JP2012193689A - Variable valve mechanism control apparatus of internal combustion engine - Google Patents

Variable valve mechanism control apparatus of internal combustion engine Download PDF

Info

Publication number
JP2012193689A
JP2012193689A JP2011059168A JP2011059168A JP2012193689A JP 2012193689 A JP2012193689 A JP 2012193689A JP 2011059168 A JP2011059168 A JP 2011059168A JP 2011059168 A JP2011059168 A JP 2011059168A JP 2012193689 A JP2012193689 A JP 2012193689A
Authority
JP
Japan
Prior art keywords
intake
variable valve
negative pressure
valve mechanism
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011059168A
Other languages
Japanese (ja)
Inventor
Yukimori Sasaki
幸盛 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2011059168A priority Critical patent/JP2012193689A/en
Priority to DE102012102134A priority patent/DE102012102134A1/en
Priority to US13/421,267 priority patent/US20120234272A1/en
Priority to CN201210072966.7A priority patent/CN102678344B/en
Publication of JP2012193689A publication Critical patent/JP2012193689A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To secure an intake negative pressure during idle or deceleration/coasting and to reliably actuate accessories or a brake device by the secured intake negative pressure.SOLUTION: The variable valve mechanism control apparatus of an internal combustion engine includes a variable valve mechanism for changing the phase of an operating angle which determines lift timing of a valve, and a control unit for changing the phase of the variable valve mechanism when a predetermined operation condition is established. A temperature of the internal combustion engine, an accelerator opening, and an intake negative pressure are detected as a predetermined operation condition. When the detected temperature of the internal combustion engine is a fixed value or more which can be considered to be in warm-up state, when the detected accelerator opening is a fixed value or less which can be considered to be in idle state, and when the detected intake pressure is a predetermined value or less, the operating angle of the variable valve mechanism is changed so as to be converged to a predetermined operation angle which generates a predetermined intake negative pressure.

Description

この発明は、内燃機関が生じる吸気負圧を利用して補機類やブレーキ装置を動作する制御技術に関する。
特に、可変動弁機構(「可変バルブタイミング機構」または「VVT機構」、あるいは単に「VVT」ともいう。)を備えた内燃機関において補機類やブレーキ装置を動作する為の吸気負圧制御に関する。
The present invention relates to a control technique for operating auxiliary machinery and a brake device using intake negative pressure generated by an internal combustion engine.
In particular, the present invention relates to intake negative pressure control for operating accessories and brake devices in an internal combustion engine equipped with a variable valve mechanism (also referred to as “variable valve timing mechanism”, “VVT mechanism”, or simply “VVT”). .

通常、自動車におけるブレーキ装置には、ブレーキ制動力を高めるためのブレーキブースタが組み合わせられている。
このブレーキブースタは、インテークマニホルド(以下「インマニ」ともいう。)内の負圧を利用するものが一般的である。
このため、前記ブレーキ装置のブレーキブースタの倍力機構の動作は、吸気負圧(「インテークマニホルド内圧」ともいう。)を利用して行っている。
一方、可変動弁機構付きの車両では、可変動弁機構の制御目標値は燃費向上のために負圧を少なくする設定としている。
そのためにブレーキに必要な負圧を確保できない場合がある。
また、補機類の動作として、燃料タンクからの蒸発ガスを燃焼室へ吸入するパージ動作、ブローバイガス(内燃機関の燃焼室からクランクケース内に漏れた混合気や燃焼ガス)を燃焼室へ吸入する動作は、吸気負圧を利用して行っている。
このとき、吸気バルブが十分な位相変更角を有する可変動弁機構を持つエンジンであれば、可変動弁角度を変化させることで、吸気負圧を増加させたり、減少させたりすることができる。
そして、ブレーキブースタに必要な吸気管圧を確保する為に、可変動弁機構を変化させる技術が知られている。
例えば、後述の特許文献1に開示されるものである。
最近のガソリンエンジンでは、燃費向上のため、スロットル閉じに因る吸気抵抗増大を抑制し、アイドルでの吸気負圧を少なくする設定としている。
Usually, a brake booster for increasing a braking force is combined with a brake device in an automobile.
This brake booster generally uses a negative pressure in an intake manifold (hereinafter also referred to as “intake manifold”).
For this reason, the operation of the booster mechanism of the brake booster of the brake device is performed using intake negative pressure (also referred to as “intake manifold internal pressure”).
On the other hand, in a vehicle with a variable valve mechanism, the control target value of the variable valve mechanism is set to reduce the negative pressure in order to improve fuel consumption.
Therefore, the negative pressure required for the brake may not be ensured.
Also, as the operation of the auxiliary machinery, purge operation for sucking evaporative gas from the fuel tank into the combustion chamber, blow-by gas (air mixture or combustion gas leaking from the combustion chamber of the internal combustion engine into the crankcase) into the combustion chamber The operation is performed using the intake negative pressure.
At this time, if the intake valve is an engine having a variable valve mechanism having a sufficient phase change angle, the intake negative pressure can be increased or decreased by changing the variable valve angle.
And the technique of changing a variable valve mechanism in order to ensure the intake pipe pressure required for a brake booster is known.
For example, it is disclosed in Patent Document 1 described later.
In recent gasoline engines, in order to improve fuel efficiency, an increase in intake resistance due to closing of the throttle is suppressed, and intake negative pressure at idling is reduced.

