JP2012195289A - Composition for lithium secondary battery electrode - Google Patents

Composition for lithium secondary battery electrode Download PDF

Info

Publication number
JP2012195289A
JP2012195289A JP2012042394A JP2012042394A JP2012195289A JP 2012195289 A JP2012195289 A JP 2012195289A JP 2012042394 A JP2012042394 A JP 2012042394A JP 2012042394 A JP2012042394 A JP 2012042394A JP 2012195289 A JP2012195289 A JP 2012195289A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
composition
polyvinyl acetal
acetal resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012042394A
Other languages
Japanese (ja)
Other versions
JP5827581B2 (en
Inventor
Kenichi Otsuki
健一 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012042394A priority Critical patent/JP5827581B2/en
Publication of JP2012195289A publication Critical patent/JP2012195289A/en
Application granted granted Critical
Publication of JP5827581B2 publication Critical patent/JP5827581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition for a lithium secondary battery electrode, excellent in dispersibility and adhesiveness of an active material, and capable of manufacturing a high-capacity lithium secondary battery even when an additive amount of a binder is small.SOLUTION: A composition for a lithium secondary battery electrode contains an active material, a binder and a solvent. The binder contains a polyvinyl acetal resin, and the polyvinyl acetal resin contains 33-55 mol% of a hydroxyl group.

Description

本発明は、活物質の分散性、接着性に優れ、バインダーの添加量が少ない場合でも高容量のリチウム二次電池を作製することが可能なリチウム二次電池電極用組成物に関する。 The present invention relates to a composition for a lithium secondary battery electrode that is excellent in dispersibility and adhesiveness of an active material, and can produce a high-capacity lithium secondary battery even when the amount of binder added is small.

近年、携帯型ビデオカメラや携帯型パソコン等の携帯型電子機器の普及に伴い、移動用電源としての二次電池の需要が急増している。また、このような二次電池に対する小型化、軽量化、高エネルギー密度化の要求は非常に高い。
このように、繰り返し充放電が可能な二次電池としては、従来、鉛電池、ニッケル−カドミウム電池等の水溶系電池が主流であるが、これらの水溶系電池は、充放電特性は優れているが、電池重量やエネルギー密度の点では、携帯型電子機器の移動用電源として充分満足できる特性を有しているとはいえない。
In recent years, with the widespread use of portable electronic devices such as portable video cameras and portable personal computers, the demand for secondary batteries as mobile power sources has increased rapidly. In addition, there are very high demands for such secondary batteries to be reduced in size, weight, and energy density.
Thus, as secondary batteries that can be repeatedly charged and discharged, conventionally, water-based batteries such as lead batteries and nickel-cadmium batteries have been mainstream, but these water-based batteries have excellent charge / discharge characteristics. However, in terms of battery weight and energy density, it cannot be said that the battery has sufficient characteristics as a power source for moving portable electronic devices.

そこで、二次電池として、リチウム又はリチウム合金を負極電極に用いたリチウム二次電池の研究開発が盛んに行われている。このリチウム二次電池は、高エネルギー密度を有し、自己放電も少なく、軽量であるという優れた特徴を有している。
リチウム二次電池の電極は、通常、活物質とバインダーを溶媒と共に混練し、活物質を分散させてスラリーとした後、このスラリーをドクターブレード法等によって集電体上に塗布し乾燥して薄膜化することにより形成されている。
Therefore, research and development of lithium secondary batteries using lithium or a lithium alloy as a negative electrode as a secondary battery has been actively conducted. This lithium secondary battery has excellent characteristics such as high energy density, low self-discharge, and light weight.
An electrode of a lithium secondary battery is usually a thin film obtained by kneading an active material and a binder together with a solvent, dispersing the active material into a slurry, applying the slurry on a current collector by a doctor blade method or the like, and drying the slurry. It is formed by forming.

現在、特に、リチウム二次電池の電極(負極)用のバインダーとして最も広範に用いられているのが、ポリフッ化ビニリデン(PVDF)に代表されるフッ素系樹脂である。
しかしながら、フッ素系樹脂をバインダーとして用いた場合、可撓性を有する負極薄膜を作製可能な一方で、集電体と負極活物質の結着性が劣るため、電池製造工程時に負極活物質の一部又は全部が集電体から剥離、脱落する恐れがあった。また、電池の充放電が行われる際、負極活物質内ではリチウムイオンの挿入、放出が繰り返され、それに伴い、集電体から負極活物質の剥離、脱落の問題が起こり得るという問題もあった。
このような問題を解決するため、バインダーを過剰に添加することも試みられているが、それに伴って、負極活物質の添加量が相対的に低下し、電池の容量が低下するという問題が新たに生じていた。
Currently, in particular, fluorine-based resins represented by polyvinylidene fluoride (PVDF) are most widely used as binders for electrodes (negative electrodes) of lithium secondary batteries.
However, when a fluororesin is used as a binder, a flexible negative electrode thin film can be produced, but the binding property between the current collector and the negative electrode active material is inferior. There was a risk that some or all of the part would peel off or fall off from the current collector. In addition, when the battery is charged / discharged, lithium ions are repeatedly inserted and released in the negative electrode active material, and there is a problem that the negative electrode active material may be peeled off or dropped off from the current collector. .
In order to solve such a problem, an attempt has been made to add an excessive amount of a binder. However, along with this, the amount of the negative electrode active material added is relatively reduced, and the problem that the battery capacity is reduced is newly introduced. Had occurred.

これに対して、特許文献1には、正極、負極に使用するバインダーとして、電解液に不溶なポリマーと、電解液に可溶なポリマーとの混合物を用いる技術が開示されている。
しかしながら、このような技術では、電解液に可溶なポリマーを用いることによって、バインダーの電解液への流出が起こり、結局、集電体から負極活物質の剥離、脱落を抑制することはできなかった。
On the other hand, Patent Document 1 discloses a technique using a mixture of a polymer insoluble in an electrolytic solution and a polymer soluble in the electrolytic solution as a binder used for a positive electrode and a negative electrode.
However, in such a technique, by using a polymer that is soluble in the electrolytic solution, the binder flows out to the electrolytic solution, and eventually, peeling and dropping of the negative electrode active material from the current collector cannot be suppressed. It was.

特開平10−214629号公報JP-A-10-214629

本発明は、活物質の分散性、接着性に優れ、バインダーの添加量が少ない場合でも高容量のリチウム二次電池を作製することが可能なリチウム二次電池電極用組成物を提供することを目的とする。 The present invention provides a composition for a lithium secondary battery electrode that is excellent in dispersibility and adhesiveness of an active material and capable of producing a high-capacity lithium secondary battery even when the amount of binder added is small. Objective.

本発明は、活物質、バインダー及び溶媒を含有するリチウム二次電池電極用組成物であって、前記バインダーは、ポリビニルアセタール樹脂を含有し、前記ポリビニルアセタール樹脂は、水酸基量が33〜55モル%であるリチウム二次電池電極用組成物である。
以下に本発明を詳述する。
The present invention is a composition for a lithium secondary battery electrode containing an active material, a binder, and a solvent, wherein the binder contains a polyvinyl acetal resin, and the polyvinyl acetal resin has a hydroxyl group content of 33 to 55 mol%. It is a composition for lithium secondary battery electrodes.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、リチウム二次電池電極形成用のバインダーとして、ポリビニルアセタール樹脂を用い、かつ、該ポリビニルアセタール樹脂の水酸基量を所定の範囲内とすることで、活物質の分散性、接着性に優れ、バインダーの添加量が少ない場合でも高容量のリチウム二次電池を作製できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have used a polyvinyl acetal resin as a binder for forming a lithium secondary battery electrode, and the amount of hydroxyl group of the polyvinyl acetal resin is within a predetermined range. The present inventors have found that a high-capacity lithium secondary battery can be produced even in the case where the dispersibility and adhesiveness are excellent and the amount of the binder added is small, and the present invention has been completed.

