JP2012193117A - Composition for regenerating cartilaginous tissue including sdf-1 inhibitor - Google Patents

Composition for regenerating cartilaginous tissue including sdf-1 inhibitor Download PDF

Info

Publication number
JP2012193117A
JP2012193117A JP2011056110A JP2011056110A JP2012193117A JP 2012193117 A JP2012193117 A JP 2012193117A JP 2011056110 A JP2011056110 A JP 2011056110A JP 2011056110 A JP2011056110 A JP 2011056110A JP 2012193117 A JP2012193117 A JP 2012193117A
Authority
JP
Japan
Prior art keywords
sdf
cells
composition
stem cells
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011056110A
Other languages
Japanese (ja)
Other versions
JP5843189B2 (en
Inventor
Minoru Ueda
実 上田
Akihito Yamamoto
朗仁 山本
Masato Fujio
正人 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2011056110A priority Critical patent/JP5843189B2/en
Publication of JP2012193117A publication Critical patent/JP2012193117A/en
Application granted granted Critical
Publication of JP5843189B2 publication Critical patent/JP5843189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regenerative medicine system with a cartilaginous tissue as a target, by which high regeneration effect can be expected.SOLUTION: The composition for regenerating a cartilaginous tissue includes an SDF-1 inhibitor as an active constituent. Further, the composition for regenerating a cartilaginous tissue is obtained by combining one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes and dental pulp stem cells.

Description

本発明は軟骨組織の再生・再建に用いられる組成物(軟骨組織再生用組成物)に関する。詳しくは、SDF-1(ストローマ細胞由来因子−1)阻害剤を含有する組成物及びその用途に関する。   The present invention relates to a composition (composition for cartilage tissue regeneration) used for regeneration / reconstruction of cartilage tissue. Specifically, the present invention relates to a composition containing an SDF-1 (stromal cell-derived factor-1) inhibitor and its use.

各種組織の修復や再生或いは疾病の治療を目的として細胞移植が行われてきた。細胞移植は、組織を構成する細胞自体又は組織の構築を補助する細胞を生体に投与するものであることから直接的な治療効果を期待できる一方、手術に伴う侵襲、移植安全性(感染や発がん)、細胞品質の安定性、細胞培養に多大な時間や費用を要することなど、様々な問題を伴う。   Cell transplantation has been performed for the purpose of repairing and regenerating various tissues or treating diseases. Cell transplantation involves the administration of cells that make up the tissue itself or cells that assist in the construction of the tissue to the living body, so it can be expected to have a direct therapeutic effect. ), There are various problems such as the stability of cell quality and the time and cost required for cell culture.

軟骨組織は再生医療による再生が期待される組織の一つである。これまでにも細胞由来の成分を用いた方法(例えば特許文献1を参照)や骨髄細胞等を利用した方法(例えば特許文献2を参照)など、軟骨組織を標的とした再生方法が提案されている。しかしながら、従来の再生方法には克服すべき課題が多いことから、再生効果が高く、臨床応用可能な技術の創出が切望されている。   Cartilage tissue is one of the tissues expected to be regenerated by regenerative medicine. So far, regeneration methods targeting cartilage tissue have been proposed, such as a method using cell-derived components (see, for example, Patent Document 1) and a method using bone marrow cells (see, for example, Patent Document 2). Yes. However, since there are many problems to be overcome in the conventional regeneration method, the creation of a technology that has a high regeneration effect and can be applied clinically is eagerly desired.

特表2010−504093号公報Special table 2010-504093 gazette 特開2004−49626号公報JP 2004-49626 A

以上の背景の下、本願発明は、高い再生効果が期待できる、軟骨組織を標的とした再生医療システムを提供することを課題とする。   Under the above background, an object of the present invention is to provide a regenerative medical system targeting cartilage tissue that can be expected to have a high regenerative effect.

以上の課題に鑑み本願発明者らは、生体内幹細胞の集積システムを制御する新しい組織再生療法の開発を目指して研究を進め、骨延長術に注目した。骨延長術は自己再生能力を最大限に応用して大型組織再生を行う外科手術である。生体内幹細胞の集積や分化が大きな役割を果たすと考えられるが、その実態やメカニズムは多くが不明なままである。本願発明者らは、延長治癒過程における様々な幹細胞の集積動態を明らかにし、組織再生との関わり合いを検討した。また、細胞集積に機能することが知られているケモカインSDF-1が骨延長の幹細胞集積と治癒過程にいかなる役割を果たすか検証することにした。SDF-1はケモカインリガンドの一つであり、血管内皮前駆細胞の虚血部位への集積、造血幹細胞から血管内皮前駆細胞への分化、血管網の構築などに寄与すると報告されている。しかしながら、in vitroでの細胞遊走実験のみの報告が多く、in vivoでの機能の多くは不明である。特に、組織の再生過程におけるその機能は不明な点が多い。そこで、SDF-1の骨延長における役割と治療応用への可能性を検討した。具体的な検討方法は以下の通りとした。即ち、8週齢の雌性ICRマウスを用いて脛骨骨延長モデルを作製し、経時的に組織採取し、生体内幹細胞の集積を解析した。また、マウス骨髄単核球分画の細胞を近赤外蛍光色素によってラベルし、骨延長手術時に脛骨近心骨頭骨髄内へ移植した。一方、In vivo イメージャーを用いて延長前と延長終了時で蛍光シグナルを観察した。また、SDF-1及びそのレセプターの発現を解析した。更には、SDF-1阻害による効果を様々な角度から調べた。In vtro においてSDF-1阻害が骨分化にどのように影響するかを検討した。加えて、通常の2倍の速度で骨延長を行う骨延長モデル(H-DOモデル)を作製し、当該モデルの骨延長部位にSDF-1タンパクを投与し、組織再生促進効果を検証した。最後に、2次元レーザー血流計を用いて延長部位の血流変化を解析した。   In view of the above problems, the inventors of the present application have advanced research aiming at development of a new tissue regeneration therapy for controlling an in vivo stem cell accumulation system, and have focused on bone extension. Bone extension is a surgical operation that regenerates large tissues by making the best use of self-renewal ability. Accumulation and differentiation of in vivo stem cells are thought to play a major role, but the actual status and mechanism remain largely unknown. The inventors of the present application clarified the accumulation dynamics of various stem cells in the extended healing process and examined the relationship with tissue regeneration. The role of chemokine SDF-1, which is known to function in cell accumulation, in stem cell accumulation and healing processes of bone elongation was examined. SDF-1 is one of the chemokine ligands and has been reported to contribute to the accumulation of vascular endothelial progenitor cells at the ischemic site, differentiation from hematopoietic stem cells to vascular endothelial progenitor cells, and the construction of vascular networks. However, there are many reports of only cell migration experiments in vitro, and many in vivo functions are unknown. In particular, its function in the tissue regeneration process is unclear. Therefore, we investigated the role of SDF-1 in bone elongation and its potential for therapeutic application. The specific examination method was as follows. Specifically, an 8-week-old female ICR mouse was used to produce a tibial bone extension model, tissue was collected over time, and the accumulation of stem cells in vivo was analyzed. In addition, the mouse bone marrow mononuclear cell fraction cells were labeled with a near-infrared fluorescent dye and transplanted into the tibia mesial bone marrow at the time of bone extension surgery. On the other hand, fluorescence signals were observed before and at the end of extension using an in vivo imager. In addition, the expression of SDF-1 and its receptor was analyzed. Furthermore, the effect of SDF-1 inhibition was examined from various angles. We examined how SDF-1 inhibition affects bone differentiation in vitro. In addition, a bone extension model (H-DO model) that extends the bone at twice the normal speed was prepared, SDF-1 protein was administered to the bone extension site of the model, and the tissue regeneration promoting effect was verified. Finally, changes in blood flow at the extended site were analyzed using a two-dimensional laser blood flow meter.

検討の結果、骨延長をしていない骨髄と比較すると、骨延長中期ではSca1陽性細胞が約4倍増加していることが明らかとなった。また、集まったSca1陽性細胞は血管内皮前駆細胞、間葉系幹細胞の分画が大多数を占めている事が明らかとなった。In vivo イメージャーによる解析では、蛍光色素でラベルした骨髄単核球細胞が延長部へ集積していることが観察された。一方、骨延長期間では、SDF-1及びそのレセプター(CXCR4、CXCR7)の発現が上昇することが判明した。SDF-1阻害剤を用いた実験からは、SDF-1を阻害すると細胞の遊走活性が抑制されること、及びSDF-1の阻害が骨髄細胞の骨分化能に殆ど影響しないことが示された。また、SDF-1の阻害によって仮骨形成が顕著に抑制され、延長部が軟骨細胞で満たされる現象(即ち、軟骨の形成)を認めた。更には、SDF-1は間葉系幹細胞や造血幹細胞の集積には必要ではなく、血管内皮前駆細胞に特異的な集積因子として機能していることが示唆された。H-DOモデルを用いた解析では、SDF-1過剰発現によって仮骨形成の著しい促進効果が確認できるとともに、多数の成熟血管が観察された。また、SDF-1の過剰発現により血流量増加が観察された。   As a result of the examination, it was revealed that the number of Sca1-positive cells increased about 4 times in the middle stage of bone elongation compared to bone marrow without bone elongation. In addition, it was revealed that the majority of the Sca1-positive cells gathered were fractions of vascular endothelial progenitor cells and mesenchymal stem cells. In vivo imager analysis revealed that bone marrow mononuclear cells labeled with fluorescent dyes accumulated in the extension. On the other hand, it was found that the expression of SDF-1 and its receptors (CXCR4, CXCR7) increased during the bone extension period. Experiments with SDF-1 inhibitors showed that inhibition of SDF-1 suppressed cell migration activity and that inhibition of SDF-1 had little effect on the bone differentiation ability of bone marrow cells. . In addition, the inhibition of SDF-1 markedly suppressed callus formation and the extension was filled with chondrocytes (ie, cartilage formation). Furthermore, it was suggested that SDF-1 is not necessary for accumulation of mesenchymal stem cells and hematopoietic stem cells, but functions as an accumulation factor specific to vascular endothelial progenitor cells. In the analysis using the H-DO model, SDF-1 overexpression confirmed a significant effect of callus formation and a large number of mature blood vessels were observed. In addition, an increase in blood flow was observed due to overexpression of SDF-1.

