JP2012193282A - Method for manufacturing friction member - Google Patents

Method for manufacturing friction member Download PDF

Info

Publication number
JP2012193282A
JP2012193282A JP2011058394A JP2011058394A JP2012193282A JP 2012193282 A JP2012193282 A JP 2012193282A JP 2011058394 A JP2011058394 A JP 2011058394A JP 2011058394 A JP2011058394 A JP 2011058394A JP 2012193282 A JP2012193282 A JP 2012193282A
Authority
JP
Japan
Prior art keywords
friction
thermoplastic resin
friction member
fibers
friction surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011058394A
Other languages
Japanese (ja)
Inventor
Shigeru Ichikawa
繁 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011058394A priority Critical patent/JP2012193282A/en
Publication of JP2012193282A publication Critical patent/JP2012193282A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)
  • Braking Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a friction member that can prevent the friction coefficient of a friction surface from decreasing while the dimension thereof is stabilized.SOLUTION: The method for manufacturing a friction member having a friction surface made of a thermoplastic resin containing fiber includes: a molding step S12 of molding a molded article from the fiber and the thermoplastic resin; a grinding step S13 of grinding the molded article into a shape of a friction member; and a leveling step S14 of leveling the friction surface by pressing the friction surface of the ground friction member with a pressing member heated to or above the softening point of the thermoplastic resin to soften the thermoplastic resin on the surface layer of the friction member.

Description

本発明は、繊維を含有した熱可塑性樹脂からなる摩擦面を含む摩擦部材の製造方法であって、摩擦部材に寸法精度を要する摩擦部材の製造方法に関する。   The present invention relates to a method for manufacturing a friction member including a friction surface made of a thermoplastic resin containing fibers, and relates to a method for manufacturing a friction member that requires dimensional accuracy in the friction member.

従来から、自動車において、エンジン、トランスミッション、クラッチなど様々な機器に摩擦部材(摺動部材)が用いられており、この摩擦部材の制動特性(例えばトルク伝達特性)を向上させることにより、機器の動作不良を防止し、信頼性を高めるための様々な開発がなされている。   Conventionally, friction members (sliding members) have been used in various devices such as engines, transmissions, and clutches in automobiles. By improving the braking characteristics (for example, torque transmission characteristics) of these friction members, the operation of the devices is improved. Various developments have been made to prevent defects and improve reliability.

例えば、図6(a),(b)は、従来のクラッチ90を示しており、クラッチのレリーズレバー91は、レリーズフォーク92を介してクラッチペダル93に連結されている。このレリーズレバー91は、クラッチハウジング97に貫通状に回動可能に支持されたシリンダ91aのプッシュロッド91bと、プッシュロッド91bに一端で連結されたアーム91cと、プッシュロッド91b他端で連結され、かつコイルスプリング95で付勢されると共にクラッチレリーズベアリングハブ94に係合するクラッチレリーズレバーヨーク91dとを備えている。また、クラッチペダル93の操作により、クラッチレリーズベアリングハブ94を押圧するようになっている。   For example, FIGS. 6A and 6B show a conventional clutch 90, and a release lever 91 of the clutch is connected to a clutch pedal 93 via a release fork 92. The release lever 91 is connected to a push rod 91b of a cylinder 91a that is rotatably supported by the clutch housing 97 in a penetrating manner, an arm 91c connected to the push rod 91b at one end, and the other end of the push rod 91b. A clutch release lever yoke 91d that is urged by a coil spring 95 and engages with a clutch release bearing hub 94 is provided. Further, the clutch release bearing hub 94 is pressed by the operation of the clutch pedal 93.

一方、クラッチの駆動側には、フライホイール81に対して接離するクラッチディスク82がクラッチプレート83に貼り合わされており、これに対面するようにプレッシャプレート84が配設されている。そして、これらの部材を覆う、クラッチシャフト87を貫通するようにカバー86が設けられている(特許文献1参照)。   On the other hand, on the drive side of the clutch, a clutch disk 82 that contacts and separates from the flywheel 81 is bonded to the clutch plate 83, and a pressure plate 84 is disposed so as to face this. And the cover 86 is provided so that the clutch shaft 87 which covers these members may be penetrated (refer patent document 1).

ここで、クラッチディスク82のスラストワッシャ、クラッチレリーズベアリングハブ94、シリンダのプッシュロッド91bなど摩擦面を有した摩擦部材(機械部品)は、トルク伝達性を安定させるために、寸法精度を要する。したがって、従来から金属材料、金属材料等を切削、旋削などの機械加工により製作されるのが一般的である。   Here, the friction members (mechanical parts) having friction surfaces such as the thrust washer of the clutch disk 82, the clutch release bearing hub 94, and the push rod 91b of the cylinder require dimensional accuracy in order to stabilize torque transmission. Therefore, conventionally, a metal material, a metal material or the like is generally manufactured by machining such as cutting or turning.