本発明のリチウム二次電池電極用組成物は、活物質を有する。
本発明のリチウム二次電池電極用組成物は、正極、負極のいずれの電極に使用してもよく、また、正極および負極の両方に使用してもよい。従って、活物質としては、正極活物質、負極活物質がある。
The composition for a lithium secondary battery electrode of the present invention has an active material.
The composition for a lithium secondary battery electrode of the present invention may be used for either a positive electrode or a negative electrode, or may be used for both a positive electrode and a negative electrode. Accordingly, the active material includes a positive electrode active material and a negative electrode active material.

上記正極活物質としては、例えば、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウムマンガン酸化物等のリチウム含有複合金属酸化物が挙げられる。具体的には例えば、LiNiO、LiCoO、LiMn等が挙げられる。
なお、これらは単独で用いてもよく、2種以上を併用してもよい。
また、上記正極活物質には、必要に応じて、鱗片状黒鉛、カーボンブラック等の導電助剤を添加してもよい。
Examples of the positive electrode active material include lithium-containing composite metal oxides such as lithium nickel oxide, lithium cobalt oxide, and lithium manganese oxide. Specifically, for example, LiNiO 2, LiCoO 2, LiMn 2 O 4 and the like.
In addition, these may be used independently and may use 2 or more types together.
Moreover, you may add conductive support agents, such as flake graphite and carbon black, to the said positive electrode active material as needed.

上記負極活物質としては、例えば、従来からリチウム二次電池の負極活物質として用いられている材料を用いることができ、例えば、天然グラファイト、人造グラファイト、アモルファス炭素、カーボンブラック、または、これらの成分に異種元素を添加したもの等が挙げられる。
また、上記負極活物質には、必要に応じて、鱗片状黒鉛等の導電助剤を添加してもよい。
As said negative electrode active material, the material conventionally used as a negative electrode active material of a lithium secondary battery can be used, for example, natural graphite, artificial graphite, amorphous carbon, carbon black, or these components And the like in which different elements are added.
Moreover, you may add conductive support agents, such as flake graphite, to the said negative electrode active material as needed.

本発明のリチウム二次電池電極用組成物は、ポリビニルアセタール樹脂を含有する。本発明では、バインダー(結着剤)としてポリビニルアセタール樹脂を用いることで、ポリビニルアセタール樹脂の水酸基と正極活物質の酸素原子間に引力的相互作用が働き、正極活物質をポリビニルアセタール樹脂が取り囲む構造をとる。また、同一分子内の別の水酸基が導電助剤とも引力的相互作用を及ぼし、活物質、導電助剤間距離をある一定範囲にとどめることが出来る。このように活物質と導電助剤を程よい距離に特徴的な構造をとることで、活物質の分散性が大幅に改善される。また、PVDF等の樹脂を用いる場合と比較して、集電体との接着性を向上させることができる。更に、溶剤溶解性に優れ、溶剤の選択の範囲が広がるという利点が得られる。 The composition for a lithium secondary battery electrode of the present invention contains a polyvinyl acetal resin. In the present invention, by using a polyvinyl acetal resin as a binder (binder), an attractive interaction works between the hydroxyl group of the polyvinyl acetal resin and the oxygen atom of the positive electrode active material, and the positive electrode active material is surrounded by the polyvinyl acetal resin. Take. In addition, another hydroxyl group in the same molecule has an attractive interaction with the conductive additive, and the distance between the active material and the conductive additive can be kept within a certain range. Thus, the dispersibility of an active material is improved significantly by taking a characteristic structure with a moderate distance between an active material and a conductive additive. Moreover, compared with the case where resin, such as PVDF, is used, adhesiveness with a collector can be improved. Furthermore, there is an advantage that the solvent solubility is excellent and the range of solvent selection is widened.

上記ポリビニルアセタール樹脂の水酸基量の下限は33モル%、上限は55モル%である。上記水酸基量が33モル%未満であると、電解液に対する耐性が不充分となり、電極を電解液中に浸した際、樹脂成分が電解液中に溶出してしまうことがあり、55モル%を超えると、工業的に合成が困難であるばかりか、溶液粘度が高くなり、活物質を充分に分散させることが困難となる。
上記水酸基量の好ましい下限は35モル%であり、好ましい上限は50モル%である。
The minimum of the amount of hydroxyl groups of the said polyvinyl acetal resin is 33 mol%, and an upper limit is 55 mol%. When the amount of the hydroxyl group is less than 33 mol%, the resistance to the electrolytic solution becomes insufficient, and when the electrode is immersed in the electrolytic solution, the resin component may be eluted in the electrolytic solution. If it exceeds, not only is it difficult to synthesize industrially, but also the solution viscosity becomes high, and it becomes difficult to sufficiently disperse the active material.
The preferable lower limit of the amount of the hydroxyl group is 35 mol%, and the preferable upper limit is 50 mol%.

上記ポリビニルアセタール樹脂の重合度の好ましい下限は250、好ましい上限は4000である。上記重合度が250未満であると、工業的に入手が難しくなることがある。上記重合度が4000を超えると、溶液粘度が高くなり、活物質を充分に分散させることが困難となることがある。上記重合度のより好ましい下限は280、より好ましい上限は800である。 The minimum with a preferable polymerization degree of the said polyvinyl acetal resin is 250, and a preferable upper limit is 4000. If the degree of polymerization is less than 250, it may be difficult to obtain industrially. When the polymerization degree exceeds 4000, the solution viscosity becomes high and it may be difficult to sufficiently disperse the active material. The more preferable lower limit of the degree of polymerization is 280, and the more preferable upper limit is 800.

本発明では、特に上記ポリビニルアセタール樹脂の水酸基量が33モル%以上、42モル%未満である場合、重合度を500〜4000とすることが好ましく、上記ポリビニルアセタール樹脂の水酸基量が42モル%以上、55モル%以下である場合、重合度を250〜500とすることが好ましい。
上記ポリビニルアセタール樹脂の水酸基量を33モル%以上、42モル%未満である場合に、重合度を500未満とすると、電解液に対する耐性が不充分となり、電極を電解液中に浸した際、樹脂成分が電解液中に溶出してしまうことがある。
また、上記ポリビニルアセタール樹脂の水酸基量を42モル%以上、55モル%以下である場合に、重合度を500を超えるものとすると、溶液粘度が高くなり、活物質を充分に分散させることが困難となる。
In the present invention, particularly when the amount of hydroxyl groups in the polyvinyl acetal resin is 33 mol% or more and less than 42 mol%, the degree of polymerization is preferably 500 to 4000, and the amount of hydroxyl groups in the polyvinyl acetal resin is 42 mol% or more. When the content is 55 mol% or less, the degree of polymerization is preferably 250 to 500.
When the amount of hydroxyl groups in the polyvinyl acetal resin is 33 mol% or more and less than 42 mol%, if the degree of polymerization is less than 500, the resistance to the electrolytic solution is insufficient, and the resin is obtained when the electrode is immersed in the electrolytic solution. Components may elute into the electrolyte.
Moreover, when the amount of hydroxyl groups of the polyvinyl acetal resin is 42 mol% or more and 55 mol% or less, if the polymerization degree exceeds 500, the solution viscosity becomes high and it is difficult to sufficiently disperse the active material. It becomes.

上記ポリビニルアセタール樹脂は、アセタール化度が40〜65モル%であることが好ましい。上記アセタール化度が40モル%未満であると、溶媒への溶解性が低下するため組成物への使用が困難となる。上記アセタール化度が65モル%を超えると、電解液に対する耐性が不充分となり、電極を電解液中に浸漬した際、樹脂成分が電解液中に溶出してしまうことがある。より好ましくは45〜60モル%である。
なお、本明細書において、アセタール化度とは、ポリビニルアルコールの水酸基数のうち、ブチルアルデヒドでアセタール化された水酸基数の割合のことであり、アセタール化度の計算方法としては、ポリビニルアセタール樹脂のアセタール基が2個の水酸基からアセタール化されて形成されていることから、アセタール化された2個の水酸基を数える方法を採用してアセタール化度のモル%を算出する。
The polyvinyl acetal resin preferably has an acetalization degree of 40 to 65 mol%. When the degree of acetalization is less than 40 mol%, the solubility in a solvent is lowered, so that it is difficult to use the composition. When the degree of acetalization exceeds 65 mol%, the resistance to the electrolytic solution becomes insufficient, and the resin component may be eluted in the electrolytic solution when the electrode is immersed in the electrolytic solution. More preferably, it is 45-60 mol%.
In the present specification, the degree of acetalization is the ratio of the number of hydroxyl groups acetalized with butyraldehyde out of the number of hydroxyl groups of polyvinyl alcohol. Since the acetal group is formed by acetalization from two hydroxyl groups, a method of counting the two acetal hydroxyl groups is employed to calculate the mol% of the degree of acetalization.