以上の結果を総合すると、SDF-1が血管内皮前駆細胞の特異的集積因子として機能する事実に加え、SDF-1を阻害しつつ間葉系幹細胞が供給される環境を形成すれば軟骨の再生を促すことができることがわかる。後者の事実は、SDF-1阻害剤を投与するとともに、軟骨組織の再生に直接的な関与が期待される細胞(間葉系幹細胞など)を標的部位に供給することが、軟骨組織再生のための戦略として極めて有効であることを意味する。   Taken together, the fact that SDF-1 functions as a specific accumulation factor of vascular endothelial progenitor cells, as well as regeneration of cartilage if an environment in which mesenchymal stem cells are supplied while inhibiting SDF-1 is formed. You can see that The latter fact is that SDF-1 inhibitor is administered and cells that are expected to be directly involved in cartilage tissue regeneration (such as mesenchymal stem cells) are supplied to the target site for cartilage tissue regeneration. It is extremely effective as a strategy.

以上の通り、本願発明者らの鋭意検討の結果、軟骨組織の効率的な再生のための有効な戦略が見出された。以下に示す本発明は、主として上記成果ないし知見に基づくものである。
[1]SDF-1阻害剤を含有する軟骨組織再生用組成物。
[2]間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞を組み合わせてなることを特徴とする、[1]に記載の軟骨組織再生用組成物。
[3]SDF-1阻害剤と、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞とを含有することを特徴とする、[2]に記載の軟骨組織再生用組成物。
[4]SDF-1阻害剤を含有する第1構成要素と、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞を含有する第2構成要素とからなるキットであることを特徴とする、[2]に記載の軟骨組織再生用組成物。
[5]SDF-1阻害剤を含有し、その投与の際に、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞も投与されることを特徴とする、[2]に記載の骨組織再生用組成物。
[6]前記SDF-1阻害剤が、SDF-1とCXCR4の結合及びSDF-1とCXCR7の結合の両者に対して阻害活性を示す、[1]〜[5]のいずれか一項に記載の軟骨組織再生用組成物。
[7]前記SDF-1阻害剤がAMD3100又は抗SDF-1抗体である、[1]〜[5]のいずれか一項に記載の軟骨組織再生用組成物。
[8]SDF-1阻害剤を標的部位に局所投与或いは全身投与するとともに、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞を標的部位に局所投与或いは全身的投与することを特徴とする、軟骨組織の再生方法。
As described above, as a result of intensive studies by the present inventors, an effective strategy for efficient regeneration of cartilage tissue has been found. The present invention described below is mainly based on the above results or knowledge.
[1] A composition for cartilage tissue regeneration containing an SDF-1 inhibitor.
[2] The composition for cartilage tissue regeneration according to [1], comprising one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes and dental pulp stem cells .
[3] The SDF-1 inhibitor and one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes, and dental pulp stem cells, Composition for cartilage regeneration
[4] A first component containing an SDF-1 inhibitor, and a second component containing one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes, and dental pulp stem cells The composition for cartilage tissue regeneration according to [2], which is a kit comprising:
[5] It contains an SDF-1 inhibitor, and at the time of administration, one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes and dental pulp stem cells are also administered. The composition for bone tissue regeneration according to [2].
[6] The method according to any one of [1] to [5], wherein the SDF-1 inhibitor exhibits inhibitory activity against both SDF-1 and CXCR4 binding and SDF-1 and CXCR7 binding. Composition for cartilage regeneration
[7] The composition for cartilage tissue regeneration according to any one of [1] to [5], wherein the SDF-1 inhibitor is AMD3100 or an anti-SDF-1 antibody.
[8] The SDF-1 inhibitor is locally or systemically administered to the target site, and one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes, and dental pulp stem cells are locally applied to the target site. A method for regenerating cartilage tissue, characterized by administration or systemic administration.

マウス骨延長(Distraction Osteogenesis:DO)モデルの概要。処置方法(上)、延長スケジュール(左下)、及び延長終了時と延長後14日のサンプルのX線像(右下)を示す。Overview of mouse bone extension (Distraction Osteogenesis: DO) model. The treatment method (top), extension schedule (bottom left), and X-ray images (bottom right) of samples at the end of extension and 14 days after extension are shown. Sca1(Stem Cell common antigen)陽性細胞の延長間隙(ギャップ)への集積。延長間隙の状態を模式的に示した(上)。また、DOモデルの組織サンプルに対する免疫染色の結果を示す(下)。Accumulation of Sca1 (Stem Cell common antigen) positive cells in the extended gap. The state of the extended gap is shown schematically (top). Moreover, the result of the immunostaining with respect to the tissue sample of DO model is shown (below). 延長間隙(ギャップ)に集積した骨髄幹細胞の種類。マーカーを利用して延長間隙に集積した細胞を同定した。各マーカーによる蛍光染色の結果(左下)と各細胞の比率のグラフ(右下)を示す。EPCs:血管内皮前駆細胞、HSCs:造血幹細胞、MSCs:間葉系幹細胞。A type of bone marrow stem cell that accumulates in the extended gap. Cells that accumulated in the extended gap were identified using a marker. The result of fluorescent staining with each marker (lower left) and a graph of the ratio of each cell (lower right) are shown. EPCs: vascular endothelial progenitor cells, HSCs: hematopoietic stem cells, MSCs: mesenchymal stem cells. 骨延長による骨髄細胞の集積。in vivo イメージャーを用い、骨髄内での細胞の動きを経時的に解析した。解析方法(左)、イメージ像(右上)、蛍光強度の経時的変化(右下)を示した。Bone marrow cell accumulation by bone elongation. Using an in vivo imager, cell movement in the bone marrow was analyzed over time. An analysis method (left), an image (upper right), and a temporal change in fluorescence intensity (lower right) are shown. SDF-1(リガンド)及びCXCR4/CXCR7(レセプター)の遺伝子発現。骨延長術における各分子の遺伝子発現をリアルタイムPCRで調べた(右)。比較のため、VEGFR1、VEGFR2、PDGFRa及びPDGFRbの発現も解析した(左)。Gene expression of SDF-1 (ligand) and CXCR4 / CXCR7 (receptor). The gene expression of each molecule in bone extension was examined by real-time PCR (right). For comparison, the expression of VEGFR1, VEGFR2, PDGFRa and PDGFRb was also analyzed (left). SDF-1阻害剤による細胞遊走阻害効果。SDF-1阻害剤であるAMD3100の効果をトランスウェル遊走アッセイ(In vitro transwell migration assay)で調べた(上)。また、骨分化能に与える影響を確認した(下)。Cell migration inhibitory effect by SDF-1 inhibitor. The effect of AMD3100, an SDF-1 inhibitor, was examined by an in vitro transwell migration assay (top). In addition, the effect on bone differentiation ability was confirmed (bottom). SDF-1の機能抑制による仮骨形成阻害。コントロール群(C-DO)、SDF-1阻害剤であるAMD3100を投与した群(+AMD3100)及び抗SDF-1抗体を投与した群(+抗SDF-1mAb)の間で組織染色像を比較した。HE:ヘマトキシリンエオジン染色Callus formation inhibition by suppressing the function of SDF-1. Tissue staining images were compared between the control group (C-DO), the SDF-1 inhibitor AMD3100 group (+ AMD3100), and the anti-SDF-1 antibody group (+ anti-SDF-1 mAb) . HE: Hematoxylin and eosin staining SDF-1の機能阻害による血管内皮前駆細胞の集積抑制。コントロール群とAMD3100を投与した群の蛍光染色像(CD31、SDF-1)を比較した(左)。右はCD31陽性細胞数及びSDF-1陽性細胞数の比較。SDF-1 function inhibition suppresses the accumulation of vascular endothelial progenitor cells. The fluorescent staining images (CD31, SDF-1) of the control group and the group administered with AMD3100 were compared (left). On the right is a comparison of the number of CD31 positive cells and the number of SDF-1 positive cells. 間葉系幹細胞及び造血幹細胞の挙動解析。コントロール群とAMD3100を投与した群の蛍光染色像(CD45、Sca1)を比較した(上)。左下はSca1陽性エリアの比較。右下は構成細胞の内訳。Behavioral analysis of mesenchymal stem cells and hematopoietic stem cells. The fluorescent staining images (CD45, Sca1) of the control group and the group administered with AMD3100 were compared (top). The lower left is a comparison of Sca1-positive areas. The lower right is a breakdown of the constituent cells. ハイスピードDOモデル(H-DO)の延長スケジュール(上)と延長部の組織像(下)。SDF-1を投与しないH-DOモデル(H-DO+ビークル)及びSDF-1を投与したH-DOモデル(H-DO+SDF-1)を比較した。High-speed DO model (H-DO) extension schedule (top) and extension image (bottom). The H-DO model without administration of SDF-1 (H-DO + vehicle) and the H-DO model with administration of SDF-1 (H-DO + SDF-1) were compared. SDF-1の血管新生促進効果及び血流回復効果。SDF-1を投与しないH-DOモデル(H-DO+ビークル)及びSDF-1を投与したH-DOモデル(H-DO+SDF-1)の間で延長中期のギャップの蛍光染色像(CD31)を比較した(上)。2次元レーザー血流計を用い、コントロール(C-DOモデル)、SDF-1を投与しないH-DOモデル(H-DO+ビークル)及びSDF-1を投与したH-DOモデル(H-DO+SDF-1)の間で血流量を比較した(下)。SDF-1 promotes angiogenesis and restores blood flow. Fluorescence staining image of the extended metaphase gap between the H-DO model not administered SDF-1 (H-DO + vehicle) and the H-DO model administered SDF-1 (H-DO + SDF-1) (CD31) Were compared (top). Using a two-dimensional laser blood flow meter, control (C-DO model), H-DO model without SDF-1 administration (H-DO + vehicle), and H-DO model with SDF-1 administration (H-DO + SDF) -1) blood flow was compared (bottom). SDF-1の血管新生促進効果。SDF-1を投与しないH-DOモデル(H-DO+ビークル)及びSDF-1を投与したH-DOモデル(H-DO+SDF-1)の間で蛍光染色像(CD31、αSMA)を比較した。αSMAは周皮細胞のマーカーであり、CD31は内皮細胞のマーカーである(左下)。Angiogenesis promoting effect of SDF-1. Fluorescent staining images (CD31, αSMA) were compared between the H-DO model that did not receive SDF-1 (H-DO + vehicle) and the H-DO model that received SDF-1 (H-DO + SDF-1) . αSMA is a marker for pericytes and CD31 is a marker for endothelial cells (lower left).

