JP2012193414A - Cathodic protection method and cathodic protection system of buried metal pipeline - Google Patents

Cathodic protection method and cathodic protection system of buried metal pipeline Download PDF

Info

Publication number
JP2012193414A
JP2012193414A JP2011058609A JP2011058609A JP2012193414A JP 2012193414 A JP2012193414 A JP 2012193414A JP 2011058609 A JP2011058609 A JP 2011058609A JP 2011058609 A JP2011058609 A JP 2011058609A JP 2012193414 A JP2012193414 A JP 2012193414A
Authority
JP
Japan
Prior art keywords
steel pipe
cathodic protection
cast iron
pipe
coated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011058609A
Other languages
Japanese (ja)
Other versions
JP5718692B2 (en
Inventor
Fumio Kajiyama
文夫 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2011058609A priority Critical patent/JP5718692B2/en
Publication of JP2012193414A publication Critical patent/JP2012193414A/en
Application granted granted Critical
Publication of JP5718692B2 publication Critical patent/JP5718692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively reduce the alternating current corrosion risk of a plastic coated steel pipe P2 when a buried metal pipe line where the plastic coated steel pipe P2 and the cast iron pipe P1 are connected via an insulating joint 1, is influenced by alternating current induction; and to appropriately supply a generated cathodic protection current to both of the plastic coated steel pipe P2 and the cast iron pipe P1, thereby bringing both pipelines into a good cathodic protection state.SOLUTION: A cathodic protection system includes: a galvanic anode 2 connected to the plastic coated steel pipe P2; an alternating current induction attenuator 3 which is provided between the plastic coated steel pipe P2 and a galvanic anode 2, and connects the plastic coated steel pipe P2 and the galvanic anode 2 via at least a non-polar capacitive element 30; and a bond current regulator 4 including a bond rectifying element 40 which is connected between the plastic coated steel pipe P2 and the cast iron pipe P1 while interposing the insulating joint 1 therebetween and takes the flow from the cast iron pipe P1 to the plastic coated steel pipe P2 as a forward direction.

Description

本発明は、埋設金属パイプラインのカソード防食方法及びカソード防食システムに関するもので、詳しくは、プラスチック被覆された鋼管とコーティングの無い鋳鉄管とが絶縁継手を介して接続された埋設金属パイプラインにおいて、鋼管が交流誘導を受けている状況下でなされるカソード防食方法及びカソード防食システムに関する。   The present invention relates to a cathodic protection method and a cathodic protection system for a buried metal pipeline, and more specifically, in a buried metal pipeline in which a plastic-coated steel pipe and an uncoated cast iron pipe are connected via an insulating joint, The present invention relates to a cathodic protection method and a cathodic protection system that are performed in a situation where a steel pipe is subjected to AC induction.

鋳鉄管は継手に溶接を必要としないため配管工事が容易であり、長年にわたり我が国及び欧米等で水道,ガス等のパイプラインとして用いられている。この鋳鉄管は低強度材料であるため、埋設箇所の地上環境が変化して、例えば埋設箇所が大きな輪荷重のかかる幹線道路の交差点下や鉄道輸送力の増大した直流電気鉄道軌条下になった場合には、そこに埋設されたパイプラインに強度上の問題が生じる。このような埋設箇所の地上環境変化に対しては、既設の鋳鉄管に換わって延性特性を有し高強度の鋼管を新設することが行われており、この場合には鋳鉄管に部分的に鋼管が接続されることになる。   Since cast iron pipes do not require welding at joints, piping work is easy, and they have been used as pipelines for water, gas, etc. in Japan, Europe and the United States for many years. Because this cast iron pipe is a low-strength material, the ground environment of the buried part has changed, for example, the buried part has become under the intersection of a highway with heavy wheel load or under a direct current electric railroad rail with increased rail transport capacity. In some cases, there is a problem in strength in the pipeline embedded therein. In response to such changes in the ground environment at the buried site, a new high-strength steel pipe having ductility characteristics is being replaced in place of the existing cast iron pipe. A steel pipe will be connected.

このように既設の鋳鉄管に対して新設の鋼管を接続する場合には、既設の鋳鉄管はコーティングの無いいわゆる裸管であり、鋼管はプラスチック被覆が施されている。この場合に、仮に両パイプラインを電気的に接続したとすると、既設の鋳鉄管はその表面に鉄酸化物の生成物が形成されることで管対地電位がプラス側にシフトしており(管対地電位は−0.5VCSE(飽和硫酸銅電極CSE基準電位)程度)、鋼管の管対地電位(プラスチック被覆に欠陥が有る場合、−0.8VCSE程度)に比べてプラスの位になるので、鋼管のプラスチック被覆に欠陥部が生じると、既設の鋳鉄管がカソードで鋼管がアノードになり、大きなカソードと小さなアノードの組み合わせになって、鋼管の被覆欠陥部で腐食が進行することになる。 Thus, when connecting a new steel pipe to an existing cast iron pipe, the existing cast iron pipe is a so-called bare pipe without coating, and the steel pipe is coated with plastic. In this case, assuming that both pipelines are electrically connected, the existing cast iron pipe has an iron oxide product formed on its surface, so that the pipe-to-ground potential is shifted to the plus side (pipe). Since the ground potential is about -0.5V CSE (saturated copper sulfate electrode CSE reference potential)), the tube ground potential (about -0.8V CSE if the plastic coating is defective) When a defect occurs in the plastic coating of the steel pipe, the existing cast iron pipe becomes the cathode and the steel pipe becomes the anode, and a combination of the large cathode and the small anode causes the corrosion to progress in the coating defect of the steel pipe.

このような腐食を防止するためには、鋳鉄管と鋼管との間に絶縁継手を挿入し、更に鋼管の防食を万全なものにするために、鋼管に対してカソード防食を施すことが求められる。カソード防食の方式としては外部電源方式と流電陽極方式があるが、一般に距離の短い鋼管の両端が絶縁継手になる場合には、流電陽極方式が採用される。   In order to prevent such corrosion, it is required to insert an insulating joint between the cast iron pipe and the steel pipe, and to further provide cathodic protection to the steel pipe in order to ensure the corrosion prevention of the steel pipe. . Cathodic protection methods include an external power supply method and a galvanic anode method. Generally, when both ends of a steel pipe having a short distance are insulated joints, a galvanic anode method is adopted.

一方、絶縁継手によって埋設パイプラインを接続する場合には、雷害や電力事故等によるサージ(高電圧)が絶縁継手にかからないようにし、絶縁継手の焼損や火花発生、或いは感電事故等が起きないようにすることが必要になる。これに対しては、図1に示すように、絶縁継手J1を介して接続されるパイプラインJ2,J3に、シリコンダイオードD,Dを逆並列接続することが行われている(下記非特許文献1参照)。   On the other hand, when connecting an embedded pipeline with an insulation joint, make sure that surges (high voltage) due to lightning damage and power accidents do not occur on the insulation joint so that the insulation joint does not burn, cause sparks, or cause an electric shock. It is necessary to do so. In contrast, as shown in FIG. 1, silicon diodes D and D are connected in reverse parallel to pipelines J2 and J3 connected through an insulating joint J1 (the following non-patent document). 1).