上記ポリビニルアセタール樹脂は、アセトアルデヒドでアセタール化された部分とブチルアルデヒドでアセタール化された部分との割合が0/100〜50/50であることが好ましい。これにより、ポリビニルアセタール樹脂が柔軟になり、集電体への接着力が良好になる。より好ましくは、アセトアルデヒドでアセタール化された部分とブチルアルデヒドでアセタール化された部分の割合が0/100〜20/80である。 In the polyvinyl acetal resin, the ratio of the portion acetalized with acetaldehyde and the portion acetalized with butyraldehyde is preferably 0/100 to 50/50. Thereby, a polyvinyl acetal resin becomes flexible and the adhesive force to a collector becomes favorable. More preferably, the ratio of the portion acetalized with acetaldehyde and the portion acetalized with butyraldehyde is 0/100 to 20/80.

上記ポリビニルアセタール樹脂のアセチル基量の好ましい下限は1モル%、好ましい上限は20モル%である。上記アセチル基量が1モル%未満であると、樹脂の柔軟性が不足し、集電対への接着力が不充分となり、上記アセチル基量が20モル%を超えると、電解液への耐性が著しく低下し、電解液へ溶出し短絡する原因となる。上記アセチル基量のより好ましい下限は3モル%、より好ましい上限は10モル%である。 The minimum with the preferable amount of acetyl groups of the said polyvinyl acetal resin is 1 mol%, and a preferable upper limit is 20 mol%. When the amount of the acetyl group is less than 1 mol%, the flexibility of the resin is insufficient, and the adhesive force to the current collector becomes insufficient, and when the amount of the acetyl group exceeds 20 mol%, the resistance to the electrolytic solution is increased. Significantly decreases, and elution into the electrolyte causes a short circuit. The more preferable lower limit of the acetyl group amount is 3 mol%, and the more preferable upper limit is 10 mol%.

上記ポリビニルアセタール樹脂は、アニオン性基を有することが好ましい。
上記アニオン性基を有することで、ポリビニルアセタール樹脂が活物質の表面に付着しやすくなり、活物質の分散性を高めることができる。
The polyvinyl acetal resin preferably has an anionic group.
By having the anionic group, the polyvinyl acetal resin easily adheres to the surface of the active material, and the dispersibility of the active material can be improved.

本発明のリチウム二次電池電極用組成物中の上記ポリビニルアセタール樹脂の含有量は特に限定されないが、活物質100重量部に対して、好ましい下限は0.5重量部、好ましい上限は12重量部である。上記ポリビニルアセタール樹脂の含有量が0.5重量部未満であると、集電体への接着力が不足してしまうことがあり、12重量部を超えると、リチウム二次電池の放電容量が低下してしまうことがある。より好ましくは、2〜5重量部である。 Although content of the said polyvinyl acetal resin in the composition for lithium secondary battery electrodes of this invention is not specifically limited, A preferable minimum is 0.5 weight part with respect to 100 weight part of active materials, A preferable upper limit is 12 weight part. It is. When the content of the polyvinyl acetal resin is less than 0.5 parts by weight, the adhesive force to the current collector may be insufficient. When the content exceeds 12 parts by weight, the discharge capacity of the lithium secondary battery is reduced. May end up. More preferably, it is 2 to 5 parts by weight.

また、上記活物質の酸素原子数に対して、ポリビニルアセタール樹脂の水酸基数が0.1〜10%となることが好ましい。上記ポリビニルアセタール樹脂の水酸基量が活物質の酸素原子数の0.1%未満であると、活物質への吸着力が不足し、充分な分散性が得られないことがあり、10%を超えると、リチウム二次電池の放電容量が低下してしまうことがある。より好ましくは1〜3%である。
なお、上記活物質の酸素原子数に対するポリビニルアセタール樹脂の水酸基数は、ポリビニルアセタール樹脂の計算分子量、ポリビニルアセタール樹脂重量、重合度及び水酸基量からポリビニルアセタール樹脂の水酸基の個数を算出した後、[(ポリビニルアセタール樹脂の水酸基の個数/活物質の酸素原子数)×100]を計算することによって求めることができる。
The number of hydroxyl groups of the polyvinyl acetal resin is preferably 0.1 to 10% with respect to the number of oxygen atoms of the active material. If the amount of hydroxyl groups in the polyvinyl acetal resin is less than 0.1% of the number of oxygen atoms in the active material, the adsorptive power to the active material may be insufficient, and sufficient dispersibility may not be obtained. As a result, the discharge capacity of the lithium secondary battery may be reduced. More preferably, it is 1 to 3%.
The number of hydroxyl groups of the polyvinyl acetal resin relative to the number of oxygen atoms of the active material is calculated by calculating the number of hydroxyl groups of the polyvinyl acetal resin from the calculated molecular weight of the polyvinyl acetal resin, the weight of the polyvinyl acetal resin, the degree of polymerization, and the amount of hydroxyl groups. The number of hydroxyl groups in the polyvinyl acetal resin / the number of oxygen atoms in the active material) × 100] can be calculated.

上記ポリビニルアセタール樹脂は、ポリビニルアルコールをアルデヒドでアセタール化してなるものである。 The polyvinyl acetal resin is obtained by acetalizing polyvinyl alcohol with an aldehyde.

上記ポリビニルアルコールは、例えば、ビニルエステルとエチレンの共重合体をケン化することにより得ることができる。上記ビニルエステルとしては、例えば、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル等が挙げられる。なかでも、経済性の観点から酢酸ビニルが好適である。 The polyvinyl alcohol can be obtained, for example, by saponifying a copolymer of vinyl ester and ethylene. Examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate and the like. Of these, vinyl acetate is preferred from the viewpoint of economy.

上記ポリビニルアルコールは、本発明の効果を損なわない範囲で、エチレン性不飽和単量体を共重合したものであってもよい。上記エチレン性不飽和単量体としては特に限定されず、例えば、アクリル酸、メタクリル酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸、アクリロニトリルメタクリロニトリル、アクリルアミド、メタクリルアミド、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸、及びそのナトリウム塩、エチルビニルエーテル、ブチルビニルエーテル、N−ビニルピロリドン、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム等が挙げられる。また、チオール酢酸、メルカプトプロピオン酸等のチオール化合物の存在下で、酢酸ビニル等のビニルエステル系単量体とエチレンを共重合し、それをケン化することによって得られる末端変性ポリビニルアルコールも用いることができる。 The polyvinyl alcohol may be a copolymer of an ethylenically unsaturated monomer as long as the effects of the present invention are not impaired. The ethylenically unsaturated monomer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, acrylonitrile methacrylonitrile, acrylamide, and methacrylamide. , Trimethyl- (3-acrylamido-3-dimethylpropyl) -ammonium chloride, acrylamido-2-methylpropanesulfonic acid and its sodium salt, ethyl vinyl ether, butyl vinyl ether, N-vinyl pyrrolidone, vinyl chloride, vinyl bromide, fluorine Vinyl chloride, vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, sodium vinyl sulfonate, sodium allyl sulfonate and the like. Also use terminal-modified polyvinyl alcohol obtained by copolymerizing vinyl ester monomer such as vinyl acetate with ethylene in the presence of thiol compounds such as thiol acetic acid and mercaptopropionic acid, and saponifying it. Can do.

