JP2012194644A - Manufacturing method of film with one-side conductive film for electrostatic sensor - Google Patents

Manufacturing method of film with one-side conductive film for electrostatic sensor Download PDF

Info

Publication number
JP2012194644A
JP2012194644A JP2011056508A JP2011056508A JP2012194644A JP 2012194644 A JP2012194644 A JP 2012194644A JP 2011056508 A JP2011056508 A JP 2011056508A JP 2011056508 A JP2011056508 A JP 2011056508A JP 2012194644 A JP2012194644 A JP 2012194644A
Authority
JP
Japan
Prior art keywords
film
conductive film
light
sided
electrostatic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011056508A
Other languages
Japanese (ja)
Inventor
Hideaki Nada
秀明 灘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2011056508A priority Critical patent/JP2012194644A/en
Priority to PCT/JP2012/054860 priority patent/WO2012124462A1/en
Publication of JP2012194644A publication Critical patent/JP2012194644A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a film with a one-side conductive film for an electrostatic sensor, which can give a film with a one-side conductive film for an electrostatic sensor, preventing occurrence of heat wrinkles even in deposition of a conductive layer by high power.SOLUTION: The manufacturing method of a film with a one-side conductive layer for an electrostatic sensor of the present invention comprises: a step of laminating a base film having light transmitting property with a heat wrinkle-preventing film through an adhesive agent to obtain a laminate where the above heat wrinkle-preventing film is temporarily adhered on one-side of the above base film; a step of laminating a conductive film having light transmitting property on the above base film side surface of the above laminate by the physical vapor deposition method; a step of laminating a conductive film having light shielding property on the above conductive film having light transmitting property by the physical vapor deposition method; and a step of peeling the above heat wrinkle-preventing film from the above laminate provided with the above conductive film having light transmitting property and the above conductive film having light shielding property.

Description

本発明は、PDA、ハンディターミナルなど携帯情報端末、コピー機、ファクシミリなどOA機器、スマートフォン、携帯電話機、携帯ゲーム機器、電子辞書、カーナビシステム、小型PC、各種家電品等に組み込まれる静電センサの製造に用いられる、片面導電膜付フィルムの製造方法に関するものである。   The present invention relates to an electrostatic sensor incorporated in a PDA, a portable information terminal such as a handy terminal, an OA device such as a copy machine and a facsimile, a smartphone, a mobile phone, a portable game device, an electronic dictionary, a car navigation system, a small PC, and various home appliances. It is related with the manufacturing method of the film with a single-sided electrically conductive film used for manufacture.

従来より、静電容量方式でオペレーターの手指を接触させることによりXY座標が入力できるようにしたものが実用化されている。このような従来例としては、例えば、特許文献1には、フィルム体の表面に互いに平行に延びる複数本の第1の電極を設け、かつ当該フィルム体の裏面に前記第1の電極群に対して直交する方向に延びる互いに平行な複数本の第2の電極を設けて、これら第1の電極群と第2の電極群との間の静電容量に応じた電流値を出力する静電容量センサが開示されている。   2. Description of the Related Art Conventionally, an apparatus in which XY coordinates can be input by bringing an operator's finger into contact with an electrostatic capacity method has been put into practical use. As such a conventional example, for example, in Patent Document 1, a plurality of first electrodes extending in parallel to each other are provided on the surface of the film body, and the back surface of the film body is provided with respect to the first electrode group. A plurality of parallel second electrodes extending in a direction perpendicular to each other and outputting a current value corresponding to the capacitance between the first electrode group and the second electrode group A sensor is disclosed.

そして、静電容量センサの実際の量産においては、フィルム体単体の表裏面に第1の電極群および第2の電極群を設けるのではなく、透光性を有する基材フィルムの片面に予め透光性を有する導電膜が形成された市販の片面導電膜付フィルムを2枚用意し、第1の片面導電膜付フィルムについて導電膜をエッチングによりパターン化して第1の電極群を形成し、第2の片面導電膜付フィルムについて導電膜をエッチングによりパターン化して第2の電極群を形成した後、これら第1および第2の電極フィルムを貼り合せていた。   In actual mass production of the capacitance sensor, the first electrode group and the second electrode group are not provided on the front and back surfaces of the film body alone, but are transmitted in advance on one surface of the base film having translucency. Two commercially available films with a single-sided conductive film on which a conductive film having optical properties was prepared, and the first electrode group was formed by patterning the conductive film by etching with respect to the first single-sided conductive film. After forming the second electrode group by patterning the conductive film by etching the two single-sided conductive film, the first and second electrode films were bonded together.

しかしながら、第1の電極群が形成された第1の電極フィルムと第2の電極群が形成された第2の電極フィルムとを、圧着ロールやプレス機によって加圧することによって貼り合わせると、圧力によって第1および第2の電極フィルムの基材フィルムが各々寸法変化するため、それらに形成された第1の電極群の各電極間、第2の電極群の各電極間それぞれの寸法に狂いが生じてしまうという問題がある。また、第1の電極群および第2の電極群としてITO膜を用いる場合には結晶化の目的で加熱を行なうが、上記のように貼り合わせた後に加熱するときには、露出していない第2の電極群を十分に結晶させる必要があるため、加熱温度がどうしても高めになる。その結果、やはり第1および第2の電極フィルムの基材フィルムが各々寸法変化し、第1の電極群の各電極間、第2の電極群の各電極間それぞれの寸法に狂いが生じてしまう。また、第1の電極フィルムと第2の電極フィルムの貼り合わせ精度自体も、極めて低いという別の問題がある。   However, when the first electrode film on which the first electrode group is formed and the second electrode film on which the second electrode group is formed are bonded together by pressing with a pressure roll or a press, Since the base film of each of the first and second electrode films changes in size, there is an error in the dimensions between the electrodes of the first electrode group formed on them and between the electrodes of the second electrode group. There is a problem that it ends up. Further, when an ITO film is used as the first electrode group and the second electrode group, heating is performed for the purpose of crystallization. However, when heating is performed after bonding as described above, the second electrode that is not exposed is used. Since it is necessary to crystallize the electrode group sufficiently, the heating temperature is inevitably increased. As a result, the substrate films of the first and second electrode films also change in size, and the dimensions between the electrodes of the first electrode group and between the electrodes of the second electrode group are distorted. . Further, there is another problem that the bonding accuracy itself between the first electrode film and the second electrode film is extremely low.

そのため、静電容量センサに極精細な電極群が要求された場合、作製が極めて困難であった。   Therefore, when a very fine electrode group is required for the capacitance sensor, it is extremely difficult to manufacture.

そこで、本出願人は、特許文献2に示すように、透光性を有する基材フィルムの片面に予め透光性を有する導電膜が形成された片面導電膜付フィルムを一組用意し、前記片面導電膜付フィルム同士を前記導電膜が外側になるように貼り合わせた後、前記一方の導電膜をエッチングによりパターン化して平行に複数本並べられた電極からなる第1の電極群を形成し、また前記他方の導電膜をエッチングによりパターン化して平行に複数本並べられた電極からなり且つ前記第1の電極群とは直交する第2の電極群を形成する静電容量センサの製造方法を提案した。   Therefore, as shown in Patent Document 2, the present applicant prepares a set of films with a single-sided conductive film in which a conductive film having a light-transmitting property is formed in advance on one surface of a base film having a light-transmitting property, After laminating the films with single-sided conductive films so that the conductive film is on the outside, the first conductive film is patterned by etching to form a first electrode group consisting of electrodes arranged in parallel. And a method of manufacturing a capacitance sensor comprising a plurality of electrodes arranged in parallel by patterning the other conductive film by etching and forming a second electrode group orthogonal to the first electrode group. Proposed.

さらに、本出願人は、上記貼り合わせた後に行なわれる両面エッチングに関し、一方の側の面上に設けられたレジスト層を露光、現像してパターン形成する際、該露光の光線が多方の側の面上に設けられたレジスト層に達するのを防ぐ目的で、特許文献3に示すような提案もしている。すなわち、二枚の片面導電膜付フィルムを貼り合わせる前に透光性を有する導電膜上に遮光性を有する導電膜を予め積層しておき、一方の側の面上に設けられたレジスト層を露光する光線が多方の側の面上に設けられたレジスト層に達する前に遮光するというものである。なお、エッチングによって第1および第2の電極群を形成した後は、遮光性を有する導電膜が少なくともアクティブエリアで除去され、背面のディスプレイを視認可能となる。   Further, the applicant of the present invention relates to the double-sided etching performed after the bonding, and when exposing and developing the resist layer provided on the surface on one side to form a pattern, the light beam of the exposure is on the other side. In order to prevent reaching the resist layer provided on the surface, a proposal as shown in Patent Document 3 is also proposed. That is, before the two single-sided conductive film films are bonded together, a light-shielding conductive film is laminated in advance on the light-transmitting conductive film, and a resist layer provided on one side surface is laminated. The light beam to be exposed is shielded before reaching the resist layer provided on the surfaces on the other side. Note that after the first and second electrode groups are formed by etching, the light-shielding conductive film is removed at least in the active area, so that the display on the back surface can be visually recognized.

