、此の電力の一部を前記養殖水槽の運転電気エネルギーとして使用し、他の余剰電気は、商業電力として販売する事が出来る。
Therefore, on the one hand, while cultivating the aquatic organism Banamei on land, on the other hand,
[2] + [3] = (48m 2 + 24m 2 = 72m 2 ···· [4]
The solar cell modules (5) and (6) of the above area are mounted on the temporary roof ridge part and the both side walls of the temporary building aquaculture room to generate electric power, and a part of this electric power is used as the operating electric energy of the aquaculture tank. Other surplus electricity can be sold as commercial electricity.

図3及び図4には、上記した仮設建屋式水棲生物養殖水槽と同一寸法の水槽本体(32)を使用し且つ同一敷地面積のかまぼこ型ビニールハウス式方形水棲生物小割養殖水槽(31)内で、バナメイを養殖する養殖方式と、其の外層壁面及びドーム状天井部(34)の庇相当部分に、フィルム状太陽電池モジュール(35)(35)・・を装着して、太陽光発電を同時に実施する発電方式とが示されている。
然しながら、此の養殖水槽本体(32)は、通常の園芸ハウスの如く、農作物を栽培する温室栽培畑であっても差し支えない。
3 and 4, the inside of the kamaboko-type greenhouse-type square aquatic organism small split aquaculture tank ( 31 ) using the same size as the temporary building type aquatic aquaculture tank and having the same site area. In the aquaculture system for cultivating vaname, and film-like solar cell modules (35), (35),. The power generation system to be implemented at the same time is shown.
However, the aquaculture tank main body (32) may be a greenhouse-cultivated field where crops are cultivated like a normal horticultural house.

此の態様に於いて、かまぼこ状ビニールハウス(31)には、通常、図示の如く透明な塩化ビニールシートが、半円球の骨材(33)(33)・・・・上に貼付されているが、実施例1で記載したと同様に、投射する太陽光(S)(S’)が、養殖水槽内の水生植物の光合成を阻害しない程度の光量を、水面上に届け得る部分、即ち、左右両側の壁面相当部を超えたドーム状の天蓋庇相当部分まで、可及的広範囲に太陽電池モジュール(35)(35)・・で貼着−被覆されている。In this embodiment, in the kamaboko-shaped greenhouse ( 31 ), a transparent vinyl chloride sheet is usually stuck on the hemispherical aggregate (33) (33)... However, in the same manner as described in Example 1, the projected sunlight (S) (S ′) can deliver a light amount on the water surface that does not inhibit the photosynthesis of aquatic plants in the aquaculture tank, that is, The solar cell modules (35), (35),... Are applied and covered as much as possible up to the dome-shaped canopy corrugation that exceeds the wall-corresponding portions on the left and right sides.

又、先の実施例の養殖水槽と同様に、前記養殖水槽本体(32)の両側には、作業員の往来する通路(38)が設けられており、此の1乃至1.5mの通路部分は、可視光線の入射を必要としない部分であると同時に、外側に貼られた太陽電池モジュールの日陰の為、日中必要以上に高温に成り易い室内の温度を緩衝する役目を果たしている事、既述の通りである。
従って、此の種かまぼこ型ビニールハウスにおいても、前記仮設建屋水槽と略同じ高さまで、又略同じ面積の太陽電池モジュールを使用する事が出来る。
Similarly to the aquaculture tank of the previous embodiment, passages (38) for workers to come and go are provided on both sides of the aquaculture tank body (32), and these 1 to 1.5 m passage portions are provided. Is a part that does not require the incidence of visible light, and at the same time, because of the shade of the solar cell module affixed to the outside, it plays the role of buffering the indoor temperature that tends to be higher than necessary during the day, As described above.
Therefore, even in this kind of kamaboko type greenhouse, it is possible to use a solar cell module having substantially the same area as the temporary building water tank.

図5には、本発明の仮設建屋式水棲生物小割養殖水槽6棟より成る、集落状養殖施設の太陽光発電電力の再利用並びに商業販売のフローシートが示されている。即ち:
前記養殖水槽群()()・・・で夫々太陽光発電された直流電力は、矢印(2a)(2a)・・・で示す如く、各水槽から取り出され、接続箱(A)に集められ、次いで電流返還器(B)に導かれた後、インバーターに依り交流に変換され、使用目的に従って分流される分電器(C)に送られる。
FIG. 5 shows a flow sheet for the reuse and commercial sale of solar power generated in a village-type aquaculture facility comprising six temporary building-type aquatic organism small split aquaculture tanks of the present invention. That is:
The direct-current power generated by photovoltaic power generation in each of the aquaculture tank groups ( 1 ), ( 1 )... Is taken out from each water tank as indicated by arrows (2 a) (2 a). After being collected and then led to a current return (B), it is converted to alternating current by an inverter and sent to a voltage divider (C) that is shunted according to the intended use.