特開2005−163635号公報JP 2005-163635 A 特開2009−85145号公報JP 2009-85145 A

ところで、従来の内燃機関の可変動弁機構制御装置においては、吸気負圧が一時的に弱くなってもブレーキブースタの容量により倍力機構の動作は可能であるが、やや長い時間にわたり吸気負圧が弱くなると使用頻度に応じて倍力機構の動作は弱くなり、最終的には倍力機構の動作がなくなってしまうので、運転者の操作力だけでブレーキ装置を動作させることになり、不便である。
また、吸気負圧が一時的に弱くなっても、その間の補機類の動作が止まるだけで済むが、やや長い時間にわたり吸気負圧が弱くなると、蒸発ガスやブローバイガスを排出させることができなくなり、潤滑油の劣化を早めたり、未燃ガスの大気放出が生じたりする可能性が生じるという不都合がある。
しかし、アイドルでの吸気負圧を少なくする設定とするように一律に制御していると、大気圧が低くなる高地やエンジン負荷が大きいときには、必要な吸気管圧が確保できないことがある。
例えば、特許文献2に開示されるように、ブレーキブースタの負圧を検出して可変動弁機構の位相を変更する場合、ブレーキ操作の使用によって負圧が減るので、位相変更によってブレーキブースタの負圧を増加させる目的を果たすことができ、この制御が行われている間は、これに付随して補機類の動作を行うこともできる。
しかし、高地における登坂が続く場合、ブレーキの使用頻度がなくブレーキブースタに負圧が確保されている状況では、ブレーキ装置への負圧確保の為の可変動弁機構の位相変更制御が働かないので、吸気負圧が極めて小さい状態が続き、蒸発ガスやブローバイガスを排出させる機会が著しく低くなるという不都合がある。
By the way, in the conventional variable valve mechanism control device for an internal combustion engine, the booster mechanism can be operated by the capacity of the brake booster even if the intake negative pressure temporarily becomes weak, but the intake negative pressure is somewhat longer. If it becomes weaker, the operation of the booster mechanism becomes weaker depending on the frequency of use, and eventually the operation of the booster mechanism will be lost, so the brake device will be operated only by the driver's operating force, which is inconvenient is there.
Also, even if the intake negative pressure temporarily decreases, it is only necessary to stop the operation of the auxiliary equipment in the meantime, but if the intake negative pressure becomes weak for a long time, evaporative gas or blow-by gas can be discharged. This is disadvantageous in that there is a possibility that the deterioration of the lubricating oil is accelerated or the unburned gas is released into the atmosphere.
However, if the control is uniformly performed so as to reduce the intake negative pressure during idling, the necessary intake pipe pressure may not be ensured when the atmospheric pressure is low or the engine load is large.
For example, as disclosed in Patent Document 2, when the negative pressure of the brake booster is detected and the phase of the variable valve mechanism is changed, the negative pressure is reduced by using the brake operation. The purpose of increasing the pressure can be achieved, and while this control is being performed, the operation of the auxiliary equipment can be performed accompanying this.
However, if climbing in the highlands continues, phase change control of the variable valve mechanism for securing negative pressure to the brake device does not work in situations where the brake is not used frequently and negative pressure is secured in the brake booster. There is a disadvantage that the state in which the intake negative pressure is extremely small continues, and the opportunity to discharge the evaporated gas or blow-by gas is remarkably reduced.

この発明は、アイドル時、減速・惰行時の吸気負圧(インテークマニホルド内圧)を確保すること、確保した吸気負圧によって補機類やブレーキ装置を確実に動作させることを目的とする。   An object of the present invention is to ensure intake negative pressure (intake manifold internal pressure) during idling, deceleration, and coasting, and to reliably operate auxiliary equipment and brake devices with the ensured intake negative pressure.

そこで、この発明は、上述不都合を除去するために、バルブのリフト時期を決める作動角の位相を変更する可変動弁機構と、所定の運転条件が成立した場合に可変動弁機構の位相を変更する制御装置を備える内燃機関の可変動弁機構制御装置であって、前記所定の運転条件として内燃機関の温度とアクセル開度と吸気負圧とを検出する内燃機関の可変動弁機構制御装置において、検出された前記内燃機関の温度が暖機状態とみなせる一定値以上であり、かつ、検出された前記アクセル開度がアイドル状態とみなせる一定値以下であり、かつ、検出された吸気負圧が所定値以下である場合、前記可変動弁機構の前記作動角を所定の吸気負圧を生じる所定の作動角に収束するよう変化させることを特徴とする。   In view of this, the present invention eliminates the above-described inconveniences, and changes the phase of the operating valve that determines the valve lift timing and changes the phase of the variable valve mechanism when a predetermined operating condition is satisfied. In the variable valve mechanism control apparatus for an internal combustion engine that detects the temperature, accelerator opening, and intake negative pressure of the internal combustion engine as the predetermined operating conditions, The detected temperature of the internal combustion engine is equal to or higher than a certain value that can be regarded as a warm-up state, the detected accelerator opening is equal to or smaller than a certain value that can be regarded as an idle state, and the detected intake negative pressure is When it is less than or equal to a predetermined value, the operating angle of the variable valve mechanism is changed so as to converge to a predetermined operating angle that generates a predetermined intake negative pressure.

以上詳細に説明した如くこの発明によれば、バルブのリフト時期を決める作動角の位相を変更する可変動弁機構と、所定の運転条件が成立した場合に可変動弁機構の位相を変更する制御装置を備える内燃機関の可変動弁機構制御装置であって、所定の運転条件として内燃機関の温度とアクセル開度と吸気負圧とを検出する内燃機関の可変動弁機構制御装置において、検出された内燃機関の温度が暖機状態とみなせる一定値以上であり、かつ、検出されたアクセル開度がアイドル状態とみなせる一定値以下であり、かつ、検出された吸気負圧が所定値以下である場合、可変動弁機構の作動角を所定の吸気負圧を生じる所定の作動角に収束するよう変化させる。
従って、内燃機関が暖機されたアイドル状態で、吸気負圧が低い場合には、VVTの位置変更によって、吸気負圧を増大させるので、ブレーキ装置や補機の動作を確保することができ、吸気負圧が高いなど他の場合では、燃費要求や排ガス浄化性能要求等に応える位置とすることができ、ブレーキ装置や補機の動作の確保と良好な燃費等とを両立することができる。
As described above in detail, according to the present invention, the variable valve mechanism that changes the phase of the operating angle that determines the lift timing of the valve, and the control that changes the phase of the variable valve mechanism when a predetermined operating condition is satisfied. A variable valve mechanism control apparatus for an internal combustion engine comprising a device, the variable valve mechanism control apparatus for an internal combustion engine detecting a temperature, an accelerator opening, and an intake negative pressure of the internal combustion engine as predetermined operating conditions. The temperature of the internal combustion engine is not less than a certain value that can be regarded as a warm-up state, the detected accelerator opening is not more than a certain value that can be regarded as an idle state, and the detected intake negative pressure is not more than a predetermined value In this case, the operating angle of the variable valve mechanism is changed to converge to a predetermined operating angle that generates a predetermined intake negative pressure.
Therefore, when the internal combustion engine is warmed up and the intake negative pressure is low, the intake negative pressure is increased by changing the position of the VVT, so that the operation of the brake device and the auxiliary equipment can be ensured. In other cases, such as when the intake negative pressure is high, the position can be met to meet the demand for fuel efficiency, exhaust gas purification performance, etc., and it is possible to ensure both the operation of the brake device and the auxiliary machine and good fuel efficiency.