ところで、透光性を有する基材フィルムの片面に透光性を有する導電膜および遮光性を有する導電膜を順次積層するには、スパッタリングやその他真空成膜法で連続成膜法が用いられる。例えば、スパッタリングは、Ar等の放電ガス(スパッタリングガス)を真空チャンバに導入し、300?700Vの負の電圧をターゲットに印加し、発生したグロー放電によりプラズマを生成し、そのプラズマ中のArイオンを印加電圧に相当する高エネルギー(数百eV)でターゲットに衝突させてスパッタを行う(図8参照)。図8の図示する成膜装置では、真空チャンバ31の内部にロール状の基材フィルム2を連続的に繰り出す巻出し部32と、この巻出し部32から繰り出された基材フィルム102を巻き取る巻取り部33とを備えている。巻出し部32から繰り出された基材フィルム102はスパッタ室34に案内され、スパッタ室34では、メインローラ35の周面に巻き付けられた状態で、透光性を有する基材フィルム102の表面に上述した透光性を有する導電膜7および遮光性を有する導電膜8が順に形成される。   By the way, in order to sequentially laminate the light-transmitting conductive film and the light-shielding conductive film on one surface of the light-transmitting base film, a continuous film forming method is used by sputtering or other vacuum film forming methods. For example, in sputtering, a discharge gas (sputtering gas) such as Ar is introduced into a vacuum chamber, a negative voltage of 300 to 700 V is applied to the target, plasma is generated by the generated glow discharge, and Ar ions in the plasma are generated. Is caused to collide with the target with high energy (several hundreds eV) corresponding to the applied voltage to perform sputtering (see FIG. 8). In the film forming apparatus illustrated in FIG. 8, the unwinding unit 32 that continuously feeds the roll-shaped base film 2 into the vacuum chamber 31 and the base film 102 that has been unwound from the unwinding unit 32 are wound up. A winding unit 33 is provided. The base film 102 fed out from the unwinding section 32 is guided to the sputter chamber 34, and in the sputter chamber 34, the base film 102 is wound on the surface of the base film 102 having translucency while being wound around the peripheral surface of the main roller 35. The light-transmitting conductive film 7 and the light-shielding conductive film 8 are sequentially formed.

特許第3426847号公報Japanese Patent No. 3426847 特開2009−70191号公報JP 2009-70191 A 特許第4601710号公報Japanese Patent No. 4601710

しかしながら、前記スパッタリングにおいては、ターゲット表面で反射されたAr原子や、ターゲット表面で生成する負イオン(特に酸化物のスパッタリングで多く観察される。)は、いずれも高エネルギーを有することになる。このため、これらの粒子が成長中の皮膜に衝突すると、基材フィルム102に熱による付加がかかり、収縮して熱ジワが発生するという問題がある。   However, in the sputtering, both Ar atoms reflected on the target surface and negative ions generated on the target surface (particularly observed in sputtering of oxides) all have high energy. For this reason, when these particles collide with the growing film, there is a problem that heat is applied to the base film 102 and contraction causes thermal wrinkles.

これに対して、基材フィルム102のダメージを低減する目的で低パワーによって成膜すると、基材フィルム102を何度もスパッタ室34を往復させて成膜する、いわゆる複数パスを行なわなければならず、導電層の成膜生産性が低下するという問題も生じる。   On the other hand, when the film is formed with low power for the purpose of reducing damage to the base film 102, the base film 102 must be formed by reciprocating the sputtering chamber 34 many times, so-called multiple passes must be performed. In addition, there is a problem that the productivity of forming the conductive layer is lowered.

また、複数パスを行なわなくとも低パワーで成膜することは、ターゲットのカソード数を増加することで可能ではある。しかし、カソード数を増加する場合には大型の成膜装置が必要となるため、設備コストが高くなる。   Further, it is possible to form a film with low power without performing a plurality of passes by increasing the number of target cathodes. However, when the number of cathodes is increased, a large film forming apparatus is required, which increases the equipment cost.

したがって、本発明の目的は、前記課題を解決することにあって、高パワーでの導電層成膜でも熱ジワが発生しない静電センサ用片面導電膜付フィルムを得ることができる、静電センサ用片面導電膜付フィルムの製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems, and an electrostatic sensor capable of obtaining a film with a single-sided conductive film for an electrostatic sensor that does not generate thermal wrinkles even when a conductive layer is formed at high power. It is providing the manufacturing method of the film with a single-sided electrically conductive film.

本発明の第1態様によれば、透光性を有する基材フィルムと熱ジワ防止フィルムとを接着剤を介してラミネートして、前記基材フィルムの片面に前記熱ジワ防止フィルムが仮接着された積層体を得る工程と、
前記積層体の前記基材フィルム側の表面に物理蒸着法によって透光性を有する導電膜を積層する工程と、
前記透光性を有する導電膜上に物理蒸着法によって遮光性を有する導電膜を積層する工程と、
前記透光性を有する導電膜および前記遮光性を有する導電膜の設けられた前記積層体から前記熱ジワ防止フィルムを剥離する工程と、を備えたことを特徴とする静電センサ用片面導電層付フィルムの製造方法を提供する。
According to the first aspect of the present invention, a base film having translucency and a thermal wrinkle prevention film are laminated via an adhesive, and the thermal wrinkle prevention film is temporarily bonded to one side of the base film. Obtaining a laminated body,
Laminating a conductive film having translucency by physical vapor deposition on the base film side surface of the laminate;
A step of laminating a light-shielding conductive film by a physical vapor deposition method on the light-transmitting conductive film;
A step of peeling the thermal wrinkle prevention film from the laminate provided with the light-transmitting conductive film and the light-shielding conductive film, and a single-sided conductive layer for an electrostatic sensor Provided is a method for producing an attached film.

本発明の第2態様によれば、前記物理蒸着法が、スパッタリングである第1態様の静電センサ用片面導電層付フィルムの製造方法を提供する。   According to the 2nd aspect of this invention, the said physical vapor deposition provides the manufacturing method of the film with the single-sided conductive layer for electrostatic sensors of the 1st aspect which is sputtering.

本発明の第3態様によれば、前記透光性を有する導電膜が、ITO膜である第1態様又は第2態様の静電センサ用片面導電層付フィルムの製造方法を提供する。   According to a third aspect of the present invention, there is provided the method for producing a film with a single-sided conductive layer for an electrostatic sensor according to the first aspect or the second aspect, wherein the translucent conductive film is an ITO film.

本発明の第4態様によれば、前記遮光性を有する導電膜が、銅膜である第1〜3のいずれかの態様の静電センサ用片面導電層付フィルムの製造方法を提供する。   According to the 4th aspect of this invention, the electrically conductive film which has the said light-shielding property provides the manufacturing method of the film with the single-sided conductive layer for electrostatic sensors of any one of the 1st-3rd aspect which is a copper film.

本発明の第5態様によれば、前記基材フィルムが15〜1000μm厚のPCフィルムである第1〜4のいずれかの態様の静電センサ用片面導電層付フィルムの製造方法を提供する。   According to the 5th aspect of this invention, the manufacturing method of the film with the single-sided conductive layer for electrostatic sensors of the aspect in any one of the 1st-4th whose said base film is a PC film 15-1000 micrometers thick is provided.

本発明の第6態様によれば、前記熱ジワ防止フィルムがPETフィルムである第1〜5のいずれかの態様の静電センサ用片面導電層付フィルムの製造方法を提供する。   According to the 6th aspect of this invention, the manufacturing method of the film with a single-sided conductive layer for electrostatic sensors of the aspect in any one of the 1st-5th whose said heat wrinkle prevention film is a PET film is provided.

本発明の第7態様によれば、前記熱ジワ防止フィルムを剥離する前に、前記遮光性を有する導電膜上に感光層を積層する第1〜6のいずれかの態様の静電センサ用片面導電層付フィルムの製造方法を提供する。   According to a seventh aspect of the present invention, the electrostatic sensor single-sided surface according to any one of the first to sixth aspects, wherein a photosensitive layer is laminated on the light-shielding conductive film before the thermal wrinkle prevention film is peeled off. A method for producing a film with a conductive layer is provided.