実開昭63−69828号公報Japanese Utility Model Publication No. 63-69828

ところで、近年、上述した機械部品等の摩擦部材の軽量化および高摩擦化を図るため、繊維を含有した樹脂材料が注目されている。このような繊維を含有した樹脂で、上述した摩擦部材を機械加工により製造する場合、機械加工面である摩擦面は、繊維により粗くなり、摩擦面に露呈した繊維が起因となって、摩擦部材の摩擦係数が低くなってしまう。   Incidentally, in recent years, resin materials containing fibers have attracted attention in order to reduce the weight and increase the friction of friction members such as the above-described mechanical parts. When the above-described friction member is manufactured by machining using a resin containing such fibers, the friction surface, which is a machining surface, becomes rough due to the fibers, and the fibers exposed to the friction surface cause friction members. The coefficient of friction will be low.

そこで、例えば、繊維を含有した樹脂を溶融し、これを成形型内に射出するなどのより摩擦部材を成形した場合、摩擦面の粗さは小さく、露呈した繊維に起因した摩擦係数の低下を抑制することができる。しかしながら、成形により摩擦部材を成形した場合には、樹脂のヒケ(熱収縮)により、機械加工に比べて、摩擦部材の寸法精度が低下するおそれがある。   Therefore, for example, when a friction member is molded by melting a resin containing fibers and injecting the resin into a mold, the friction surface is small, and the friction coefficient is reduced due to the exposed fibers. Can be suppressed. However, when the friction member is formed by molding, there is a possibility that the dimensional accuracy of the friction member may be reduced due to resin sink (heat shrinkage) compared to machining.

本発明は、このような課題に鑑みてなされたものであって、その目的とするところは、寸法安定性を確保しつつ、摩擦面の摩擦係数の低下を抑えることができる摩擦部材の製造方法を提供することにある。   The present invention has been made in view of such a problem, and the object of the present invention is to provide a friction member manufacturing method capable of suppressing a decrease in the friction coefficient of a friction surface while ensuring dimensional stability. Is to provide.

本発明に係る摩擦部材の製造方法は、繊維を含有した熱可塑性樹脂からなる摩擦面を含む摩擦部材の製造方法であって、前記繊維と前記熱可塑性樹脂とから成形体を成形する工程と、該成形体を摩擦部材の形状に削り込む工程と、該削り込んだ摩擦部材の摩擦面を、前記熱可塑性樹脂の軟化点以上に加熱した押圧部材で押圧することにより、前記摩擦面を含む前記摩擦部材の表層の熱可塑性樹脂を軟化させて、前記摩擦面を平滑にする工程と、を含むことを特徴とする。   The method for producing a friction member according to the present invention is a method for producing a friction member including a friction surface made of a thermoplastic resin containing fibers, and a step of forming a molded body from the fibers and the thermoplastic resin, The step of cutting the molded body into the shape of a friction member, and pressing the friction surface of the scraped friction member with a pressing member heated above the softening point of the thermoplastic resin, including the friction surface And softening the thermoplastic resin on the surface layer of the friction member to smooth the friction surface.

本発明によれば、まず、繊維を含む熱可塑性樹脂を溶融させて、成形体を成形する。次に、成形体を摩擦部材の形状に削り込む。このように、摩擦部材の形状に削り込むことにより、摩擦部材を成形する場合に比べて、摩擦部材の寸法精度を高めることができる。この際、摩擦面に相当する成形体の表面も削り込まれるので、得られた摩擦部材の表面には、毛羽立った繊維が露呈することになる。   According to the present invention, first, a molded body is formed by melting a thermoplastic resin containing fibers. Next, the molded body is cut into the shape of the friction member. Thus, by cutting into the shape of the friction member, the dimensional accuracy of the friction member can be increased as compared with the case of forming the friction member. At this time, since the surface of the molded body corresponding to the friction surface is also shaved, fluffy fibers are exposed on the surface of the obtained friction member.

そこで、押圧部材を熱可塑性樹脂の軟化点以上の温度まで加熱して、この押圧部材で摩擦面を押圧する。これにより、摩擦面を含む摩擦部材の表層の熱可塑性樹脂を軟化させて、摩擦面を平滑化する。すなわち、この工程では、摩擦部材の形状に削り込むことにより、摩擦面に毛羽立つように露呈した繊維を、表層の軟化した熱可塑性樹脂に密着またはその内部に入り込ませ、これにより摩擦面が平滑化される。この結果、摩擦面に露呈した繊維が起因として、摩擦部材の摩擦係数が低下することを抑えることができる。   Therefore, the pressing member is heated to a temperature equal to or higher than the softening point of the thermoplastic resin, and the friction surface is pressed with the pressing member. Thereby, the thermoplastic resin of the surface layer of the friction member including the friction surface is softened, and the friction surface is smoothed. That is, in this process, the fiber exposed to the surface of the friction is made to adhere to or enter the softened thermoplastic resin of the surface layer by cutting into the shape of the friction member, thereby smoothing the friction surface. Is done. As a result, it is possible to suppress a decrease in the friction coefficient of the friction member due to the fibers exposed on the friction surface.