本発明の第1の局面は軟骨組織再生用組成物に関する。本明細書における用語「軟骨組織」は広義の意味で使用され、様々な部位(例えば関節軟骨、肋軟骨、甲状軟骨、気管軟骨、関節半月、関節円板、椎間円板、恥骨結合、喉頭蓋軟骨、外耳道軟骨、耳介軟骨など)の軟骨組織を包含する。本明細書において「軟骨組織再生用組成物」とは、軟骨組織の再生(再建)に利用される組成物をいう。本発明の軟骨組織再生用組成物は、それが適用される生体の局所(標的部位)において軟骨組織再生能を示し、軟骨組織の修復・再建を促す。本発明の組成物は必須成分としてSDF-1阻害剤を含有する。SDF-1はケモカインリガンドの一つであり、CXCL-12又はPBSFとも呼称される。SDF-1はCXCR4及びCXCR7と特異的に結合し、その生理活性を発揮する。SDF-1には複数のアイソフォーム(SDF-1α、SDF-1β、SDF-1γ、SDF-1δ、SDF-1ε等)の存在が確認されている。   The first aspect of the present invention relates to a composition for regenerating cartilage tissue. In this specification, the term “cartilage tissue” is used in a broad sense, and includes various parts (for example, articular cartilage, costal cartilage, thyroid cartilage, tracheal cartilage, joint meniscus, joint disc, intervertebral disc, pubic connection, epiglottis. Cartilage tissues such as cartilage, ear canal cartilage, and auricular cartilage. In the present specification, the “composition for cartilage tissue regeneration” refers to a composition used for regeneration (reconstruction) of cartilage tissue. The composition for regenerating cartilage tissue of the present invention exhibits cartilage tissue regenerating ability at the local site (target site) to which it is applied, and promotes repair and reconstruction of cartilage tissue. The composition of the present invention contains an SDF-1 inhibitor as an essential component. SDF-1 is one of chemokine ligands and is also called CXCL-12 or PBSF. SDF-1 specifically binds to CXCR4 and CXCR7 and exerts its physiological activity. The presence of multiple isoforms (SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε, etc.) has been confirmed in SDF-1.

SDF-1阻害剤として、SDF-1に結合することでSDF-1とレセプター(CRCX4又はCRCX7)との結合を阻害する物質、レセプター(CRCX4又はCRCX7)に結合することでSDF-1とレセプター(CRCX4又はCRCX7)との結合を阻害する物質、レセプター(CRCX4又はCRCX7)への結合に関してSDF-1と競合する物質等を挙げることができる。より具体的には、SDF-1と類似の構造を有するタンパク質又はその部分ペプチド、SDF-1の結合部位と類似の構造を有する低分子化合物、抗SDF-1抗体(例えば特表2010-500005を参照)又はその機能的断片、SDF-1のレセプター結合部位に結合する低分子化合物、抗CXCR4抗体又はその機能的断片、CXCR4のSDF-1結合部位に結合する低分子化合物、抗CXCR7抗体又はその機能的断片、CXCR7のSDF-1結合部位に結合する低分子化合物、可溶性CXCR4、可溶性CXCR7等が挙げられる。   As an SDF-1 inhibitor, a substance that inhibits the binding between SDF-1 and a receptor (CRCX4 or CRCX7) by binding to SDF-1, a receptor (CRCX4 or CRCX7) that binds to SDF-1 and a receptor (CRXX4 or CRCX7) A substance that inhibits binding to CRCX4 or CRCX7), a substance that competes with SDF-1 for binding to a receptor (CRCX4 or CRCX7), and the like. More specifically, a protein having a structure similar to SDF-1 or a partial peptide thereof, a low molecular weight compound having a structure similar to the binding site of SDF-1, an anti-SDF-1 antibody (for example, JP 2010-500005 Or a functional fragment thereof, a low molecular compound that binds to the receptor binding site of SDF-1, an anti-CXCR4 antibody or a functional fragment thereof, a low molecular compound that binds to the SDF-1 binding site of CXCR4, an anti-CXCR7 antibody or a thereof Examples thereof include functional fragments, low molecular weight compounds that bind to the SDF-1 binding site of CXCR7, soluble CXCR4, and soluble CXCR7.

SDF-1阻害剤の具体例として、AMD3100(J.Exp.Med.,186,1383-1388(1997); Nat.Med.,4,72-77(1998))、AMD3465(S. Hatase et al., Biochem Pharmacl 70:752-761(2005)、AMD11070(Wong et al., Mol Pharmacol 74:1485-1495(2008))T22(T.Murakami,et al.J.Exp.Med.,186,1389-1393(1997)、ALX40-4C(J.Exp.Med.,186,1395-1400(1997)、TF14016(S. Mikami et al., J Pharmacol Exp Ther.,327(2)383-392,(2008))等を挙げることができる(J.Exp.Med.,186,1189-1191(1997)を参照)。   Specific examples of SDF-1 inhibitors include AMD3100 (J. Exp. Med., 186, 1383-1388 (1997); Nat. Med., 4, 72-77 (1998)), AMD3465 (S. Hatase et al Biochem Pharmacl 70: 752-761 (2005), AMD11070 (Wong et al., Mol Pharmacol 74: 1485-1495 (2008)) T22 (T. Murakami, et al. J. Exp. Med., 186, 1389 -1393 (1997), ALX40-4C (J. Exp. Med., 186, 1395-1400 (1997), TF14016 (S. Mikami et al., J Pharmacol Exp Ther., 327 (2) 383-392, ( 2008)) and the like (see J. Exp. Med., 186, 1189-1191 (1997)).

SDF-1阻害剤の中でも、SDF-1とCRCX4との結合及びSDF-1とCRCX7との結合の両者に阻害活性を示すものを用いることが好ましい。該当するものの例はAMD3100(Sigma)である。   Among SDF-1 inhibitors, it is preferable to use those that show inhibitory activity for both the binding of SDF-1 and CRCX4 and the binding of SDF-1 and CRCX7. An example of such is AMD3100 (Sigma).

SDF-1阻害剤として利用可能な抗体(抗SDF-1抗体、抗CRCX4抗体、抗CRCX7抗体)は、免疫学的手法、ファージディスプレイ法、リボソームディスプレイ法などを利用して調製することができる。免疫学的手法によるポリクローナル抗体の調製は次の手順で行うことができる。抗原を調製し、これを用いてウサギ等の動物に免疫を施す。生体から調製した抗原の他、組換え抗原を使用してもよい。免疫惹起作用を増強するために、キャリアタンパク質を結合させた抗原を用いてもよい。キャリアタンパク質としてはKLH(Keyhole Limpet Hemocyanin)、BSA(Bovine Serum Albumin)、OVA(Ovalbumin)などが使用される。キャリアタンパク質の結合にはカルボジイミド法、グルタールアルデヒド法、ジアゾ縮合法、MBS(マレイミドベンゾイルオキシコハク酸イミド)法などを使用できる。一方、融合タンパク質として発現させた抗原を用いることもできる。このような融合タンパク質は、汎用的な方法により簡便に精製することができる。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で採血し、遠心処理などによって血清を得る。得られた抗血清をアフィニティー精製し、ポリクローナル抗体とする。一方、モノクローナル抗体については次の手順で調製することができる。まず、上記と同様の手順で免疫操作を実施する。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で免疫動物から抗体産生細胞を摘出する。次に、得られた抗体産生細胞と骨髄腫細胞とを融合してハイブリドーマを得る。続いて、このハイブリドーマをモノクローナル化した後、目的タンパク質に対して高い特異性を有する抗体を産生するクローンを選択する。選択されたクローンの培養液を精製することによって目的の抗体が得られる。一方、ハイブリドーマを所望数以上に増殖させた後、これを動物(例えばマウス)の腹腔内に移植し、腹水内で増殖させて腹水を精製することにより目的の抗体を取得することもできる。上記培養液の精製又は腹水の精製には、プロテインG、プロテインA等を用いたアフィニティークロマトグラフィーが好適に用いられる。また、抗原を固相化したアフィニティークロマトグラフィーを用いることもできる。更には、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、硫安分画、及び遠心分離等の方法を用いることもできる。これらの方法は単独ないし任意に組み合わされて用いられる。   Antibodies that can be used as SDF-1 inhibitors (anti-SDF-1 antibodies, anti-CRCX4 antibodies, anti-CRCX7 antibodies) can be prepared using immunological techniques, phage display methods, ribosome display methods, and the like. Preparation of a polyclonal antibody by an immunological technique can be performed by the following procedure. An antigen is prepared and used to immunize animals such as rabbits. In addition to antigens prepared from living organisms, recombinant antigens may be used. In order to enhance the immunity-inducing action, an antigen bound with a carrier protein may be used. As the carrier protein, KLH (Keyhole Limpet Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin) and the like are used. A carbodiimide method, a glutaraldehyde method, a diazo condensation method, an MBS (maleimidobenzoyloxysuccinimide) method, or the like can be used for carrier protein binding. On the other hand, an antigen expressed as a fusion protein can also be used. Such a fusion protein can be easily purified by a general method. Immunization is repeated as necessary, and blood is collected when the antibody titer sufficiently increases, and serum is obtained by centrifugation or the like. The obtained antiserum is affinity purified to obtain a polyclonal antibody. On the other hand, a monoclonal antibody can be prepared by the following procedure. First, an immunization operation is performed in the same procedure as described above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hybridoma. Subsequently, after this hybridoma is monoclonalized, a clone that produces an antibody having high specificity for the target protein is selected. The target antibody can be obtained by purifying the culture medium of the selected clone. On the other hand, the desired antibody can be obtained by growing the hybridoma to a desired number or more, then transplanting it into the abdominal cavity of an animal (for example, a mouse), growing it in ascites, and purifying the ascites. For purification of the culture medium or ascites, affinity chromatography using protein G, protein A or the like is preferably used. Alternatively, affinity chromatography in which an antigen is immobilized may be used. Furthermore, methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.