本発明の静電センサ用片面導電膜付フィルムの製造方法は、上記のように構成したので、高パワーでの導電層成膜でも基材フィルムの収縮が基材フィルムに仮接着された熱ジワ防止フィルムによって抑えられ、熱ジワが発生しない。また、高パワーでの成膜が可能なので、導電層の成膜生産性があがった。   The method for producing a film with a single-sided conductive film for an electrostatic sensor according to the present invention is configured as described above. Therefore, even when a conductive layer is formed at a high power, the thermal wrinkles in which the shrinkage of the base film is temporarily bonded to the base film Suppressed by the prevention film, no thermal wrinkles are generated. Further, since film formation with high power is possible, the film formation productivity of the conductive layer is improved.

本発明で得られる静電センサ用片面導電膜付フィルムを用いて製造された静電センサの平面図である。It is a top view of the electrostatic sensor manufactured using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 図1に示す静電センサの部分拡大図である。It is the elements on larger scale of the electrostatic sensor shown in FIG. 図1に示す静電センサの断面図である。It is sectional drawing of the electrostatic sensor shown in FIG. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。It is a figure which shows the process of manufacturing the electrostatic sensor of FIG. 1 using the film with the single-sided electrically conductive film for electrostatic sensors obtained by this invention. 本発明に係る静電センサ用片面導電膜付フィルムの製造工程の一実施例を示す図である。It is a figure which shows one Example of the manufacturing process of the film with the single-sided electrically conductive film for electrostatic sensors which concerns on this invention. 本発明に係る静電センサ用片面導電膜付フィルムの製造工程の一実施例を示す図である。It is a figure which shows one Example of the manufacturing process of the film with the single-sided electrically conductive film for electrostatic sensors which concerns on this invention. 本発明に係る静電センサ用片面導電膜付フィルムの製造工程の一実施例を示す図である。It is a figure which shows one Example of the manufacturing process of the film with the single-sided electrically conductive film for electrostatic sensors which concerns on this invention. 静電センサ用片面導電膜付フィルムの成膜装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the film-forming apparatus of the film with the single-sided electrically conductive film for electrostatic sensors. 本発明に係る静電センサ用片面導電膜付フィルムの製造工程の一実施例を示す図である。It is a figure which shows one Example of the manufacturing process of the film with the single-sided electrically conductive film for electrostatic sensors which concerns on this invention. 本発明に係る静電センサ用片面導電膜付フィルムの製造工程の他の実施例を示す図である。It is a figure which shows the other Example of the manufacturing process of the film with the single-sided electrically conductive film for electrostatic sensors which concerns on this invention.

以下、本発明の最良の実施の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

まず、本発明の理解を助けるために、本発明の片面導電膜付フィルムを用いて製造される静電センサおよびその製造方法について少し説明しておく。図1は本発明で得られる静電センサ用片面導電膜付フィルムを用いて製造された静電センサの平面図、図2は図1に示す静電センサの部分拡大図、図3は図1に示す静電センサの断面図である。また、図4A〜4Iは本発明で得られる静電センサ用片面導電膜付フィルムを用いて図1の静電センサを製造する工程を示す図である。   First, in order to help the understanding of the present invention, an electrostatic sensor manufactured using the film with a single-sided conductive film of the present invention and a manufacturing method thereof will be briefly described. FIG. 1 is a plan view of an electrostatic sensor manufactured using the film with a single-sided conductive film for an electrostatic sensor obtained by the present invention, FIG. 2 is a partially enlarged view of the electrostatic sensor shown in FIG. 1, and FIG. It is sectional drawing of the electrostatic sensor shown in FIG. 4A to 4I are diagrams showing a process of manufacturing the electrostatic sensor of FIG. 1 using the film with a single-side conductive film for electrostatic sensor obtained in the present invention.

図1の静電センサ1は、透光性を有し貼り合わされた二枚の基材フィルム2,2と、貼り合わされた基材フィルム2,2の外側の面に各々、中央窓部3の電極パターン4および外枠部5の細線引き回し回路パターン6を有するように形成された透光性を有する導電膜7,7と、両透光性を有する導電膜7,7の細線引き回し回路パターン6上に各々、積層された遮光性を有する導電膜8,8と、を備えたものである。   The electrostatic sensor 1 in FIG. 1 includes two base films 2 and 2 that are light-transmitting and bonded to each other, and each of the central windows 3 on the outer surfaces of the bonded base films 2 and 2. The light-transmitting conductive films 7 and 7 formed so as to have the electrode pattern 4 and the thin line drawing circuit pattern 6 of the outer frame portion 5, and the thin line drawing circuit pattern 6 of the both light-transmitting conductive films 7 and 7. Each of them is provided with light-shielding conductive films 8 and 8 stacked on each other.

ここで静電センサ1の中央窓部3に形成される電極パターン4について補足説明する。当該電極パターン4は静電センサ1の表裏でパターンが異なる。たとえば、図2に示すように、貼り合わされた基材フィルム2,2の裏面には、平面視して菱形形状を持つ菱形電極46と、この菱形電極46の複数を図中縦方向(Y方向)に貫く接続配線469とを備えている。複数の菱形電極46と接続配線469とは、相互に電気的に接続されている。また、このような、接続配線469およびそれに貫かれた複数の菱形電極46を一組として、当該一組が図中横方向(X方向)に繰り返し配列される。一方、これと同じようにして、貼り合わされた基材フィルム2,2の表面には、複数の菱形電極47と、それらを貫く接続配線479とを備えている。ただし、この場合、接続配線479の延在方向は、接続配線469のそれとは異なり、図中横方向(X方向)である。また、それに伴い、接続配線479およびそれに貫かれた複数の菱形電極47からなる一組が、繰り返し配列される方向は、図中縦方向(Y方向)である。そして、図2から明らかなように、菱形電極46は、複数の接続配線479間の隙間を埋めるように配置される一方、菱形電極47は、複数の接続配線469間の隙間を埋めるように配置される。図2では更に、菱形電極46と菱形電極47との配置関係は相補的である。つまり、菱形電極46をマトリクス状に配列する場合に生じる菱形形状の隙間を埋めるように、複数の菱形電極47は配列されているのである。   Here, the electrode pattern 4 formed on the central window 3 of the electrostatic sensor 1 will be supplementarily described. The electrode pattern 4 has different patterns on the front and back of the electrostatic sensor 1. For example, as shown in FIG. 2, a rhombus electrode 46 having a rhombus shape in plan view and a plurality of rhombus electrodes 46 in the longitudinal direction (Y direction in the figure) are formed on the back surfaces of the bonded base films 2 and 2. ) And a connection wiring 469 penetrating the above. The plurality of rhombus electrodes 46 and the connection wiring 469 are electrically connected to each other. Further, such a connection wiring 469 and a plurality of rhombus electrodes 46 penetrating therethrough are taken as a set, and the set is repeatedly arranged in the horizontal direction (X direction) in the figure. On the other hand, on the surface of the base films 2 and 2 bonded together in the same manner, a plurality of rhombus electrodes 47 and connection wirings 479 penetrating them are provided. However, in this case, the extending direction of the connection wiring 479 is different from that of the connection wiring 469 in the horizontal direction (X direction) in the drawing. Accordingly, the direction in which a set of the connection wiring 479 and the plurality of rhombus electrodes 47 penetrating the connection wiring 479 is repeatedly arranged is the vertical direction (Y direction) in the figure. As is clear from FIG. 2, the rhombus electrode 46 is disposed so as to fill the gaps between the plurality of connection wirings 479, while the rhombus electrode 47 is disposed so as to fill the gaps between the plurality of connection wirings 469. Is done. Further, in FIG. 2, the positional relationship between the diamond electrode 46 and the diamond electrode 47 is complementary. That is, the plurality of rhombus electrodes 47 are arranged so as to fill in the rhombus-shaped gaps that occur when the rhombus electrodes 46 are arranged in a matrix.