この際必要に応じて、当該養殖水槽の運転電力として使用する場合には、矢印(1c)を経て蓄電器(E)を介するか或いは介せず、矢印(2a)に従ってリサイクルされるか、或いは矢印(1b)で示す如く、商業電力として電力会社に販売される。
尚、符号(F)は、此れ等養殖水槽で発電された直流電力を一括管理する管理棟又は管理室を示し、符号(2b)は、リサイクル電流(2a)のマイナス配線を示している。
At this time, when used as the operating power of the aquaculture tank, if necessary, it is recycled according to the arrow (2a) or not via the capacitor (E) via the arrow (1c), or the arrow As shown in (1b), it is sold to an electric power company as commercial power.
In addition, the code | symbol (F) shows the management ridge or management room which manages DC power generated in these aquaculture tanks collectively, and the code | symbol (2b) shows the minus wiring of the recycle current (2a).

結論として、上記仮設建屋式或いはビニールハウス式水棲生物小割養殖水槽()(31)上に搭載可能な太陽電池モジュールの発電総電力の経済的効果を算出すると、以下の如く成る。
算出の基礎
(A) 晴天時の太陽エネルギーは、通常1m当たり1KWエネルギーと計算されている。
(B) 種々な天候条件を考慮して、1日の日照時間は、日本国に於いては、3・8時間と算出されている。[気象庁基準]
(C) 太陽電池の電力変換率を10%とした場合の、1日当たりの太陽電池の発電電力は:

Figure 2012195547
となり、:
(D) 従って、1年間当たりの太陽電池モジュール1mの発電電力は:
0・384KW/h X 365 = 140・16KW [5]
と算出される。
(E) その結果、上記仮設建屋式水棲生物小割養殖水槽6棟の総太陽光発電電力は:[5] X [4] X 6 = 140・16KW/h X 72 X 6= 60, 550KW・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・[6]
(F) 現在、商業電力会社の太陽光発電電力1KW/h当たりの買価は、48円であるから、上記養殖水槽6棟集落の1年間の太陽光発電総電力の売価は、以下の通りである。
48円 X 60,550 = 2,906、400円 In conclusion, when the economic effect of the total power generation of the solar cell module that can be mounted on the temporary building type or the greenhouse type aquatic organism small split aquaculture tank ( 1 ) ( 31 ) is calculated, it is as follows.
Basics of calculation (A) The solar energy in fine weather is normally calculated as 1 kW energy per 1 m 2 .
(B) In consideration of various weather conditions, the daily sunshine hours are calculated to be 3.8 hours in Japan. [Meteorological Agency standards]
(C) When the power conversion rate of the solar cell is 10%, the generated power of the solar cell per day is:
Figure 2012195547
Become:
(D) Therefore, the generated power of solar cell module 1m 2 per year is:
0 · 384KW / h X 365 = 140 · 16KW [5]
Is calculated.
(E) As a result, the total photovoltaic power generation in the six temporary-building aquatic organisms small aquaculture tanks is: [5] X [4] X 6 = 140 · 16 kW / h X 72 X 6 = 60, 550 kW · ... [6]
(F) Currently, the purchase price per 1 KW / h of solar power generated by a commercial power company is 48 yen, so the sales price of the total solar power for one year in the above 6 aquaculture tank villages is as follows: is there.
48 yen X 60,550 = 2,906, 400 yen

本発明の仮設建屋式方形水棲生物小割養殖水槽での、太陽光発電方式を示す切断正面図である。It is a cutting | disconnection front view which shows the solar power generation system in the temporary building type | formula aquatic organism small fish culture tank of this invention. 図1の太陽光発電を示す側面図である。It is a side view which shows the solar power generation of FIG. 本発明のかまぼこ型ビニールハウス方形水棲生物小割養殖水槽での、太陽光発電方式を示す切断正面図である。It is a cutting | disconnection front view which shows the solar power generation system in the kamaboko type | mold greenhouse square water tank biotissue culture tank of this invention. 図3の太陽光発電を示す側面図である。It is a side view which shows the solar power generation of FIG. 図1又は図3の集落状養殖水槽6棟での太陽光発電電力の消費ー売電方法を示すフローシートである。Fig. 4 is a flow sheet showing a method of consuming solar power and selling power in six village-shaped aquaculture tanks of Fig. 1 or Fig. 3.