ここで、本発明でいう「繊維」は、熱可塑性樹脂を補強すると共に、摩擦係数を確保するための繊維のことであり、短繊維、長繊維いずれの繊維であってもよい。また、繊維の材質としては、上述した機能を発揮することができるのであれば、特に限定されるものではない。例えば、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維、スチール繊維、PBO繊維、有機繊維、又は高強度ポリエチレン繊維などの繊維を挙げることができる。   Here, the “fiber” in the present invention is a fiber for reinforcing a thermoplastic resin and ensuring a friction coefficient, and may be either a short fiber or a long fiber. In addition, the material of the fiber is not particularly limited as long as the function described above can be exhibited. Examples thereof include glass fibers, carbon fibers, aramid fibers, alumina fibers, boron fibers, steel fibers, PBO fibers, organic fibers, and high-strength polyethylene fibers.

また、本発明でいう「熱可塑性樹脂」は、繊維同士を繋ぐための樹脂(マトリクス樹脂)のことをいう。熱可塑性樹脂の材質としては、軟化時に上述した繊維に損傷をあたえることなく、繊維同士を繋ぐことができるのであれば、特に限定されるものではない。たとえば、結晶性熱可塑性樹脂や非結晶性熱可塑性樹脂を使用でき、例えば、ナイロン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリプロピレン系樹脂などのオレフィン系樹脂、アクリル系樹脂、またはABS系樹脂などを挙げることができ、これらよりも、より融点の高い(軟化点の高い)熱可塑性樹脂であってもよい。   The “thermoplastic resin” as used in the present invention refers to a resin (matrix resin) for connecting fibers together. The material of the thermoplastic resin is not particularly limited as long as the fibers can be connected to each other without damaging the fibers described above during softening. For example, a crystalline thermoplastic resin or an amorphous thermoplastic resin can be used, for example, an olefin resin such as nylon resin, polycarbonate resin, polyamide resin, polypropylene resin, acrylic resin, or ABS resin. A thermoplastic resin having a higher melting point (higher softening point) than these may be used.

なお、本発明でいう摩擦部材とは、相手材と摩擦接触する面に、摩擦面を有し、この摩擦面により相手材との相対的な移動を制限する(制動する)ための部材である。したがって、摩擦面とは、相手材と摩擦接触する面である。また、本発明でいう「平滑」とは、削り込み工程における摩擦面(摩擦面に露呈した繊維を含む摩擦面)を平滑にすることをいう。   In addition, the friction member as used in the field of this invention is a member which has a friction surface in the surface which carries out frictional contact with the other party material, and restrict | limits (brakes) relative movement with the other party material by this friction surface. . Therefore, the friction surface is a surface in frictional contact with the counterpart material. The term “smooth” as used in the present invention refers to smoothing a friction surface (a friction surface including fibers exposed to the friction surface) in the cutting process.

さらに、好ましい態様としては、前記摩擦面の前記繊維が、前記表層の前記熱可塑性樹脂内に入り込むように、前記摩擦面を平滑にする工程を行う。すなわち、この態様では、摩擦面のすべての繊維が、表層の熱可塑性樹脂内に埋設され、摩擦面が熱可塑性樹脂で被覆されるように、摩擦面の平滑化を行う。   Furthermore, as a preferred aspect, a step of smoothing the friction surface is performed so that the fibers of the friction surface enter the thermoplastic resin of the surface layer. That is, in this aspect, the friction surface is smoothed so that all the fibers on the friction surface are embedded in the surface thermoplastic resin and the friction surface is covered with the thermoplastic resin.

この態様によれば、摩擦面の繊維が、熱可塑性樹脂で被覆されているので、摩擦部材の使用時において、繊維のみが摩擦面に露呈し難くなる。これにより、長時間使用した場合であっても、摩擦部材の摩擦係数の低下を抑えることができる。なお、このような平滑化は、押圧部材の加熱温度、加熱時間、および押圧力を調整することにより達成することができる。   According to this aspect, since the fiber on the friction surface is coated with the thermoplastic resin, only the fiber is hardly exposed on the friction surface when the friction member is used. Thereby, even if it is a case where it uses for a long time, the fall of the friction coefficient of a friction member can be suppressed. Such smoothing can be achieved by adjusting the heating temperature, heating time, and pressing force of the pressing member.

本発明によれば、熱可塑性樹脂に繊維が含浸した場合であっても、寸法安定性を確保しつつ、摩擦面の摩擦係数の低下を抑えることができる。   According to the present invention, even when fibers are impregnated with a thermoplastic resin, it is possible to suppress a decrease in the friction coefficient of the friction surface while ensuring dimensional stability.