本発明の組成物の一態様は、SDF-1阻害剤に、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞を組み合わせてなるという特徴を有する。即ち、SDF-1阻害剤と特定の細胞を併用する。この態様の場合、外部から供給した細胞による作用とSDF-1阻害剤による作用によって標的部位での軟骨形成が促されることになる。   One aspect of the composition of the present invention is characterized in that the SDF-1 inhibitor is combined with one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes and dental pulp stem cells. . That is, SDF-1 inhibitor and specific cells are used in combination. In this embodiment, cartilage formation at the target site is promoted by the action of cells supplied from the outside and the action of the SDF-1 inhibitor.

必要な細胞(間葉系幹細胞、軟骨芽細胞、軟骨細胞、歯髄幹細胞)は常法で調製すればよい。例えば間葉系幹細胞であれば骨髄や脂肪などから分離、精製可能である。また、軟骨芽細胞や軟骨細胞は、例えば、間葉系幹細胞を軟骨系細胞へと分化誘導することによって得ることができる。このような分化誘導には例えばデキサメタゾン(Dex)やトランスフォーミング増殖因子等が利用される(例えば、B. Johnestone et al., Exp. Cell Res., 238, 265(1998)を参照)。分化誘導に利用可能な培養液の具体例を示すと、50μg/ml L−アスコルビン酸二リン酸塩(L-ascorbic acid-2-phosphate), 40μg/ml L-プロリン(L-proline), 100μg/ml ピルビン酸ナトリウム(sodium pyruvate), 0.1μMデキサメタゾン(dexamethasone), 6.25μg/mlインスリン(insuline), 6.25μg/mlトランスフェリン(transferrin), 6.25μg/mlセレン酸(selenous acid), 10ng/mlヒトTGF-β3(human TGF-β3)を添加したMSCBM(間葉系幹細胞基本培地)である。分化誘導中は適宜培地交換を行う。例えば3日に一度の頻度で培地交換を行う。分化誘導のための培養は例えば1日間〜14日間継続する。   Necessary cells (mesenchymal stem cells, chondroblasts, chondrocytes, dental pulp stem cells) may be prepared by conventional methods. For example, mesenchymal stem cells can be separated and purified from bone marrow and fat. Chondroblasts and chondrocytes can be obtained, for example, by inducing differentiation of mesenchymal stem cells into chondrocytes. For example, dexamethasone (Dex) or a transforming growth factor is used for such differentiation induction (see, for example, B. Johnestone et al., Exp. Cell Res., 238, 265 (1998)). Specific examples of culture media that can be used for differentiation induction include 50 μg / ml L-ascorbic acid-2-phosphate, 40 μg / ml L-proline, 100 μg / ml sodium pyruvate, 0.1μM dexamethasone, 6.25μg / ml insulin, 6.25μg / ml transferrin, 6.25μg / ml selenous acid, 10ng / ml human MSCBM (mesenchymal stem cell basic medium) supplemented with TGF-β3 (human TGF-β3). Medium exchange is performed appropriately during differentiation induction. For example, the medium is changed once every three days. The culture for inducing differentiation is continued, for example, for 1 day to 14 days.

歯髄幹細胞として永久歯歯髄幹細胞又は乳歯歯髄幹細胞を用いることができる。歯髄幹細胞は例えば以下の方法で採取、調製できる。この採取・調製法では(1)歯髄の採取、(2)酵素処理、(3)細胞培養、(4)細胞の回収を順に行う。
(1)歯髄の採取
自然に脱落した乳歯(又は抜歯した乳歯、或いは永久歯)をクロロヘキシジンまたはイソジン溶液で消毒した後、歯冠部を分割し歯科用リーマーにて歯髄組織を回収する。
(2)酵素処理
採取した歯髄組織を基本培地(10%ウシ血清・抗生物質含有ダルベッコ変法イーグル培地)に懸濁し、2mg/mlのコラゲナーゼ及びディスパーゼで37℃、1時間処理する。5分間の遠心操作(5000回転/分)により酵素処理後の歯髄細胞を回収する。セルストレーナーによる細胞選別はSHEDやDPSCの神経幹細胞分画の回収効率を低下させるので原則、使用しない。
(3)細胞培養
細胞を4cc基本培地で再懸濁し、直径6cmの付着性細胞培養用ディッシュに播種する。5%CO2、37℃に調整したインキュベータにて3日間培養した後、コロニーを形成した接着性細胞を0.05%トリプシン・EDTAにて5分間、37℃で処理する。ディッシュから剥離した歯髄細胞を直径10cmの付着性細胞培養用ディッシュに播種し拡大培養を行う。例えば、肉眼で観察してサブコンフルエント(培養容器の表面の約70%を細胞が占める状態)又はコンフルエントに達したときに細胞を培養容器から剥離して回収し、再度、培養液を満たした培養容器に播種する。継代培養を繰り返し行ってもよい。例えば継代培養を1〜8回行い、必要な細胞数(例えば約1×107個/ml)まで増殖させる。尚、培養容器からの細胞の剥離は、トリプシン処理など常法で実施することができる。以上の培養の後、細胞を回収して保存することにしてもよい(保存条件は例えば-198℃)。様々なドナーから回収した細胞を歯髄幹細胞バンクの形態で保存することにしてもよい。
(4)細胞の回収
次に、細胞を回収する。トリプシン処理等で培養容器から細胞を剥離した後、遠心処理を施すことによって細胞を回収することができる。このようにして回収した細胞を用いて本発明の組成物を調製する。
As dental pulp stem cells, permanent dental pulp stem cells or deciduous dental pulp stem cells can be used. Dental pulp stem cells can be collected and prepared by the following method, for example. In this collection / preparation method, (1) collection of dental pulp, (2) enzyme treatment, (3) cell culture, and (4) collection of cells are sequentially performed.
(1) Collection of dental pulp After naturally deciduous deciduous teeth (or extracted deciduous teeth or permanent teeth) are sterilized with a chlorohexidine or isodine solution, the crown portion is divided and the pulp tissue is collected with a dental reamer.
(2) Enzyme treatment The collected dental pulp tissue is suspended in a basic medium (10% bovine serum / antibiotic Dulbecco's modified Eagle medium) and treated with 2 mg / ml collagenase and dispase at 37 ° C. for 1 hour. The pulp cells after enzyme treatment are collected by centrifugation for 5 minutes (5000 rpm). In principle, cell sorting with a cell strainer is not used because it reduces the collection efficiency of neural stem cell fractions of SHED and DPSC.
(3) Cell culture Cells are resuspended in 4 cc basal medium and seeded in 6 cm diameter adherent cell culture dishes. After culturing in an incubator adjusted to 5% CO 2 and 37 ° C. for 3 days, the adherent cells that formed colonies are treated with 0.05% trypsin · EDTA for 5 minutes at 37 ° C. The dental pulp cells detached from the dish are seeded in an adherent cell culture dish having a diameter of 10 cm and expanded. For example, when observing with the naked eye, it reaches the sub-confluent state (a state in which the cells occupy about 70% of the surface of the culture container) or confluent, and the cells are detached from the culture container and collected, and the culture is filled again with the culture solution. Seed in containers. Subculturing may be repeated. For example, the subculture is performed 1 to 8 times to grow to the required number of cells (for example, about 1 × 10 7 cells / ml). The cell can be detached from the culture vessel by a conventional method such as trypsin treatment. After the above culture, the cells may be collected and stored (storage conditions are, for example, -198 ° C.). Cells collected from various donors may be stored in the form of dental pulp stem cell banks.
(4) Cell recovery Next, cells are recovered. The cells can be collected by centrifuging after detaching the cells from the culture vessel by trypsin treatment or the like. The composition of the present invention is prepared using the cells thus recovered.

この態様の組成物は、典型的には、調製した細胞とSDF-1阻害剤を混合した配合剤として提供される。例えば、使用する細胞を生理食塩水や適当な緩衝液(例えばリン酸系緩衝液)等に懸濁させて得た細胞懸濁液にSDF-1阻害剤を混合すればよい(併用可能なその他の成分については後述する)。一方、例えば、SDF-1阻害剤を含有する第1構成要素と、所定の細胞を含有する第2構成要素とからなるキットの形態で本発明の組成物を提供することもできる。この場合、標的部位に同時又は所定の時間的間隔を置いて両要素が投与されることになる。好ましくは、両要素を同時に投与することにする。ここでの「同時」は厳密な同時性を要求するものではない。従って、両要素を混合した後に投与する等、両要素の投与が時間差のない条件下で実施される場合は勿論のこと、片方の投与後、速やかに他方を投与する等、両要素の投与が実質的な時間差のない条件下で実施される場合もここでの「同時」の概念に含まれる。一方、片方の投与後、所定の時間差で他方を投与する場合は、時間差を短く設定することが好ましい。例えば、片方の投与後15分以内、好ましくは10分以内、更に好ましくは5分以内に他方を投与する。第1構成要素(SDF-1含有)は標的部位に局所投与又は全身投与する。好ましくは直接的かつ迅速な効果を得るために局所投与を採用する。第2構成要素(細胞含有)については原則、標的部位に局所投与する。   The composition of this embodiment is typically provided as a combination of the prepared cells and an SDF-1 inhibitor. For example, an SDF-1 inhibitor may be mixed with a cell suspension obtained by suspending cells to be used in physiological saline or an appropriate buffer (eg, phosphate buffer) (others that can be used in combination) These components will be described later). On the other hand, for example, the composition of the present invention can be provided in the form of a kit comprising a first component containing an SDF-1 inhibitor and a second component containing a predetermined cell. In this case, both elements are administered to the target site simultaneously or at a predetermined time interval. Preferably both elements will be administered simultaneously. “Simultaneous” here does not require strict simultaneity. Therefore, when both elements are administered after mixing both elements, such as when administered under conditions where there is no time difference, administration of both elements such as promptly administering the other after one of them is administered. The case of being carried out under a condition without substantial time difference is also included in the concept of “simultaneous” here. On the other hand, when the other is administered at a predetermined time difference after one administration, it is preferable to set the time difference short. For example, the other is administered within 15 minutes, preferably within 10 minutes, more preferably within 5 minutes after administration of one. The first component (containing SDF-1) is administered locally or systemically to the target site. Preferably, local administration is employed to obtain a direct and rapid effect. In principle, the second component (containing cells) is locally administered to the target site.