このようにX方向電極およびY方向電極が平面視して格子を形作るように配置されているので、この格子上のいずれかの位置にユーザの指等が静電センサ1を覆うカバーガラスを介して触れれば(例えば、破線丸印FRの位置)、当該指等とそれが触れるX方向電極との間にコンデンサが形成され、また、当該指等とそれが触れるY方向電極との間にコンデンサが形成される。このコンデンサの形成によって、当該のX方向電極およびY方向電極の静電容量は増大する。外部回路の位置検出部は、このような場合において生じる静電容量の変化量、あるいは更には最大の静電容量をもつX方向電極およびY方向電極を検出し、中央窓部3内のどこに触れたかを、特定値たるX座標値およびY座標値の組として取得することが可能となる。   Since the X-direction electrode and the Y-direction electrode are arranged so as to form a lattice in plan view in this way, a user's finger or the like is placed at any position on the lattice via a cover glass that covers the electrostatic sensor 1. (For example, the position of the dotted circle FR), a capacitor is formed between the finger and the X-direction electrode touched by the finger, and between the finger and the Y-direction electrode touched by the capacitor. A capacitor is formed. By forming this capacitor, the capacitance of the X direction electrode and the Y direction electrode increases. The position detector of the external circuit detects the amount of change in capacitance that occurs in such a case, or even the X-direction electrode and Y-direction electrode having the maximum capacitance, and touches anywhere in the central window 3. Can be acquired as a set of an X coordinate value and a Y coordinate value as a specific value.

以上のような構成からなる静電センサ1を製造するには、透光性を有する基材フィルム2の片面に予め透光性を有する導電膜7、遮光性を有する導電膜8が順次積層形成された片面導電膜付フィルム9を一組用意し、前記片面導電膜付フィルム9同士を前記遮光性の導電膜8が外側になるように貼り合わせた後(図4A参照)、その両面にコーターを用いて感光性材料をコーティングすることによって第1感光層10を各々形成し(図4B参照)、次いで両第1感光層10,10上に互いに異なるパターンを有するマスク11,12を配置して両第1感光層10,10を同時に露光し(図4C参照)、露光された第1感光層10,10の現像後(図4D参照)、パターニングされた第1感光層10,10をマスクとして遮光性を有する導電膜8,8および透光性を有する導電膜7,7を中央窓部3の電極パターン4および外枠部5の細線引き回し回路パターン6を残すようにエッチングし(図4E参照)、第1感光層10,10を剥離除去した後、両面にコーターを用いて感光性材料をコーティングすることによって第2感光層13を各々形成し(図4F参照)、次いで両第2感光層13,13上に所定のパターンを有するマスク14,15を配置して両第2感光層13,13を同時に露光し(図4G参照)、露光された第2感光層13,13の現像後(図4H参照)、中央窓部3の遮光性を有する導電膜8が露出するようにパターニングされた第2感光層13,13をマスクとして遮光性を有する導電膜8,8のみを中央窓部3においてエッチング除去し(図4I参照)、さらに第1感光層10,10を剥離除去することにより(図3参照)又は第1感光層10,10をそのまま残すことにより静電センサ1を得る。なお、図3及び図4A〜Iにおいて片面導電膜付フィルム9同士を張り合わせる接着剤は省略して描かれている。   In order to manufacture the electrostatic sensor 1 having the above-described configuration, a light-transmitting conductive film 7 and a light-shielding conductive film 8 are sequentially laminated on one surface of the light-transmitting base film 2 in sequence. A set of the single-sided conductive film 9 is prepared, and the single-sided conductive film 9 is bonded to each other so that the light-shielding conductive film 8 is on the outside (see FIG. 4A). First photosensitive layers 10 are respectively formed by coating a photosensitive material using (see FIG. 4B), and then masks 11 and 12 having different patterns are disposed on both first photosensitive layers 10 and 10, respectively. Both first photosensitive layers 10 and 10 are exposed simultaneously (see FIG. 4C), and after development of the exposed first photosensitive layers 10 and 10 (see FIG. 4D), the patterned first photosensitive layers 10 and 10 are used as a mask. Light-shielding conductive film , 8 and the light-transmitting conductive films 7 and 7 are etched so as to leave the electrode pattern 4 in the central window 3 and the thin line drawing circuit pattern 6 in the outer frame 5 (see FIG. 4E). , 10 are peeled and removed, and a second photosensitive layer 13 is formed by coating a photosensitive material on both sides using a coater (see FIG. 4F). The masks 14 and 15 having a pattern are arranged to expose both the second photosensitive layers 13 and 13 simultaneously (see FIG. 4G), and after developing the exposed second photosensitive layers 13 and 13 (see FIG. 4H), the central window With the second photosensitive layers 13 and 13 patterned so as to expose the light-shielding conductive film 8 of the portion 3 as a mask, only the light-shielding conductive films 8 and 8 are removed by etching in the central window portion 3 (FIG. 4I). See also) Obtaining an electrostatic sensor 1 by directly leaving by (see FIG. 3) or the first photosensitive layer 10, 10 to separate and remove the first photosensitive layer 10, 10. 3 and 4A to I, the adhesive for bonding the single-sided conductive film 9 to each other is omitted.

本発明は、上記したような静電センサ1の製造に用いられる、前記片面導電膜付フィルム9の製造方法に関するものである。以下、図を参照しながら詳しく説明する。   This invention relates to the manufacturing method of the said film 9 with a single-sided electrically conductive film used for manufacture of the above electrostatic sensors 1. FIG. Hereinafter, it will be described in detail with reference to the drawings.

<第1実施形態>
まず、図5に示すように、静電センサ用片面導電膜付フィルム9を製造するための元材としての透光性を有する基材フィルム2の片面に熱ジワ防止フィルム16が接着剤17を介してラミネートして仮接着された積層体18を作製する。なお、得られた積層体18は、ウェブ状であるとともにロールに巻き取られる。
<First Embodiment>
First, as shown in FIG. 5, a thermal wrinkle prevention film 16 has an adhesive 17 on one side of a base film 2 having translucency as a base material for producing a film 9 with a single-sided conductive film for electrostatic sensors. Then, the laminated body 18 laminated and temporarily bonded is produced. In addition, the obtained laminated body 18 is web shape, and is wound up by a roll.

透光性を有する基材フィルム2としては、光学等方性に優れているとの理由から、PCフィルムが用いられる。そしてPCフィルムの場合、熱ジワ防止フィルム16がなければとくに熱ジワを発生しやすい。基材フィルム2の厚みは15〜1000μmである。厚みが15μmに満たないフィルム製造は難しく、逆に厚みが1000μmを超えると透光性が低下し、又ロールに巻き取ったときに巻き径が大きくなりコスト高となる。   As the base film 2 having translucency, a PC film is used because it is excellent in optical isotropy. In the case of a PC film, thermal wrinkles are particularly likely to occur without the thermal wrinkle prevention film 16. The thickness of the base film 2 is 15 to 1000 μm. It is difficult to produce a film having a thickness of less than 15 μm, and conversely, if the thickness exceeds 1000 μm, the translucency is lowered, and when wound on a roll, the winding diameter is increased and the cost is increased.

接着剤17としては、アクリル系等の接着剤が透光性を有する基材フィルム2または熱ジワ防止フィルム16のいずれかにスプレー又はコーティングすることによって形成される。図5に示す例では、熱ジワ防止フィルム16側に接着剤17を設けてからラミネートしている。   The adhesive 17 is formed by spraying or coating either an acrylic adhesive or the like on the base film 2 or the heat wrinkle prevention film 16 having translucency. In the example shown in FIG. 5, the adhesive 17 is provided on the thermal wrinkle prevention film 16 side before laminating.

熱ジワ防止フィルム16としては、PETフィルムその他のスパッタリング時に耐熱性を有する樹脂フィルムが用いられる。熱ジワ防止フィルム16の厚みは、その材料において透光性を有する導電膜7および遮光性を有する導電膜8の成膜時の耐熱性等が得られる厚さであればよい。また、熱ジワ防止フィルム16の接着剤17と接する面にはシリコン系樹脂やフッ素系樹脂等をスプレー又はコーティングすることによって離型処理が施されているのが好ましい。このように、あらかじめ離型処理が施された熱ジワ防止フィルム16を用いると、後述する熱ジワ防止フィルム16の剥離時において容易に接着剤17から剥離することができる。   As the thermal wrinkle prevention film 16, a resin film having heat resistance at the time of sputtering such as a PET film is used. The thickness of the thermal wrinkle prevention film 16 should just be the thickness from which the heat resistance at the time of film-forming of the electrically conductive film 7 which has translucency in the material, and the electrically conductive film 8 which has light-shielding property, etc. are obtained. The surface of the thermal wrinkle prevention film 16 that is in contact with the adhesive 17 is preferably subjected to a release treatment by spraying or coating a silicon resin, a fluorine resin, or the like. As described above, when the thermal wrinkle prevention film 16 that has been subjected to the release treatment in advance is used, the thermal wrinkle prevention film 16 described later can be easily peeled off from the adhesive 17.