本実施形態に係る摩擦部材の製造方法の各工程を説明するためのフロー図。The flowchart for demonstrating each process of the manufacturing method of the friction member which concerns on this embodiment. 図1に示す各工程を説明するための模式図であり、(a)は、混練工程を説明するための断面図、(b)は、成形工程を説明するための断面図、(c)は、削り込み工程を説明するための斜視図、(d)は、平滑化工程を説明するための斜視図である。It is a schematic diagram for demonstrating each process shown in FIG. 1, (a) is sectional drawing for demonstrating a kneading | mixing process, (b) is sectional drawing for demonstrating a formation process, (c) is The perspective view for demonstrating a cutting process, (d) is a perspective view for demonstrating a smoothing process. 平滑化工程前後の摩擦部材の摩擦面の模式的断面図であり、(a)は、平滑化工程前の摩擦面の断面図、(b)は、平滑化工程後の摩擦部材の断面図。It is typical sectional drawing of the friction surface of the friction member before and behind a smoothing process, (a) is sectional drawing of the friction surface before a smoothing process, (b) is sectional drawing of the friction member after a smoothing process. 実施例1および比較例1、2に係る摩擦部材の寸法精度と表面粗さの関係を示した図。The figure which showed the relationship between the dimensional accuracy of the friction member which concerns on Example 1, and Comparative Examples 1 and 2, and surface roughness. 実施例1および比較例1、2に係る摩擦部材の摩擦係数と表面粗さの関係を示した図。The figure which showed the relationship between the friction coefficient of the friction member which concerns on Example 1, and Comparative Examples 1 and 2 and surface roughness. 従来のクラッチを説明するための図であり、(a)は全体斜視図、(b)は(a)の断面図。It is a figure for demonstrating the conventional clutch, (a) is a whole perspective view, (b) is sectional drawing of (a).

以下の本発明の摩擦部材の製造方法を実施形態について説明する。   Embodiments of the following method for manufacturing a friction member according to the present invention will be described.

図1は、本実施形態に係る摩擦部材の製造方法の各工程を説明するためのフロー図である。図2は、図1に示す各工程を説明するための模式図であり、(a)は、混練工程を説明するための断面図、(b)は、成形工程を説明するための断面図、(c)は、削り込み工程を説明するための斜視図、(d)は、平滑化工程を説明するための斜視図である。   FIG. 1 is a flowchart for explaining each step of the friction member manufacturing method according to the present embodiment. FIG. 2 is a schematic diagram for explaining each step shown in FIG. 1, (a) is a sectional view for explaining a kneading step, (b) is a sectional view for explaining a molding step, (C) is a perspective view for demonstrating a grinding process, (d) is a perspective view for demonstrating a smoothing process.

図3は、平滑化工程前後の摩擦部材の摩擦面の模式的断面図であり、(a)は、平滑化工程前の摩擦面の断面図、(b)は、平滑化工程後の摩擦部材の断面図である。   FIG. 3 is a schematic cross-sectional view of the friction surface of the friction member before and after the smoothing step, (a) is a cross-sectional view of the friction surface before the smoothing step, and (b) is a friction member after the smoothing step. FIG.

まず、図1及び図2(a)に示すように、混練工程S11を行う。繊維2と、熱可塑性樹脂3(ペレット)を、2軸押出機20の投入口21に投入する。2軸押出機20は、熱可塑性樹脂3が溶融するまで加熱し、溶融した熱可塑性樹脂3と繊維2とを均一に混練し、混練物となるバルク材を2軸押出機20から押出す。ここでは、繊維と熱可塑性樹脂とを混練するために2軸押出機を用いたが、繊維2と熱可塑性樹脂3とを均一に混連することができるのであれば、特にこの装置に限定されるものではない。   First, as shown in FIG.1 and FIG.2 (a), kneading | mixing process S11 is performed. The fibers 2 and the thermoplastic resin 3 (pellets) are charged into the charging port 21 of the twin screw extruder 20. The twin-screw extruder 20 is heated until the thermoplastic resin 3 is melted, the molten thermoplastic resin 3 and the fibers 2 are uniformly kneaded, and the bulk material that becomes the kneaded product is extruded from the twin-screw extruder 20. Here, a twin-screw extruder was used to knead the fiber and the thermoplastic resin. However, as long as the fiber 2 and the thermoplastic resin 3 can be uniformly mixed together, it is particularly limited to this apparatus. It is not something.

ここでは、繊維2としては、例えば、無機繊維、有機繊維、および金属繊維のいずれであってもよく、より好ましくは、ガラス繊維、炭素繊維、アラミド繊維、アルミナ繊維、ボロン繊維、スチール繊維、PBO繊維、又は高強度ポリエチレン繊維などの繊維が挙げられる。熱可塑性樹脂3としては、ナイロン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリプロピレン系樹脂などのオレフィン系樹脂、アクリル系樹脂、またはABS系樹脂などを挙げることができる。   Here, the fiber 2 may be, for example, any of inorganic fiber, organic fiber, and metal fiber, and more preferably glass fiber, carbon fiber, aramid fiber, alumina fiber, boron fiber, steel fiber, PBO. Examples thereof include fibers, and fibers such as high-strength polyethylene fibers. Examples of the thermoplastic resin 3 include nylon resins, polycarbonate resins, polyamide resins, polypropylene resins and other olefin resins, acrylic resins, and ABS resins.