図1は内燃機関の可変動弁機構制御装置の制御用フローチャートである。(実施例1)FIG. 1 is a flowchart for control of a variable valve mechanism control apparatus for an internal combustion engine. Example 1 図2は内燃機関の可変動弁機構制御装置のシステム図である。(実施例1)FIG. 2 is a system diagram of a variable valve mechanism control apparatus for an internal combustion engine. Example 1 図3はリフト量とクランクアングルとの関係を示す図である。(実施例1)FIG. 3 is a diagram showing the relationship between the lift amount and the crank angle. Example 1 図4は内燃機関の可変動弁機構制御装置のシステム図である。(実施例2)FIG. 4 is a system diagram of a variable valve mechanism control apparatus for an internal combustion engine. (Example 2)

以下図面に基づいてこの発明の実施例を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1〜図3はこの発明の第1実施例を示すものである。
図2において、1は内燃機関(図示せず)の可変動弁機構制御装置である。
この可変動弁機構制御装置1は、図2に示す如く、バルブのリフト時期を決める作動角の位相を変更する可変動弁機構(「可変バルブタイミング機構」または「VVT機構」ともいう。)2と、所定の運転条件が成立した場合に可変動弁機構2の位相を変更する制御装置3を備えている。
このとき、この制御装置3は、各種信号を入力して所定の運転条件が成立した場合に、前記可変動弁機構2の位相を変更するVVT制御機能を有している。
また、前記可変動弁機構制御装置1は、前記制御装置3の入力側に、水温センサ4と、クランク角センサ5と、吸気カム角センサ6と、スロットル/アクセル開度センサ7と、大気圧センサ8と、吸気圧センサ9とを備えている。
このとき、前記水温センサ4は、エンジン水温を検出して内燃機関の温度を検出するものである。
前記クランク角センサ5は、クランク角から回転速度を検出する。
前記吸気カム角センサ6は、図示しない吸気カムの位相を検出する。
前記スロットル/アクセル開度センサ7は、アクセル開度を検出する。
前記大気圧センサ8は、大気圧を検出する。
前記吸気圧センサ9は、吸気負圧(「インテークマニホルド内圧」ともいう。)を検出する。
つまり、前記可変動弁機構制御装置1は、前記所定の運転条件として内燃機関の温度とアクセル開度と吸気負圧とを検出している。
そして、前記可変動弁機構制御装置1は、前記制御装置3の出力側に、前記可変動弁機構2を備えている。
1 to 3 show a first embodiment of the present invention.
In FIG. 2, reference numeral 1 denotes a variable valve mechanism control device for an internal combustion engine (not shown).
As shown in FIG. 2, the variable valve mechanism control apparatus 1 is a variable valve mechanism (also referred to as “variable valve timing mechanism” or “VVT mechanism”) 2 that changes the phase of the operating angle that determines the lift timing of the valve. And a control device 3 that changes the phase of the variable valve mechanism 2 when a predetermined operating condition is satisfied.
At this time, the control device 3 has a VVT control function for changing the phase of the variable valve mechanism 2 when various signals are input and a predetermined operating condition is satisfied.
Further, the variable valve mechanism control device 1 includes a water temperature sensor 4, a crank angle sensor 5, an intake cam angle sensor 6, a throttle / accelerator opening sensor 7, an atmospheric pressure on the input side of the control device 3. A sensor 8 and an intake pressure sensor 9 are provided.
At this time, the water temperature sensor 4 detects the temperature of the internal combustion engine by detecting the engine water temperature.
The crank angle sensor 5 detects the rotational speed from the crank angle.
The intake cam angle sensor 6 detects the phase of an intake cam (not shown).
The throttle / accelerator opening sensor 7 detects the accelerator opening.
The atmospheric pressure sensor 8 detects atmospheric pressure.
The intake pressure sensor 9 detects intake negative pressure (also referred to as “intake manifold internal pressure”).
That is, the variable valve mechanism control apparatus 1 detects the temperature of the internal combustion engine, the accelerator opening, and the intake negative pressure as the predetermined operating conditions.
The variable valve mechanism control device 1 includes the variable valve mechanism 2 on the output side of the control device 3.