電気学会電食防止研究委員会編「新版 電食・土壌腐食ハンドブック」電気学会,1977年5月,p.263〜264The Electric Society of Electrical Corrosion Prevention Research Committee, “New Edition of Electric Corrosion / Soil Corrosion Handbook” The Institute of Electrical Engineers of Japan, May 1977, p. 263-264

プラスチック被覆鋼管とコーティングの無い鋳鉄管(以下単に鋳鉄管という)が絶縁継手を介して接続された埋設金属パイプラインが、高圧交流送電線や交流電気鉄道輸送路と並行している等して交流誘導の影響を受けている場合には、プラスチック被覆鋼管に交流腐食リスクが生じることになる。絶縁継手を介して接続されるプラスチック被覆鋼管と鋳鉄管を従来技術で示したようにシリコンダイオードで逆並列接続すると、シリコンダイオードの順電圧Vf(動作電圧)以上の交流電圧で両パイプラインに交流電流が流れることになり、プラスチック被覆鋼管の被覆に欠陥があると、その欠陥部の面積が小さいほど交流腐食リスクは高くなる。   An embedded metal pipeline, in which a plastic-coated steel pipe and an uncoated cast iron pipe (hereinafter simply referred to as a cast iron pipe) are connected via an insulation joint, is parallel to a high-voltage AC power transmission line or an AC electric railway transport route. When subjected to induction, there is an AC corrosion risk for plastic coated steel pipes. When a plastic-coated steel pipe and cast iron pipe connected via an insulating joint are connected in reverse parallel with a silicon diode as shown in the prior art, an AC voltage exceeding the forward voltage Vf (operating voltage) of the silicon diode is applied to both pipelines. If an electric current flows and there is a defect in the coating of the plastic-coated steel pipe, the risk of AC corrosion increases as the area of the defective part decreases.

これに対しては、プラスチック被覆鋼管にアース電極としての流電陽極(Mg陽極)を接続することで、プラスチック被覆鋼管の交流誘導を低減させることが行われている。しかしながら、様々な迷走電流が存在する状況下では、接続された流電陽極からプラスチック被覆鋼管内に迷走電流が流入し、これがダイオードを介して鋳鉄管側に流れ込み、鋳鉄管の接地抵抗の低い箇所で流出することがあり、これによって鋳鉄管側に腐食リスクが生じる問題がある。これを回避するには、プラスチック被覆鋼管と流電陽極とを接続する電線に逆流防止器を挿入することが考えられるが、これによると、プラスチック被覆鋼管から流電陽極に向けた一方向の電流しか流れなくなるので、大地に逃がす交流電流が半波整流されてアース電極としての機能が半減することになり、流電陽極を接続したことによる交流誘導低減効果が十分に得られなくなる問題がある。   In response to this, AC induction of the plastic-coated steel pipe is reduced by connecting a galvanic anode (Mg anode) as a ground electrode to the plastic-coated steel pipe. However, in the situation where various stray currents exist, stray current flows into the plastic-coated steel pipe from the connected galvanic anode and flows into the cast iron pipe side via the diode, and the cast iron pipe has a low ground resistance. This may cause a corrosion risk on the cast iron pipe side. To avoid this, it is conceivable to insert a backflow preventer into the wire connecting the plastic-coated steel tube and the galvanic anode. According to this, a one-way current from the plastic-coated steel tube to the galvanic anode is proposed. Therefore, the AC current that escapes to the ground is half-wave rectified and the function as a ground electrode is reduced by half, and there is a problem that the effect of reducing AC induction by connecting the galvanic anode cannot be obtained sufficiently.

一方、鋳鉄管側の腐食リスクを解消するために、鋳鉄管側を別途カソード防食することが考えられ、鋳鉄管にも流電陽極を接続することが行われているが、これによると、プラスチック被覆鋼管に接続された流電陽極や鋳鉄管に接続された流電陽極から流出するカソード防食電流の大半が接地抵抗の低い鋳鉄管に流入することになり、プラスチック被覆鋼管を適正にカソード防食することができない問題が生じる。   On the other hand, in order to eliminate the risk of corrosion on the cast iron pipe side, it is conceivable that the cathodic protection of the cast iron pipe side is considered separately, and an galvanic anode is also connected to the cast iron pipe. Most of the cathodic protection current that flows out of the galvanic anode connected to the coated steel pipe and the galvanic anode connected to the cast iron pipe will flow into the cast iron pipe with a low ground resistance, so that the plastic coated steel pipe is properly cathodic protected. Problems that can not be.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、プラスチック被覆鋼管とコーティングの無い鋳鉄管が絶縁継手を介して接続された埋設金属パイプラインが交流誘導の影響を受けている場合に、プラスチック被覆鋼管の交流腐食リスクを効果的に低減することができること、発生したカソード防食電流を接続されたプラスチック被覆鋼管と鋳鉄管の両方に適正に供給することで、両方のパイプラインを良好なカソード防食状態にすること、カソード防食電流の一部を鋳鉄管側に流し、その残りの一部で鋼管側をカソード防食するに際して、両管の防食状態を個別に把握して、両管の防食状態が適正になるようにカソード防食システムの条件を適正に設定すること、等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. In other words, when the buried metal pipeline in which the plastic-coated steel pipe and the uncoated cast iron pipe are connected via an insulating joint is affected by AC induction, the AC corrosion risk of the plastic-coated steel pipe can be effectively reduced. That both the pipeline and the cast iron pipe are properly supplied with the generated cathodic protection current, so that both pipelines are in good cathodic protection, and part of the cathodic protection current is cast iron. When the steel pipe side is subjected to cathodic protection on the pipe side with the remaining part, the anticorrosion state of both pipes is individually grasped and the conditions of the cathodic protection system are properly adjusted so that the anticorrosion state of both pipes is appropriate. Setting, etc. is an object of the present invention.

このような目的を達成するために、本発明による埋設金属パイプラインのカソード防食方法及びカソード防食システムは、以下の構成を少なくとも具備する。   In order to achieve such an object, the cathodic protection method and cathodic protection system for buried metal pipelines according to the present invention include at least the following configurations.

プラスチック被覆鋼管とコーティングの無い鋳鉄管が絶縁継手を介して接続された埋設金属パイプラインが交流誘導の影響を受けている状況下でのカソード防食方法であって、前記プラスチック被覆鋼管に当該プラスチック被覆鋼管と前記鋳鉄管の両方にカソード防食電流を供給する流電陽極を接続し、当該プラスチック被覆鋼管と前記流電陽極とを少なくとも非極性容量素子を介して接続し、前記プラスチック被覆鋼管と前記鋳鉄管との間に、前記絶縁継手を挟んで前記鋳鉄管から前記プラスチック被覆鋼管へ向けた流れを順方向とする整流素子を含むボンド電流調整器を接続することを特徴とする埋設金属パイプラインのカソード防食方法。   A cathodic protection method in a situation where a buried metal pipeline in which a plastic-coated steel pipe and an uncoated cast iron pipe are connected via an insulating joint is affected by alternating current induction, wherein the plastic-coated steel pipe is coated with the plastic-coated steel pipe. A galvanic anode for supplying a cathodic protection current is connected to both the steel pipe and the cast iron pipe, the plastic-coated steel pipe and the galvanic anode are connected via at least a non-polar capacitive element, and the plastic-coated steel pipe and the cast iron A buried current pipeline including a rectifying element including a rectifying element having a forward direction from the cast iron pipe to the plastic-coated steel pipe with the insulating joint interposed therebetween is connected between the pipe and the pipe. Cathodic protection method.