上記ポリビニルアルコールは、上記ビニルエステルとα−オレフィンとを共重合した共重合体をケン化したものであってもよい。また、更に上記エチレン性不飽和単量体を共重合させ、エチレン性不飽和単量体に由来する成分を含有するポリビニルアルコールとしてもよい。また、チオール酢酸、メルカプトプロピオン酸等のチオール化合物の存在下で、酢酸ビニル等のビニルエステル系単量体とα−オレフィンを共重合し、それをケン化することによって得られる末端ポリビニルアルコールも用いることができる。上記α−オレフィンとしては特に限定されず、例えば、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、へキシレン、シクロヘキシレン、シクロヘキシルエチレン、シクロヘキシルプロピレン等が挙げられる。 The polyvinyl alcohol may be a saponified copolymer obtained by copolymerizing the vinyl ester and an α-olefin. Furthermore, it is good also as polyvinyl alcohol which copolymerizes the said ethylenically unsaturated monomer and contains the component originating in an ethylenically unsaturated monomer. Also used is a terminal polyvinyl alcohol obtained by copolymerizing a vinyl ester monomer such as vinyl acetate with an α-olefin in the presence of a thiol compound such as thiol acetic acid or mercaptopropionic acid, and saponifying it. be able to. The α-olefin is not particularly limited, and examples thereof include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, hexylene, cyclohexylene, cyclohexylethylene, and cyclohexylpropylene.

本発明のリチウム二次電池電極用組成物は、上記ポリビニルアセタール樹脂に加えて、ポリフッ化ビニリデン樹脂を含有していてもよい。
上記ポリフッ化ビニリデン樹脂を併用することで、電解液への耐性が更に向上し、放電容量を向上させることが出来る。
In addition to the said polyvinyl acetal resin, the composition for lithium secondary battery electrodes of this invention may contain the polyvinylidene fluoride resin.
By using the polyvinylidene fluoride resin in combination, the resistance to the electrolytic solution can be further improved, and the discharge capacity can be improved.

上記ポリフッ化ビニリデン樹脂を含有する場合、上記ポリビニルアセタール樹脂とポリフッ化ビニリデン樹脂との重量比は、0.5:9.5〜7:3であることが好ましい。
このような範囲内とすることで、ポリフッ化ビニリデンに著しく不足している集電体への接着力を有しながら、電解液への耐性を付与することが出来る。
より好ましい上記ポリビニルアセタール樹脂とポリフッ化ビニリデン樹脂との重量比は1:9〜4:6である。
When the polyvinylidene fluoride resin is contained, the weight ratio of the polyvinyl acetal resin to the polyvinylidene fluoride resin is preferably 0.5: 9.5 to 7: 3.
By setting it within such a range, it is possible to impart resistance to the electrolytic solution while having adhesive force to the current collector that is significantly insufficient for polyvinylidene fluoride.
A more preferred weight ratio of the polyvinyl acetal resin to the polyvinylidene fluoride resin is 1: 9 to 4: 6.

本発明のリチウム二次電池電極用組成物中のバインダー全体の含有量は特に限定されないが、活物質100重量部に対して、好ましい下限は1重量部、好ましい上限は20重量部である。上記バインダーの含有量が1重量部未満であると、集電体への接着力が不足してしまうことがあり、20重量部を超えると、リチウム二次電池の放電容量が低下してしまうことがある。 Although content of the whole binder in the composition for lithium secondary battery electrodes of this invention is not specifically limited, A preferable minimum is 1 weight part and a preferable upper limit is 20 weight part with respect to 100 weight part of active materials. If the content of the binder is less than 1 part by weight, the adhesive force to the current collector may be insufficient, and if it exceeds 20 parts by weight, the discharge capacity of the lithium secondary battery may be reduced. There is.

本発明のリチウム二次電池電極用組成物は、溶媒を含有する。
上記溶媒としては、上記ポリビニルアセタール樹脂を溶解させることができるものであれば特に限定されず、例えば、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、トルエン、イソプロピルアルコール、N−メチルピロリドン、エタノール、蒸留水等が挙げられる。上記溶媒は単独で用いてもよく、2種以上を併用してもよい。
The composition for a lithium secondary battery electrode of the present invention contains a solvent.
The solvent is not particularly limited as long as it can dissolve the polyvinyl acetal resin. For example, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, toluene, isopropyl alcohol, N-methylpyrrolidone, ethanol, distilled water. Etc. The said solvent may be used independently and may use 2 or more types together.

本発明のリチウム二次電池電極用組成物には、上述した活物質、ポリビニルアセタール樹脂、溶媒以外にも、必要に応じて、難燃助剤、増粘剤、消泡剤、レベリング剤、密着性付与剤のような添加剤を添加してもよい。 In addition to the above-described active material, polyvinyl acetal resin, and solvent, the composition for a lithium secondary battery electrode of the present invention includes a flame retardant aid, a thickener, an antifoaming agent, a leveling agent, and an adhesion as necessary. An additive such as a property-imparting agent may be added.

本発明のリチウム二次電池電極用組成物を製造する方法としては、特に限定されず、例えば、上記活物質、ポリビニルアセタール樹脂、溶媒及び必要に応じて添加する各種添加剤をボールミル、ブレンダーミル、3本ロール等の各種混合機を用いて混合する方法が挙げられる。 The method for producing the composition for a lithium secondary battery electrode of the present invention is not particularly limited. For example, the active material, the polyvinyl acetal resin, the solvent, and various additives to be added as necessary may be a ball mill, a blender mill, The method of mixing using various mixers, such as a 3 roll, is mentioned.

本発明のリチウム二次電池電極用組成物は、例えば、導電性基体上に塗布し、乾燥する工程を経ることで、電極が形成される。
本発明のリチウム二次電池電極用組成物を用いてなるリチウム二次電池もまた本発明の一つである。
本発明のリチウム二次電池電極用組成物を導電性基体に塗布する際の塗布方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーターなどをはじめ、各種の塗布方法を採用することができる。
The electrode for lithium secondary battery electrode composition of the present invention is formed, for example, through a process of coating on a conductive substrate and drying.
A lithium secondary battery using the composition for a lithium secondary battery electrode of the present invention is also one aspect of the present invention.
As a coating method when the composition for a lithium secondary battery electrode of the present invention is applied to a conductive substrate, various coating methods such as an extrusion coater, a reverse roller, a doctor blade, an applicator and the like can be adopted. it can.

本発明によれば、活物質の分散性、接着性に優れ、バインダーの添加量が少ない場合でも高容量のリチウム二次電池を作製することが可能なリチウム二次電池電極用組成物を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the composition for lithium secondary battery electrodes which is excellent in the dispersibility and adhesiveness of an active material, and can produce a high capacity | capacitance lithium secondary battery even when there is little addition amount of a binder can be provided. .

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(ポリビニルアセタール樹脂(A)〜(H)の合成)
重合度320、ケン化度99モル%のポリビニルアルコール350重量部を純水3000重量部に加え、90℃の温度で約2時間攪拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸230重量部を添加した後、液温を1℃に下げてn−ブチルアルデヒド155重量部を添加しこの温度を保持してアセタール化反応を行い、反応生成物を析出させた。その後、液温を30℃、3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、ポリビニルアセタール樹脂(A)の白色粉末を得た。得られたポリビニルアセタール樹脂をDMSO−d(ジメチルスルホキサシド)に溶解し、13C−NMR(核磁気共鳴スペクトル)を用いてブチラール化度(アセタール化度)、水酸基量及びアセチル基量を測定したところ、ブチラール化度は49モル%、水酸基量は50モル%、アセチル基量は1モル%であった。
また、表1に示す条件とした以外は、ポリビニルアセタール樹脂(A)と同様にして、ポリビニルアセタール樹脂(B)〜(H)を合成した。
(Synthesis of polyvinyl acetal resins (A) to (H))
350 parts by weight of polyvinyl alcohol having a polymerization degree of 320 and a saponification degree of 99 mol% was added to 3000 parts by weight of pure water, and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. The solution was cooled to 40 ° C., and 230 parts by weight of hydrochloric acid having a concentration of 35% by weight was added thereto. Then, the liquid temperature was lowered to 1 ° C. and 155 parts by weight of n-butyraldehyde was added to maintain the temperature, and the acetal was maintained. The reaction product was precipitated by the reaction. Thereafter, the liquid temperature was maintained at 30 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a white powder of the polyvinyl acetal resin (A). The obtained polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethylsulfoxaside), and the degree of butyralization (degree of acetalization), the amount of hydroxyl groups and the amount of acetyl groups were determined using 13 C-NMR (nuclear magnetic resonance spectrum). When measured, the degree of butyralization was 49 mol%, the amount of hydroxyl groups was 50 mol%, and the amount of acetyl groups was 1 mol%.
Further, polyvinyl acetal resins (B) to (H) were synthesized in the same manner as the polyvinyl acetal resin (A) except that the conditions shown in Table 1 were used.