次に、図1及び図2(b)に示すように、成形工程S12を行う。得られたバルク材4を射出成形装置30のシリンダ31内に投入し、バルク材4が軟化するまで加熱して、プランジャ32で押し出す。射出成形装置30の射出方向先端には、上下の型からなる成形型40が連結されている。これにより、プランジャ32によって押し出されたバルク材4は、成形型40内で成形体に成形される。   Next, as shown in FIG.1 and FIG.2 (b), shaping | molding process S12 is performed. The obtained bulk material 4 is put into the cylinder 31 of the injection molding device 30, heated until the bulk material 4 is softened, and pushed out by the plunger 32. A molding die 40 composed of upper and lower molds is connected to the tip of the injection molding apparatus 30 in the injection direction. Thereby, the bulk material 4 pushed out by the plunger 32 is molded into a molded body in the molding die 40.

なお、得られた成形体は、成形体から摩擦部材7を機械加工により削り出すことができるような大きさ及び形状を有しており、成形型40内には、このような大きさおよび形状の成形体5を成形できるようなキャビティ41が形成されている。ここでは、射出成形装置30を用いて成形したが、上述した2軸押出機20に成形型を連結して、成形体を製作してもよい。   The obtained molded body has such a size and shape that the friction member 7 can be machined from the molded body by machining, and such a size and shape are contained in the molding die 40. A cavity 41 is formed so that the molded body 5 can be molded. Here, although it shape | molded using the injection molding apparatus 30, you may manufacture a molded object by connecting a shaping | molding die to the biaxial extruder 20 mentioned above.

続いて、図1及び図2(c)に示すように、削り込み工程S13を行う。ここでは、機械的加工(具体的には切削加工および旋削など)により、成形体5を後述する摩擦部材7の形状(具体的にはリング状)に削り込む。なお、図1(c)は、バイト34を用いて削り込みをおこなっている。このように、摩擦部材7の形状に削り込むことにより、摩擦部材を成形する場合に比べて、摩擦部材7の寸法精度を高めることができる。成形体5の削り込みは、所望の形状に削り込みをすることができるのであれば、その削り込み方法は、特に限定されるものではない。   Then, as shown in FIG.1 and FIG.2 (c), the cutting process S13 is performed. Here, the molded body 5 is cut into the shape (specifically, ring shape) of the friction member 7 described later by mechanical processing (specifically, cutting and turning). In FIG. 1C, cutting is performed using a cutting tool 34. In this manner, by cutting into the shape of the friction member 7, the dimensional accuracy of the friction member 7 can be increased as compared with the case of forming the friction member. The cutting method of the molded body 5 is not particularly limited as long as it can be cut into a desired shape.

次に、図1及び図2(d)に示すように、平滑化工程S14を行う。ここでは、削り込んだ摩擦部材7の摩擦面7aを、この摩擦面7aの形状に応じた押圧面51を有した円盤状の押圧部材50で押圧する。具体的には、押圧部材50を、摩擦部材7を構成する熱可塑性樹脂3の軟化点以上に加熱して、加熱した押圧部材50で摩擦面7aを押圧することにより、摩擦面7aを含む摩擦部材7の表層の熱可塑性樹脂3を軟化させて、摩擦面7aを平滑にする。   Next, as shown in FIG.1 and FIG.2 (d), smoothing process S14 is performed. Here, the scraped friction surface 7a of the friction member 7 is pressed by a disk-shaped pressing member 50 having a pressing surface 51 corresponding to the shape of the friction surface 7a. Specifically, the friction including the friction surface 7 a is achieved by heating the pressing member 50 to a temperature equal to or higher than the softening point of the thermoplastic resin 3 constituting the friction member 7 and pressing the friction surface 7 a with the heated pressing member 50. The thermoplastic resin 3 on the surface layer of the member 7 is softened to smooth the friction surface 7a.

これにより、図3(a)で示すように、削り込み工程後の摩擦部材7の摩擦面7aは、切削面であるので、摩擦面7aから繊維2の一部が毛羽立つように露呈しているが、図3(b)に示すように、押圧部材50で押圧することにより、一部が露呈した繊維2を表層の軟化した熱可塑性樹脂3に密着またはその内部に入り込ませ、これにより摩擦面7aを平滑にすることができる。この結果、得られた摩擦部材7は、摩擦面7aに露呈した繊維2が起因として、摩擦部材7の摩擦係数が低下することを抑えることができる。また摩擦部材の表層のみを軟化させるので、寸法精度をほぼ維持することができる。   As a result, as shown in FIG. 3A, the friction surface 7a of the friction member 7 after the cutting process is a cutting surface, so that a part of the fiber 2 is exposed from the friction surface 7a so as to become fluffy. However, as shown in FIG. 3 (b), by pressing with the pressing member 50, the partially exposed fiber 2 is brought into close contact with the softened thermoplastic resin 3 on the surface layer, or enters the inside thereof, whereby the friction surface 7a can be smoothed. As a result, the obtained friction member 7 can suppress a decrease in the friction coefficient of the friction member 7 due to the fibers 2 exposed to the friction surface 7a. Further, since only the surface layer of the friction member is softened, the dimensional accuracy can be substantially maintained.