・・・・・・仮設建屋式方形水棲生物小割養殖水槽
2・・・・・・上記養殖水槽本体
3・・・・・・養殖室
4・・・・・・光透過性仮設屋根
5・・・・・・フィルム状太陽電池モジュール
6・・・・・・フィルム状太陽電池モジュール
S・・・・・・太陽光
31・・・・・・かまぼこ型ビニールハウス式方形水棲生物小割養殖水槽
32・・・・・・上記養殖水槽本体
33・・・・・・半円球骨材
35・・・・・・太陽電池モジュール
38・・・・・・通路
1 ... Temporary building type square aquatic organism small split aquaculture tank 2 .... Aquaculture tank body 3 .... Aquaculture room 4 .... Light transmissive temporary roof 5 ································································································· 31 Tank 32 ··· The aquaculture tank body 33 ··· Semispherical aggregate 35 · · · Solar cell module 38 · · · passage

Claims (6)

太陽光利用の架設建屋式方形水棲生物小割養殖水槽に於いて、当該水槽内の植物又は植物プランクトン等の光合成に必要な可視光線の投光率を、少なくとも槽内水面面積に維持すると共に、前記建屋内の光合成不要敷地部分を覆う屋根部分及び側壁部分を、可及的に広く太陽電池モジュールで被覆又は遮蔽して発電し、その一部を前記養殖水槽に再利用するか、或いは、其の残部又は全部を売電する事を特徴とする太陽光発電方式。      In a built-up type square aquatic biotipper aquaculture tank using sunlight, while maintaining the light projection rate required for photosynthesis of plants or phytoplankton in the tank at least in the water surface area in the tank, The roof part and the side wall part covering the site where photosynthesis is not required in the building are covered or shielded with a solar cell module as widely as possible to generate electric power, and a part thereof is reused in the aquaculture tank, or A solar power generation system characterized by selling the remainder or all of the power. 前記建屋式方形水棲生物小割養殖水槽が、農業用園芸施設である事を特徴とする請求項1記載の太陽光発電方式。      2. The solar power generation system according to claim 1, wherein the building-type square aquatic organism small split aquaculture tank is an agricultural horticultural facility. 前記園芸施設が、かまぼこ型のビニールハウスである事を特徴とする請求項2記載の太陽光発電方式。    The solar power generation system according to claim 2, wherein the horticultural facility is a kamaboko type greenhouse. 前記太陽電池モジュールが、フイルム状又は曲折自在の軽質太陽電池モジュールである事を特徴とする請求項1乃至3何れか一項に記載の太陽光発電方式。    The solar power generation system according to any one of claims 1 to 3, wherein the solar cell module is a light or bendable light solar cell module. 太陽電池モジュールの装着された前記水棲生物小割養殖水槽又は園芸施設の仮設建屋又は施設内面全部、又は、少なくとも太陽電池モジュールの装着された部分の内面に、遠赤外線マイナスイオン発生塗料を塗布した事を特徴とする請求項1乃至4何れか一項に記載の太陽光発電方式。    A far-infrared negative ion generating paint is applied to the entire aquatic organism aquaculture tank or the horticultural building or the inner surface of the facility, or at least the inner surface of the portion where the solar cell module is mounted. The solar power generation method according to any one of claims 1 to 4, wherein: 前記水棲生物小割養殖水槽又は園芸施設が、整然と集落状に敷設され、夫々の水槽又は施設で発電された電力を、集積管理して変電した後、その一部を夫々の水槽又は施設の運転エネルギーとして再使用するか使用せず、其の残部又は其の全部を、商業電力として売電する事を特徴とする請求項1乃至5何れか一項に記載の太陽光発電方式。    The aquatic organisms aquaculture tank or horticultural facility is laid out in an orderly manner, and after the electric power generated in each aquarium or facility is integrated and managed and transformed, a part of it is operated by each aquarium or facility. The solar power generation system according to any one of claims 1 to 5, wherein the solar power generation method is characterized in that it is reused as energy or not used, and the remainder or all of the energy is sold as commercial power.
JP2011080493A 2011-03-14 2011-03-14 Temporary building type aquatic life compartment cultivation aquarium by utilizing sunlight or photovoltaic generation method of agriculture horticultural facility Withdrawn JP2012195547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080493A JP2012195547A (en) 2011-03-14 2011-03-14 Temporary building type aquatic life compartment cultivation aquarium by utilizing sunlight or photovoltaic generation method of agriculture horticultural facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080493A JP2012195547A (en) 2011-03-14 2011-03-14 Temporary building type aquatic life compartment cultivation aquarium by utilizing sunlight or photovoltaic generation method of agriculture horticultural facility

Publications (1)

Publication Number Publication Date
JP2012195547A true JP2012195547A (en) 2012-10-11

Family

ID=47087134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080493A Withdrawn JP2012195547A (en) 2011-03-14 2011-03-14 Temporary building type aquatic life compartment cultivation aquarium by utilizing sunlight or photovoltaic generation method of agriculture horticultural facility