また、前記可変動弁機構制御装置1は、検出された前記内燃機関の温度が暖機状態とみなせる一定値以上であり、かつ、検出された前記アクセル開度がアイドル状態とみなせる一定値以下であり、かつ、検出された吸気負圧が所定値以下である場合、前記可変動弁機構の前記作動角を所定の吸気負圧を生じる所定の作動角に収束するよう変化させる構成を有している。
詳述すれば、前記可変動弁機構制御装置1は、検出された前記内燃機関の温度が暖機状態とみなせる一定値以上、つまり、前記水温センサ4により検出されたエンジン水温Tがエンジン水温条件である一定値t以上であるか否かの判断を行う。
また、前記可変動弁機構制御装置1は、検出された前記アクセル開度がアイドル状態とみなせる一定値以下、つまり、前記スロットル/アクセル開度センサ7により検出されたアクセル開度Aがアクセル開度条件である一定値a以下であるか否かの判断を行う。
更に、前記可変動弁機構制御装置1は、検出された吸気負圧が所定値以下、つまり、前記吸気圧センサ9により検出された吸気負圧P_A−P_Iが負圧条件である所定値p以下であるか否かの判断を行う。このとき、吸気負圧P_A−P_Iは、大気圧P_Aからインテークマニホルド内圧P_Iを減じることにより算出する。
そして、前記可変動弁機構制御装置1は、エンジン水温Tが一定値t以上、かつ、アクセル開度Aが一定値a以下かつ、吸気負圧P_A−P_Iが所定値p以下である場合に、前記可変動弁機構2の作動角を所定の吸気負圧を生じる所定の作動角に収束するよう変化させるものである。
従って、内燃機関が暖機されたアイドル状態で、吸気負圧が低い場合には、前記可変動弁機構2の位置変更によって、吸気負圧を増大させるので、ブレーキ装置や補機の動作を確保することができ、吸気負圧が高いなど他の場合では、燃費要求や排ガス浄化性能要求等に応える位置とすることができ、ブレーキ装置や補機の動作の確保と良好な燃費等とを両立することができる。
Further, the variable valve mechanism control apparatus 1 is configured such that the detected temperature of the internal combustion engine is equal to or greater than a certain value that can be regarded as a warm-up state, and the detected accelerator opening is equal to or less than a certain value that can be regarded as an idle state. And when the detected intake negative pressure is less than or equal to a predetermined value, the operating angle of the variable valve mechanism is changed to converge to a predetermined operating angle that generates a predetermined intake negative pressure. Yes.
More specifically, the variable valve mechanism control apparatus 1 determines that the detected temperature of the internal combustion engine is equal to or higher than a certain value that can be regarded as a warm-up state, that is, the engine water temperature T detected by the water temperature sensor 4 is an engine water temperature condition. It is determined whether or not a certain value t or more.
Further, the variable valve mechanism control apparatus 1 determines that the detected accelerator opening is equal to or less than a certain value that can be regarded as an idle state, that is, the accelerator opening A detected by the throttle / accelerator opening sensor 7 is the accelerator opening. It is determined whether or not the value is a certain value a or less.
Further, in the variable valve mechanism control apparatus 1, the detected intake negative pressure is equal to or less than a predetermined value, that is, the intake negative pressure P_A-P_I detected by the intake pressure sensor 9 is equal to or less than a predetermined value p which is a negative pressure condition. It is determined whether or not. At this time, the intake negative pressure P_A-P_I is calculated by subtracting the intake manifold internal pressure P_I from the atmospheric pressure P_A.
Then, the variable valve mechanism control apparatus 1 determines that the engine water temperature T is equal to or greater than a certain value t, the accelerator opening A is equal to or less than a certain value a, and the intake negative pressure P_A-P_I is equal to or less than a predetermined value p. The operating angle of the variable valve mechanism 2 is changed so as to converge to a predetermined operating angle that generates a predetermined intake negative pressure.
Accordingly, when the internal combustion engine is warmed up and the intake negative pressure is low, the intake negative pressure is increased by changing the position of the variable valve mechanism 2, so that the operation of the brake device and the auxiliary equipment is ensured. In other cases, such as when the intake negative pressure is high, it can be positioned to meet fuel consumption requirements and exhaust gas purification performance requirements, etc. can do.

追記すれば、前記可変動弁機構2を動作させると、吸入空気量が変化し、これに伴いインテークマニホルド(図示せず)内の負圧が変化する。
通常、前記可変動弁機構2の制御目標値は、燃費向上のために負圧を少なくする設定としている。
一方、エアコンやオルタネータ等の補機負荷が大きいときには、ブレーキ負圧不足が起こることがある。
これを回避するため、インテークマニホルドに取り付けられた前記吸気圧センサ9で検出した負圧値に応じて前記可変動弁機構2の制御目標値を変化させることでブレーキ負圧を確保する。
In other words, when the variable valve mechanism 2 is operated, the intake air amount changes, and the negative pressure in the intake manifold (not shown) changes accordingly.
Usually, the control target value of the variable valve mechanism 2 is set to reduce the negative pressure in order to improve fuel consumption.
On the other hand, when the load of auxiliary equipment such as an air conditioner or an alternator is large, the brake negative pressure may be insufficient.
In order to avoid this, the brake negative pressure is ensured by changing the control target value of the variable valve mechanism 2 in accordance with the negative pressure value detected by the intake pressure sensor 9 attached to the intake manifold.

更に、前記可変動弁機構制御装置1は、前記可変動弁機構2を吸気バルブ(図示せず)のみに備える。
つまり、この可変動弁機構2を、図2に示す如く、吸気バルブを最適なバルブタイミング(進角量及び遅角量)とするために吸気OCV(「吸気オイルコントロールバルブ」ともいう。)10によって構成する。
また、前記可変動弁機構制御装置1は、所定の吸気負圧を生じる所定の作動角を、吸気バルブの作動角を遅角する程増大する吹き返しによる吸気負圧減少と、吸気バルブの作動角を進角する程増大する排気バルブとのオーバラップに伴う内部EGRの増大による吸気負圧減少とのバランスによって定まる吸気不圧が増大する中間進角位置とする。
従って、排気バルブの閉じタイミングに関わらず、吸気バルブのリフト中の開き時間がクランク角180度より明らかに大きく設定されている場合でも、吹き返しと内部EGRとのバランスを採って最も吸気負圧が大きい位置に作用角を収束させることができる。
Further, the variable valve mechanism control apparatus 1 includes the variable valve mechanism 2 only in an intake valve (not shown).
In other words, the intake valve OCV (also referred to as “intake oil control valve”) 10 is used for the variable valve mechanism 2 in order to set the intake valve to the optimum valve timing (advance amount and retard amount), as shown in FIG. Consists of.
In addition, the variable valve mechanism control device 1 reduces the intake negative pressure due to the blow-back and increases the predetermined operating angle that generates the predetermined intake negative pressure as the operating angle of the intake valve is delayed, and the operating angle of the intake valve. Is an intermediate advance position at which the intake non-pressure increases by the balance with the decrease in intake negative pressure due to the increase in internal EGR accompanying the overlap with the exhaust valve that increases as the angle is advanced.
Therefore, regardless of the closing timing of the exhaust valve, even when the opening time during lift of the intake valve is set to be clearly larger than the crank angle of 180 degrees, the intake negative pressure is the most balanced with the balance between the blowback and the internal EGR. The operating angle can be converged to a large position.