ここで、平滑化工程において、例えば摩擦部材7と摩擦面で摩擦接触する部材が鉄などの金属材料である場合には、摩擦面7aに繊維2が露呈しないように(すなわち、繊維2が摩擦部材の表層の熱可塑性樹脂3に潜り込むように)平滑化処理することがより好ましい。   Here, in the smoothing step, for example, when the member that is in frictional contact with the friction member 7 on the friction surface is a metal material such as iron, the fibers 2 are not exposed to the friction surface 7a (that is, the fibers 2 are frictionally exposed). It is more preferable to perform a smoothing treatment (so as to sink into the thermoplastic resin 3 on the surface layer of the member).

例えば、熱可塑性樹脂であるナイロン樹脂にガラス繊維を含有させる場合、繊維長10〜30mm、繊維径10〜50μmの繊維の含有量を10〜40質量%とし、押圧部材50を100℃以上に加熱し、押圧する圧力を1〜10MPaにし、押圧時間を10秒〜1分にすることにより、摩擦面7aに繊維2が露呈せず、摩擦面7aの繊維2が表層のナイロン樹脂に入り込み、摩擦面7aにナイロン樹脂のみが露呈した状態になる。   For example, when glass fiber is contained in a nylon resin, which is a thermoplastic resin, the content of fibers having a fiber length of 10 to 30 mm and a fiber diameter of 10 to 50 μm is set to 10 to 40% by mass, and the pressing member 50 is heated to 100 ° C. or higher. When the pressing pressure is set to 1 to 10 MPa and the pressing time is set to 10 seconds to 1 minute, the fibers 2 are not exposed to the friction surface 7a, and the fibers 2 of the friction surface 7a enter the nylon resin of the surface layer, and the friction Only the nylon resin is exposed on the surface 7a.

なお、ここでは、摩擦面7aに接触する押圧部材50の押圧面51は、平面状であるが、摩擦面が曲面である場合には、この曲面に応じた押圧面(曲面)を有した押圧部材を用いればよい。   Here, the pressing surface 51 of the pressing member 50 that contacts the friction surface 7a is planar. However, when the friction surface is a curved surface, the pressing surface (curved surface) corresponding to the curved surface is a pressing surface. A member may be used.

そして、このような摩擦部材は、例えば、上述した図6(a),(b)に示すように、クラッチディスク82のスラストワッシャ、クラッチレリーズベアリングハブ94、シリンダのプッシュロッド91bなど寸法精度を要し、他に比べて高い摩擦面が要求される部材に好適に用いることができる。   For example, as shown in FIGS. 6A and 6B described above, such a friction member requires dimensional accuracy such as a thrust washer for the clutch disk 82, a clutch release bearing hub 94, and a push rod 91b for the cylinder. And it can use suitably for the member by which a high friction surface is requested | required compared with others.

以下に、本発明を実施例により説明する。
(実施例)
<摩擦部材の作製>
まず、出発材料として、熱可塑性樹脂としてナイロン樹脂を準備し、これに繊維として、直径20μm、繊維長さ15mmガラス繊維(束)とを準備した。次に、ガラス繊維の質量が総質量体に対して30重量%含有するように、ガラス繊維がナイロン樹脂に均一に分散するように、これらを混練して、その後成形体を作成した。さらに成形体を削り込んで、30mm×30mm×5mmの摩擦部材(ディスク試験)を製作した。
Hereinafter, the present invention will be described by way of examples.
(Example)
<Production of friction member>
First, as a starting material, a nylon resin was prepared as a thermoplastic resin, and glass fibers (bundles) having a diameter of 20 μm and a fiber length of 15 mm were prepared as fibers. Next, these were kneaded so that the glass fibers were uniformly dispersed in the nylon resin so that the mass of the glass fibers was 30% by weight based on the total mass, and then a molded body was prepared. Further, the molded body was cut to produce a friction member (disk test) of 30 mm × 30 mm × 5 mm.

次に、削り込んだ摩擦面(摩擦面)に、ナイロン樹脂の軟化点温度(熱変形開始温度)以上である150℃に加熱した押圧部材を、押圧力2MPaで押圧時間1分間の条件で押圧した。これにより、摩擦面を含む摩擦部材の表層の熱可塑性樹脂を軟化させて、摩擦面を平滑にした。また、この条件では、摩擦面の前記繊維が、熱可塑性樹脂で被覆されていた。   Next, a pressed member heated to 150 ° C., which is higher than the softening point temperature (thermal deformation start temperature) of the nylon resin, is pressed on the scraped friction surface (friction surface) under the condition that the pressing time is 2 MPa and the pressing time is 1 minute. did. Thereby, the thermoplastic resin of the surface layer of the friction member including the friction surface was softened, and the friction surface was made smooth. Under these conditions, the fibers on the friction surface were coated with a thermoplastic resin.

(比較例1)
実施例1と同じようにして、摩擦部材を作製した。実施例と相違する点は、成形体を削り込んだのみであり、押圧部材を用いて摩擦面の平滑化を行っていない点である。
(Comparative Example 1)
A friction member was produced in the same manner as in Example 1. The difference from the embodiment is that the molded body is only cut and the friction surface is not smoothed by using the pressing member.