SDF-1阻害剤を含有する組成物とし、その投与時に所定の細胞が併用投与されるようにしてもよい。この場合の組成物と所定の細胞の投与のタイミングは、上記のキットの形態の場合と同様である。即ち、好ましくは同時に両者が投与されることになるが、所定の時間差で両者を投与することにしてもよい。尚、所望の再生効果が発揮されるように、1回分の細胞の投与量を例えば1x107個〜5x107個にするとよい。 A composition containing an SDF-1 inhibitor may be used, and predetermined cells may be administered in combination at the time of administration. The timing of administration of the composition and the predetermined cells in this case is the same as in the case of the kit form described above. That is, both are preferably administered at the same time, but they may be administered at a predetermined time difference. Incidentally, the desired reproduction effects as exhibited, may be the batch of example 1x10 7 cells ~5X10 7 or the dose of cells.

本発明の組成物の他の態様は、生体内の間葉系幹細胞(以下、「MSC」とも呼ぶ)を標的部位に集積させる手技(以下、当該手技のことを「MSC集積手技」と呼ぶ)と併用されることを特徴とする。この態様の組成物を適用した場合、MSC集積手技によって生体内(内在性)のMSCが標的部位に集積するとともに、SDF-1阻害剤によるSDF-1の機能阻害が生じ、標的部位での軟骨形成が促される。このように当該態様によれば、外部から細胞を供給(移植)する必要のない治療法を実現できる。従って、細胞移植に伴う各種問題(侵襲性、移植安全性、細胞品質の安定性、時間及び費用)を解消しつつ、高い治療効果が得られることになる。   Another embodiment of the composition of the present invention is a technique for accumulating in vivo mesenchymal stem cells (hereinafter also referred to as “MSC”) at a target site (hereinafter, the technique is referred to as “MSC accumulation technique”). It is used together. When the composition of this embodiment is applied, in vivo (endogenous) MSC accumulates at the target site by the MSC accumulation procedure, and SDF-1 function inhibition by the SDF-1 inhibitor occurs, and cartilage at the target site Formation is encouraged. Thus, according to the said aspect, the treatment method which does not need to supply (transplant) a cell from the outside is realizable. Therefore, a high therapeutic effect can be obtained while solving various problems (invasiveness, transplantation safety, stability of cell quality, time and cost) associated with cell transplantation.

例えば、標的部位に張力を負荷することによって標的部位にMSCを集積することが可能である。このような手技の典型例は骨延長術である。骨延長術では固定装置(内固定型又は外固定型)又は骨延長器などと呼ばれる専用の装置が用いられる。骨延長術の方法は通常、骨切り、待機期間、骨延長期間及び骨硬化期間の工程からなる。骨延長速度は施術を施す部位を考慮して設定されるが、通常は0.5mm/日〜2mm/日である。骨延長術については、例えば、ADVANCE SERIES II-9 骨延長術:最近の進歩(克誠堂出版、波利井清紀 監修、杉原平樹 編著)に詳しい。   For example, MSC can be accumulated at the target site by applying tension to the target site. A typical example of such a procedure is bone extension. In bone extension, a dedicated device called a fixation device (internal fixation type or external fixation type) or a bone extension device is used. The method of osteogenesis usually consists of the steps of osteotomy, waiting period, osteogenesis period and osteosclerosis period. The bone extension speed is set in consideration of the site to be treated, but is usually 0.5 mm / day to 2 mm / day. For example, ADVANCE SERIES II-9 Bone Lengthening: Recent Progress (edited by Katseido Publishing Co., Ltd., supervised by Hariki Kiyonori, edited by Hiragi Sugihara).

本発明の軟骨組織組成物を骨延長術と併用する場合、通常は、待機期間の開始時〜骨延長期間の終了時までの間に本発明の組成物を局所投与する。投与回数は特に限定されない。例えば、1回〜10回の投与を行う。   When the cartilage tissue composition of the present invention is used in combination with bone extension, usually, the composition of the present invention is locally administered between the start of the waiting period and the end of the bone extension period. The frequency of administration is not particularly limited. For example, administration is performed 1 to 10 times.

特定の細胞を併用する態様の組成物においても、標的部位に張力を負荷する手技(典型的には骨延長術)を更に併用してもよい。   Also in the composition of the embodiment in which specific cells are used in combination, a technique for applying tension to the target site (typically osteogenesis) may be further used in combination.

本発明の組成物には、期待される治療効果を得るために必要な量(即ち治療上有効量)のSDF-1阻害剤が含有される。本発明の組成物の有効成分量は治療対象、併用成分、剤型などによって異なるが、所望の投与量を達成できるようにSDF-1阻害剤の量を例えば約0.001重量%〜約95重量%の範囲内で設定する。   The composition of the present invention contains an SDF-1 inhibitor in an amount necessary to obtain the expected therapeutic effect (ie, a therapeutically effective amount). The amount of the active ingredient of the composition of the present invention varies depending on the subject to be treated, the concomitant ingredients, the dosage form, etc., but the amount of the SDF-1 inhibitor is, for example, about 0.001 wt% to about 95 wt% so as to achieve the desired dose Set within the range.

本発明の組成物に期待される治療効果が維持されることを条件として、他の成分を追加的に使用することを妨げない。ゲル状に調製するための材料を含め、本発明において追加的に使用され得る成分を以下に列挙する。
(1)基質成分、有機系生体吸収性材料
基質成分又は有機系生体吸収性材料として、例えば、コンドロイチン硫酸、ケラタン硫酸等のグルコサミノグリカン、コラーゲン(特にII型、IX型など)、ヒアルロン酸、フィブリノーゲン(例えばボルヒール(登録商標))等を使用することができる。
It does not preclude the additional use of other ingredients, provided that the therapeutic effect expected of the composition of the present invention is maintained. Ingredients that can be additionally used in the present invention, including materials for preparing gels, are listed below.
(1) Substrate component, organic bioabsorbable material Examples of the substrate component or organic bioabsorbable material include glucosaminoglycans such as chondroitin sulfate and keratan sulfate, collagen (particularly type II, type IX, etc.), hyaluronic acid Fibrinogen (for example, Bolheel (registered trademark)) and the like can be used.

(2)ゲル化材料
ゲル化材料は、生体親和性が高いものを用いることが好ましく、ヒアルロン酸、コラーゲン又はフィブリン糊等を用いることができる。ヒアルロン酸、コラーゲンとしては種々のものを選択して用いることができるが、本発明の組成物の適用目的(標的部位)に適したものを採用することが好ましい。用いるコラーゲンは可溶性(酸可溶性コラーゲン、アルカリ可溶性コラーゲン、酵素可溶性コラーゲン等)であることが好ましい。
(2) Gelling material It is preferable to use a gelling material having high biocompatibility, and hyaluronic acid, collagen, fibrin glue, or the like can be used. Various types of hyaluronic acid and collagen can be selected and used, but it is preferable to employ one suitable for the application purpose (target site) of the composition of the present invention. The collagen used is preferably soluble (acid-soluble collagen, alkali-soluble collagen, enzyme-soluble collagen, etc.).

(3)溶媒
本発明の組成物は、水系の溶媒を含むものであってもよい。水系の溶媒としては、滅菌水、生理食塩水、リン酸塩溶液等の緩衝液等を用いることができる。尚、調製した細胞を生理食塩水やPBS(リン酸緩衝生理食塩水)に懸濁するとともにSDF-1を添加して本発明の組成物とし、標的部位に適用することもできる。
(3) Solvent The composition of the present invention may contain an aqueous solvent. As the aqueous solvent, sterilized water, physiological saline, a buffer solution such as a phosphate solution, or the like can be used. The prepared cells can be suspended in physiological saline or PBS (phosphate buffered physiological saline) and SDF-1 can be added to obtain the composition of the present invention, which can be applied to the target site.

(4)その他
本発明の組成物は、上記の成分の他、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、細胞保護剤(例えばジメチルスルフォキシド(DMSO)や血清アルブミン)、抗生物質、pH調整剤、細胞の活性化や増殖又は分化誘導などを目的とした各種の成分(ビタミン類、サイトカイン、成長因子、ステロイド、骨誘導因子(BMP)等)を含んでいても良い。
(4) Others In addition to the above components, the composition of the present invention comprises a carrier, excipient, disintegrant, buffer, emulsifier, suspension, soothing agent, stabilizer, preservative, preservative, cell protection. Agents (eg, dimethyl sulfoxide (DMSO) and serum albumin), antibiotics, pH adjusters, various components for the purpose of cell activation, proliferation or differentiation induction (vitamins, cytokines, growth factors, steroids, Osteoinductive factor (BMP) etc.) may be included.