追記すれば、前記可変動弁機構制御装置1を備える内燃機関では、前記可変動弁機構2は、図3に示す如く、基準となるイニシャル位置から進角側へ動かす。
そして、吸気バルブのリフト中の開き時間(クランク角範囲)がピストンの吸気行程に相当する180度より大きく設定(例えば1〜4割程度アップ)した前記可変動弁機構2を用いている。
また、前記内燃機関は、アクセル開度Aが一定値a以下となるアイドル制御では、吸気バルブを遅く閉じる設定、すなわち吸気バルブが閉じるタイミングを下死点より遅いタイミングとする設定としておき、吸気バルブにおける燃焼室内への吸入ガスをピストンが上昇する圧縮行程中にインテークマニホルド側へ所定量戻すこと、つまり、吹き返しにより、ポンピングロスを軽減している。これに伴い、吸気負圧は減少する。
そして、図3に示す如く、進角方向、すなわち、吸気バルブが早く閉じる方向へ動かすことによって、吹き返しを減少させ、負圧を確保できるようになる。つまり、負圧を確保するために、前記可変動弁機構2の作動角を進角方向、すなわち、吸気バルブを早く閉じる方向へ動かしている。
一方、進角が進み、吸気バルブの開きタイミングが排気バルブの閉じタイミングより早くなると、バルブオーバラップが生じる。バルブオーバラップが増加すると、内部EGR(再吸引されたり、滞留したりして燃焼室内残存する排気ガス)が増加する。排気ガスの圧力は吸気管内圧と比べ比較的高いため、進角させ過ぎると、ガスの流れや圧力の相互影響によって、逆に、吸気負圧が減少することになる。
ここでは、吸気バルブの作動角を閉じ、タイミングが下死点を超えて遅角する程増大する吹き返しによる吸気負圧減少と、吸気バルブの作動角を進角する程増大する排気バルブとのオーバラップに伴う内部EGRの増大による吸気負圧減少とのバランスによって定まる吸気負圧が増大する中間進角位置、すなわち、トレードオフの関係にある両者の谷間となる位置に定まる吸気負圧が増大する中間進角位置を設定し、この位置に収束するように前記可変動弁機構2を作動させている。
このため、進角量については、個々のエンジン諸元に依存するところが大きく、各エンジン固有の進角量の設定を決めるためには、事前に進角量と負圧との相関を実験等により把握しておく必要がある。
機関温度が低く完全暖機となっていない場合、例えば、可変動弁機構2の制御性が充分に確保できない可能性がある一方で、早期暖機するためのファーストアイドル制御により、吸気量および燃料噴射量を増量補正するなどを実施している。このため、このような状況では、負圧確保のための本制御を行わない方がこのましい。
吸気負圧は、大気圧を基準として絶対圧ゼロに近づく程負圧が大きいことになる為、吸気負圧P_A−P_Iが所定値p以下とは、吸気負圧P_A−P_Iが所定値pより大気圧に近いことを指す。
In addition, in the internal combustion engine provided with the variable valve mechanism control device 1, the variable valve mechanism 2 is moved from the initial position as a reference to the advance side as shown in FIG.
Then, the variable valve mechanism 2 is used in which the opening time (crank angle range) during lift of the intake valve is set larger than 180 degrees corresponding to the intake stroke of the piston (for example, about 40 to 40% higher).
The internal combustion engine may be set so that the intake valve is closed late, that is, the intake valve is closed at a timing later than the bottom dead center in idle control where the accelerator opening A is equal to or less than a predetermined value a. The pumping loss is reduced by returning the intake gas into the combustion chamber at a predetermined amount to the intake manifold side during the compression stroke in which the piston rises, that is, by blowing it back. Along with this, the intake negative pressure decreases.
Then, as shown in FIG. 3, by moving the valve in the advance direction, that is, in the direction in which the intake valve is quickly closed, the blow-back is reduced and the negative pressure can be secured. That is, in order to ensure negative pressure, the operating angle of the variable valve mechanism 2 is moved in the advance direction, that is, the direction in which the intake valve is quickly closed.
On the other hand, when the advance angle advances and the opening timing of the intake valve becomes earlier than the closing timing of the exhaust valve, valve overlap occurs. When the valve overlap increases, the internal EGR (exhaust gas remaining in the combustion chamber after being re-sucked or retained) increases. Since the pressure of the exhaust gas is relatively higher than the pressure in the intake pipe, if the valve is advanced too much, the intake negative pressure decreases due to the mutual influence of the gas flow and pressure.
Here, the intake valve operating angle is closed, and the intake negative pressure decrease due to blow-back increases as the timing is delayed beyond the bottom dead center, and the exhaust valve increases as the intake valve operating angle is advanced. The intake negative pressure that is determined at the intermediate advance angle position where the intake negative pressure is determined by the balance with the decrease in the intake negative pressure due to the increase in the internal EGR due to the lap, that is, a position that is a valley between the two in a trade-off relationship, is increased. An intermediate advance position is set, and the variable valve mechanism 2 is operated so as to converge at this position.
For this reason, the amount of advance is largely dependent on the specifications of each engine. To determine the setting of the amount of advance specific to each engine, the correlation between the amount of advance and the negative pressure is experimentally determined beforehand. It is necessary to know.
When the engine temperature is low and the engine is not completely warmed up, for example, the controllability of the variable valve mechanism 2 may not be sufficiently secured, but the intake amount and fuel are reduced by fast idle control for early warming up. The injection amount is corrected to increase. For this reason, in such a situation, it is better not to perform the main control for securing the negative pressure.
The intake negative pressure becomes larger as the absolute pressure becomes closer to zero with reference to the atmospheric pressure. Therefore, the intake negative pressure P_A-P_I is equal to or lower than the predetermined value p. The intake negative pressure P_A-P_I is higher than the predetermined value p. It means close to atmospheric pressure.

次に図1の内燃機関の前記可変動弁機構制御装置1の制御用フローチャートに沿って作用を説明する。   Next, the operation will be described along the control flowchart of the variable valve mechanism control apparatus 1 of the internal combustion engine of FIG.