(比較例2)
実施例1と同じようにして、摩擦部材を作製した。実施例1と相違する点は、成形型により、摩擦部材を製作した(削り込み工程および平滑化工程を行っていない)点である。
(Comparative Example 2)
A friction member was produced in the same manner as in Example 1. The difference from the first embodiment is that a friction member is manufactured by a molding die (the cutting process and the smoothing process are not performed).

<表面粗さの測定>
実施例と比較例1、2に係る摩擦部材の摩擦面の表面粗さを接触式の表面粗さ計で測定した。この結果を図4および5以下に示す。
<Measurement of surface roughness>
The surface roughness of the friction surface of the friction member according to Example and Comparative Examples 1 and 2 was measured with a contact-type surface roughness meter. The results are shown in FIGS.

<寸法変化の測定>
実施例1及び比較例1、2の寸法精度を測定した。この結果を図4に示す。ここでいう寸法精度は、摩擦部材の厚さ5mmの寸法と、目標値となる寸法との差である。
<Measurement of dimensional change>
The dimensional accuracy of Example 1 and Comparative Examples 1 and 2 was measured. The result is shown in FIG. The dimensional accuracy referred to here is the difference between the dimension of the friction member having a thickness of 5 mm and the target value.

<摩擦係数測定試験>
以下の手順でリングオンディスク試験を行った。まず、上述した摩擦部材の相手材として、外径25.6mm、内径20mm、高さ16mm、中心線平均粗さRa1μmの熱間圧延鋼板(SHP28)からなるリング試験片を製作した。
<Friction coefficient measurement test>
The ring-on-disk test was conducted according to the following procedure. First, a ring test piece made of a hot-rolled steel sheet (SHP28) having an outer diameter of 25.6 mm, an inner diameter of 20 mm, a height of 16 mm, and a center line average roughness Ra of 1 μm was manufactured as a counterpart material for the friction member described above.

次に、実施例、比較例1、2の摩擦部材(ディスク試験片)の30mm×30mmの摩擦面と、リング試験片の円筒端面とを接触させ、無潤滑で、周速度100mm/秒、面圧を1MPa、室温条件で、摩擦係数の経時変化を測定した。この結果を図5に示す。   Next, the friction surface of 30 mm × 30 mm of the friction member (disk test piece) of Examples and Comparative Examples 1 and 2 and the cylindrical end surface of the ring test piece are brought into contact with each other, and are lubricated, with a peripheral speed of 100 mm / second, surface. The change with time of the friction coefficient was measured under a pressure of 1 MPa and room temperature. The result is shown in FIG.

<結果>
(1)図4に示すように、実施例に係る摩擦部材は、比較例2のよりも寸法精度が良かった。
(2)図4及び5に示すように、実施例に係る表面粗さは、比較例2のものと同程度であり、比較例1のものよりも小さかった。なお、実施例および比較例2の摩擦面は、繊維がみられず、比較例1の摩擦面には、繊維の毛羽立ちがあった。
(3)図5に示すように、実施例1に係る摩擦係数は、比較例1のものよりも摩擦係数が高く、比較例2のものと同程度であった。
<Result>
(1) As shown in FIG. 4, the friction member according to the example had better dimensional accuracy than that of Comparative Example 2.
(2) As shown in FIGS. 4 and 5, the surface roughness according to the example was comparable to that of Comparative Example 2 and was smaller than that of Comparative Example 1. In addition, the friction surface of the Example and Comparative Example 2 had no fibers, and the friction surface of Comparative Example 1 had fiber fluff.
(3) As shown in FIG. 5, the friction coefficient according to Example 1 was higher than that of Comparative Example 1 and was comparable to that of Comparative Example 2.

<考察>
結果(1)に示すようになったのは、実施例に係る摩擦部材は、機械加工により削り込んで製作したためであり、比較例2の場合、成形型内において樹脂の熱収縮により寸法精度が安定しなかったと考えられる。
<Discussion>
The result (1) came to be because the friction member according to the example was manufactured by machining by machining, and in the case of Comparative Example 2, the dimensional accuracy was increased by the thermal contraction of the resin in the mold. It is thought that it was not stable.

結果(2)に示すようになったのは、実施例および比較例2の摩擦面には、毛羽立った繊維が露呈していなかったからであると考えられる。   It is considered that the result (2) came to show that the fuzzy fibers were not exposed on the friction surfaces of Example and Comparative Example 2.

結果(3)の如く、実施例および比較例2の摩擦係数が、比較例1よりも高いのは、毛羽立った繊維が起因となる摩擦係数の低下が生じなかったからであると考えられる。   As shown in the result (3), the reason why the friction coefficient of the example and the comparative example 2 is higher than that of the comparative example 1 is considered that the decrease of the friction coefficient caused by the fluffy fibers did not occur.

以上、本発明の実施の形態を用いて詳述してきたが、具体的な構成はこの実施形態及び実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   As mentioned above, although it explained in full detail using embodiment of this invention, a concrete structure is not limited to this embodiment and an Example, There exists a design change in the range which does not deviate from the summary of this invention. They are also included in the present invention.