Figure 2012195289
Figure 2012195289

(実施例1)
(リチウム二次電池正極用組成物の調製)
バインダーとして得られたポリビニルアセタール樹脂(A)2重量部に、N−メチルピロリドン95重量部を加えて、ポリビニルアセタール樹脂の5重量%溶液を調製した。この溶液100重量部に対して、正極活物質としてマンガン酸リチウム(日本化学工業社製、セルシードC−5H)50重量部、導電助剤としてアセチレンブラック(電気化学工業社製、デンカブラック)を4重量部加えて混合し、リチウム二次電池正極用組成物を得た。
Example 1
(Preparation of composition for positive electrode of lithium secondary battery)
95 parts by weight of N-methylpyrrolidone was added to 2 parts by weight of the polyvinyl acetal resin (A) obtained as a binder to prepare a 5% by weight solution of the polyvinyl acetal resin. For 100 parts by weight of this solution, 50 parts by weight of lithium manganate (manufactured by Nippon Chemical Industry Co., Ltd., Cellseed C-5H) as the positive electrode active material and 4 acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka Black) as the conductive assistant A weight part was added and mixed, and the composition for positive electrodes of a lithium secondary battery was obtained.

(実施例2〜7)
表2に示すポリビニルアセタール樹脂を用い、N−メチルピロリドンの添加量を変更した以外は実施例1と同様にして、リチウム二次電池正極用組成物を得た。
(Examples 2 to 7)
A composition for a positive electrode of a lithium secondary battery was obtained in the same manner as in Example 1 except that the polyvinyl acetal resin shown in Table 2 was used and the addition amount of N-methylpyrrolidone was changed.

(実施例8)
表2に示すポリビニルアセタール樹脂、ポリフッ化ビニリデン(PVDF、クレハ社製、#1100)の混合物をバインダー樹脂として用い、N−メチルピロリドンの添加量を変更した以外は実施例1と同様にして、リチウム二次電池正極用組成物を得た。
(Example 8)
A mixture of polyvinyl acetal resin and polyvinylidene fluoride (PVDF, manufactured by Kureha, # 1100) shown in Table 2 was used as a binder resin, and the amount of N-methylpyrrolidone was changed. A composition for a secondary battery positive electrode was obtained.

(実施例9)
(リチウム二次電池負極用組成物の調製)
バインダーとして得られたポリビニルアセタール樹脂(A)9重量部に、N−メチルピロリドン91重量部を加えて、ポリビニルアセタール樹脂の4重量%溶液を調製した。この溶液100重量部に対して、負極活物質として球状天然黒鉛(日本黒鉛工業社製、CGB−10)43重量部、導電助剤としてアセチレンブラック(電気化学工業社製、デンカブラック)を4重量部加えて混合し、リチウム二次電池負極用組成物を得た。
Example 9
(Preparation of composition for negative electrode of lithium secondary battery)
91 parts by weight of N-methylpyrrolidone was added to 9 parts by weight of the polyvinyl acetal resin (A) obtained as a binder to prepare a 4% by weight solution of the polyvinyl acetal resin. With respect to 100 parts by weight of this solution, 43 parts by weight of spherical natural graphite (Nippon Graphite Industries Co., Ltd., CGB-10) as a negative electrode active material, and 4 weights of acetylene black (Denka Black, Denki Kagaku Kogyo Co., Ltd.) as a conductive assistant. Part of the mixture was added and mixed to obtain a lithium secondary battery negative electrode composition.

(実施例10〜13)
表2に示すポリビニルアセタール樹脂を用い、N−メチルピロリドンの添加量を変更した以外は実施例9と同様にして、リチウム二次電池負極用組成物を得た。
(Examples 10 to 13)
A composition for a lithium secondary battery negative electrode was obtained in the same manner as in Example 9 except that the polyvinyl acetal resin shown in Table 2 was used and the addition amount of N-methylpyrrolidone was changed.

(実施例14)
表2に示すポリビニルアセタール樹脂、ポリフッ化ビニリデン(PVDF、クレハ社製、#1100)の混合物をバインダー樹脂として用い、N−メチルピロリドンの添加量を変更した以外は実施例9と同様にして、リチウム二次電池負極用組成物を得た。
(Example 14)
A mixture of polyvinyl acetal resin and polyvinylidene fluoride (PVDF, manufactured by Kureha, # 1100) shown in Table 2 was used as a binder resin, and the amount of N-methylpyrrolidone was changed. A composition for a secondary battery negative electrode was obtained.

(比較例1〜3)
表2に示すポリビニルアセタール樹脂を用い、N−メチルピロリドンの添加量を変更した以外は実施例1と同様にして、リチウム二次電池正極用組成物を得た。
(Comparative Examples 1-3)
A composition for a positive electrode of a lithium secondary battery was obtained in the same manner as in Example 1 except that the polyvinyl acetal resin shown in Table 2 was used and the addition amount of N-methylpyrrolidone was changed.

(比較例4)
ポリビニルアセタール樹脂(A)に代えて、ポリフッ化ビニリデン(PVDF、クレハ社製、#1100)を用い、N−メチルピロリドンの添加量を変更した以外は実施例1と同様にして、リチウム二次電池正極用組成物を得た。
(Comparative Example 4)
A lithium secondary battery was obtained in the same manner as in Example 1 except that polyvinylidene fluoride (PVDF, manufactured by Kureha, # 1100) was used instead of the polyvinyl acetal resin (A), and the amount of N-methylpyrrolidone was changed. A positive electrode composition was obtained.

(比較例5〜7)
表2に示すポリビニルアセタール樹脂を用い、N−メチルピロリドンの添加量を変更した以外は実施例9と同様にして、リチウム二次電池負極用組成物を得た。
(Comparative Examples 5-7)
A composition for a lithium secondary battery negative electrode was obtained in the same manner as in Example 9 except that the polyvinyl acetal resin shown in Table 2 was used and the addition amount of N-methylpyrrolidone was changed.

(比較例8)
ポリビニルアセタール樹脂(A)に代えて、ポリフッ化ビニリデン(PVDF、クレハ社製、#1100)を用い、N−メチルピロリドンの添加量を変更した以外は実施例9と同様にして、リチウム二次電池負極用組成物を得た。
(Comparative Example 8)
A lithium secondary battery was obtained in the same manner as in Example 9 except that polyvinylidene fluoride (PVDF, manufactured by Kureha Corporation, # 1100) was used instead of the polyvinyl acetal resin (A), and the addition amount of N-methylpyrrolidone was changed. A negative electrode composition was obtained.

<評価>
実施例及び比較例で得られたリチウム二次電池電極用組成物(正極用、負極用)について以下の評価を行った。結果を表2に示した。
<Evaluation>
The following evaluation was performed about the composition for lithium secondary battery electrodes (for positive electrodes and negative electrodes) obtained by the Example and the comparative example. The results are shown in Table 2.

(1)接着性
実施例1〜8、比較例1〜4で得られたリチウム二次電池電極用組成物については、アルミ箔に対する接着性を評価し、実施例9〜14、比較例5〜8で得られたリチウム二次電池電極用組成物については、銅箔に対する接着性を評価した。
(1) Adhesiveness About the compositions for lithium secondary battery electrodes obtained in Examples 1 to 8 and Comparative Examples 1 to 4, the adhesiveness to aluminum foil was evaluated, and Examples 9 to 14 and Comparative Examples 5 to 5 were evaluated. About the composition for lithium secondary battery electrodes obtained in 8, the adhesiveness with respect to copper foil was evaluated.