ラミネートは、例えば図5に示すように、熱ジワ防止フィルム16がコーティングロール20で接着剤17を塗工された後、熱ジワ防止フィルム16の接着剤17塗布面と基材フィルム2とが重ね合わされて状態でラミネートロール21とラミネートニップロール22の間に挿通して、加熱して挟圧することによって、基材フィルム2と熱ジワ防止フィルム16とを仮接着する。次いで、基材フィルム2と熱ジワ防止フィルム16とを仮接着してなるシートを冷却ロール23の外周面に沿わせることによって徐冷して積層体18を得、これを巻き取るようにすることができる。   For example, as shown in FIG. 5, after the thermal wrinkle prevention film 16 is coated with the adhesive 17 by the coating roll 20, the laminate is applied with the adhesive 17 application surface of the thermal wrinkle prevention film 16 and the base film 2. In this state, the base film 2 and the thermal wrinkle prevention film 16 are temporarily bonded by being inserted between the laminating roll 21 and the laminating nip roll 22 and then heated and pinched. Next, a sheet obtained by temporarily adhering the base film 2 and the thermal wrinkle prevention film 16 is gradually cooled by placing the sheet along the outer peripheral surface of the cooling roll 23 to obtain a laminated body 18, which is wound up. Can do.

次に、ロールからウェブ状の積層体18を繰り出すとともに、図6に示すように、繰り出された積層体18の基材フィルム2側の表面にスパッタリングによって透光性を有する導電膜7が成膜される。透光性を有する導電膜7は、静電センサにおいてはパターニングされて透光性を有したX方向電極およびY方向電極を構成するものである。したがって、透光性を有する導電膜7は、80%以上の光線透過率(透光性)および数mΩから数百Ωの表面抵抗値(導電性)を示すことが好ましく、インジウムスズ酸化物、亜鉛酸化物などの金属酸化物などで成膜される。その厚みは、例えばITO膜であれば数十から数百nm程度である。   Next, the web-like laminate 18 is fed out from the roll, and as shown in FIG. 6, a light-transmitting conductive film 7 is formed on the surface of the drawn laminate 18 on the base film 2 side by sputtering. Is done. The conductive film 7 having translucency is patterned in the electrostatic sensor to constitute an X-direction electrode and a Y-direction electrode having translucency. Therefore, the light-transmitting conductive film 7 preferably exhibits a light transmittance (translucency) of 80% or more and a surface resistance value (conductivity) of several mΩ to several hundred Ω, and includes indium tin oxide, A film is formed using a metal oxide such as zinc oxide. For example, the thickness of the ITO film is about several tens to several hundreds nm.

なお、積層体18の基材フィルム2側の表面(成膜面)には、透光性を有する導電膜7との密着性を高めるための前処理が予め施されていてもよい。この前処理の具体例としては、プラズマ処理などの物理化学的処理や薬液処理などの化学的処理などがあるが、真空下で透光性を有する導電膜7の形成と連続して行えるプラズマ処理が好ましい。   In addition, the pretreatment for improving the adhesiveness with the electrically conductive film 7 which has translucency may be previously given to the surface (film-forming surface) by the side of the base film 2 of the laminated body 18. FIG. Specific examples of this pretreatment include physicochemical treatment such as plasma treatment and chemical treatment such as chemical treatment, but plasma treatment that can be performed continuously with formation of the light-transmitting conductive film 7 under vacuum. Is preferred.

次いで、図7に示すように、透光性を有する導電膜7上にさらにスパッタリングによって遮光性を有する導電膜8が成膜される。遮光性を有する導電膜8は、前述した第1感光層10の露光に用いられる光に対する遮光性を有する層、つまり、当該露光光を透過させない性質を有する層である。したがって、前述の両面露光工程において一方の面側の第1感光層10を透過した露光光源からの光は遮光性を有する導電膜8によって他方の面側の第1感光層10に到達することはない。つまり、両面の第1感光層10,10を、それぞれ所望のパターンで精度良く同時に露光することが可能なため、第1感光層10,10の表裏の位置あわせがしやすく一回の工程で両面パターン化でき、生産性も優れる。また、遮光性を有する導電膜8に用いられる材料の例としては、アルミニウム、ニッケル、銅、銀、錫などが挙げられる。その膜厚は露光光を遮光できるだけの厚みがあればよく、例えば銅であれば20〜1000nmである。遮光性という点でより好ましくは、厚み30nm以上である。さらに好ましくは、100〜500nmにするとよい。100nm以上の厚みに設定することで高い導電性の膜が得られ、500nm以下にすることで取り扱いやすく加工性に優れた膜が得られるからである。   Next, as shown in FIG. 7, a light-shielding conductive film 8 is formed on the light-transmitting conductive film 7 by sputtering. The light-shielding conductive film 8 is a layer having a light-shielding property to light used for exposure of the first photosensitive layer 10 described above, that is, a layer having a property of not transmitting the exposure light. Therefore, the light from the exposure light source that has passed through the first photosensitive layer 10 on one side in the double-sided exposure step described above reaches the first photosensitive layer 10 on the other side by the conductive film 8 having a light shielding property. Absent. That is, since the first photosensitive layers 10 and 10 on both sides can be simultaneously exposed with a desired pattern with high accuracy, the front and back of the first photosensitive layers 10 and 10 can be easily aligned in a single process. It can be patterned and has excellent productivity. Examples of materials used for the light-shielding conductive film 8 include aluminum, nickel, copper, silver, and tin. The film thickness is sufficient if the exposure light can be blocked, for example, 20 to 1000 nm for copper. More preferably, the thickness is 30 nm or more in terms of light shielding properties. More preferably, it is good to set it as 100-500 nm. This is because a highly conductive film can be obtained by setting the thickness to 100 nm or more, and a film that is easy to handle and excellent in workability can be obtained by setting the thickness to 500 nm or less.

図8は、静電センサ用片面導電膜付フィルムの成膜装置の構成の一例を示す概略図である。図示する成膜装置30は、所定の真空度に維持されている真空チャンバ31の内部に、ロール状の基材フィルム2と熱ジワ防止フィルム16の積層体18を連続的に繰り出す巻出し部32と、この巻出し部32から繰り出された積層体18を巻き取る巻取り部33とを備えている。巻出し部32から繰り出された積層体18はスパッタ室34に案内され、スパッタ室34では、メインローラ35の周面に基材フィルム2側を外向きにするように巻き付けられた状態で、透光性を有する基材フィルム2の表面に上述した透光性を有する導電膜7および遮光性を有する導電膜8が順に形成される。   FIG. 8 is a schematic diagram illustrating an example of a configuration of a film forming apparatus for a film with a single-sided conductive film for an electrostatic sensor. The illustrated film forming apparatus 30 includes an unwinding unit 32 that continuously feeds a laminate 18 of a roll-shaped base film 2 and a thermal wrinkle prevention film 16 into a vacuum chamber 31 that is maintained at a predetermined degree of vacuum. And a winding unit 33 that winds up the laminated body 18 fed out from the unwinding unit 32. The laminated body 18 fed out from the unwinding section 32 is guided to the sputtering chamber 34, and in the sputtering chamber 34, the substrate 18 is wound around the peripheral surface of the main roller 35 with the base film 2 side facing outward. The conductive film 7 having the above-described translucency and the conductive film 8 having a light-shielding property are sequentially formed on the surface of the base film 2 having the light property.

スパッタ室34は、メインローラ35の周囲を囲むように第1スパッタ室34A、第2スパッタ室34B、第3スパッタ室34C、第4スパッタ室34Dおよび第5スパッタ室34Eが順に形成され、内部に第1ターゲット36a、第2ターゲット36b、第3ターゲット36c、第4ターゲット36dおよび第5ターゲット36eがそれぞれ配置されている。本実施の形態において、第1ターゲット36aは透光性を有する導電膜7形成用のターゲットで構成され、第2〜第5ターゲット36b〜36eは遮光性を有する導電膜8形成用のターゲットで構成されている。   In the sputter chamber 34, a first sputter chamber 34A, a second sputter chamber 34B, a third sputter chamber 34C, a fourth sputter chamber 34D, and a fifth sputter chamber 34E are formed in this order so as to surround the main roller 35. A first target 36a, a second target 36b, a third target 36c, a fourth target 36d, and a fifth target 36e are arranged. In the present embodiment, the first target 36a is composed of a target for forming a light-transmitting conductive film 7, and the second to fifth targets 36b to 36e are composed of targets for forming a light-shielding conductive film 8. Has been.