3:熱可塑性樹脂、2:繊維、4:バルク材、5:成形体、7:摩擦部材、7a:摩擦面、7b:表層、20:2軸押出機、21投入口、30:射出成形装置、32:プランジャ、34:バイト、40:成形型、41:キャビティ、50:押圧部材、51:押圧面、S11:混練工程、S12:成形工程、S13:削り込み工程、S14:平滑化工程   3: Thermoplastic resin, 2: Fiber, 4: Bulk material, 5: Molded body, 7: Friction member, 7a: Friction surface, 7b: Surface layer, 20: Twin screw extruder, 21 inlet, 30: Injection molding device 32: Plunger, 34: Bite, 40: Mold, 41: Cavity, 50: Pressing member, 51: Pressing surface, S11: Kneading step, S12: Molding step, S13: Grinding step, S14: Smoothing step

Claims (2)

繊維を含有した熱可塑性樹脂からなる摩擦面を含む摩擦部材の製造方法であって、
前記繊維と前記熱可塑性樹脂とから成形体を成形する工程と、
該成形体を摩擦部材の形状に削り込む工程と、
該削り込んだ摩擦部材の摩擦面を、前記熱可塑性樹脂の軟化点以上に加熱した押圧部材で押圧することにより、前記摩擦面を含む前記摩擦部材の表層の熱可塑性樹脂を軟化させて、前記摩擦面を平滑にする工程と、を含むことを特徴とする摩擦部材の製造方法。
A method of manufacturing a friction member including a friction surface made of a thermoplastic resin containing fibers,
Forming a molded body from the fibers and the thermoplastic resin;
Cutting the molded body into the shape of a friction member;
By pressing the friction surface of the scraped friction member with a pressing member heated above the softening point of the thermoplastic resin, the thermoplastic resin on the surface of the friction member including the friction surface is softened, And a step of smoothing the friction surface.
前記摩擦面の前記繊維が、前記表層の前記熱可塑性樹脂内に入り込むように、前記摩擦面を平滑にする工程を行うことを特徴とする請求項1に記載の摩擦部材の製造方法。   The method for producing a friction member according to claim 1, wherein the step of smoothing the friction surface is performed so that the fibers of the friction surface enter the thermoplastic resin of the surface layer.
JP2011058394A 2011-03-16 2011-03-16 Method for manufacturing friction member Withdrawn JP2012193282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058394A JP2012193282A (en) 2011-03-16 2011-03-16 Method for manufacturing friction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058394A JP2012193282A (en) 2011-03-16 2011-03-16 Method for manufacturing friction member

Publications (1)

Publication Number Publication Date
JP2012193282A true JP2012193282A (en) 2012-10-11

Family

ID=47085502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058394A Withdrawn JP2012193282A (en) 2011-03-16 2011-03-16 Method for manufacturing friction member

Country Status (1)

Country Link
JP (1) JP2012193282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042884A (en) * 2013-08-26 2015-03-05 株式会社ダイナックス Synchronizer ring and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042884A (en) * 2013-08-26 2015-03-05 株式会社ダイナックス Synchronizer ring and method for manufacturing the same

Similar Documents

Publication Publication Date Title
AU654675B2 (en) A method and an apparatus for manufacturing an article of a composite material, an article, disc brake, a commutator and a commutator brush made by the method
JP6042599B2 (en) Friction material
JPS60221431A (en) Non-asbestos clutch facing material
WO2015194533A1 (en) Method for manufacturing molded article having opening, and molded article
CN105058764A (en) Dry-method winding formation method for carbon fiber composite transmission axle tube
CN101549566A (en) Friction lining
JP6643126B2 (en) Method for manufacturing press-formed body and apparatus for manufacturing press-formed body
JP2012193282A (en) Method for manufacturing friction member
CN105202085A (en) Rubber-based soft lining and preparation method thereof
US4798690A (en) Molding a glass-plastic composite lens
JP2993362B2 (en) Method for producing fiber-containing granulated material
WO2011052127A1 (en) Phenol resin molding material and phenol resin molded article
JP6562393B2 (en) Brake pad friction material mold, manufacturing apparatus, manufacturing method and preform
JP2017210616A (en) Fiber-containing resin structure, manufacturing method of fiber-containing resin structure, fiber-reinforced resin cured product and fiber-reinforced resin mold
JPH0989016A (en) Disk brake pad
JP6130276B2 (en) Friction material for clutch
CN108312584A (en) A kind of production method of casting type conveyer belt
CN203655939U (en) Clutch lining with friction material made of rice and wheat straws
JP2991970B2 (en) Friction material
WO2020174065A1 (en) Method for additive manufacturing of a friction lining
JP4959263B2 (en) Friction material manufacturing method
JP2846612B2 (en) Pulley made of thermosetting resin and manufacturing method thereof
JP3792839B2 (en) Granulated product and friction material manufacturing method
CN201836270U (en) Mechanical friction disc made of steel-plastic composite material
JP2017194082A (en) Process of manufacture of disc brake pad

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603