(1−1)実施例1〜8、比較例1〜4
アルミ箔(厚み20μm)の上に、乾燥後の膜厚が20μmとなるように電極用組成物を塗工、乾燥し、アルミ箔上に電極がシート状に形成された試験片を得た。
このサンプルを縦1cm、横2cmに切り出し、AUTOGRAPH(島津製作所社製、「AGS−J」)を用い、試験片を固定しながら電極シートを引き上げ、アルミ箔から完全に電極シートが剥離するまでに要する剥離力(N)を計測した。
(1-1) Examples 1-8, Comparative Examples 1-4
On the aluminum foil (thickness 20 μm), the electrode composition was applied and dried so that the film thickness after drying was 20 μm, to obtain a test piece in which the electrode was formed in a sheet shape on the aluminum foil.
This sample was cut into a length of 1 cm and a width of 2 cm, and the electrode sheet was pulled up while fixing the test piece using AUTOGRAPH (manufactured by Shimadzu Corporation, “AGS-J”) until the electrode sheet was completely peeled from the aluminum foil. The required peel force (N) was measured.

(1−2)実施例9〜14、比較例5〜8
上記(1−1)において、アルミ箔を銅箔(厚み20μm)に変更した以外は全く同じ方法にて剥離力を計測した。
(1-2) Examples 9 to 14 and Comparative Examples 5 to 8
In the above (1-1), the peel force was measured in exactly the same manner except that the aluminum foil was changed to a copper foil (thickness 20 μm).

(2)分散性
得られたリチウム二次電池電極用組成物10重量部とN−メチルピロリドン90重量部を混合、希釈した後、超音波分散機(エスエヌディ社製、「US−303」)にて10分間撹拌した。その後レーザー回折式粒度分布計(堀場製作所社製、LA−910)を用いて粒度分布測定を行い、平均分散径を測定した。
(2) Dispersibility After mixing and diluting 10 parts by weight of the obtained composition for a lithium secondary battery electrode and 90 parts by weight of N-methylpyrrolidone, an ultrasonic disperser (manufactured by SNDI, “US-303”) was used. And stirred for 10 minutes. Thereafter, the particle size distribution was measured using a laser diffraction particle size distribution meter (LA-910, manufactured by Horiba, Ltd.), and the average dispersion diameter was measured.

(3)溶媒溶解性
(電極シートの作製)
離型処理されたポリエチレンテレフタレート(PET)フィルム上に、乾燥後の膜厚が20μmとなるように実施例及び比較例で得られたリチウム二次電池電極用組成物を塗工、乾燥して電極シートを作製した。
その電極シートを2cm角に切り出し、電極シート試験片を作製した。
(3) Solvent solubility (production of electrode sheet)
On the polyethylene terephthalate (PET) film subjected to the release treatment, the lithium secondary battery electrode compositions obtained in Examples and Comparative Examples were applied and dried so that the film thickness after drying was 20 μm. A sheet was produced.
The electrode sheet was cut into a 2 cm square to prepare an electrode sheet test piece.

(溶出評価)
得られた試験片の重量を正確に計量し、シートに含まれる成分重量比から試験片に含まれる樹脂の重量を算出した。その後、試験片を袋状のメッシュに入れ、メッシュ袋と試験片の合計重量を正確に計測した。
次いで、試験片の入っているメッシュ袋を電解液であるジエチルカーボネートに浸し、室温にて1晩放置した。放置後メッシュ袋を取り出し、150℃、8時間の条件で乾燥させ、完全に溶剤を乾燥させた。
乾燥機から取り出した後、室温にて1時間放置し、重量を計測した。試験前後の重量変化から樹脂の溶出量を算出し、その溶出量とあらかじめ算出しておいた樹脂の重量の比から樹脂の溶出率を算出した。なお、溶出率の値が高いほど、電解液中へ樹脂が溶出しやすいことを意味する。
(Elution evaluation)
The weight of the obtained test piece was accurately measured, and the weight of the resin contained in the test piece was calculated from the component weight ratio contained in the sheet. Thereafter, the test piece was put in a bag-like mesh, and the total weight of the mesh bag and the test piece was accurately measured.
Next, the mesh bag containing the test piece was immersed in diethyl carbonate, which is an electrolytic solution, and left overnight at room temperature. After standing, the mesh bag was taken out and dried under conditions of 150 ° C. and 8 hours to completely dry the solvent.
After taking out from the dryer, it was left at room temperature for 1 hour and weighed. The elution amount of the resin was calculated from the weight change before and after the test, and the elution rate of the resin was calculated from the ratio between the elution amount and the resin weight calculated in advance. In addition, it means that resin is easy to elute in electrolyte solution, so that the value of elution rate is high.

(4)電池性能評価
(4−1)実施例1〜8、比較例1〜4
(a)コイン電池の作製
実施例1〜8、比較例1〜4で得られたリチウム二次電池正極用組成物をアルミ箔に塗布、乾燥し、厚さ0.2mmとし、これをφ12mmに打ち抜いて正極層を得た。
また、実施例9で得られたリチウム二次電池負極用組成物を銅箔に塗布、乾燥し、厚さ0.2mmとし、これをφ12mmに打ち抜いて負極層を得た。
電解液としてLiPF(1M)を含有するエチレンカーボネートとの混合溶媒を用い、該電解液を正極層に含浸させた後、この正極層を正極集電体上に置き、さらにその上に電解液を含浸させた厚さ25mmの多孔質PP膜(セパレータ)を置いた。
更に、この上に負極層となるリチウム金属板を置き、この上に絶縁パッキンで被覆された負極集電体を重ね合わせた。この積層体を、かしめ機により圧力を加え、密閉型のコイン電池を得た。
(4) Battery performance evaluation (4-1) Examples 1-8, Comparative Examples 1-4
(A) Preparation of coin battery The lithium secondary battery positive electrode compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were applied to an aluminum foil and dried to a thickness of 0.2 mm, which was adjusted to φ12 mm. A positive electrode layer was obtained by punching.
Moreover, the lithium secondary battery negative electrode composition obtained in Example 9 was applied to a copper foil and dried to a thickness of 0.2 mm, which was punched to φ12 mm to obtain a negative electrode layer.
A mixed solvent with ethylene carbonate containing LiPF 6 (1M) was used as the electrolytic solution, and after impregnating the electrolytic solution into the positive electrode layer, the positive electrode layer was placed on the positive electrode current collector, and further on the electrolytic solution A porous PP membrane (separator) having a thickness of 25 mm impregnated with was placed.
Further, a lithium metal plate serving as a negative electrode layer was placed thereon, and a negative electrode current collector covered with insulating packing was placed thereon. Pressure was applied to the laminate with a caulking machine to obtain a sealed coin battery.

(b)放電容量評価、及び、充放電サイクル評価
得られたコイン電池について、(宝泉社製、充放電試験試験装置)を用いて放電容量評価、及び、充放電サイクル評価を行った。
この放電容量評価、充放電サイクル評価は電圧範囲3.0〜4.5V、評価温度は20℃で行った。
(B) Discharge capacity evaluation and charge / discharge cycle evaluation The obtained coin battery was subjected to discharge capacity evaluation and charge / discharge cycle evaluation using (a charge / discharge test test device manufactured by Hosen Co., Ltd.).
This discharge capacity evaluation and charge / discharge cycle evaluation were performed at a voltage range of 3.0 to 4.5 V and an evaluation temperature of 20 ° C.

(4−2)実施例9〜14、比較例5〜8
実施例1で得られたリチウム二次電池正極用組成物をアルミ箔に塗布、乾燥し、厚さ0.2mmとし、これをφ12mmに打ち抜いて正極層を得た。
また、実施例9〜14、比較例5〜8で得られたリチウム二次電池負極用組成物を銅箔に塗布、乾燥し、厚さ0.2mmとし、これをφ12mmに打ち抜いて負極層を得た。
得られた正極層及び負極層を用いた以外は、(4−1)と同じ方法にて密閉型のコイン電池を得た後、放電容量評価、及び、充放電サイクル評価を行った。
(4-2) Examples 9 to 14 and Comparative Examples 5 to 8
The lithium secondary battery positive electrode composition obtained in Example 1 was applied to an aluminum foil and dried to a thickness of 0.2 mm, which was punched into φ12 mm to obtain a positive electrode layer.
Moreover, the lithium secondary battery negative electrode compositions obtained in Examples 9 to 14 and Comparative Examples 5 to 8 were applied to a copper foil and dried to a thickness of 0.2 mm, which was punched out to φ12 mm to form a negative electrode layer. Obtained.
Except for using the obtained positive electrode layer and negative electrode layer, after obtaining a sealed coin battery by the same method as (4-1), discharge capacity evaluation and charge / discharge cycle evaluation were performed.

Figure 2012195289
Figure 2012195289

本発明によれば、活物質の分散性、接着性に優れ、バインダーの添加量が少ない場合でも高容量のリチウム二次電池を作製することが可能なリチウム二次電池電極用組成物を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the composition for lithium secondary battery electrodes which is excellent in the dispersibility and adhesiveness of an active material, and can produce a high capacity | capacitance lithium secondary battery even when there is little addition amount of a binder can be provided. .

Claims (9)

活物質、バインダー及び溶媒を含有するリチウム二次電池電極用組成物であって、
前記バインダーは、ポリビニルアセタール樹脂を含有し、
前記ポリビニルアセタール樹脂は、水酸基量が33〜55モル%である
ことを特徴とするリチウム二次電池電極用組成物。
A composition for a lithium secondary battery electrode containing an active material, a binder and a solvent,
The binder contains a polyvinyl acetal resin,
The composition for a lithium secondary battery electrode, wherein the polyvinyl acetal resin has a hydroxyl group content of 33 to 55 mol%.
ポリビニルアセタール樹脂は、重合度が250〜4000であることを特徴する請求項1記載のリチウム二次電池電極用組成物。 The composition for a lithium secondary battery electrode according to claim 1, wherein the polyvinyl acetal resin has a polymerization degree of 250 to 4000. ポリビニルアセタール樹脂は、アニオン性基を有することを特徴とする請求項1又は2記載のリチウム二次電池電極用組成物。 The composition for a lithium secondary battery electrode according to claim 1 or 2, wherein the polyvinyl acetal resin has an anionic group. ポリビニルアセタール樹脂は、アセチル基を1〜20モル%有することを特徴とする請求項1、2又は3記載のリチウム二次電池電極用組成物。 The composition for lithium secondary battery electrodes according to claim 1, wherein the polyvinyl acetal resin has 1 to 20 mol% of acetyl groups. 活物質100重量部に対して、ポリビニルアセタール樹脂を0.5〜12重量部含有することを特徴とする請求項1、2、3又は4記載のリチウム二次電池電極用組成物。 5. The composition for a lithium secondary battery electrode according to claim 1, comprising 0.5 to 12 parts by weight of a polyvinyl acetal resin with respect to 100 parts by weight of the active material. 更に、バインダーとして、ポリフッ化ビニリデン樹脂を含有することを特徴とする請求項1、2、3、4又は5記載のリチウム二次電池電極用組成物。 Furthermore, the composition for lithium secondary battery electrodes of Claim 1, 2, 3, 4 or 5 characterized by containing a polyvinylidene fluoride resin as a binder. ポリビニルアセタール樹脂とポリフッ化ビニリデン樹脂との重量比が、0.5:9.5〜7:3であることを特徴とする請求項1、2、3、4、5又は6記載のリチウム二次電池電極用組成物。 The lithium secondary according to claim 1, 2, 3, 4, 5 or 6, wherein the weight ratio of the polyvinyl acetal resin to the polyvinylidene fluoride resin is 0.5: 9.5 to 7: 3. Battery electrode composition. 活物質100重量部に対して、バインダーを1〜20重量部含有することを特徴とする請求項1、2、3、4、5、6又は7記載のリチウム二次電池電極用組成物。 The composition for a lithium secondary battery electrode according to claim 1, wherein the binder is contained in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the active material. 請求項1、2、3、4、5、6、7又は8記載のリチウム二次電池電極用組成物を用いてなることを特徴とするリチウム二次電池。 A lithium secondary battery comprising the composition for a lithium secondary battery electrode according to claim 1, 2, 3, 4, 5, 6, 7 or 8.
JP2012042394A 2011-02-28 2012-02-28 Lithium secondary battery electrode composition Active JP5827581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042394A JP5827581B2 (en) 2011-02-28 2012-02-28 Lithium secondary battery electrode composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011042730 2011-02-28
JP2011042730 2011-02-28
JP2012042394A JP5827581B2 (en) 2011-02-28 2012-02-28 Lithium secondary battery electrode composition

Publications (2)

Publication Number Publication Date
JP2012195289A true JP2012195289A (en) 2012-10-11
JP5827581B2 JP5827581B2 (en) 2015-12-02

Family

ID=47086959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042394A Active JP5827581B2 (en) 2011-02-28 2012-02-28 Lithium secondary battery electrode composition

Country Status (1)