本発明の組成物の最終的な形態は特に限定されない。形態の例は液体状(液状、ゲル状など)及び固体状(粉状、細粒、顆粒状など)である。好ましくは、本発明の組成物は、操作性の向上や治療効果の向上等を理由として、ゲル状に調製される。本明細書での「ゲル状」とは、医療用に使用されるフィブリンゲル又はフィブリン糊のように、適度な粘性を有し、標的部位での保持性の高い状態をいう。例えば、ゲル化剤や増粘剤の添加、或いはフィブリノーゲンとトロンビンの添加によって、ゲル状の組成物が形成される。   The final form of the composition of the present invention is not particularly limited. Examples of forms are liquid (liquid, gel, etc.) and solid (powder, fine granules, granules, etc.). Preferably, the composition of the present invention is prepared in a gel form for the purpose of improving operability and therapeutic effect. As used herein, the term “gel” refers to a state having an appropriate viscosity and high retention at a target site, such as fibrin gel or fibrin glue used for medical purposes. For example, a gel-like composition is formed by adding a gelling agent or a thickener, or adding fibrinogen and thrombin.

本発明の組成物は軟骨組織の修復、再建に利用される。例えば、変形性関節症、軟骨形成異常症、変形性椎間板症、半月板損傷、軟骨無形成症、離断性骨軟骨炎等の治療、間接周縁などにおける軟骨増生等に本発明の組成物を適用することができる。   The composition of the present invention is used for repair and reconstruction of cartilage tissue. For example, the composition of the present invention is used for treatment of osteoarthritis, cartilage dysplasia, degenerative disc disease, meniscal injuries, achondroplasia, isolated osteochondritis, etc. Can be applied.

本発明の組成物が投与される対象はヒト、又はヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ等)である。好ましくは、本発明の組成物はヒトに対して使用される。   Subjects to which the composition of the present invention is administered include humans or non-human mammals (pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows, pigs, goats. Sheep, dogs, cats, etc.). Preferably, the composition of the present invention is used for humans.

本発明の組成物は、例えば、組織欠損部に注入、埋入、填入、又は塗布によって標的部位に局所投与される。或いは、全身投与(例えば、静脈内注射、動脈内注射、門脈内注射、皮内注射、皮下注射、筋肉内注射、又は腹腔内注射)される。適度な流動性を有するゲル状に調製すれば、填入、注入、又は塗布等、簡便な手法で適用することができる。また、ゲル状であれば注射針等を用いて適用部位に容易に填入でき(創部を開放することなく適用することも可能である)、また、組織欠損部の形状に合わせて予め成型することを要せず、その汎用性が高い。   The composition of the present invention is locally administered to a target site by, for example, injection, implantation, filling, or application to a tissue defect. Alternatively, systemic administration (for example, intravenous injection, intraarterial injection, intraportal injection, intradermal injection, subcutaneous injection, intramuscular injection, or intraperitoneal injection). If it is prepared in a gel form having an appropriate fluidity, it can be applied by a simple technique such as filling, pouring or coating. Moreover, if it is a gel, it can be easily inserted into the application site using an injection needle or the like (it can also be applied without opening the wound), and is pre-molded according to the shape of the tissue defect. The versatility is high.

当業者であれば、治療対象、標的部位などを考慮して適当な投与量を設定することが可能である。例えば、成人(体重約60kg)を対象として1回当たりのSDF-1阻害剤の量が約0.01mg〜1mg/kg、好ましくは約0.1mg〜0.5mg/kgとなるよう投与量を設定することができる。   A person skilled in the art can set an appropriate dose in consideration of a treatment target, a target site, and the like. For example, for adults (weight approximately 60 kg), the dosage should be set so that the amount of SDF-1 inhibitor per dose is about 0.01 mg to 1 mg / kg, preferably about 0.1 mg to 0.5 mg / kg. Can do.

生体内幹細胞の集積システムを制御する新しい組織再生療法の開発を目指し、以下の検討を行った。   The following studies were conducted with the aim of developing a new tissue regeneration therapy that controls the in vivo stem cell accumulation system.

1.生体内の幹細胞/前駆細胞が集積する組織再生モデルの同定
(1)マウス脛骨骨延長モデル(DOモデル)の作製
骨延長術が幹細胞/前駆細胞の集積を応用した治療法であることを検証した。マウス脛骨骨延長モデル(DOモデル)を作製した(図1)。脛骨を明示した後、27G針を上下2カ所ずつ貫通させ、その後、即時重合レジンにて延長装置と連結、固定した。レジン硬化後に、骨切りを行い、閉創した。延長スケジュールは骨切り後待機期間を5日間、延長期間を8日間、硬化期間を14日間とし、延長速度は0.2mm/12時間とした。図1右下に示す通り、27日目のサンプルではX線写真で骨の再生を確認できた。
1. Identification of tissue regeneration model in which stem / progenitor cells accumulate in vivo (1) Preparation of mouse tibial bone extension model (DO model) It was verified that bone extension is a treatment method that applied stem cell / progenitor cell accumulation. . A mouse tibia bone extension model (DO model) was prepared (FIG. 1). After clearly showing the tibia, the 27G needle was penetrated in two places at the top and bottom, and then connected and fixed to the extension device with an immediate polymerization resin. After the resin hardened, the bone was cut and closed. In the extension schedule, the waiting period after osteotomy was 5 days, the extension period was 8 days, the curing period was 14 days, and the extension speed was 0.2 mm / 12 hours. As shown in the lower right of FIG. 1, in the sample on the 27th day, bone regeneration was confirmed by X-ray photography.

(2)Sca1(Stem Cell common antigen)陽性細胞の延長間隙(ギャップ)への集積
DOモデルの組織サンプルを作製し、幹細胞共通抗原Sca1を標的とした免疫染色を行った。延長中期である9日目の延長間隙ではSca1陽性細胞がコントロール(手術をしていない骨髄)と比較して約4倍増加していることが明らかとなった(図2)。
(2) Accumulation of Sca1 (Stem Cell common antigen) positive cells in the extended gap
A DO model tissue sample was prepared, and immunostaining was performed targeting the stem cell common antigen Sca1. It was revealed that Sca1-positive cells increased about 4 times in the extended gap on the 9th day, which is the middle phase of extension, compared with the control (bone marrow without surgery) (FIG. 2).

(3)延長間隙(ギャップ)に集積した骨髄幹細胞の種類
ギャップに集積した幹細胞の種類を同定することにした。血管内皮細胞と血管内皮前駆細胞(EPC)の共通マーカーであるCD31、血球系細胞のマーカーであるCD45、幹細胞のマーカーであるSca1で多重染色を行ったところ、血管内皮前駆細胞(EPC)と間葉系幹細胞(MSC)の分画が大多数を占めていることが明らかとなった(図3)。
(3) Types of bone marrow stem cells accumulated in the extended gap (gap) It was decided to identify the types of stem cells accumulated in the gap. When multiple staining was performed with CD31, a common marker for vascular endothelial cells and vascular endothelial progenitor cells (EPC), CD45, a blood cell marker, and Sca1, a stem cell marker, It became clear that the fraction of leaf stem cells (MSC) accounted for the majority (FIG. 3).

(4)in vivo イメージャーによる解析
in vivo イメージャーを用い、骨髄内での細胞の動きを経時的に解析した。まず、マウス骨髄単核球分画を採取し、近赤外蛍光色素DiRにてラベルした。この細胞を骨延長手術時に脛骨近心骨頭部の骨髄内に移植した。延長開始前の5日目のサンプルと、延長終了時の13日目のサンプルについて蛍光を検出した。5日目のサンプルでは移植した部分に限局した蛍光シグナルが検出されたが、13日目では移植部と延長部の2つのピークが形成されていた(図4)。即ち、移植した細胞が延長期間中に延長部に向かって移動したことが明らかとなった。
(4) Analysis by in vivo imager
Using an in vivo imager, cell movement in the bone marrow was analyzed over time. First, a mouse bone marrow mononuclear cell fraction was collected and labeled with a near-infrared fluorescent dye DiR. The cells were transplanted into the bone marrow of the tibia mesial head during bone extension surgery. Fluorescence was detected for the sample on the 5th day before the start of the extension and the sample on the 13th day when the extension was completed. In the sample on the 5th day, a fluorescent signal localized in the transplanted part was detected, but on the 13th day, two peaks of the transplanted part and the extended part were formed (FIG. 4). That is, it became clear that the transplanted cells migrated toward the extension during the extension period.

以上の検討(1)〜(4)によって、骨延長術は幹細胞/前駆細胞の集積を応用した再生現象であり、生体内幹細胞集積による組織再生の解析に適したモデルであることが示された。   From the above examinations (1) to (4), it was shown that osteogenesis is a regenerative phenomenon applying stem cell / progenitor cell accumulation and is a model suitable for analysis of tissue regeneration by in vivo stem cell accumulation. .

2.SDF-1とそのレセプター(CXCR4、CXCR7)の発現解析
骨延長期間におけるSDF-1リガンドとCXCR4レセプター及びCXCR7レセプターの遺伝子発現をリアルタイムRT-PCR法で解析した。結果を図5に示す。手術をしていないマウス脛骨・骨体部における遺伝子発現量を1とした時の相対値で発現量を示した。過去の報告と一致するように、延長過程では血管新生因子VEGF及びPDGFレセプターの遺伝子発現が上昇することが確認できた(図5左)。一方、SDF-1、CXCR4及びCXCR7の発現は、延長期間において上昇することが示された(図5右)。
2. Expression analysis of SDF-1 and its receptors (CXCR4, CXCR7) Gene expression of SDF-1 ligand, CXCR4 receptor and CXCR7 receptor during bone extension was analyzed by real-time RT-PCR. The results are shown in FIG. The expression level was expressed as a relative value when the gene expression level in the untied mouse tibia and bone was taken as 1. Consistent with previous reports, it was confirmed that the gene expression of angiogenic factors VEGF and PDGF receptor increased during the extension process (left of FIG. 5). On the other hand, the expression of SDF-1, CXCR4 and CXCR7 was shown to increase during the extended period (right of FIG. 5).