プラスチック被覆鋼管とコーティングの無い鋳鉄管が絶縁継手を介して接続された埋設金属パイプラインが交流誘導の影響を受けている状況下でのカソード防食システムであって、前記プラスチック被覆鋼管に接続される流電陽極と、前記プラスチック被覆鋼管と前記流電陽極との間に設けられ、前記プラスチック被覆鋼管と前記流電陽極とを少なくとも非極性容量素子を介して接続する交流誘導低減器と、前記絶縁継手を挟んで前記プラスチック被覆鋼管と前記鋳鉄管との間に接続され、前記鋳鉄管から前記プラスチック被覆鋼管へ向けた流れを順方向とするボンド整流素子を含むボンド電流調整器とを備えたことを特徴とする埋設金属パイプラインのカソード防食システム。   A cathodic protection system in a situation where a buried metal pipeline in which a plastic-coated steel pipe and an uncoated cast iron pipe are connected via an insulating joint is affected by alternating current induction, and is connected to the plastic-coated steel pipe An AC induction reducer that is provided between a current-carrying anode, the plastic-coated steel pipe, and the current-carrying anode, and connects the plastic-coated steel pipe and the current-carrying anode through at least a nonpolar capacitive element; and the insulation A bond current regulator including a bond rectifying element that is connected between the plastic-coated steel pipe and the cast iron pipe with a joint interposed therebetween and has a forward direction from the cast iron pipe toward the plastic-coated steel pipe; Cathodic protection system for buried metal pipelines.

本発明は、このような特徴を有することで、プラスチック被覆鋼管とコーティングの無い鋳鉄管が絶縁継手を介して接続された埋設金属パイプラインが交流誘導の影響を受けている場合に、プラスチック被覆鋼管の交流腐食リスクを効果的に低減することができる。また、本発明は、発生したカソード防食電流を接続されたプラスチック被覆鋼管と鋳鉄管の両方に適正に供給することで、両方のパイプラインを良好なカソード防食状態にすることができる。また、本発明は、カソード防食電流の一部を鋳鉄管側に流し、その残りの一部で鋼管側をカソード防食するに際して、両管の防食状態を個別に把握して、両管の防食状態が適正になるようにカソード防食システムの条件を適正に設定することができる。   The present invention has such a feature, so that when a buried metal pipeline in which a plastic-coated steel pipe and an uncoated cast iron pipe are connected via an insulating joint is affected by alternating current induction, the plastic-coated steel pipe is used. The AC corrosion risk can be effectively reduced. Further, according to the present invention, by appropriately supplying the generated cathodic protection current to both the connected plastic-coated steel pipe and the cast iron pipe, both pipelines can be brought into a good cathodic protection state. In addition, the present invention allows a part of the cathodic protection current to flow to the cast iron pipe side, and when the steel pipe side is cathodic protected by the remaining part, the anticorrosion state of both pipes is grasped individually, and the anticorrosion state of both pipes Thus, the conditions of the cathodic protection system can be set appropriately so as to be appropriate.

従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の一実施形態に係る埋設金属パイプラインのカソード防食方法及びカソード防食システムを説明する説明図である。It is explanatory drawing explaining the cathodic protection method and cathodic protection system of a buried metal pipeline concerning one embodiment of the present invention. 本発明の実施形態における交流誘導低減器とボンド電流調整器の具体的な回路構成を示した説明図である(図2(a)が交流誘導低減器を示しており、図2(b)がボンド電流調整器を示している)。It is explanatory drawing which showed the specific circuit structure of the alternating current induction reducer and bond current regulator in embodiment of this invention (FIG. 2 (a) has shown the alternating current induction reducer, FIG.2 (b) is FIG. Bond current regulator is shown). 本発明の実施形態におけるボンド電流調整器の電圧−電流特性を示した説明図である。It is explanatory drawing which showed the voltage-current characteristic of the bond current regulator in embodiment of this invention. クーポン電流密度を指標としたカソード防食基準を示す線図であって、横軸がクーポン流入直流電流密度IDCで縦軸がクーポン交流電流密度IACを示している。A graph showing the cathodic protection criteria as an index coupons current density, and the horizontal axis the vertical axis coupon flowing direct current density I DC indicates the coupon alternating current density I AC. 鋳鉄管におけるインスタントオフ電位の計測方法を説明する説明図である。It is explanatory drawing explaining the measuring method of the instant-off electric potential in a cast iron pipe.

以下、図面を参照しながら本発明の実施形態を説明する。図2は本発明の一実施形態に係る埋設金属パイプラインのカソード防食方法及びカソード防食システムを説明する説明図である。ここでの防食対象は、鋳鉄管P1の一部に鋼管P2が接続された埋設金属パイプラインである。鋳鉄管P1はコーティングの無いいわゆる裸管であり、鋼管P2にはポリエチレン被覆などのプラスチック被覆が施されている。鋳鉄管P1と鋼管P2は絶縁継手1を介して接続されている。そして、この埋設金属パイプラインは、高圧交流送電線LACや交流電気鉄道輸送路と並行している等して交流誘導の影響を受けている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is an explanatory diagram illustrating a cathodic protection method and cathodic protection system for a buried metal pipeline according to an embodiment of the present invention. The object of corrosion prevention here is a buried metal pipeline in which a steel pipe P2 is connected to a part of a cast iron pipe P1. The cast iron pipe P1 is a so-called bare pipe with no coating, and the steel pipe P2 is coated with a plastic coating such as a polyethylene coating. The cast iron pipe P1 and the steel pipe P2 are connected via the insulating joint 1. The buried metal pipeline is affected by AC induction, for example, in parallel with the high-voltage AC power transmission line LAC and the AC electric railway transportation route.

このような状況下で鋳鉄管P1及び鋼管P2に対して設置されるカソード防食システムは、鋼管P2に接続される流電陽極(例えば、Mg陽極)2と、鋼管P2と流電陽極2との間に設けられる交流誘導低減器3と、絶縁継手1を挟んで鋳鉄管P1と鋼管P2との間に接続されるボンド電流調整器4を備えている。交流誘導低減器3は電線w1によって流電陽極2に接続されると共に電線w2によって鋼管P2に接続されている。ボンド電流調整器4は電線w3によって鋼管P2に接続されると共に電線w4によって鋳鉄管P1に接続されている。   Under such circumstances, the cathodic protection system installed for the cast iron pipe P1 and the steel pipe P2 includes an galvanic anode (for example, Mg anode) 2 connected to the steel pipe P2, and a steel pipe P2 and the galvanic anode 2. An AC induction reducer 3 provided therebetween and a bond current regulator 4 connected between the cast iron pipe P1 and the steel pipe P2 with the insulating joint 1 interposed therebetween are provided. The AC induction reducer 3 is connected to the electroplating anode 2 by an electric wire w1 and is connected to the steel pipe P2 by an electric wire w2. The bond current regulator 4 is connected to the steel pipe P2 by the electric wire w3 and is connected to the cast iron pipe P1 by the electric wire w4.