なお、第1ターゲット36aは、上述した透光性を有する導電膜7の構成金属の種類に応じて選定されるもので、例えばITO膜であれば、ITO焼結体などのターゲットが用いられる。   In addition, the 1st target 36a is selected according to the kind of constituent metal of the electrically conductive film 7 which has the translucency mentioned above, For example, if it is an ITO film | membrane, targets, such as an ITO sintered compact, are used.

また、第2〜第5ターゲット36b〜36eは、上述した遮光性を有する導電膜8の構成金属の種類に応じて選定されるもので、例えば銅膜であれば、銅のターゲットが用いられる。   Moreover, the 2nd-5th targets 36b-36e are selected according to the kind of constituent metal of the electrically conductive film 8 which has the light-shielding property mentioned above, For example, if it is a copper film, a copper target will be used.

各スパッタ室34A〜34Eには、スパッタ用のアルゴン(Ar)の導入配管37a〜37eがそれぞれ設けられており、およそ0.1Paに調圧されている。   In each of the sputtering chambers 34A to 34E, sputtering argon (Ar) introduction pipes 37a to 37e are provided, respectively, and the pressure is adjusted to about 0.1 Pa.

以上のような構成の静電センサ用片面導電膜付フィルムの成膜装置30では、巻出し部32から繰り出された基材フィルム2と熱ジワ防止フィルム16の積層体18は、スパッタ室34において透光性を有する導電膜7および遮光性を有する導電膜8の連続成膜が行われて、巻取り部33に巻き取られる。   In the film forming apparatus 30 for a single-sided conductive film for an electrostatic sensor having the above-described configuration, the laminate 18 of the base film 2 and the thermal wrinkle prevention film 16 fed out from the unwinding section 32 is placed in the sputtering chamber 34. The conductive film 7 having a light-transmitting property and the conductive film 8 having a light-shielding property are continuously formed and wound around the winding portion 33.

スパッタ室34においては、第1スパッタ室34Aで所定厚のITO膜が形成される。そして、次の第2〜第5スパッタ室34B〜34Eで所定厚の銅の連続成膜が行われる。   In the sputtering chamber 34, an ITO film having a predetermined thickness is formed in the first sputtering chamber 34A. Then, continuous film formation of copper of a predetermined thickness is performed in the next second to fifth sputtering chambers 34B to 34E.

透光性を有する導電膜7および遮光性を有する導電膜8の成膜の後、成膜装置30の巻取り部33に巻き取られた積層体18は、その後、熱ジワ防止フィルム16が剥離除去されて静電センサ用片面導電膜付フィルム9となる(図9参照)。熱ジワ防止フィルム16の基材フィルム2に対する仮接着の粘着力は、7〜9N/25mmである。仮接着の粘着力が7N/25mmに満たないと、透光性を有する導電膜7および遮光性を有する導電膜8の成膜前又は成膜中に熱ジワ防止フィルム16を剥離しやく本発明の効果が得られない。また、仮接着の粘着力が9N/25mmを超えると、透光性を有する導電膜7および遮光性を有する導電膜8の成膜後に熱ジワ防止フィルム16を剥離しにくくなる。   After the film formation of the light-transmitting conductive film 7 and the light-shielding conductive film 8, the laminate 18 wound around the winding portion 33 of the film forming apparatus 30 is then peeled off from the thermal wrinkle prevention film 16. The film 9 with a single-sided conductive film for electrostatic sensors is removed (see FIG. 9). The adhesive force of temporary adhesion of the thermal wrinkle prevention film 16 to the base film 2 is 7 to 9 N / 25 mm. If the adhesive force of temporary adhesion is less than 7 N / 25 mm, the thermal wrinkle prevention film 16 is easily peeled off before or during the formation of the light-transmitting conductive film 7 and the light-shielding conductive film 8. The effect of can not be obtained. Moreover, when the adhesive force of temporary adhesion exceeds 9 N / 25 mm, it becomes difficult to peel off the thermal wrinkle prevention film 16 after the film formation of the light-transmitting conductive film 7 and the light-shielding conductive film 8.

また、熱ジワ防止フィルム16の剥離後、前記積層体18の透光性を有する導電膜7および遮光性を有する導電膜8が形成された側の面とは反対側の面には、熱ジワ防止フィルム16を仮接着するために用いた接着剤17が残る。この接着剤17は、一組の得られた片面導電膜付フィルム9同士を遮光性の導電膜8が外側になるように貼り合わせる際には、片面導電膜付フィルム9同士を接着するために再利用される。   Further, after the thermal wrinkle prevention film 16 is peeled off, the surface of the laminate 18 opposite to the surface on which the conductive film 7 having a light-transmitting property and the conductive film 8 having a light-shielding property are formed is provided with a thermal wrinkle. The adhesive 17 used to temporarily bond the prevention film 16 remains. This adhesive 17 is used to bond the films 9 with single-sided conductive film 9 together when the obtained films 9 with single-sided conductive film are bonded together so that the light-shielding conductive film 8 is on the outside. Reused.

なお、本発明は前記第1実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記第1実施形態では透光性を有する導電膜7および遮光性を有する導電膜8の成膜にスパッタリングが用いられているが、スパッタリング以外にも、真空蒸着法やイオンプレーティング法などの他の物理蒸着法(PVD)も適用可能である。   In addition, this invention is not limited to the said 1st Embodiment, It can implement in another various aspect. For example, in the first embodiment, sputtering is used to form the light-transmitting conductive film 7 and the light-shielding conductive film 8, but other than sputtering, a vacuum deposition method, an ion plating method, etc. Other physical vapor deposition (PVD) methods are also applicable.

また、前記第1実施形態ではラミネートロール21とラミネートニップロール22の間でラミネート時に加熱しながら挟圧しているが、接着剤17の塗布後の平滑性が得られるならば加熱せずに挟圧するだけでもよい。   Further, in the first embodiment, the laminating roll 21 and the laminating nip roll 22 are nipped while being heated at the time of laminating. However, if smoothness after application of the adhesive 17 can be obtained, the nipping is performed without heating. But you can.

また、前記第1実施形態ではスパッタリングによる透光性を有する導電膜7および遮光性を有する導電膜8の成膜後、直ぐに熱ジワ防止フィルム16が剥離除去されているが、熱ジワ防止フィルムの剥離前に遮光性を有する導電膜8上に感光層10(図4Bに示す第1感光層10に相当)を積層してもよい(図10参照)。この場合、片面導電膜付フィルム9同士を遮光性の導電膜8が外側になるように貼り合わせた後に第1感光層10を積層する必要はなくなる。感光層10は、高圧水銀灯、超高圧水銀灯、レーザー光線又はメタルハライドランプなどで露光しアルカリ溶液などで現像が可能な厚さ10〜20μmのアクリル系フォトレジスト材料などで構成する。感光層10の形成方法は、グラビア、スクリーン、オフセットなどの汎用の印刷法のほか、各種コーターによる方法、塗装、ディッピングなどの方法、ドライフィルムレジスト(DFR)法などの各種方法が挙げられる。   In the first embodiment, the thermal wrinkle prevention film 16 is peeled and removed immediately after the formation of the light-transmitting conductive film 7 and the light-shielding conductive film 8 by sputtering. Before peeling, a photosensitive layer 10 (corresponding to the first photosensitive layer 10 shown in FIG. 4B) may be laminated on the light-shielding conductive film 8 (see FIG. 10). In this case, it is not necessary to laminate the first photosensitive layer 10 after the films 9 with single-sided conductive films are bonded together so that the light-shielding conductive film 8 is on the outside. The photosensitive layer 10 is made of an acrylic photoresist material having a thickness of 10 to 20 [mu] m that can be exposed with a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a laser beam or a metal halide lamp and developed with an alkaline solution or the like. Examples of the method for forming the photosensitive layer 10 include general-purpose printing methods such as gravure, screen, and offset, methods using various coaters, methods such as painting and dipping, and various methods such as a dry film resist (DFR) method.

また、スパッタ成膜の後に熱処理などの方法により透光性を有する導電膜7を結晶化させておくのが好ましい。結晶化によりエッチング耐性が向上し、より選択的に遮光性を有する導電膜8のみをエッチングしやすくできるためである。   Further, it is preferable to crystallize the light-transmitting conductive film 7 by a method such as heat treatment after the sputter film formation. This is because crystallization improves the etching resistance and makes it easier to etch only the conductive film 8 having a light shielding property more selectively.