3.SDF-1の機能解析
(1)トランスウェル遊走アッセイ(In vitro transwell migration assay)及び骨分化誘導実験
まず、トランスウェル遊走アッセイ(In vitro transwell migration assay)を行った。ICRマウスから採取した骨髄由来単核球細胞を上部チャンバーに入れるとともに、下部チャンバーには細胞集積能を検討する薬剤を入れ、12時間後に下部チャンバーへ移動した細胞数をカウントした。細胞の計測はX10倍の視野でランダムに5カ所観察を行い、その平均値を求めた。下部チャンバーにDMEMを入れたものを陰性コントロールとし、30%FBS含有DMEMを入れたものを陽性コントロールとした。DMEMにSDF-1(150ng/mlの濃度)を添加した群では細胞の遊走は約3倍になった。DMEMにSDF-1とその阻害剤であるAMD3100(Sigma、5μg/ml)を添加した群と、DEMEにSDF-1と抗SDF-1抗体を添加した群では、細胞の遊走が阻害された(図6上)。このように、SDF-1タンパクが骨髄細胞の遊走を促すこと、及びSDF-1阻害剤によって当該遊走活性が抑制されることが示された。一方、骨分化誘導実験を行い、AMD3100及び抗SDF-1抗体はいずれも骨分化能に影響しないことを確認した(図6下)。
3. Functional analysis of SDF-1 (1) Transwell migration assay (in vitro transwell migration assay) and bone differentiation induction experiment First, a transwell migration assay (In vitro transwell migration assay) was performed. Bone marrow-derived mononuclear cells collected from ICR mice were placed in the upper chamber, and an agent for examining cell accumulation ability was placed in the lower chamber, and the number of cells that migrated to the lower chamber was counted 12 hours later. The cells were measured at 5 locations at random in a 10 × field of view, and the average value was obtained. A sample containing DMEM in the lower chamber was used as a negative control, and a sample containing DMEM containing 30% FBS was used as a positive control. In the group to which SDF-1 (concentration of 150 ng / ml) was added to DMEM, cell migration was approximately tripled. Cell migration was inhibited in the group in which SDF-1 and its inhibitor AMD3100 (Sigma, 5 μg / ml) were added to DMEM and in the group in which SDF-1 and anti-SDF-1 antibody were added to DEME ( FIG. 6 top). Thus, it was shown that SDF-1 protein promotes migration of bone marrow cells and that the migration activity is suppressed by SDF-1 inhibitors. On the other hand, bone differentiation induction experiment was performed, and it was confirmed that neither AMD3100 nor anti-SDF-1 antibody affected bone differentiation ability (bottom of FIG. 6).

(2)骨延長におけるSDF-1の役割1
次に、骨延長におけるSDF-1の役割を調べるため、DOモデルにおいて延長期間1日前から屠殺するまでAMD3100(5mg/kg)を連日、又は抗SDF-1抗体(投与量20μg)を一日おきに皮下注射した。コントロール群では延長終了時に顕著な仮骨形成が確認されたが、SDF-1を阻害した群では仮骨の形成が顕著に抑制された(図7)。延長間隙にはアルシアンブルー陽性の軟骨の形成が確認された。この結果より、SDF-1分子は骨延長部の仮骨形成に不可欠な役割を果たすことがわかった。
(2) Role of SDF-1 in bone elongation 1
Next, in order to investigate the role of SDF-1 in bone elongation, AMD3100 (5 mg / kg) was administered every day until 1 day before the extension period in the DO model, or anti-SDF-1 antibody (dose 20 μg) was administered every other day. Was injected subcutaneously. In the control group, remarkable callus formation was confirmed at the end of extension, but in the group in which SDF-1 was inhibited, callus formation was significantly suppressed (FIG. 7). Formation of Alcian blue positive cartilage was confirmed in the extended gap. These results indicate that the SDF-1 molecule plays an essential role in callus formation of the bone extension.

(3)骨延長におけるSDF-1の役割2
臨床的に延長部の血流低下が仮骨形成を阻害することが知られている。そこで、SDF-1機能阻害が延長部の血管内皮前駆細胞の集積に影響するか解析した。コントロールでは延長部位にCD31陽性、血管内皮前駆細胞が集積した(図8)。これらの細胞はSDF-1を多く発現している。AMD3100で処理した延長部ではCD31及びSDF-1陽性の血管内皮前駆細胞の数が7分の1程度に減少した(図8)。このように、SDF-1は血管内皮前駆細胞の延長部への集積に不可欠な役割を果たすことが示された。
(3) Role of SDF-1 in bone elongation 2
Clinically, it is known that a decrease in blood flow in the extension part inhibits callus formation. Therefore, we analyzed whether inhibition of SDF-1 function affects the accumulation of vascular endothelial progenitor cells in the extension. In the control, CD31 positive, vascular endothelial progenitor cells were accumulated at the extension site (FIG. 8). These cells express a lot of SDF-1. In the extension treated with AMD3100, the number of CD31 and SDF-1-positive vascular endothelial progenitor cells decreased to about 1/7 (FIG. 8). Thus, SDF-1 has been shown to play an essential role in the accumulation of vascular endothelial progenitor cells into extensions.

(4)骨延長におけるSDF-1の役割3
次に、間葉系幹細胞や造血幹細胞の挙動を解析した。AMD3100処理によって延長部のSca1陽性細胞数は3倍に増加した(図9)。Sca1陽性細胞の20%はCD45陽性の造血幹細胞であった。80%はCD45陰性、CD31陰性の間葉系幹細胞であった。これらの解析結果から、骨延長の組織再生過程において、SDF-1は間葉系幹細胞や造血幹細胞の集積には必要ではなく、血管内皮前駆細胞特異的な集積因子として機能していることが示唆された。
(4) Role of SDF-1 in bone extension 3
Next, the behavior of mesenchymal stem cells and hematopoietic stem cells was analyzed. AMD3100 treatment increased the number of Sca1-positive cells in the extension by a factor of 3 (FIG. 9). 20% of Sca1 positive cells were CD45 positive hematopoietic stem cells. 80% were CD45 negative and CD31 negative mesenchymal stem cells. These analysis results suggest that SDF-1 is not required for accumulation of mesenchymal stem cells and hematopoietic stem cells, but functions as a vascular endothelial progenitor cell-specific accumulation factor in the tissue regeneration process of bone elongation. It was done.

4.ハイスピードDOモデルによる検討
骨延長術は細胞移植なしで大型の組織再生を得られる一方で、臨床的な問題(治癒期間が長期に及ぶこと等)を抱えている。治療期間の短縮のためには延長速度を高めることが望まれるが、急速な延長操作では極端な虚血状態を誘発し延長部位の萎縮、瘢痕形成を招く。骨延長術における治療期間の短縮化を目指し、通常の2倍の速度で骨延長を行うハイスピードDOモデル(H-DO)(図10上)を作製した。
4). Examination with high-speed DO model While bone lengthening can obtain large tissue regeneration without cell transplantation, it has clinical problems (such as a long healing period). In order to shorten the treatment period, it is desirable to increase the extension rate, but rapid extension operation induces an extreme ischemic state, leading to atrophy of the extension site and scar formation. Aiming at shortening the treatment period in bone extension, a high-speed DO model (H-DO) (upper part of FIG. 10) was prepared that performs bone extension at twice the normal speed.

SDF-1タンパク(R&D Systems社) 200ngをI型コラーゲンスキャフォールド(新田ゼラチン株式会社)に混和し、H-DOモデルに対して延長1日前(4日目)から一日おきに局所投与した(図10上)。免疫組織染色による解析の結果、SDF-1非投与群(H-DO/ビークル)では仮骨は全く形成されず、軟骨組織が広範に観察された(図10下)。対照的に、SDF-1投与群(H-DO/SDF-1)では硬化期間終了時に仮骨形成が起こっており、軟骨組織もほとんど観察されなかった(図10下)。また、免疫染色で延長中期のギャップを観察したところ、H-DO群で減少したCD31陽性細胞数が、SDF-1の投与によって有意に上昇していることが明らかとなった(図11上)。また、H-DO群(H-DO+ビークル)では血管構造が検出できなかったが、SDF-1投与群(H-DO+SDF-1)ではCD31陽性血管内皮およびaSMA陽性血管平滑筋細胞で構成される多数の成熟血管を観察することができた(図12)。更に、2次元レーザー血流計を用いて血流量を測定したところ、これまでの結果を裏付けるように、H-DOモデルでは延長部で血流量が低下し、SDF-1投与によって血流が回復していることが明らかとなった(図11下)。   200 ng of SDF-1 protein (R & D Systems) was mixed with type I collagen scaffold (Nitta Gelatin Co., Ltd.) and administered locally to the H-DO model every other day from the first day before extension (Day 4). (FIG. 10 top). As a result of the analysis by immunohistochemical staining, no callus was formed in the SDF-1 non-administered group (H-DO / vehicle), and cartilage tissue was observed extensively (bottom of FIG. 10). In contrast, in the SDF-1 administration group (H-DO / SDF-1), callus formation occurred at the end of the sclerosis period, and almost no cartilage tissue was observed (bottom of FIG. 10). Moreover, when the gap of the extended metaphase was observed by immunostaining, it became clear that the number of CD31 positive cells decreased in the H-DO group was significantly increased by the administration of SDF-1 (upper figure 11). . The H-DO group (H-DO + vehicle) did not detect vascular structure, but the SDF-1 administration group (H-DO + SDF-1) consisted of CD31-positive vascular endothelium and aSMA-positive vascular smooth muscle cells. Many mature blood vessels could be observed (FIG. 12). Furthermore, when blood flow was measured using a two-dimensional laser blood flow meter, the blood flow decreased at the extension in the H-DO model, and blood flow was restored by administration of SDF-1, as confirmed by the previous results. (Fig. 11 bottom).

本検討によって明らかとなった事実・知見を以下にまとめる。
(1)骨延長過程では内在性の骨髄幹細胞が患部に集積する。これらの集積細胞は組織再生に重要な役割を果たしていると考えられる。
(2)骨延長で集積する幹細胞の主体は血管内皮前駆細胞と間葉系幹細胞である。骨延長はこれらの細胞の集積メカニズムの解析に適したモデルである。
(3)SDF-1は血管内皮前駆細胞の特異的集積因子である。SDF-1の阻害によって、間葉系幹細胞の分化系譜を操作し、軟骨組織の形成を促すことが可能である。
The facts and findings revealed by this study are summarized below.
(1) In the process of extending bone, endogenous bone marrow stem cells accumulate in the affected area. These accumulated cells are thought to play an important role in tissue regeneration.
(2) Stem cells mainly accumulated by bone elongation are vascular endothelial precursor cells and mesenchymal stem cells. Bone elongation is a suitable model for analyzing the accumulation mechanism of these cells.
(3) SDF-1 is a specific accumulation factor of vascular endothelial progenitor cells. By inhibiting SDF-1, it is possible to manipulate the differentiation lineage of mesenchymal stem cells and promote the formation of cartilage tissue.