また、鋳鉄管P1には、鋳鉄管P1のカソード防食状況を把握するために、電線w5を介して照合電極(例えば、飽和硫酸銅電極)5が接続されており、この電線w5に鋳鉄管P1の管対地電位を計測する電圧計6が設置されている。一方、鋼管P2には、鋼管P2のカソード防食状況を把握するために、電線w6を介して鋼管P2の近傍に設置されたクーポン7が接続されており、この電線w6に鋼管P2のクーポン電流密度(クーポン流入直流電流密度IDC及びクーポン交流電流密度IAC)を計測するための直流・交流電流計8が設置されている。 Moreover, in order to grasp | ascertain the cathodic protection condition of the cast iron pipe P1, the reference electrode (for example, saturated copper sulfate electrode) 5 is connected to the cast iron pipe P1 via the electric wire w5, and the cast iron pipe P1 is connected to this electric wire w5. A voltmeter 6 for measuring the tube-to-ground potential is installed. On the other hand, in order to grasp the cathodic protection situation of the steel pipe P2, a coupon 7 installed in the vicinity of the steel pipe P2 is connected to the steel pipe P2 via the electric wire w6, and the coupon current density of the steel pipe P2 is connected to the electric wire w6. A DC / AC ammeter 8 for measuring (coupon inflow DC current density I DC and coupon AC current density I AC ) is installed.

ここで流電陽極2は、高圧交流送電線LACや交流電気鉄道輸送路などによって鋼管P2に印加される交流電圧VACを低減するアース電極として機能するだけでなく、接地電流として鋼管P2を流れる交流電流を大地に逃がし、これをカソード防食電流Icとして鋳鉄管P1と鋼管P2に供給している。 Here, the galvanic anode 2 not only functions as a ground electrode for reducing the AC voltage VAC applied to the steel pipe P2 by a high-voltage AC power transmission line LAC or an AC electric railway transport path, but also uses the steel pipe P2 as a ground current. The flowing alternating current is released to the ground, and this is supplied to the cast iron pipe P1 and the steel pipe P2 as the cathodic protection current Ic.

図3は、本発明の実施形態における交流誘導低減器3とボンド電流調整器4の具体的な回路構成を示した説明図である(図3(a)が交流誘導低減器3を示しており、図3(b)がボンド電流調整器4を示している)。図3(a)に示される交流誘導低減器3は、少なくとも鋼管P2と流電陽極2との間に非極性容量素子(コンデンサ)30を挿入したものである。鋼管P2と流電陽極2は非極性容量素子30を介して接続されているので、交流の接地電流を効果的に大地に逃がすことができると共に、直流の迷走電流が流電陽極2から鋼管P2に向けて流れるのを阻止することができる。   FIG. 3 is an explanatory diagram showing a specific circuit configuration of the AC induction reducer 3 and the bond current regulator 4 in the embodiment of the present invention (FIG. 3A shows the AC induction reducer 3). FIG. 3B shows the bond current regulator 4). The AC induction reducer 3 shown in FIG. 3A has a non-polar capacitive element (capacitor) 30 inserted between at least the steel pipe P2 and the galvanic anode 2. Since the steel pipe P2 and the galvanic anode 2 are connected via the nonpolar capacitive element 30, an AC ground current can be effectively released to the ground, and a DC stray current can be transferred from the galvanic anode 2 to the steel pipe P2. Can be prevented from flowing toward

また、交流誘導低減器3は、非極性容量素子30と並列に接続されて鋼管P2から流電陽極2へ向けた流れを順方向とする逆流防止整流素子31(ダイオード)を含み、更には、非極性容量素子30及び逆流防止整流素子31と並列に接続されたサージ防護素子32を含む。ここでのサージ防護素子32は、コイル素子32a,アレスタ32b,バリスタ32cなどを備える。また、必要に応じて、交流誘導低減器3の接続線には鋼管P2と流電陽極2との接続を電気的に遮断するスイッチ素子33やヒューズを設けることができる。   The AC induction reducer 3 includes a backflow preventing rectifying element 31 (diode) connected in parallel with the nonpolar capacitive element 30 and configured to forward flow from the steel pipe P2 toward the galvanic anode 2, A surge protection element 32 connected in parallel with the nonpolar capacitance element 30 and the backflow prevention rectification element 31 is included. The surge protection element 32 here includes a coil element 32a, an arrester 32b, a varistor 32c, and the like. If necessary, the connection line of the AC induction reducer 3 can be provided with a switch element 33 and a fuse for electrically disconnecting the connection between the steel pipe P2 and the galvanic anode 2.

図3(b)に示されるボンド電流調整器4は、少なくとも、絶縁継手1を挟んで鋳鉄管P1と鋼管P2との間に接続され、鋳鉄管P1から鋼管P2へ向けた流れを順方向とするボンド整流素子(ダイオード)40を含み、更には、ボンド整流素子40と並列に接続されたサージ防護素子41を含む。ここでのサージ防護素子41は、コイル素子41a,アレスタ41b,バリスタ41cなどを備える。また、必要に応じて、ボンド電流調整器4の接続線には鋳鉄管P1と鋼管P2との接続を電気的に遮断するスイッチ素子42やヒューズを設けることができる。   The bond current regulator 4 shown in FIG. 3 (b) is connected at least between the cast iron pipe P1 and the steel pipe P2 with the insulating joint 1 interposed therebetween, and the flow from the cast iron pipe P1 to the steel pipe P2 is defined as the forward direction. And a surge protection element 41 connected in parallel with the bond rectifier element 40. The surge protection element 41 here includes a coil element 41a, an arrester 41b, a varistor 41c, and the like. If necessary, the connection line of the bond current regulator 4 can be provided with a switch element 42 and a fuse for electrically disconnecting the connection between the cast iron pipe P1 and the steel pipe P2.

図4は、本発明の実施形態におけるボンド電流調整器4の電圧−電流特性を示した説明図である。ボンド電流調整器4の電圧−電流特性は、基本的にはボンド整流素子40の特性によって特定されており、順方向(矢印方向)に印加された電圧Vに対しては順電圧(Vf)を超えると電流Iを流し、順方向(矢印方向)と逆極性の電圧Vに対してはある程度の大きさの電圧までは電流Iを流さない特性を備えている。そして、ボンド電流調整器4はコイル素子41aを備えることで、ボンド整流素子40の順電圧(Vf)より高い電圧で電圧の上昇に対して電流の上昇が抑制されている。すなわち、図示の破線で示す特性がボンド整流素子40の電圧−電流特性であるとすると、コイル素子41aの機能によって、これを実線で示すように調整している。これによると、鋳鉄管P1と鋼管P2間の順方向電圧が高くなってもそれに伴って順方向に流れる電流の大きさをある程度の大きさに制限することができる。   FIG. 4 is an explanatory diagram showing voltage-current characteristics of the bond current regulator 4 in the embodiment of the present invention. The voltage-current characteristics of the bond current regulator 4 are basically specified by the characteristics of the bond rectifier element 40. The forward voltage (Vf) is applied to the voltage V applied in the forward direction (arrow direction). If it exceeds the voltage V, the current I flows, and with respect to the voltage V having a polarity opposite to the forward direction (arrow direction), the current I is not flowed up to a certain level of voltage. And the bond current regulator 4 is provided with the coil element 41a, so that the current rise is suppressed against the voltage rise at a voltage higher than the forward voltage (Vf) of the bond rectifier element 40. That is, if the characteristic indicated by the broken line in the figure is the voltage-current characteristic of the bond rectifying element 40, the characteristic is adjusted as indicated by the solid line by the function of the coil element 41a. According to this, even if the forward voltage between the cast iron pipe P1 and the steel pipe P2 increases, the magnitude of the current flowing in the forward direction can be limited to a certain level.

以下に、前述した埋設金属パイプラインにおけるカソード防食システムの機能及びカソード防食方法を説明する。   The function of the cathodic protection system and the cathodic protection method in the above-described buried metal pipeline will be described below.

先ず、鋼管P2と流電陽極2との間に設置された交流誘導低減器3は、第1に、鋼管P2に印加された交流電圧に対して効果的に接地電流を流して接地効果(交流誘導低減効果)を高める機能を有し、第2に、直流迷走電流が流電陽極2から鋼管P2に流入するのを阻止する効果を有する。また、流電陽極2は、第1に、アース電極として鋼管P2の交流誘導を低減する機能を有し、第2に、出力する接地電流によって鋳鉄管P1と鋼管P2にカソード防食電流Icを供給する機能を有する。   First, the AC induction reducer 3 installed between the steel pipe P2 and the galvanic anode 2 firstly applies a ground current to the AC voltage applied to the steel pipe P2 to effectively produce a ground effect (AC The second effect is to prevent the direct current stray current from flowing into the steel pipe P2 from the galvanic anode 2. In addition, the galvanic anode 2 has a function of first reducing the AC induction of the steel pipe P2 as an earth electrode, and secondly, supplying the cathodic protection current Ic to the cast iron pipe P1 and the steel pipe P2 by the output ground current. It has the function to do.

そして、ボンド電流調整器4は、交流迷走電流が流電陽極2に流入し、鋼管P2の対地電位が鋳鉄管P1の対地電位よりもプラスになった場合に、鋼管P2から鋳鉄管P1の方向に流れる電流を阻止することにより、鋳鉄管P1の腐食リスクを回避する機能を有する。更には、前述したボンド電流調整器4の電圧−電流特性により、流電陽極2から出力されたカソード防食電流Icが過剰に鋳鉄管P1に流れ込まないようにしており、これによって鋼管P2側に供給されるカソード防食電流が極端に少なくならないようにしている。   The bond current regulator 4 is configured so that the alternating stray current flows into the galvanic anode 2 and the direction of the steel pipe P2 to the cast iron pipe P1 when the ground potential of the steel pipe P2 becomes more positive than the ground potential of the cast iron pipe P1. By preventing the current flowing through the cast iron pipe P1, it has a function of avoiding the risk of corrosion of the cast iron pipe P1. Furthermore, due to the voltage-current characteristics of the bond current regulator 4 described above, the cathodic protection current Ic output from the galvanic anode 2 is prevented from flowing excessively into the cast iron pipe P1, thereby supplying the steel pipe P2 side. The cathodic protection current that is generated is kept from becoming extremely small.

このようなカソード防食システムによると、鋳鉄管P1の一部に鋼管P2が絶縁継手1を介して接続された埋設金属パイプラインが高圧交流送電線LACなどによって交流誘導の影響を受けている状況下で、鋼管P2の交流腐食リスクを排除し、且つ鋳鉄管P1と鋼管P2を良好なカソード防食状態にすることができる。 According to such a cathodic protection system, a buried metal pipeline in which a steel pipe P2 is connected to a part of a cast iron pipe P1 via an insulating joint 1 is affected by AC induction by a high-voltage AC transmission line LAC or the like. Below, the risk of AC corrosion of the steel pipe P2 can be eliminated, and the cast iron pipe P1 and the steel pipe P2 can be in a good cathodic protection state.

ここで、鋼管P2のカソード防食状況は、クーポン電流密度(クーポン流入直流電流密度IDC及びクーポン交流電流密度IAC)を指標としたカソード防食基準に合格するように管理される。図5は、クーポン電流密度を指標としたカソード防食基準を示す線図であって、横軸がクーポン流入直流電流密度IDCで縦軸がクーポン交流電流密度IACを示している。線図の太線枠内が適正なカソード防食状況の範囲であり、直流・交流電流計8の計測値から求められるクーポン流入直流電流密度IDCとクーポン交流電流密度IACがこの枠内に入るようにカソード防食状況を管理する。 Here, the cathodic protection status of the steel pipe P2 is managed so as to pass the cathodic protection standard using the coupon current density (coupon inflow DC current density I DC and coupon AC current density I AC ) as an index. FIG. 5 is a diagram showing the cathodic protection standard using the coupon current density as an index, and the horizontal axis shows the coupon inflow DC current density I DC and the vertical axis shows the coupon AC current density I AC . The inside of the bold line frame of the diagram is the range of the appropriate cathodic protection situation, so that the coupon inflow DC current density I DC and the coupon AC current density I AC obtained from the measured values of the DC / AC ammeter 8 fall within this frame. To manage the cathodic protection situation.

一方、鋳鉄管P1は、100mVカソード分極基準を適用し、鋳鉄管P1の管対地電位が自然電位から少なくとも100mVマイナス側にシフトするようにカソード防食状態を管理する。ここでの管対地電位は電圧計6で計測され、ボンド電流調整器4の接続線をオフすることで計測されるインスタントオフ電位を用いることが好ましい。   On the other hand, the cast iron pipe P1 applies the 100 mV cathode polarization standard, and manages the cathodic protection state so that the pipe ground potential of the cast iron pipe P1 shifts from the natural potential to at least 100 mV minus side. Here, the tube-to-ground potential is measured by the voltmeter 6, and it is preferable to use an instant-off potential measured by turning off the connection line of the bond current regulator 4.

本発明の実施形態に係るカソード防食方法では、鋳鉄管P1のインスタントオフ電位を計測し、鋳鉄管P1の自然電位と計測されたインスタントオフ電位との差が基準値(100mV)以上であるか否かで、鋳鉄管P1のカソード防食状態を把握する。鋳鉄管P1の自然電位と計測されたインスタントオフ電位との差は、流電陽極2から出力されるカソード防食電流が鋳鉄管P1に流入したことによる鋳鉄管P1のカソード分極量になるから、このカソード分極量が基準値(100mV)以上であれば、鋳鉄管P1のカソード防食状態が適正であることを把握することができる。鋳鉄管P1の自然電位と計測されたインスタントオフ電位との差が100mV以上であるということは、鋳鉄管P1の腐食速度が自然腐食速度よりも一桁小さくなっていることを指す。   In the cathodic protection method according to the embodiment of the present invention, the instant-off potential of the cast iron pipe P1 is measured, and whether or not the difference between the natural potential of the cast iron pipe P1 and the measured instant-off potential is equal to or greater than a reference value (100 mV). The cathode anticorrosion state of the cast iron pipe P1 is grasped. The difference between the natural potential of the cast iron pipe P1 and the measured instant-off potential is the amount of cathode polarization of the cast iron pipe P1 due to the cathodic protection current output from the galvanic anode 2 flowing into the cast iron pipe P1. If the amount of cathode polarization is not less than the reference value (100 mV), it can be understood that the cathodic protection state of the cast iron pipe P1 is appropriate. The difference between the natural potential of the cast iron pipe P1 and the measured instant-off potential being 100 mV or more indicates that the corrosion rate of the cast iron pipe P1 is an order of magnitude smaller than the natural corrosion rate.

図6は、鋳鉄管P1におけるインスタントオフ電位の計測方法を説明する説明図である。同図は、縦軸が鋳鉄管P1の管対地電位を示し、横軸が経過時間を示したグラフであって、鋳鉄管P1の管対地電位の経時的な変化を示している。図において、Aの電位は鋳鉄管P1がカソード防食されていない状態の電位(自然電位)、Bの電位は、前述したカソード防食システムを構築して、時間T1にボンド電流調整器4の接続をオン状態にした直後の電位、Cの電位はボンド電流調整器4をオン状態にした後十分にカソード分極が進んだ状態の電位、Dの電位はCの電位状態で時間T2にスイッチ素子42によってボンド電流調整器4の接続をオフにした直後の電位をそれぞれ示している。   FIG. 6 is an explanatory view illustrating a method for measuring the instant-off potential in the cast iron pipe P1. In the figure, the vertical axis shows the pipe ground potential of the cast iron pipe P1, and the horizontal axis shows the elapsed time, and shows the change with time of the pipe ground potential of the cast iron pipe P1. In the figure, the potential of A is the potential (natural potential) when the cast iron pipe P1 is not cathodic-protected, and the potential of B is the above-described cathodic anti-corrosion system and the bond current regulator 4 is connected at time T1. The potential immediately after the on state, the potential of C, is a potential in a state where the cathode polarization has sufficiently progressed after the bond current regulator 4 is turned on, and the potential of D is the potential state of C by the switch element 42 at time T2. The potentials immediately after the connection of the bond current regulator 4 is turned off are shown.

図示のAの電位からBの電位に至る電位差或いはCの電位からDの電位に至る電位差は、照合電極5を地上に設置して埋設管の管対地電位を計測していることによって生じるIRドロップであり、カソード防食電流Icと土壌抵抗Rの積からなる電位差である。インスタントオフ電位は、カソード分極が十分に進んだ状態の管対地電位(Cの電位)からIRドロップを差し引いた電位(Dの電位)として定義することができる。図示のBの電位からCの電位に至る電位差がカソード防食電流Icによる鋳鉄管P1のカソード分極量であるが、IRドロップを計測すること無しに鋳鉄管P1のカソード分極量を求めるために、十分にカソード分極が進んだCの状態でボンド電流調整器4をオフにして、Dの電位で示されるインスタントオフ電位を計測し、既知のAの電位(自然電位)と計測されたDの電位(インスタントオフ電位)との差によって、鋳鉄管P1のカソード分極量を求めている。   The potential difference from the potential of A to the potential of B or the potential difference from the potential of C to the potential of D shown in the figure is caused by measuring the tube-to-ground potential of the buried pipe with the reference electrode 5 installed on the ground. The potential difference is the product of the cathodic protection current Ic and the soil resistance R. The instant-off potential can be defined as a potential (D potential) obtained by subtracting an IR drop from a tube-to-ground potential (C potential) in a state where the cathode polarization is sufficiently advanced. The potential difference from the potential B to the potential C in the figure is the cathode polarization amount of the cast iron pipe P1 due to the cathodic protection current Ic. In a state where the cathode polarization has advanced to C, the bond current regulator 4 is turned off, the instant-off potential indicated by the potential of D is measured, and the known potential of A (natural potential) and the measured potential of D ( The cathode polarization amount of the cast iron pipe P1 is obtained from the difference from the instant-off potential.

鋳鉄管P1と鋼管P2が適正なカソード防食状況になるためのシステム上の設定は、交流誘導低減器3による接地電流の設定とボンド電流調整器4における電圧−電流特性の設定によって行われる。ボンド電流調整器4の電圧−電流特性は、鋳鉄管P1のインスタントオフ電位が自然電位から少なくとも100mVマイナス側にシフトするのに十分なように設定され、この条件を満たすように電圧の上昇に対する電流の上昇が抑えられる。これによって流電陽極2から出力されるカソード防食電流Icが過剰に鋳鉄管P1に流入するのを抑えることができ、鋼管P2側を適正にカソード防食することが可能になる。   The setting on the system for the cast iron pipe P1 and the steel pipe P2 to be in an appropriate cathodic protection state is performed by setting the ground current by the AC induction reducer 3 and setting the voltage-current characteristic in the bond current regulator 4. The voltage-current characteristic of the bond current regulator 4 is set so that the instant-off potential of the cast iron pipe P1 is sufficient to shift from the natural potential to at least 100 mV minus side, and the current against the voltage rise to satisfy this condition. Rise is suppressed. As a result, the cathodic protection current Ic output from the galvanic anode 2 can be prevented from excessively flowing into the cast iron pipe P1, and the steel pipe P2 side can be appropriately cathodic protected.

以上説明したように、本発明の実施形態に係る埋設金属パイプラインのカソード防食方法及びカソード防食システムによると、プラスチック被覆が施された鋼管P2とコーティングの無い鋳鉄管P1が絶縁継手1を介して接続された埋設金属パイプラインが交流誘導の影響を受けている場合に、鋼管P2の交流腐食リスクを効果的に低減することができる。また、発生したカソード防食電流Icを鋳鉄管P1と鋼管P2の両方に適正に供給することで、両方のパイプラインを良好なカソード防食状態にすることができる。また、カソード防食電流Icの一部を鋳鉄管P1側に流し、その残りの一部で鋼管P2側をカソード防食するに際して、両管の防食状態を個別に把握して、両管の防食状態が適正になるようにカソード防食システムの条件を設定することができる。   As described above, according to the cathodic protection method and cathodic protection system for the buried metal pipeline according to the embodiment of the present invention, the steel pipe P2 coated with plastic and the cast iron pipe P1 without coating are connected via the insulating joint 1. When the connected buried metal pipeline is affected by AC induction, the AC corrosion risk of the steel pipe P2 can be effectively reduced. Further, by properly supplying the generated cathodic protection current Ic to both the cast iron pipe P1 and the steel pipe P2, both pipelines can be brought into a good cathodic protection state. In addition, when a part of the cathodic protection current Ic flows to the cast iron pipe P1 side and the remaining part of the steel pipe P2 side is cathodic protected, the anticorrosion state of both pipes is individually grasped, and the anticorrosion state of both pipes is determined. Cathodic protection system conditions can be set to be appropriate.

P1:鋳鉄管,P2鋼管,
1:絶縁継手,2:流電陽極(Mg陽極),
3:交流誘導低減器,30:非極性容量素子(コンデンサ),
31:逆流防止整流素子,32:サージ防護素子,
32a:コイル素子,32b:アレスタ,32c:バリスタ,
33:スイッチ素子,
4:ボンド電流調整器,40:ボンド整流素子,41:サージ防護素子,
41a:コイル素子,41b:アレスタ,41c:バリスタ,
42:スイッチ素子,
5:照合電極(飽和硫酸銅電極),6:電圧計,
7:クーポン,8:直流・交流電流計,
w1〜w6:電線,Ic:カソード防食電流,LAC:高圧交流送電線,
AC:交流電圧
P1: Cast iron pipe, P2 steel pipe,
1: insulation joint, 2: galvanic anode (Mg anode),
3: AC induction reducer, 30: Nonpolar capacitance element (capacitor),
31: Backflow prevention rectifier, 32: Surge protective element,
32a: coil element, 32b: arrester, 32c: varistor,
33: Switch element,
4: Bond current regulator, 40: Bond rectifier, 41: Surge protective element,
41a: coil element, 41b: arrester, 41c: varistor,
42: switch element,
5: Reference electrode (saturated copper sulfate electrode), 6: Voltmeter,
7: Coupon, 8: DC / AC ammeter,
w1-w6: Electric wire, Ic: Cathodic protection current, L AC : High-voltage AC transmission line,
V AC : AC voltage

Claims (11)

プラスチック被覆鋼管とコーティングの無い鋳鉄管が絶縁継手を介して接続された埋設金属パイプラインが交流誘導の影響を受けている状況下でのカソード防食方法であって、
前記プラスチック被覆鋼管に当該プラスチック被覆鋼管と前記鋳鉄管の両方にカソード防食電流を供給する流電陽極を接続し、当該プラスチック被覆鋼管と前記流電陽極とを少なくとも非極性容量素子を介して接続し、
前記プラスチック被覆鋼管と前記鋳鉄管との間に、前記絶縁継手を挟んで前記鋳鉄管から前記プラスチック被覆鋼管へ向けた流れを順方向とする整流素子を含むボンド電流調整器を接続することを特徴とする埋設金属パイプラインのカソード防食方法。
A cathodic protection method under a situation where a buried metal pipeline in which a plastic-coated steel pipe and an uncoated cast iron pipe are connected via an insulating joint is affected by AC induction,
A galvanic anode that supplies a cathodic protection current to both the plastic-coated steel pipe and the cast iron pipe is connected to the plastic-coated steel pipe, and the plastic-coated steel pipe and the galvanic anode are connected via at least a nonpolar capacitive element. ,
A bond current regulator including a rectifying element having a forward flow from the cast iron pipe to the plastic-coated steel pipe is connected between the plastic-coated steel pipe and the cast iron pipe with the insulating joint interposed therebetween. Cathodic protection method for buried metal pipelines.
前記ボンド電流調整器の電圧−電流特性は、前記整流素子の順電圧より高い電圧で電圧の上昇に対して電流の上昇が抑制されていることを特徴とする請求項1に記載された埋設金属パイプラインのカソード防食方法。   2. The buried metal according to claim 1, wherein a voltage-current characteristic of the bond current regulator is such that an increase in current is suppressed with respect to an increase in voltage at a voltage higher than a forward voltage of the rectifying element. Pipeline cathodic protection method. 交流誘導によって前記流電陽極から流出する接地電流をカソード防食電流として、前記プラスチック被覆鋼管と前記鋳鉄管をカソード防食し、
前記プラスチック被覆鋼管のクーポン流入直流電流密度及びクーポン交流電流密度がクーポン電流密度を指標としたカソード防食管理基準に合格していると共に、
前記鋳鉄管の管対地電位が自然電位から少なくとも100mVマイナス側にシフトしていることを特徴とする請求項1又は2記載に記載された埋設金属パイプラインのカソード防食方法。
Cathodic protection of the plastic-coated steel pipe and the cast iron pipe as a grounding current flowing out from the galvanic anode by AC induction as a cathodic protection current,
While the coupon inflow DC current density and the coupon AC current density of the plastic-coated steel pipe have passed the cathodic protection control standard with the coupon current density as an index,
3. The cathodic protection method for buried metal pipelines according to claim 1 or 2, wherein a pipe ground potential of the cast iron pipe is shifted from a natural potential to at least 100 mV minus side.
前記鋳鉄管の管対地電位は前記ボンド電流調整器をオフすることで計測されるインスタントオフ電位であることを特徴とする請求項3に記載された埋設金属パイプラインのカソード防食方法。   4. The method of cathodic protection of buried metal pipeline according to claim 3, wherein the pipe ground potential of the cast iron pipe is an instant-off potential measured by turning off the bond current regulator. プラスチック被覆鋼管とコーティングの無い鋳鉄管が絶縁継手を介して接続された埋設金属パイプラインが交流誘導の影響を受けている状況下でのカソード防食システムであって、
前記プラスチック被覆鋼管に接続される流電陽極と、
前記プラスチック被覆鋼管と前記流電陽極との間に設けられ、前記プラスチック被覆鋼管と前記流電陽極とを少なくとも非極性容量素子を介して接続する交流誘導低減器と、
前記絶縁継手を挟んで前記プラスチック被覆鋼管と前記鋳鉄管との間に接続され、前記鋳鉄管から前記プラスチック被覆鋼管へ向けた流れを順方向とするボンド整流素子を含むボンド電流調整器とを備えたことを特徴とする埋設金属パイプラインのカソード防食システム。
A cathodic protection system in a situation where a buried metal pipeline in which a plastic-coated steel pipe and an uncoated cast iron pipe are connected via an insulating joint is affected by AC induction,
A galvanic anode connected to the plastic-coated steel pipe;
An AC induction reducer provided between the plastic-coated steel pipe and the galvanic anode, and connecting the plastic-coated steel pipe and the galvanic anode through at least a non-polar capacitive element;
A bond current regulator including a bond rectifying element that is connected between the plastic-coated steel pipe and the cast iron pipe with the insulating joint interposed therebetween, and that forward flows from the cast iron pipe to the plastic-coated steel pipe. Cathodic protection system for buried metal pipelines.
前記交流誘導低減器は、前記非極性容量素子と並列に接続されて前記プラスチック被覆鋼管から前記流電陽極へ向けた流れを順方向とする逆流防止整流素子を含むことを特徴とする請求項5に記載された埋設金属パイプラインのカソード防食システム。   The said alternating current induction reducer is connected in parallel with the said nonpolar capacitive element, The backflow prevention rectifier element which makes the flow toward the said electroactive anode from the said plastic covering steel pipe a forward direction is included. Cathodic protection system for buried metal pipelines described in 1. 前記交流誘導低減器は、前記非極性容量素子及び前記逆流防止整流素子と並列に接続されたサージ防護素子を含むことを特徴とする請求項6に記載された埋設金属パイプラインのカソード防食システム。   7. The cathodic protection system for an embedded metal pipeline according to claim 6, wherein the AC induction reducer includes a surge protection element connected in parallel with the nonpolar capacitance element and the backflow prevention rectifier element. 前記ボンド電流調整器は、前記ボンド整流素子と並列接続されたコイル素子を含むことを特徴とする請求項7に記載された埋設金属パイプラインのカソード防食システム。   8. The cathodic protection system for an embedded metal pipeline according to claim 7, wherein the bond current regulator includes a coil element connected in parallel with the bond rectifier element. 前記ボンド電流調整器の電圧−電流特性は、前記ボンド整流素子の順電圧より高い電圧で電圧の上昇に対して電流の上昇が抑制されていることを特徴とする請求項8に記載された埋設金属パイプラインのカソード防食システム。   9. The embedded structure according to claim 8, wherein the voltage-current characteristic of the bond current regulator is such that an increase in current is suppressed with respect to an increase in voltage at a voltage higher than a forward voltage of the bond rectifier element. Cathodic protection system for metal pipelines. 前記ボンド電流調整器の電圧−電流特性は、前記鋳鉄管の管対地電位が自然電位から少なくとも100mVマイナス側にシフトするのに十分なように設定されることを特徴とする請求項9に記載された埋設金属パイプラインのカソード防食システム。   The voltage-current characteristic of the bond current regulator is set such that the tube-to-ground potential of the cast iron pipe is sufficient to shift from a natural potential to at least 100 mV minus side. Cathodic protection system for buried metal pipelines. 前記鋳鉄管の管対地電位は前記ボンド電流調整器をオフすることで計測されるインスタントオフ電位であることを特徴とする請求項10に記載された埋設金属パイプラインのカソード防食システム。   11. The cathodic protection system for a buried metal pipeline according to claim 10, wherein the pipe ground potential of the cast iron pipe is an instant-off potential measured by turning off the bond current regulator.
JP2011058609A 2011-03-16 2011-03-16 Cathodic protection method and cathodic protection system for buried metal pipeline Active JP5718692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058609A JP5718692B2 (en) 2011-03-16 2011-03-16 Cathodic protection method and cathodic protection system for buried metal pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058609A JP5718692B2 (en) 2011-03-16 2011-03-16 Cathodic protection method and cathodic protection system for buried metal pipeline