この可変動弁機構制御装置1の制御用プログラムがスタート(101)すると、検出された内燃機関の温度が暖機状態とみなせる一定値以上、つまり、前記水温センサ4により検出されたエンジン水温Tが一定値t以上であるか否かの判断(102)に移行する。
この水温センサ4により検出されたエンジン水温Tが一定値t以上であるか否かの判断(102)がNOの場合には、後述する前記可変動弁機構制御装置1の制御用プログラムのストップ(「エンド」ともいう。)(106)に移行する。
上述の水温センサ4により検出されたエンジン水温Tが一定値t以上であるか否かの判断(102)がYESの場合には、検出されたアクセル開度がアイドル状態とみなせる一定値以下、つまり、前記スロットル/アクセル開度センサ7により検出されたアクセル開度Aが一定値a以下であるか否かの判断(103)に移行する。
このアクセル開度Aが一定値a以下であるか否かの判断(103)がNOの場合には、前記可変動弁機構制御装置1の制御用プログラムのストップ(106)に移行する。
上述のアクセル開度Aが一定値a以下であるか否かの判断(103)がYESの場合には、検出された吸気負圧が所定値以下、つまり、前記吸気圧センサ9により検出された吸気負圧P_A−P_Iが所定値p以下であるか否かの判断(104)に移行する。
この前記吸気圧センサ9により検出された吸気負圧P_A−P_Iが所定値p以下であるか否かの判断(104)がNOの場合には、前記可変動弁機構制御装置1の制御用プログラムのストップ(106)に移行する。
上述の前記吸気圧センサ9により検出された吸気負圧P_A−P_Iが所定値p以下であるか否かの判断(104)がYESの場合には、前記可変動弁機構制御装置1によって目標VVT作動角変更、つまり、前記制御装置3から前記可変動弁機構2に制御信号を出力し、前記吸気OCV10を動作させてバルブタイミングを変更する処理(105)に移行し、この処理(105)の後に前記可変動弁機構制御装置1の制御用プログラムのストップ(106)に移行する。
When the control program of the variable valve mechanism control device 1 is started (101), the detected temperature of the internal combustion engine is equal to or higher than a certain value that can be regarded as a warm-up state, that is, the engine water temperature T detected by the water temperature sensor 4 is increased. The process proceeds to determination (102) of whether or not the value is equal to or greater than a certain value t.
If the determination (102) as to whether or not the engine water temperature T detected by the water temperature sensor 4 is equal to or higher than a predetermined value t is NO, the control program for the variable valve mechanism control device 1 described later is stopped ( Also referred to as “end”) (106).
If the determination (102) as to whether or not the engine water temperature T detected by the water temperature sensor 4 is equal to or greater than a certain value t is YES, the detected accelerator opening is equal to or less than a certain value that can be regarded as an idle state, that is, Then, the process proceeds to a determination (103) as to whether or not the accelerator opening A detected by the throttle / accelerator opening sensor 7 is equal to or less than a predetermined value a.
If the determination (103) as to whether or not the accelerator opening A is equal to or smaller than the predetermined value a is NO, the process proceeds to the stop (106) of the control program of the variable valve mechanism control apparatus 1.
If the determination (103) as to whether or not the accelerator opening A is equal to or less than the predetermined value a is YES, the detected intake negative pressure is equal to or less than a predetermined value, that is, detected by the intake pressure sensor 9. The process proceeds to determination (104) as to whether or not the intake negative pressure P_A-P_I is equal to or less than a predetermined value p.
When the determination (104) of whether or not the intake negative pressure P_A-P_I detected by the intake pressure sensor 9 is equal to or less than the predetermined value p is NO, the control program for the variable valve mechanism control apparatus 1 The process proceeds to the stop (106).
When the determination (104) of whether or not the intake negative pressure P_A-P_I detected by the intake pressure sensor 9 is equal to or less than a predetermined value p is YES, the variable valve mechanism control device 1 sets the target VVT. The operation angle is changed, that is, the control signal is output from the control device 3 to the variable valve mechanism 2, and the process proceeds to the process (105) in which the intake OCV 10 is operated to change the valve timing. Later, the program shifts to the stop (106) of the control program of the variable valve mechanism control apparatus 1.

図4はこの発明の第2実施例を示すものである。
この第2実施例において、上述第1実施例のものと同一機能を果たす箇所には、同一符号を付して説明する。
FIG. 4 shows a second embodiment of the present invention.
In the second embodiment, portions that perform the same functions as those of the first embodiment will be described with the same reference numerals.

この第2実施例の特徴とするところは、内燃機関の前記可変動弁機構制御装置11の可変動弁機構12を吸気バルブおよび排気バルブのそれぞれに備えた点にある。   The second embodiment is characterized in that the variable valve mechanism 12 of the variable valve mechanism controller 11 of the internal combustion engine is provided in each of the intake valve and the exhaust valve.

すなわち、前記可変動弁機構制御装置11は、図4に示す如く、前記制御装置13の入力側に、水温センサ4と、クランク角センサ5と、吸気カム角センサ6と、スロットル/アクセル開度センサ7と、大気圧センサ8と、吸気圧センサ9とを備えるとともに、排気カム角センサ14を備えている。
この排気カム角センサ14は、図示しない排気カムの位相を検出する。
また、前記可変動弁機構12を、図4に示す如く、吸気バルブを最適なバルブタイミング(進角量及び遅角量)とするための吸気OCV(「吸気オイルコントロールバルブ」ともいう。)10と、吸気バルブを最適なバルブタイミング(進角量及び遅角量)とするための排気OCV(「排気オイルコントロールバルブ」ともいう。)15とによって構成する。
前記可変動弁機構制御装置11は、所定の吸気負圧を生じる前記所定の作動角は、排気バルブの作動角を進角する程減少する吸気バルブとのオーバラップに伴う内部EGRの減少によって吸気負圧が増大する排気バルブの作動角の最進角位置とする。
従って、前記可変動弁機構12によって前記吸気OCV10が様々に変更されていても、その制御状態からの影響を受け難く、ほぼ安定して吸気負圧を増加させることができる。
また、前記可変動弁機構12によって前記排気OCV14のみを制御するので、制御が簡素で演算負荷が少なく、移行中も制御安定性を確保できる。
That is, as shown in FIG. 4, the variable valve mechanism control device 11 includes, on the input side of the control device 13, a water temperature sensor 4, a crank angle sensor 5, an intake cam angle sensor 6, and a throttle / accelerator opening. In addition to a sensor 7, an atmospheric pressure sensor 8, and an intake pressure sensor 9, an exhaust cam angle sensor 14 is provided.
The exhaust cam angle sensor 14 detects the phase of an exhaust cam (not shown).
Further, as shown in FIG. 4, the variable valve mechanism 12 has an intake OCV (also referred to as “intake oil control valve”) 10 for setting the intake valve to an optimal valve timing (advance amount and retard amount). And an exhaust OCV (also referred to as “exhaust oil control valve”) 15 for setting the intake valve to an optimal valve timing (advance amount and retard amount).
In the variable valve mechanism control device 11, the predetermined operating angle for generating a predetermined intake negative pressure is reduced by internal EGR due to an overlap with the intake valve that decreases as the operating angle of the exhaust valve is advanced. The exhaust valve operating angle at which the negative pressure increases is the most advanced position.
Therefore, even if the intake OCV 10 is variously changed by the variable valve mechanism 12, the intake negative pressure can be increased almost stably without being affected by the control state.
Further, since only the exhaust OCV 14 is controlled by the variable valve mechanism 12, the control is simple, the calculation load is small, and the control stability can be ensured even during the transition.