Country Status (1)

Country Link
JP (1) JP2012195547A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103039393A (en) * 2013-01-22 2013-04-17 李万红 Solar full-sealing aquaculture constant-temperature workshop
CN106960895A (en) * 2017-05-15 2017-07-18 江苏康德蛋业有限公司 It is a kind of for euphotic cover plate of livestock-raising equipment and preparation method thereof
CN107318535A (en) * 2017-06-21 2017-11-07 合肥助航生态农业科技有限公司 A kind of agricultural greenhouse energy efficient lighting system
CN108125436A (en) * 2017-12-21 2018-06-08 郑州国知网络技术有限公司 A kind of seat of gardens convenient for dust-proof and planting plants
CN110050616A (en) * 2019-05-05 2019-07-26 东北农业大学 A kind of novel ecological circulating energy-saving heliogreenhouse
JP2020527358A (en) * 2017-06-29 2020-09-10 シーオー2アイ リミティド Environmental control system
CN111990301A (en) * 2020-08-14 2020-11-27 程祥海 Plastic film cleaning and winding device for crab culture pond
CN113892368A (en) * 2021-10-08 2022-01-07 胡泽锋 Low-carbon agricultural ecological system and using method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103039393A (en) * 2013-01-22 2013-04-17 李万红 Solar full-sealing aquaculture constant-temperature workshop
CN106960895A (en) * 2017-05-15 2017-07-18 江苏康德蛋业有限公司 It is a kind of for euphotic cover plate of livestock-raising equipment and preparation method thereof
CN107318535A (en) * 2017-06-21 2017-11-07 合肥助航生态农业科技有限公司 A kind of agricultural greenhouse energy efficient lighting system
JP2020527358A (en) * 2017-06-29 2020-09-10 シーオー2アイ リミティド Environmental control system
CN108125436A (en) * 2017-12-21 2018-06-08 郑州国知网络技术有限公司 A kind of seat of gardens convenient for dust-proof and planting plants
CN110050616A (en) * 2019-05-05 2019-07-26 东北农业大学 A kind of novel ecological circulating energy-saving heliogreenhouse
CN111990301A (en) * 2020-08-14 2020-11-27 程祥海 Plastic film cleaning and winding device for crab culture pond
CN111990301B (en) * 2020-08-14 2022-11-08 江苏港城信息服务有限公司 Plastic film cleaning and winding device for crab culture pond
CN113892368A (en) * 2021-10-08 2022-01-07 胡泽锋 Low-carbon agricultural ecological system and using method
CN113892368B (en) * 2021-10-08 2022-11-25 胡泽锋 Low-carbon agricultural ecological system and using method

Similar Documents

Publication Publication Date Title
JP2012195547A (en) Temporary building type aquatic life compartment cultivation aquarium by utilizing sunlight or photovoltaic generation method of agriculture horticultural facility
Hassanien et al. The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production
Gorjian et al. On-farm applications of solar PV systems
CN107072154B (en) solar photovoltaic panel attached soil cultivation system
US8418401B2 (en) Photovoltaic greenhouse structure
JP5791215B1 (en) Elevated shelf hydroponic system with solar panels
WO2017101246A1 (en) Cultivation system and method for oyster mushrooms
KR20130030158A (en) Solar battery and vinyl greenhouse having planar heating element and led lighting using the same
KR102225203B1 (en) Smart plant cultivating system using solar photovoltaic power generation
TW201229367A (en) A building structure having semi-transparent photovoltaic panels
KR20200009861A (en) Vertical type farm building
Aroonsrimorakot et al. Application of solar energy technology in agricultural farming for sustainable development: a review article.
KR20100123130A (en) Sunshine shading structure with solar cell for growing shade plants
Erekath et al. Food for future: Exploring cutting-edge technology and practices in vertical farm
JP2014018082A (en) Solar farming
Campiotti et al. ENERGY EFFICIENCY AND PHOTOVOLTAIC SOLAR FOR GREENHOUSE AGRICULTURE.
Hemming et al. Development of electricity producing greenhouses-two case studies
TWI697645B (en) Mobile solar panel bracket
EP4208010A1 (en) Environmentally controlled food product with integrated photovoltaic power generation system
TWM584414U (en) Mobile solar panel support
Nenu et al. Energetic and economic considerations on thermal regime effectiveness in a greenhouse.
Tomar Structural Design & Energy Balance Conceptualization for PV Based Protective Environment Controlled Farming
Yadav et al. Revisiting the Recent Advancements in the Design and Performance of Solar Greenhouse Dryers
KR20150142815A (en) Soar Power Generation Roof
JP2013005766A (en) Plant factory for japan restoration

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603