Publications (2)

Publication Number Publication Date
JP2012193414A true JP2012193414A (en) 2012-10-11
JP5718692B2 JP5718692B2 (en) 2015-05-13

Family

ID=47085576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058609A Active JP5718692B2 (en) 2011-03-16 2011-03-16 Cathodic protection method and cathodic protection system for buried metal pipeline

Country Status (1)

Country Link
JP (1) JP5718692B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110893065A (en) * 2018-09-12 2020-03-20 武汉苏泊尔炊具有限公司 Pot body, processing method of pot body and cooking utensil
CN113930775A (en) * 2021-12-20 2022-01-14 淄博德源金属材料有限公司 Production process of auxiliary anode for composite impressed current cathodic protection
CN114150320A (en) * 2021-12-03 2022-03-08 深圳承远航空油料有限公司 Grounding method and system for cathode protection coupler of electric instrument of apron valve well

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020589B (en) * 2015-07-03 2017-07-28 中国石油天然气集团公司 A kind of oil well gathering line Multi-tube synchronous detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250779A (en) * 2002-12-27 2004-09-09 Tokyo Gas Co Ltd Safety method and safety device for embedded structure
JP2008292360A (en) * 2007-05-25 2008-12-04 Tokyo Gas Co Ltd Device and method for measuring and evaluating cathode prevention status of buried pipeline
JP2010001549A (en) * 2008-06-23 2010-01-07 Tokyo Gas Co Ltd Cathodic corrosion protection system and cathodic corrosion protection method for underground pipeline

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250779A (en) * 2002-12-27 2004-09-09 Tokyo Gas Co Ltd Safety method and safety device for embedded structure
JP2008292360A (en) * 2007-05-25 2008-12-04 Tokyo Gas Co Ltd Device and method for measuring and evaluating cathode prevention status of buried pipeline
JP2010001549A (en) * 2008-06-23 2010-01-07 Tokyo Gas Co Ltd Cathodic corrosion protection system and cathodic corrosion protection method for underground pipeline

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110893065A (en) * 2018-09-12 2020-03-20 武汉苏泊尔炊具有限公司 Pot body, processing method of pot body and cooking utensil
CN114150320A (en) * 2021-12-03 2022-03-08 深圳承远航空油料有限公司 Grounding method and system for cathode protection coupler of electric instrument of apron valve well
CN114150320B (en) * 2021-12-03 2024-04-16 深圳承远航空油料有限公司 Grounding method and system for female protection coupler of electric instrument of apron valve well
CN113930775A (en) * 2021-12-20 2022-01-14 淄博德源金属材料有限公司 Production process of auxiliary anode for composite impressed current cathodic protection

Also Published As

Publication number Publication date
JP5718692B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5718692B2 (en) Cathodic protection method and cathodic protection system for buried metal pipeline
Memon et al. Stray Current Corrosion and Mitigation: A synopsis of the technical methods used in dc transit systems
JP6333704B2 (en) External power source cathodic protection device
JP5159464B2 (en) Cathodic protection system and cathodic protection method for buried pipeline
JP5426415B2 (en) Electric corrosion prevention system and electric corrosion prevention method for buried metal pipeline
JP5135279B2 (en) Selection drainage and method for determining drainage current limiting resistance value of selection drainage
CN108819801A (en) A kind of rail potential inhibition system and method
JP5135305B2 (en) Cathodic protection management system for buried pipeline and cathodic protection management method
JP4847307B2 (en) Cathodic protection system and cathode protection method
JP4796939B2 (en) Cathodic protection system using cathodic anode method and cathodic protection method
JP5135193B2 (en) Cathodic protection system and cathodic protection method for buried pipelines using galvanic anode method
JP5710933B2 (en) Cathodic protection method and cathodic protection system for buried metal pipeline
JP5231899B2 (en) Cathodic protection method for pipelines
Li et al. Numerical modeling of stray current corrosion of ductile iron pipe induced by foreign cathodic protection system
KR101011631B1 (en) An apparatus and a method for a non-input power electric corrosion prevention
CN109868481A (en) The means of defence that oil-gas pipeline is interfered by HVDC transmission line earthing pole location
JP2014159621A (en) Electric corrosion/lightning damage prevention method and electric corrosion/lightning damage prevention structure of buried pipe
JP5345795B2 (en) Cathodic protection system, cathodic protection method, and galvanic anode generation current stabilizer
JP2000234188A (en) Electric protection method of pipe line, and external power supply device for electric protection
Langelund Pipeline stray current (DC) interference
Boychev et al. Cathodic protection of pipelines from stray currents
George Alternating Current Interference on Cathodically Protected Pipeline From Railway Electrification Systems
JPH09292100A (en) Electromagnetic induction voltage reducing method for pipe line
Petkova et al. Active stray current protection systems in DC railways
JP2009149935A (en) Corrosion protection apparatus, corrosion protection method, power device and voltage generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150319

R150 Certificate of patent or registration of utility model

Ref document number: 5718692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250