追記すれば、内燃機関諸元やアイドルでの前記可変動弁機構12の動作状況によっては、前記排気OCV14を動かすことでも負圧確保できる場合がある。この第2実施例においては、一つの吸排気VVTである前記吸気OCV10及び前記排気OCV15を備える内燃機関の例を示す。
また、前記可変動弁機構12の排気OCV15は、基準となるイニシャル位置から遅角側へ動かす。これは、基準となるイニシャル位置から進角側へ動かす前記可変動弁機構12の吸気OCV10とは逆である。燃費要求などの理由により、内燃機関のアイドル時に、遅角側へ動かしていた場合、イニシャル位置方向へ戻すように進角させることで負圧を増加させることができる。
更に、この内燃機関の場合、前記可変動弁機構12の排気OCV15の最進角(イニシャル位置)で最も負圧が出る。内燃機関固有の最も負圧が出るVVT位置を探して設定すれば良い。この位置が複数ある場合は、他の条件に基づくVVT制御から移行する際の応答性などを考慮して設定すれば良い。
In addition, depending on the specifications of the internal combustion engine and the operation state of the variable valve mechanism 12 at idle, it may be possible to ensure a negative pressure by moving the exhaust OCV 14. In the second embodiment, an example of an internal combustion engine provided with the intake OCV 10 and the exhaust OCV 15 as one intake / exhaust VVT is shown.
Further, the exhaust OCV 15 of the variable valve mechanism 12 is moved from the reference initial position to the retard side. This is opposite to the intake OCV 10 of the variable valve mechanism 12 that moves from the initial position of the reference to the advance side. If the internal combustion engine is moving toward the retard side due to reasons such as fuel efficiency requirements, the negative pressure can be increased by advancing it so as to return it to the initial position direction.
Further, in the case of this internal combustion engine, the negative pressure is the highest at the most advanced angle (initial position) of the exhaust OCV 15 of the variable valve mechanism 12. What is necessary is just to search and set the VVT position where the negative pressure specific to the internal combustion engine is generated. When there are a plurality of positions, the position may be set in consideration of responsiveness when shifting from VVT control based on other conditions.

なお、この発明は上述第1及び第2実施例に限定されるものではなく、種々の応用改変が可能である。   The present invention is not limited to the first and second embodiments described above, and various application modifications can be made.

例えば、圧力センサを採用していない車両の場合には、エアフローセンサで測定した実流量から推定したモデルインマニ圧を使用する特別構成とすることも可能である。
また、可変動弁機構の目標値変更をアイドルのみに限定させる特別構成とすることで、走行時の燃費要求とアイドルで必要な負圧要求とを両立することができる。
更に、ブレーキブースタ圧力を測定できる車両においては、インテークマニホルド内圧の代わりに、ブレーキブースタ圧力を使用する特別構成とすることにより、ブレーキ要求に限定したVVT目標値変更とすることができる。
For example, in the case of a vehicle that does not employ a pressure sensor, a special configuration that uses a model intake manifold pressure estimated from an actual flow rate measured by an air flow sensor may be employed.
Further, by adopting a special configuration in which the change of the target value of the variable valve mechanism is limited to only the idle, it is possible to satisfy both the fuel efficiency requirement during traveling and the negative pressure requirement required during idle.
Furthermore, in a vehicle capable of measuring the brake booster pressure, the VVT target value can be changed only to the brake requirement by adopting a special configuration that uses the brake booster pressure instead of the intake manifold internal pressure.

1 内燃機関の可変動弁機構制御装置
2 可変動弁機構
3 制御装置
4 水温センサ
5 クランク角センサ
6 吸気カム角センサ
7 スロットル/アクセル開度センサ
8 大気圧センサ
9 吸気圧センサ
10 吸気OCV(「吸気オイルコントロールバルブ」ともいう。)
DESCRIPTION OF SYMBOLS 1 Variable valve mechanism control apparatus of internal combustion engine 2 Variable valve mechanism 3 Control apparatus 4 Water temperature sensor 5 Crank angle sensor 6 Intake cam angle sensor 7 Throttle / accelerator opening sensor 8 Atmospheric pressure sensor 9 Intake pressure sensor 10 Intake OCV (" Also referred to as “intake oil control valve”.)

Claims (3)