Country Link
JP (1) JP5827581B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143000A (en) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, electrode for secondary battery and secondary battery
JP2015088487A (en) * 2013-09-27 2015-05-07 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2015141883A (en) * 2014-01-30 2015-08-03 積水化学工業株式会社 Composition for lithium secondary battery electrode
WO2015146747A1 (en) * 2014-03-27 2015-10-01 積水化学工業株式会社 Binder for power storage device electrode
JP2015179631A (en) * 2014-03-19 2015-10-08 積水化学工業株式会社 Composition for lithium secondary battery electrodes
JP2015219964A (en) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 Positive electrode paste and method of manufacturing the same
CN105518914A (en) * 2013-09-06 2016-04-20 日本合成化学工业株式会社 Binder for lithium ion secondary battery electrode, lithium ion secondary battery electrode, production method for lithium ion secondary battery electrode, and lithium ion secondary battery
JP2016076485A (en) * 2014-10-08 2016-05-12 積水化学工業株式会社 Composition for lithium secondary battery electrode
WO2016152783A1 (en) * 2015-03-20 2016-09-29 積水化学工業株式会社 Composition for lithium secondary battery electrodes
JP2018060774A (en) * 2016-09-30 2018-04-12 積水化学工業株式会社 Composition for secondary battery electrode
JP6357603B1 (en) * 2017-03-28 2018-07-11 積水化学工業株式会社 Storage device electrode binder
WO2018180073A1 (en) * 2017-03-28 2018-10-04 積水化学工業株式会社 Binder for power storage device electrodes
JP2018160401A (en) * 2017-03-23 2018-10-11 積水化学工業株式会社 Binder for power storage device electrode
JP2018160400A (en) * 2017-03-23 2018-10-11 積水化学工業株式会社 Binder for power storage device electrodes
WO2019065869A1 (en) * 2017-09-28 2019-04-04 積水化学工業株式会社 Composition for secondary battery electrode
US10420113B2 (en) 2012-09-28 2019-09-17 Huawei Technologies Co., Ltd. Resource reconfiguration method, base station, and user equipment
WO2020066917A1 (en) * 2018-09-28 2020-04-02 積水化学工業株式会社 Composition for secondary battery electrode
JP2020087928A (en) * 2018-11-19 2020-06-04 積水化学工業株式会社 Separator protective film resin
US10777819B2 (en) 2016-04-01 2020-09-15 Sekisui Chemical Co., Ltd. Composition for lithium secondary battery electrodes
US10784513B2 (en) 2015-09-17 2020-09-22 Sekisui Chemical Co., Ltd. Binder for electrical storage device electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012243A (en) * 1996-06-26 1998-01-16 Hitachi Maxell Ltd Lithium secondary battery
JP2000048806A (en) * 1998-07-29 2000-02-18 Sekisui Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2006253091A (en) * 2005-03-14 2006-09-21 Sony Corp Battery
WO2009147989A1 (en) * 2008-06-02 2009-12-10 大日精化工業株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
WO2012036172A1 (en) * 2010-09-13 2012-03-22 保土谷化学工業株式会社 Carbon microfiber dispersion liquid
JP2013171816A (en) * 2012-02-23 2013-09-02 Toyota Motor Corp Method for manufacturing positive electrode plate for secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012243A (en) * 1996-06-26 1998-01-16 Hitachi Maxell Ltd Lithium secondary battery
JP2000048806A (en) * 1998-07-29 2000-02-18 Sekisui Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2006253091A (en) * 2005-03-14 2006-09-21 Sony Corp Battery
WO2009147989A1 (en) * 2008-06-02 2009-12-10 大日精化工業株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
WO2012036172A1 (en) * 2010-09-13 2012-03-22 保土谷化学工業株式会社 Carbon microfiber dispersion liquid
JP2013171816A (en) * 2012-02-23 2013-09-02 Toyota Motor Corp Method for manufacturing positive electrode plate for secondary battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420113B2 (en) 2012-09-28 2019-09-17 Huawei Technologies Co., Ltd. Resource reconfiguration method, base station, and user equipment
JP2014143000A (en) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, electrode for secondary battery and secondary battery
US9647270B2 (en) 2013-09-06 2017-05-09 The Nippon Synthetic Chemical Industry Co., Ltd. Binder for lithium ion secondary battery electrode, production method for lithium ion secondary battery electrode, lithium ion secondary battery electrode, and lithium ion secondary battery
US20160181617A1 (en) * 2013-09-06 2016-06-23 The Nippon Synthetic Chemical Industry Co., Ltd. Binder for lithium ion secondary battery electrode, production method for lithium ion secondary battery electrode, lithium ion secondary battery electrode, and lithium ion secondary battery
CN105518914A (en) * 2013-09-06 2016-04-20 日本合成化学工业株式会社 Binder for lithium ion secondary battery electrode, lithium ion secondary battery electrode, production method for lithium ion secondary battery electrode, and lithium ion secondary battery
JP2015088487A (en) * 2013-09-27 2015-05-07 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2015141883A (en) * 2014-01-30 2015-08-03 積水化学工業株式会社 Composition for lithium secondary battery electrode
JP2015179631A (en) * 2014-03-19 2015-10-08 積水化学工業株式会社 Composition for lithium secondary battery electrodes
US10008724B2 (en) 2014-03-27 2018-06-26 Sekisui Chemical Co., Ltd. Binder for power storage device electrode
WO2015146747A1 (en) * 2014-03-27 2015-10-01 積水化学工業株式会社 Binder for power storage device electrode
TWI629825B (en) * 2014-03-27 2018-07-11 日商積水化學工業股份有限公司 Electrode assembly electrode adhesive
JPWO2015146747A1 (en) * 2014-03-27 2017-04-13 積水化学工業株式会社 Storage device electrode binder
US9466840B2 (en) 2014-05-14 2016-10-11 Toyota Jidosha Kabushiki Kaisha Positive electrode paste and manufacturing method therefor
JP2015219964A (en) * 2014-05-14 2015-12-07 トヨタ自動車株式会社 Positive electrode paste and method of manufacturing the same
JP2016076485A (en) * 2014-10-08 2016-05-12 積水化学工業株式会社 Composition for lithium secondary battery electrode
KR102566074B1 (en) * 2015-03-20 2023-08-10 세키스이가가쿠 고교가부시키가이샤 Composition for lithium secondary battery electrodes
US20180062178A1 (en) * 2015-03-20 2018-03-01 Sekisui Chemical Co., Ltd. Composition for lithium secondary battery electrodes
WO2016152783A1 (en) * 2015-03-20 2016-09-29 積水化学工業株式会社 Composition for lithium secondary battery electrodes
JPWO2016152783A1 (en) * 2015-03-20 2018-01-11 積水化学工業株式会社 Lithium secondary battery electrode composition
EP3273514A4 (en) * 2015-03-20 2018-11-21 Sekisui Chemical Co., Ltd. Composition for lithium secondary battery electrodes
US11374222B2 (en) 2015-03-20 2022-06-28 Sekisui Chemical Co., Ltd. Composition for lithium secondary battery electrodes
CN106797031B (en) * 2015-03-20 2021-06-01 积水化学工业株式会社 Composition for lithium secondary battery electrode
KR20170129092A (en) * 2015-03-20 2017-11-24 세키스이가가쿠 고교가부시키가이샤 Composition for lithium secondary battery electrodes
TWI688150B (en) * 2015-03-20 2020-03-11 日商積水化學工業股份有限公司 Composition for lithium secondary battery electrode
CN106797031A (en) * 2015-03-20 2017-05-31 积水化学工业株式会社 Lithium secondary battery electrode composition
US10784513B2 (en) 2015-09-17 2020-09-22 Sekisui Chemical Co., Ltd. Binder for electrical storage device electrode
US10777819B2 (en) 2016-04-01 2020-09-15 Sekisui Chemical Co., Ltd. Composition for lithium secondary battery electrodes
JP2018060774A (en) * 2016-09-30 2018-04-12 積水化学工業株式会社 Composition for secondary battery electrode
JP7269295B2 (en) 2016-09-30 2023-05-08 積水化学工業株式会社 Composition for secondary battery electrode
JP7107645B2 (en) 2016-09-30 2022-07-27 積水化学工業株式会社 Composition for secondary battery electrode
JP2021193676A (en) * 2016-09-30 2021-12-23 積水化学工業株式会社 Composition for secondary battery electrode
JP7010595B2 (en) 2017-03-23 2022-01-26 積水化学工業株式会社 Binder for power storage device electrodes
JP2018160400A (en) * 2017-03-23 2018-10-11 積水化学工業株式会社 Binder for power storage device electrodes
JP2018160401A (en) * 2017-03-23 2018-10-11 積水化学工業株式会社 Binder for power storage device electrode
CN109565052A (en) * 2017-03-28 2019-04-02 积水化学工业株式会社 Electric energy storage device electrode binding agent
WO2018180073A1 (en) * 2017-03-28 2018-10-04 積水化学工業株式会社 Binder for power storage device electrodes
JP6357603B1 (en) * 2017-03-28 2018-07-11 積水化学工業株式会社 Storage device electrode binder
US11239467B2 (en) 2017-09-28 2022-02-01 Sekisui Chemical Co., Ltd. Composition for secondary battery electrode
WO2019065869A1 (en) * 2017-09-28 2019-04-04 積水化学工業株式会社 Composition for secondary battery electrode
JPWO2019065869A1 (en) * 2017-09-28 2019-11-14 積水化学工業株式会社 Composition for secondary battery electrode
JPWO2020066917A1 (en) * 2018-09-28 2021-08-30 積水化学工業株式会社 Composition for secondary battery electrode
WO2020066917A1 (en) * 2018-09-28 2020-04-02 積水化学工業株式会社 Composition for secondary battery electrode
JP7497158B2 (en) 2018-09-28 2024-06-10 積水化学工業株式会社 Composition for secondary battery electrodes
JP2020087928A (en) * 2018-11-19 2020-06-04 積水化学工業株式会社 Separator protective film resin
JP7377074B2 (en) 2018-11-19 2023-11-09 積水化学工業株式会社 Resin for separator protective film

Also Published As

Publication number Publication date
JP5827581B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5827581B2 (en) Lithium secondary battery electrode composition
JP6255260B2 (en) Lithium secondary battery electrode composition
JP6352132B2 (en) Lithium secondary battery electrode composition
JP6114821B2 (en) Storage device electrode binder
JP5827580B2 (en) Lithium secondary battery electrode composition
JP6259952B1 (en) Lithium secondary battery electrode composition
KR102647941B1 (en) Binder for electrical storage device electrode
JP6114891B1 (en) Storage device electrode binder
CN106797031B (en) Composition for lithium secondary battery electrode
JP6434772B2 (en) Lithium secondary battery electrode composition
JP6310286B2 (en) Lithium secondary battery electrode composition
WO2020066917A1 (en) Composition for secondary battery electrode
JP2016076485A (en) Composition for lithium secondary battery electrode
JP2017183241A (en) Binder for power storage device electrode
JP2018206675A (en) Slurry for power storage device electrode
JP2020057602A (en) Composition for all-solid battery
JP7271240B2 (en) Composition for secondary battery electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151016

R151 Written notification of patent or utility model registration

Ref document number: 5827581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250