また、熱ジワ防止フィルム16と仮接着される基材フィルム2は、片面又は両面に種々の機能層が予め設けられていてもよい。例えば、基材フィルム2の保護のためにハードコート層を片面又は両面に設けることができる。また、基材フィルム2の透光性を有する導電膜7を形成する側の面に光学調整層を設けることができる。   Moreover, the base film 2 temporarily bonded to the thermal wrinkle prevention film 16 may be provided with various functional layers on one side or both sides in advance. For example, a hard coat layer can be provided on one side or both sides for protecting the base film 2. In addition, an optical adjustment layer can be provided on the surface of the base film 2 on which the conductive film 7 having translucency is formed.

また、前記第1実施形態では熱ジワ防止フィルム16の接着剤17と接する面に離型処理を施すことが記載されているが、逆に基材フィルム2の接着剤17と接する面に離型処理を施すことにより、熱ジワ防止フィルム16と共に接着剤17を剥離させてもよい。なお、一組の得られた片面導電膜付フィルム9のいずれもが接着剤17を剥離したものである場合、片面導電膜付フィルム9同士を接着するために新たに接着剤を塗布する必要がある。また、一組の得られた片面導電膜付フィルム9のいずれか一方のみが接着剤17を剥離したものである場合、他方の片面導電膜付フィルム9に残った接着剤17が片面導電膜付フィルム9同士を接着するために再利用される。さらに、前述のように、基材フィルム2の接着剤17と接する面にハードコート層が設けられている場合、ハードコート層に離型処理の働きを兼ねさせることもできる。   Further, in the first embodiment, it is described that the surface of the thermal wrinkle prevention film 16 that contacts the adhesive 17 is subjected to mold release treatment, but conversely, the surface of the base film 2 that contacts the adhesive 17 is released from the mold. You may peel the adhesive agent 17 with the heat wrinkle prevention film 16 by giving a process. In addition, when all of the obtained film 9 with a single-sided conductive film are the ones from which the adhesive 17 has been peeled off, it is necessary to newly apply an adhesive to bond the single-sided conductive film 9 with each other. is there. In addition, when only one of the pair of obtained films 9 with a single-sided conductive film is obtained by removing the adhesive 17, the adhesive 17 remaining on the other film 9 with a single-sided conductive film is attached with a single-sided conductive film. It is reused for bonding the films 9 together. Furthermore, as described above, when a hard coat layer is provided on the surface of the base film 2 that is in contact with the adhesive 17, the hard coat layer can also function as a release treatment.

《実施例》
PCフィルム(100μm)からなる基材フィルムに、シリコン系樹脂を塗布して離型処理が施されたPETフィルムフィルム(125μm)からなる熱ジワ防止フィルムがアクリル系接着剤を介してラミネートして仮接着された積層体18を用い、当該積層体18の基材フィルム側の面上にITO膜(20nm)をスパッタ成膜し、さらにその上に銅膜(300nm)を連続してスパッタ成膜した。その後、熱ジワ防止フィルムを剥離して、静電センサ用片面導電膜付フィルムを得た。
"Example"
A thermal wrinkle prevention film made of a PET film (125 μm) obtained by applying a silicone resin to a base film made of a PC film (100 μm) and being subjected to a release treatment is laminated with an acrylic adhesive temporarily. Using the bonded laminate 18, an ITO film (20 nm) was formed by sputtering on the surface of the laminate 18 on the base film side, and a copper film (300 nm) was continuously formed thereon by sputtering. . Thereafter, the thermal wrinkle prevention film was peeled off to obtain a film with a single-sided conductive film for electrostatic sensors.

評価は、高パワーでスパッタ成膜を行なって熱ジワが発生するか(評価×)、熱ジワが発生しないか(評価○)を肉眼で観察することで行なった(表1参照)。なお、比較のため、熱ジワ防止フィルムなしの従来の構造における熱ジワが発生する例、低パワーでスパッタ成膜を行なって熱ジワの発生を抑えた例も同表に示す。   The evaluation was performed by observing with the naked eye whether thermal wrinkles were generated by performing sputter film formation at high power (evaluation x) or thermal wrinkles were not generated (evaluation o) (see Table 1). For comparison, an example in which thermal wrinkles are generated in a conventional structure without a thermal wrinkle prevention film and an example in which generation of thermal wrinkles is suppressed by performing sputter film formation at a low power are also shown in the same table.

Figure 2012194644
Figure 2012194644

表1から明らかなように、熱ジワ防止フィルムの仮接着(本発明)により、熱ジワ防止フィルム入なし(従来例)の場合と比較して、高パワーでの熱ジワの発生が防止されている。また、熱ジワ防止フィルムの仮接着(本発明)により高パワーでの成膜が可能なので、導電層の成膜生産性に優れる。   As can be seen from Table 1, the temporary adhesion of the thermal wrinkle prevention film (the present invention) prevents the generation of thermal wrinkles at high power compared to the case without the thermal wrinkle prevention film (conventional example). Yes. Further, since the film can be formed with high power by temporary adhesion (the present invention) of the thermal wrinkle prevention film, the film formation productivity of the conductive layer is excellent.

本願発明はPDA、ハンディターミナルなど携帯情報端末、コピー機、ファクシミリなどOA機器、スマートフォン、携帯電話機、携帯ゲーム機器、電子辞書、カーナビシステム、小型PC、各種家電品等に組み込まれる静電センサの製造に用いられる片面導電膜付フィルムの製造方法に関するものである。   The present invention is a manufacturing of electrostatic sensors incorporated in PDAs, handheld terminals and other portable information terminals, copiers, facsimile and other office automation equipment, smartphones, mobile phones, portable game devices, electronic dictionaries, car navigation systems, small PCs, various home appliances, etc. The present invention relates to a method for producing a film with a single-sided conductive film used in the manufacturing process.

1 静電センサ
2 基材フィルム
3 中央窓部
4 電極パターン
5 外枠部
6 細線引き回し回路パターン
7 透光性を有する導電膜
8 遮光性を有する導電膜
9 片面導電膜付フィルム
10 第1感光層(感光層)
11,12 マスク
13 第2感光層
14,15 マスク
16 熱ジワ防止フィルム
17 接着剤
18 積層体
19 端子部
20 コーティングロール
21 ラミネートロール
22 ラミネートニップロール
23 冷却ロール
24 バックアップロール
30 成膜装置
31 真空チャンバ
32 巻出し部
33 巻取り部
34 スパッタ室
35 メインローラ
34A〜34E 第1〜5スパッタ室
36a〜36e 第1〜5ターゲット
37a〜37e 導入配管
40 露光光線
46,47 菱形電極
469.479 接続配線
DESCRIPTION OF SYMBOLS 1 Electrostatic sensor 2 Base film 3 Central window part 4 Electrode pattern 5 Outer frame part 6 Thin wire drawing circuit pattern 7 Light-transmitting conductive film 8 Light-shielding conductive film 9 Single-sided conductive film 10 First photosensitive layer (Photosensitive layer)
DESCRIPTION OF SYMBOLS 11,12 Mask 13 2nd photosensitive layer 14,15 Mask 16 Thermal wrinkle prevention film 17 Adhesive agent 18 Laminated body 19 Terminal part 20 Coating roll 21 Laminating roll 22 Laminating nip roll 23 Cooling roll 24 Backup roll 30 Film-forming apparatus 31 Vacuum chamber 32 Unwinding section 33 Winding section 34 Sputtering chamber 35 Main rollers 34A to 34E First to fifth sputtering chambers 36a to 36e First to fifth targets 37a to 37e Introducing piping 40 Exposure light beam 46, 47 Diamond electrode 469.479 Connection wiring

Claims (7)