本発明の組成物は標的部位での軟骨組織の再生を促す。本発明の組成物は、各種軟骨疾患(変形性関節症、軟骨形成異常症、変形性椎間板症、半月板損傷、軟骨無形成症、離断性骨軟骨炎等)の治療、或いは軟骨増生等に利用される。   The composition of the present invention promotes the regeneration of cartilage tissue at the target site. The composition of the present invention can treat various cartilage diseases (osteoarthritis, cartilage dysplasia, degenerative disc disease, meniscal injuries, achondroplasia, amputated osteochondritis, etc.) or cartilage augmentation, etc. Used for

この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

Claims (8)

SDF-1阻害剤を含有する軟骨組織再生用組成物。   A composition for regenerating cartilage containing an SDF-1 inhibitor. 間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞を組み合わせてなることを特徴とする、請求項1に記載の軟骨組織再生用組成物。   The composition for cartilage tissue regeneration according to claim 1, comprising one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes, and dental pulp stem cells. SDF-1阻害剤と、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞とを含有することを特徴とする、請求項2に記載の軟骨組織再生用組成物。   The cartilage tissue according to claim 2, comprising an SDF-1 inhibitor and one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes, and dental pulp stem cells. A composition for regeneration. SDF-1阻害剤を含有する第1構成要素と、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞を含有する第2構成要素とからなるキットであることを特徴とする、請求項2に記載の軟骨組織再生用組成物。   A kit comprising a first component containing an SDF-1 inhibitor and a second component containing one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes and dental pulp stem cells The composition for cartilage tissue regeneration according to claim 2, wherein SDF-1阻害剤を含有し、その投与の際に、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞も投与されることを特徴とする、請求項2に記載の骨組織再生用組成物。   Containing an SDF-1 inhibitor, and at the time of administration, one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes and dental pulp stem cells are also administered, The composition for bone tissue regeneration according to claim 2. 前記SDF-1阻害剤が、SDF-1とCXCR4の結合及びSDF-1とCXCR7の結合の両者に対して阻害活性を示す、請求項1〜5のいずれか一項に記載の軟骨組織再生用組成物。   The cartilage tissue regeneration according to any one of claims 1 to 5, wherein the SDF-1 inhibitor exhibits inhibitory activity against both SDF-1 and CXCR4 binding and SDF-1 and CXCR7 binding. Composition. 前記SDF-1阻害剤がAMD3100又は抗SDF-1抗体である、請求項1〜5のいずれか一項に記載の軟骨組織再生用組成物。   The composition for cartilage tissue regeneration according to any one of claims 1 to 5, wherein the SDF-1 inhibitor is AMD3100 or an anti-SDF-1 antibody. SDF-1阻害剤を標的部位に局所投与或いは全身的投与するとともに、間葉系幹細胞、軟骨芽細胞、軟骨細胞及び歯髄幹細胞からなる群より選択される一以上の細胞を標的部位に局所投与することを特徴とする、軟骨組織の再生方法。   SDF-1 inhibitor is locally or systemically administered to the target site, and one or more cells selected from the group consisting of mesenchymal stem cells, chondroblasts, chondrocytes and dental pulp stem cells are locally administered to the target site A method for regenerating cartilage tissue, comprising:
JP2011056110A 2011-03-15 2011-03-15 Cartilage tissue regeneration composition containing SDF-1 inhibitor Expired - Fee Related JP5843189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056110A JP5843189B2 (en) 2011-03-15 2011-03-15 Cartilage tissue regeneration composition containing SDF-1 inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056110A JP5843189B2 (en) 2011-03-15 2011-03-15 Cartilage tissue regeneration composition containing SDF-1 inhibitor

Publications (2)

Publication Number Publication Date
JP2012193117A true JP2012193117A (en) 2012-10-11
JP5843189B2 JP5843189B2 (en) 2016-01-13

Family

ID=47085389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056110A Expired - Fee Related JP5843189B2 (en) 2011-03-15 2011-03-15 Cartilage tissue regeneration composition containing SDF-1 inhibitor

Country Status (1)

Country Link
JP (1) JP5843189B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008198A (en) * 2014-06-24 2016-01-18 国立大学法人名古屋大学 Treatment of interstitial cystitis
JP2017529362A (en) * 2014-09-22 2017-10-05 アンテロジェン シーオー., エルティーディー.Anterogen Co., Ltd. Composition containing mesenchymal stem cells-hydrogel and method for producing the same
CN113201487A (en) * 2021-07-06 2021-08-03 广东先康达生物科技有限公司 Chondroblast culture medium and chondroblast culture method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519698A (en) * 2002-03-12 2005-07-07 ティシュージーン,インク Cartilage regeneration using chondrocytes and TGF-β
WO2006134921A1 (en) * 2005-06-13 2006-12-21 National University Corporation Nagoya University Grafting material and agent for improvement in bone quality
JP2010500005A (en) * 2006-08-11 2010-01-07 小野薬品工業株式会社 Monoclonal antibody against stroma-derived factor-1 (SDF-1)
JP2010501547A (en) * 2006-08-22 2010-01-21 国立大学法人 東京医科歯科大学 Application of synovial mesenchymal stem cells (MSCs) to cartilage and meniscal regeneration
JP2010535479A (en) * 2007-08-06 2010-11-25 ノクソン・ファルマ・アクチエンゲゼルシャフト SDF-1 binding nucleic acids and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519698A (en) * 2002-03-12 2005-07-07 ティシュージーン,インク Cartilage regeneration using chondrocytes and TGF-β
WO2006134921A1 (en) * 2005-06-13 2006-12-21 National University Corporation Nagoya University Grafting material and agent for improvement in bone quality
JP2010500005A (en) * 2006-08-11 2010-01-07 小野薬品工業株式会社 Monoclonal antibody against stroma-derived factor-1 (SDF-1)
JP2010501547A (en) * 2006-08-22 2010-01-21 国立大学法人 東京医科歯科大学 Application of synovial mesenchymal stem cells (MSCs) to cartilage and meniscal regeneration
JP2010535479A (en) * 2007-08-06 2010-11-25 ノクソン・ファルマ・アクチエンゲゼルシャフト SDF-1 binding nucleic acids and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015009975; Inflammation and Regeneration Vol.30, no.4, 2010, p.364 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008198A (en) * 2014-06-24 2016-01-18 国立大学法人名古屋大学 Treatment of interstitial cystitis
JP2017529362A (en) * 2014-09-22 2017-10-05 アンテロジェン シーオー., エルティーディー.Anterogen Co., Ltd. Composition containing mesenchymal stem cells-hydrogel and method for producing the same
CN113201487A (en) * 2021-07-06 2021-08-03 广东先康达生物科技有限公司 Chondroblast culture medium and chondroblast culture method

Also Published As

Publication number Publication date
JP5843189B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
Liu et al. The effect of simvastatin on chemotactic capability of SDF-1α and the promotion of bone regeneration
US6863900B2 (en) Regeneration and augmentation of bone using mesenchymal stem cells
Van Osch et al. Cartilage repair: past and future–lessons for regenerative medicine
Vidal et al. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow
Liu et al. Local administration of stromal cell-derived factor-1 promotes stem cell recruitment and bone regeneration in a rat periodontal bone defect model
JP4125241B2 (en) Tooth-derived pluripotent embryonic-like stem cells and use thereof
Kim et al. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell‐derived factor‐1 and a macrophage recruitment agent enhances wound closure
KR102319899B1 (en) Wound healing and tissue engineering
Sukegawa et al. Repair of rabbit osteochondral defects by an acellular technique with an ultrapurified alginate gel containing stromal cell-derived factor-1
US20170232276A1 (en) Treatment of fibrosis using deep tissue heating and stem cell therapy
JP2008526762A (en) Adipose-derived stem cells for tissue regeneration and wound healing
US9730965B2 (en) Perivascular stem cell composition for bone
Jia et al. Combination of kartogenin and transforming growth factor-β3 supports synovial fluid-derived mesenchymal stem cell-based cartilage regeneration
JP6152985B2 (en) Scaffold-free self-organized 3D artificial tissue and bone composite for osteochondral regeneration
WO2014148592A1 (en) Method for preparing chondrocytes
KR102091442B1 (en) Composition comprising autologous and allogenic adipose tissue-derived stromal stem cells for treatment of tendon or ligament injury and preparation method thereof
JP5843189B2 (en) Cartilage tissue regeneration composition containing SDF-1 inhibitor
US20140112891A1 (en) AUTOLOGOUS HUMAN ADULT PLURIPOTENT VERY SMALL EMBRYONIC-LIKE (hVSEL) STEM CELL REGENERATION OF BONE AND CARTILAGE
Xu et al. Role of low‐intensity pulsed ultrasound in regulating macrophage polarization to accelerate tendon–bone interface repair
Yang et al. Biofunctionalized structure and ingredient mimicking scaffolds achieving recruitment and chondrogenesis for staged cartilage regeneration
WO2010125722A1 (en) Culture substrate for cartilage comprising artificial collagen, and cartilage regeneration therapy method using the culture substrate
KR20150138700A (en) Composition comprising autologous and allogenic adipose tissue-derived stromal stem cells for treatment of tendon or ligament injury and preparation method thereof
JPWO2006112390A1 (en) Adipose-derived progenitor cells and their use
Sun et al. Skin wound healing: skin regeneration with pharmacological mobilized stem cells
JP2012193114A (en) Composition for regenerating bone tissue including sdf-1

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151106

R150 Certificate of patent or registration of utility model

Ref document number: 5843189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees