JP2012190936A - Device mounting structure of semiconductor device - Google Patents

Device mounting structure of semiconductor device Download PDF

Info

Publication number
JP2012190936A
JP2012190936A JP2011052083A JP2011052083A JP2012190936A JP 2012190936 A JP2012190936 A JP 2012190936A JP 2011052083 A JP2011052083 A JP 2011052083A JP 2011052083 A JP2011052083 A JP 2011052083A JP 2012190936 A JP2012190936 A JP 2012190936A
Authority
JP
Japan
Prior art keywords
lead
source
gate
drain
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011052083A
Other languages
Japanese (ja)
Inventor
Makoto Ijiri
良 井尻
Akiteru Rai
明照 頼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011052083A priority Critical patent/JP2012190936A/en
Priority to CN2012800122915A priority patent/CN103415924A/en
Priority to PCT/JP2012/051405 priority patent/WO2012120930A1/en
Publication of JP2012190936A publication Critical patent/JP2012190936A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49177Combinations of different arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13064High Electron Mobility Transistor [HEMT, HFET [heterostructure FET], MODFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

PROBLEM TO BE SOLVED: To achieve a device mounting structure that can take advantage of the merits of low power consumption and high-speed response characteristics of a semiconductor device using GaN.SOLUTION: A GaN device 10 is mounted on a die pad 14 by using a lead frame in which a source lead 15 and die pad 14 are integrally formed. Then, a source terminal 11 of the GaN device is wire-bonded to the die pad 14. This structure reduces leakage current from the rear surface of the chip, reduces on-resistance, reduces loop current between a gate and a source, and reduces parasitic inductance at a source wiring side, thereby preventing oscillation of a gate voltage via parasitic capacitance between the gate and the source.

Description

本発明は、半導体装置に関し、特に、GaNを用いるパワーデバイスチップをフレームに搭載する場合のデバイスの実装構造に関する。   The present invention relates to a semiconductor device, and more particularly to a device mounting structure when a power device chip using GaN is mounted on a frame.

GaN(窒化ガリウム)に代表される、バンドギャップが2eVを超えるワイドギャップ半導体を用いたデバイスは、従来のSiを用いるデバイスと比較して、低消費電力であり、高速スイッチングが可能という利点を備えている。これは、デバイスの絶縁破壊電界が大きいという理由による。   Devices using wide gap semiconductors with a band gap exceeding 2 eV, represented by GaN (gallium nitride), have the advantages of low power consumption and high-speed switching compared with devices using conventional Si. ing. This is because the breakdown electric field of the device is large.

一般に、デバイスの耐圧はドリフト層の長さ(WD)と絶縁破壊電界(Ec)の積により表される。従って、耐圧を同じとした場合、絶縁破壊電界が大きい方がドリフト層の長さを短くできる。ここで、ワイドギャップ半導体において、絶縁破壊電界はSiよりも10倍程度高いため、ドリフト層の長さをおよそ1/10にすることができる。また、不純物濃度は絶縁破壊電界の2乗に比例するため、Siと比べて100倍に高くすることができる。以上より、耐圧を同じとした場合、ワイドギャップ半導体を用いたデバイスのオン抵抗(Ron)は、Siを用いるデバイスと比較して約1/1000に低抵抗化が可能となる。   In general, the breakdown voltage of a device is represented by the product of the drift layer length (WD) and the breakdown electric field (Ec). Therefore, when the breakdown voltage is the same, the length of the drift layer can be shortened when the breakdown electric field is large. Here, in the wide gap semiconductor, since the dielectric breakdown electric field is about 10 times higher than Si, the length of the drift layer can be reduced to about 1/10. Further, since the impurity concentration is proportional to the square of the dielectric breakdown electric field, it can be made 100 times higher than Si. As described above, when the breakdown voltage is the same, the on-resistance (Ron) of the device using the wide gap semiconductor can be reduced to about 1/1000 compared to the device using Si.

一方、デバイスの高速応答性を表す指標として、遮断周波数(fT)という指標がある。当該遮断周波数はデバイスの電流利得が1となる周波数であり、ドリフト層の長さWDに反比例する。従って、ワイドギャップ半導体を用いるデバイスでは、ドリフト層の長さをSiと比べて1/10に設定できることにより、Siよりも一桁高い周波数で使用することが可能となる。   On the other hand, there is an index called cutoff frequency (fT) as an index representing the high-speed response of the device. The cutoff frequency is a frequency at which the current gain of the device is 1, and is inversely proportional to the length WD of the drift layer. Therefore, in a device using a wide gap semiconductor, since the length of the drift layer can be set to 1/10 compared to Si, it can be used at a frequency one digit higher than Si.

このように、ワイドギャップ半導体を用いることで、Siと比較してオン抵抗が低く、結果低消費電力で、且つ、高速性に優れたデバイスが可能である。   As described above, by using a wide gap semiconductor, a device having a low on-resistance as compared with Si, resulting in low power consumption and excellent high-speed performance is possible.

上記のワイドギャップ半導体を用いるデバイスの実装方法として、下記特許文献1および2に示すように、ドレインリードとダイパッドを接続したリードフレームのダイパッド上にデバイスを固定し、デバイスとドレインリード、ソースリード、及び、ゲートリードとの接続をワイヤボンディングにより行う方法が、従来より用いられてきた。   As a device mounting method using the above wide gap semiconductor, as shown in Patent Documents 1 and 2, the device is fixed on the die pad of the lead frame in which the drain lead and the die pad are connected, and the device and the drain lead, the source lead, A method of connecting to the gate lead by wire bonding has been conventionally used.

特開2008−66553号公報JP 2008-66553 A 特開2010−16103号公報JP 2010-16103 A

従来のSiパワーデバイスでは、ゲート注入電荷量Qgが大きいため、寄生発振が起こるような大きなインダクタンスは回路側で対応が可能であり、デバイス実装において、回路の寄生インダクタンスについて特別の注意を払う必要がなかった。   In the conventional Si power device, since the gate injection charge amount Qg is large, a large inductance that causes parasitic oscillation can be dealt with on the circuit side, and it is necessary to pay special attention to the parasitic inductance of the circuit when mounting the device. There wasn't.

ところが、GaNを用いたデバイスでは、ゲート注入電荷量Qgが非常に小さいため、単なる配線の寄生インダクタンスであってもゲート電圧が発振することがわかった。   However, in the device using GaN, it was found that the gate voltage oscillates even if the parasitic inductance of the wiring is simple because the gate injection charge amount Qg is very small.

これに対し、ゲート抵抗として大きなものをゲート端子に接続することで発振は抑制できるが、GaNの低消費電力、高速応答性の長所を生かすことができない結果となる。   On the other hand, oscillation can be suppressed by connecting a large gate resistance to the gate terminal, but the advantages of low power consumption and high-speed response of GaN cannot be utilized.

本発明は、上記の状況に鑑み、GaNを用いたデバイスにおいて、大きなゲート抵抗を付加することなく寄生発振を抑制できるように、デバイス実装構造の面から寄生インダクタンスの低減を実現するものであり、これにより、GaNの特徴である低消費電力、高速応答特性を生かしたパワーデバイスを実現することを目的とする。   In view of the above situation, the present invention realizes a reduction in parasitic inductance from the surface of a device mounting structure so that parasitic oscillation can be suppressed without adding a large gate resistance in a device using GaN. Accordingly, it is an object to realize a power device that takes advantage of the low power consumption and high-speed response characteristics that are characteristic of GaN.

上記目的を達成するための本発明に係る半導体装置は、
ソース端子、ドレイン端子、ゲート端子の少なくとも三端子が基板表面側に設けられた、GaNを用いるパワーデバイスが、ソースリード部とダイパッド部とが一体成形されたリードフレームの前記ダイパッド部に搭載され、
前記パワーデバイスの前記ソース端子が前記ダイパッド部とワイヤ接続され、
前記パワーデバイスの前記ドレイン端子がドレインリードと、前記パワーデバイスの前記ゲート端子がゲートリードとワイヤ接続されてなるデバイス実装構造を有することを特徴とする。
In order to achieve the above object, a semiconductor device according to the present invention provides:
A power device using GaN in which at least three terminals of a source terminal, a drain terminal, and a gate terminal are provided on the substrate surface side is mounted on the die pad portion of a lead frame in which a source lead portion and a die pad portion are integrally formed,
The source terminal of the power device is wire-connected to the die pad portion;
The power device has a device mounting structure in which the drain terminal of the power device is connected to a drain lead, and the gate terminal of the power device is connected to the gate lead by wire.

上記特徴の半導体装置は、更に、前記ドレインリードが、前記ゲートリードと前記リードフレームの前記ソースリード部との間に配置されることが好ましい。   In the semiconductor device having the above characteristics, the drain lead is preferably disposed between the gate lead and the source lead portion of the lead frame.

上記特徴の半導体装置は、更に、前記パワーデバイスを構成するトランジスタが、
前記ソース端子と接続するソース電極、前記ドレイン端子と接続するドレイン電極、及び、前記ゲート端子と接続するゲート電極を備え、前記ゲート電極が前記ドレイン電極よりも前記ソース電極側に片寄って配置される非対称構造を有することが好ましい。
In the semiconductor device having the above characteristics, the transistor constituting the power device further includes:
A source electrode connected to the source terminal; a drain electrode connected to the drain terminal; and a gate electrode connected to the gate terminal, wherein the gate electrode is disposed closer to the source electrode side than the drain electrode. It preferably has an asymmetric structure.

上記特徴の半導体装置は、更に、前記ドレインリード内の樹脂封止されるインナーリード部分の面積が、前記ゲートリード内の樹脂封止されるインナーリード部分の面積よりも大きいことが好ましい。   In the semiconductor device having the above characteristics, it is preferable that the area of the inner lead portion to be resin-sealed in the drain lead is larger than the area of the inner lead portion to be resin-sealed in the gate lead.

上記特徴の半導体装置は、更に、前記リードフレームの前記ソースリードには、前記ドレインリードよりも低電圧が供給されることが好ましい。   In the semiconductor device having the above characteristics, it is preferable that a lower voltage is supplied to the source lead of the lead frame than to the drain lead.

本発明者等は、鋭意研究により、ソース側配線の寄生インダクタンスを小さくすることで、発振が抑制され、ゲート電圧のオンオフに対して安定なスイッチングが可能になることを見出した。   The inventors of the present invention have intensively researched and found that by reducing the parasitic inductance of the source-side wiring, oscillation is suppressed and stable switching can be performed with respect to on / off of the gate voltage.

図5にシミュレーションに用いた回路の構成を示す。Ld、Ls1、Ls2、Lgsは夫々配線の寄生インダクタンスであり、Cgd,Cgs,Cdsは夫々GaN−FETの寄生容量である。図5において、FETがオンからオフに、オフからオンに切り替わると、LdからCoss、Ls1、及びLs2を介したLC直列回路が共振する。結果、Ls1の両端電圧が振動する。当該Ls1の両端電圧の振動は、ゲートドライバにとって電圧ノイズ源となる。   FIG. 5 shows the configuration of the circuit used for the simulation. Ld, Ls1, Ls2, and Lgs are parasitic inductances of wirings, respectively, and Cgd, Cgs, and Cds are parasitic capacitances of GaN-FETs. In FIG. 5, when the FET is switched from on to off and from off to on, the LC series circuit from Ld to Coss, Ls1, and Ls2 resonates. As a result, the voltage across Ls1 vibrates. The vibration of the voltage across Ls1 becomes a voltage noise source for the gate driver.

更に、Ls1の両端電圧が振動することにより、CgsとLs1を介したLC直列回路が共振し、ゲート電圧Vgが振動する。この結果、FETの意図しないオンオフが繰り返され、これが更にLdからCoss、Ls1、及びLs2を介したLC直列回路の共振を引き起こす。   Furthermore, when the voltage across Ls1 vibrates, the LC series circuit via Cgs and Ls1 resonates, and the gate voltage Vg vibrates. As a result, unintended ON / OFF of the FET is repeated, which further causes resonance of the LC series circuit from Ld to Coss, Ls1, and Ls2.