透光性を有する基材フィルムと熱ジワ防止フィルムとを接着剤を介してラミネートして、前記基材フィルムの片面に前記熱ジワ防止フィルムが仮接着された積層体を得る工程と、
前記積層体の前記基材フィルム側の表面に物理蒸着法によって透光性を有する導電膜を積層する工程と、
前記透光性を有する導電膜上に物理蒸着法によって遮光性を有する導電膜を積層する工程と、
前記透光性を有する導電膜および前記遮光性を有する導電膜の設けられた前記積層体から前記熱ジワ防止フィルムを剥離する工程と、を備えたことを特徴とする静電センサ用片面導電層付フィルムの製造方法。
Laminating a base film having translucency and a thermal wrinkle prevention film via an adhesive to obtain a laminate in which the thermal wrinkle prevention film is temporarily bonded to one side of the base film;
Laminating a conductive film having translucency by physical vapor deposition on the base film side surface of the laminate;
A step of laminating a light-shielding conductive film by a physical vapor deposition method on the light-transmitting conductive film;
A step of peeling the thermal wrinkle prevention film from the laminate provided with the light-transmitting conductive film and the light-shielding conductive film, and a single-sided conductive layer for an electrostatic sensor A manufacturing method of attached film.
前記物理蒸着法が、スパッタリングである請求項1記載の静電センサ用片面導電層付フィルムの製造方法。   The method for producing a film with a single-sided conductive layer for electrostatic sensors according to claim 1, wherein the physical vapor deposition is sputtering. 前記透光性を有する導電膜が、ITO膜である請求項1又は請求項2記載の静電センサ用片面導電層付フィルムの製造方法。   The method for producing a film with a single-sided conductive layer for an electrostatic sensor according to claim 1 or 2, wherein the light-transmitting conductive film is an ITO film. 前記遮光性を有する導電膜が、銅膜である請求項1〜3のいずれかに記載の静電センサ用片面導電層付フィルムの製造方法。   The method for producing a film with a single-sided conductive layer for an electrostatic sensor according to claim 1, wherein the light-shielding conductive film is a copper film. 前記基材フィルムが15〜1000μm厚のPCフィルムである請求項1〜4のいずれかに記載の静電センサ用片面導電層付フィルムの製造方法。   The method for producing a film with a single-sided conductive layer for an electrostatic sensor according to any one of claims 1 to 4, wherein the substrate film is a PC film having a thickness of 15 to 1000 µm. 前記熱ジワ防止フィルムがPETフィルムである請求項1〜5のいずれかに記載の静電センサ用片面導電層付フィルムの製造方法。   The said heat wrinkle prevention film is a PET film, The manufacturing method of the film with a single-sided conductive layer for electrostatic sensors in any one of Claims 1-5. 前記熱ジワ防止フィルムを剥離する前に、前記遮光性を有する導電膜上に感光層を積層する請求項1〜6のいずれかに前記載の静電センサ用片面導電層付フィルムの製造方法。   The method for producing a film with a single-sided conductive layer for an electrostatic sensor according to any one of claims 1 to 6, wherein a photosensitive layer is laminated on the light-shielding conductive film before the thermal wrinkle prevention film is peeled off.
JP2011056508A 2011-03-15 2011-03-15 Manufacturing method of film with one-side conductive film for electrostatic sensor Withdrawn JP2012194644A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011056508A JP2012194644A (en) 2011-03-15 2011-03-15 Manufacturing method of film with one-side conductive film for electrostatic sensor
PCT/JP2012/054860 WO2012124462A1 (en) 2011-03-15 2012-02-28 Method for producing electrostatic sensor film having conductive film on one surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056508A JP2012194644A (en) 2011-03-15 2011-03-15 Manufacturing method of film with one-side conductive film for electrostatic sensor

Publications (1)

Publication Number Publication Date
JP2012194644A true JP2012194644A (en) 2012-10-11

Family

ID=46830538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056508A Withdrawn JP2012194644A (en) 2011-03-15 2011-03-15 Manufacturing method of film with one-side conductive film for electrostatic sensor

Country Status (2)

Country Link
JP (1) JP2012194644A (en)
WO (1) WO2012124462A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203421A (en) * 2013-04-10 2014-10-27 株式会社タッチパネル研究所 Capacitive touch panel
CN104978058A (en) * 2014-04-04 2015-10-14 宝宸(厦门)光学科技有限公司 Circuit element and manufacture method thereof
KR20160014551A (en) 2014-07-29 2016-02-11 다이니폰 인사츠 가부시키가이샤 Laminate, conductive laminate and touch panel
WO2016114041A1 (en) * 2015-01-13 2016-07-21 日本写真印刷株式会社 Touch input sensor manufacturing method and photosensitive conductive film
KR20190038803A (en) 2016-07-26 2019-04-09 파나소닉 아이피 매니지먼트 가부시키가이샤 LIQUID CRYSTAL FOR ELECTROPHOTABLE ELECTRODE, TRANSFORMING ELECTRODE MATERIAL, DEVICE AND METHOD FOR MANUFACTURING LAMINATED PANEL

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057637A1 (en) * 2007-10-31 2009-05-07 Sumitomo Metal Mining Co., Ltd. Flexible transparent conductive film and flexible functional device using same
JP4601710B1 (en) * 2009-09-11 2010-12-22 日本写真印刷株式会社 Narrow frame touch input sheet and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203421A (en) * 2013-04-10 2014-10-27 株式会社タッチパネル研究所 Capacitive touch panel
CN104978058A (en) * 2014-04-04 2015-10-14 宝宸(厦门)光学科技有限公司 Circuit element and manufacture method thereof
CN104978058B (en) * 2014-04-04 2019-05-07 宝宸(厦门)光学科技有限公司 Circuit element and its manufacturing method
KR20160014551A (en) 2014-07-29 2016-02-11 다이니폰 인사츠 가부시키가이샤 Laminate, conductive laminate and touch panel
KR102054166B1 (en) * 2014-07-29 2019-12-10 다이니폰 인사츠 가부시키가이샤 Laminate, conductive laminate and touch panel
WO2016114041A1 (en) * 2015-01-13 2016-07-21 日本写真印刷株式会社 Touch input sensor manufacturing method and photosensitive conductive film
JP2016130922A (en) * 2015-01-13 2016-07-21 日本写真印刷株式会社 Method for manufacturing touch input sensor, and photosensitive conductive film
US9874814B2 (en) 2015-01-13 2018-01-23 Nissha Printing Co., Ltd. Method for producing touch input sensor and photosensitve conductive film
KR20190038803A (en) 2016-07-26 2019-04-09 파나소닉 아이피 매니지먼트 가부시키가이샤 LIQUID CRYSTAL FOR ELECTROPHOTABLE ELECTRODE, TRANSFORMING ELECTRODE MATERIAL, DEVICE AND METHOD FOR MANUFACTURING LAMINATED PANEL
US10691276B2 (en) 2016-07-26 2020-06-23 Panasonic Intellectual Property Management Co., Ltd. Laminate for see-through electrodes, see-through electrode material, device and method for producing laminate for see-through electrodes

Also Published As

Publication number Publication date
WO2012124462A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
CA2772040C (en) Narrow frame touch input sheet, manufacturing method of the same, and conductive sheet used in narrow frame touch input sheet
KR100968221B1 (en) Touchscreen panel and fabrication method thereof
WO2012124462A1 (en) Method for producing electrostatic sensor film having conductive film on one surface
US20140014400A1 (en) Transfer sheet provided with transparent conductive film mainly composed of graphene, method for manufacturing same, and transparent conductor
WO2017097204A1 (en) Metal mesh single-film dual sided capacitive screen sensor and manufacturing method thereof
CN103941918A (en) Graphene thin film touch sensor and manufacturing method thereof
JP2011060146A (en) Narrow frame touch input sheet and manufacturing method thereof
JP2013242770A (en) Capacitance type touch panel substrate, and manufacturing method and manufacturing device of the same
JP4855536B1 (en) Manufacturing method of touch input sheet with excellent rust prevention
CN105531114A (en) Transferable transparent conductive patterns and display stack materials
CN107430462B (en) Method and apparatus for manufacturing thin film touch sensor
WO2015045408A1 (en) Touch panel
JP2012246511A (en) Method for manufacturing metal thin film-layered substrate and method for manufacturing capacitance type touch panel
WO2017131202A1 (en) Conductive laminate film
JP2012133598A (en) Cover glass-integrated sensor
TWI564760B (en) Touch panel and manufacture method thereof
US20140027021A1 (en) Method for manufacturing conductive film roll
JP2013149196A (en) Touch panel sensor, display device with touch panel, and method of manufacturing touch panel sensor
TW201446981A (en) Touch panel, preparing method thereof, and Ag-Pd-Nd alloy for touch panel
JP5887953B2 (en) Manufacturing method of touch panel
CN114020171B (en) Manufacturing method of metal sensing electrode structure, touch display device and mobile terminal
KR20120132296A (en) Process for producing metal thin film laminated substrate and process for producing capacitance type touch panel
JP2017107426A (en) Substrate with conductive pattern, method for manufacturing substrate with conductive pattern, and touch panel
KR101381240B1 (en) Manufacturing method of touch screen panel and touch screen panel using the same
TW201205600A (en) Transparent electrode film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603