バルブのリフト時期を決める作動角の位相を変更する可変動弁機構と、所定の運転条件が成立した場合に可変動弁機構の位相を変更する制御装置を備える内燃機関の可変動弁機構制御装置であって、前記所定の運転条件として内燃機関の温度とアクセル開度と吸気負圧とを検出する内燃機関の可変動弁機構制御装置において、検出された前記内燃機関の温度が暖機状態とみなせる一定値以上であり、かつ、検出された前記アクセル開度がアイドル状態とみなせる一定値以下であり、かつ、検出された吸気負圧が所定値以下である場合、前記可変動弁機構の前記作動角を所定の吸気負圧を生じる所定の作動角に収束するよう変化させることを特徴とする内燃機関の可変動弁機構制御装置。   A variable valve mechanism control device for an internal combustion engine comprising: a variable valve mechanism that changes a phase of an operating angle that determines a valve lift timing; and a control device that changes the phase of the variable valve mechanism when a predetermined operating condition is satisfied In the variable valve mechanism control apparatus for an internal combustion engine that detects the temperature, accelerator opening, and intake negative pressure of the internal combustion engine as the predetermined operating condition, the detected temperature of the internal combustion engine is a warm-up state. When the detected accelerator opening is equal to or less than a certain value that can be regarded as an idle state and the detected intake negative pressure is equal to or less than a predetermined value, the variable valve mechanism A variable valve mechanism control apparatus for an internal combustion engine, wherein the operating angle is changed to converge to a predetermined operating angle that generates a predetermined intake negative pressure. 前記可変動弁機構を吸気バルブのみに備え、所定の吸気負圧を生じる前記所定の作動角は、吸気バルブの作動角を遅角する程増大する吹き返しによる吸気負圧減少と、吸気バルブの作動角を進角する程増大する排気バルブとのオーバラップに伴う内部EGRの増大による吸気負圧減少とのバランスによって定まる吸気不圧が増大する中間進角位置とすることを特徴とする請求項1に記載の内燃機関の可変動弁機構制御装置。   The variable valve mechanism is provided only in the intake valve, and the predetermined operating angle that generates a predetermined intake negative pressure is a decrease in intake negative pressure due to blow-back that increases as the operating angle of the intake valve is delayed, and the operation of the intake valve. 2. An intermediate advance position in which an intake non-pressure determined by a balance with a decrease in intake negative pressure due to an increase in internal EGR accompanying an overlap with an exhaust valve that increases as the angle is advanced is increased. 2. A variable valve mechanism control apparatus for an internal combustion engine according to 1. 前記可変動弁機構を吸気バルブおよび排気バルブのそれぞれに備え、所定の吸気負圧を生じる前記所定の作動角は、排気バルブの作動角を進角する程減少する吸気バルブとのオーバラップに伴う内部EGRの減少によって吸気負圧が増大する排気バルブの作動角の最進角位置とする。ことを特徴とする請求項1に記載の内燃機関の可変動弁機構制御装置。   The variable valve mechanism is provided in each of the intake valve and the exhaust valve, and the predetermined operating angle that generates a predetermined intake negative pressure is accompanied by an overlap with the intake valve that decreases as the operating angle of the exhaust valve is advanced. The exhaust valve operating angle at which the intake negative pressure increases as the internal EGR decreases is set to the most advanced position. The variable valve mechanism control apparatus for an internal combustion engine according to claim 1.
JP2011059168A 2011-03-17 2011-03-17 Variable valve mechanism control apparatus of internal combustion engine Withdrawn JP2012193689A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011059168A JP2012193689A (en) 2011-03-17 2011-03-17 Variable valve mechanism control apparatus of internal combustion engine
DE102012102134A DE102012102134A1 (en) 2011-03-17 2012-03-14 Variable valve control device for internal combustion engine
US13/421,267 US20120234272A1 (en) 2011-03-17 2012-03-15 Variable Valve Control Apparatus for Internal Combustion Engine
CN201210072966.7A CN102678344B (en) 2011-03-17 2012-03-19 Variable valve control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059168A JP2012193689A (en) 2011-03-17 2011-03-17 Variable valve mechanism control apparatus of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012193689A true JP2012193689A (en) 2012-10-11

Family

ID=46757032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059168A Withdrawn JP2012193689A (en) 2011-03-17 2011-03-17 Variable valve mechanism control apparatus of internal combustion engine

Country Status (4)

Country Link
US (1) US20120234272A1 (en)
JP (1) JP2012193689A (en)
CN (1) CN102678344B (en)
DE (1) DE102012102134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029045A (en) * 2011-07-27 2013-02-07 Toyota Motor Corp Device for control of variable valve mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202137A (en) * 2013-04-05 2014-10-27 愛三工業株式会社 Exhaust gas recirculation device of engine
DE102019203376B4 (en) 2019-03-13 2021-01-21 Vitesco Technologies GmbH Method and device for recognizing a performance-changing manipulation of an internal combustion engine
US11313294B2 (en) * 2019-10-18 2022-04-26 Cummins Inc. Early intake valve closing and intake manifold pressure control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163635A (en) 2003-12-03 2005-06-23 Nissan Motor Co Ltd Control device of internal combustion engine for vehicle
JP4127704B2 (en) * 2005-09-07 2008-07-30 三菱電機株式会社 Internal combustion engine control device
JP2009085145A (en) 2007-10-01 2009-04-23 Hitachi Ltd Control device of vehicle engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013029045A (en) * 2011-07-27 2013-02-07 Toyota Motor Corp Device for control of variable valve mechanism

Also Published As

Publication number Publication date
DE102012102134A1 (en) 2012-09-20
CN102678344B (en) 2015-07-08
US20120234272A1 (en) 2012-09-20
CN102678344A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US9181879B2 (en) Control apparatus for internal combustion engine and control apparatus for vehicle equipped with internal combustion engine
US9506412B2 (en) Control apparatus for internal combustion engine
US9889851B2 (en) Control apparatus for vehicle
US10352258B2 (en) Control device for internal combustion engine having supercharger
JP2013096247A (en) Control device of internal combustion engine
JP2012193689A (en) Variable valve mechanism control apparatus of internal combustion engine
WO2017150076A1 (en) Engine control device
JP6296430B2 (en) Engine control device
JP2012193688A (en) Variable valve mechanism control apparatus for internal combustion engine
JP6264302B2 (en) Control device for internal combustion engine
JP5800090B2 (en) Control device for internal combustion engine
JP2009191703A (en) Control device of internal combustion engine
JP2009216035A (en) Control device of internal combustion engine
JP6403102B2 (en) Control device for turbocharged engine
JP2016050502A (en) Control device of internal combustion engine
JP2016014354A (en) Internal combustion engine control unit
JP2010236434A (en) Intake air flow control device
JP5949450B2 (en) Control device for internal combustion engine
JP2017155728A (en) Engine control device
JP6403101B2 (en) Control device for turbocharged engine
JP6312048B2 (en) Engine control device
JP5067205B2 (en) Control device for internal combustion engine
JP2010121567A (en) Control device for internal combustion engine
WO2017150077A1 (en) Engine control device
JP2014020220A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603