このように、LdからCoss、Ls1、及びLs2を介したLC直列回路の共振と、CgsとLs1を介したLC直列回路の共振が相互に誘起される結果、ゲート電圧Vgの振動が増幅され、スイッチングノイズが増加し、最悪の場合FETが発振して回路が破壊される虞がある。   As described above, the resonance of the LC series circuit via Loss and Coss, Ls1, and Ls2 and the resonance of the LC series circuit via Cgs and Ls1 are mutually induced. As a result, the oscillation of the gate voltage Vg is amplified. The switching noise increases, and in the worst case, the FET may oscillate and the circuit may be destroyed.

上記のLC回路による共振を防ぐには、LdとLs1(及び、Ls2)をできる限り小さくすればよいことが推察される。   It can be inferred that Ld and Ls1 (and Ls2) should be as small as possible in order to prevent resonance by the LC circuit.

図6は、ソース側配線の寄生インダクタンスLs1、及び、ドレイン側配線の寄生インダクタンスLdを変えた場合の、スイッチング時のゲート電圧の立ち上がり、立ち下がりの電圧変化をシミュレーションした結果である。図6より、ドレイン側配線の寄生インダクタンスLdを小さくする(図6(b))よりも、むしろソース側配線の寄生インダクタンスLs1を小さくした(図6(a))方が、ゲート電圧の振動防止に著しい効果があることが分かる。   FIG. 6 shows the result of simulating the rise and fall of the gate voltage during switching when the parasitic inductance Ls1 of the source side wiring and the parasitic inductance Ld of the drain side wiring are changed. From FIG. 6, the gate voltage oscillation is prevented by reducing the parasitic inductance Ls1 of the source side wiring (FIG. 6A) rather than reducing the parasitic inductance Ld of the drain side wiring (FIG. 6B). It can be seen that there is a remarkable effect.

図7は、図6においてFETに生じる電力損失(=Ifet*Vd)を示す図であり、図7より、ドレイン側配線の寄生インダクタンスLdを小さくする(図7(b))よりも、ソース側配線の寄生インダクタンスLs1を小さくした(図7(a))方が、損失も少ないことが分かる。   FIG. 7 is a diagram showing the power loss (= Ifet * Vd) generated in the FET in FIG. 6. Compared to FIG. 7, the parasitic inductance Ld of the drain side wiring is made smaller (FIG. 7B) than the source side. It can be seen that the loss is reduced when the parasitic inductance Ls1 of the wiring is reduced (FIG. 7A).

上記の知見に基づき、本発明では、デバイスの実装方法を変更し、従来のSiMOSFETにおいてはドレインリードと接続していたダイパッドを、ソースリードと接続することとし、当該ダイパッドとデバイスのソース端子との接続をワイヤボンディングにより行うこととした。これにより、従来のダイパッドとドレインリードを一体成形した構造と比較して、GaNチップのソース端子とチップ裏面の電位差を小さくできるため、チップ裏面からのリーク電流を減らし、オン抵抗を小さくすることができる。また、ゲート−ソース間のループ電流が小さくなることでソース配線の寄生インダクタンスが抑制され、Cgsを介したLC直列回路の発振を抑えることができる。   Based on the above knowledge, in the present invention, the device mounting method is changed, and the die pad connected to the drain lead in the conventional SiMOSFET is connected to the source lead, and the die pad and the source terminal of the device are connected. The connection was made by wire bonding. As a result, the potential difference between the source terminal of the GaN chip and the back surface of the chip can be reduced as compared with the conventional structure in which the die pad and the drain lead are integrally formed. it can. In addition, since the gate-source loop current is reduced, the parasitic inductance of the source wiring is suppressed, and the oscillation of the LC series circuit via Cgs can be suppressed.

従って、本発明に依れば、GaNを用いたデバイスにおいて、大きなゲート抵抗を付加することなく寄生発振を抑制でき、GaNの特徴である低消費電力、高速応答特性を生かしたパワーデバイスを実現することができる。   Therefore, according to the present invention, in a device using GaN, parasitic oscillation can be suppressed without adding a large gate resistance, and a power device utilizing the low power consumption and high-speed response characteristics of GaN is realized. be able to.

本発明に係る半導体装置のチップ実装例Chip mounting example of semiconductor device according to the present invention 従来技術に係る半導体装置のチップ実装例Example of chip mounting of a semiconductor device according to the prior art GaNを用いるパワーデバイスのデバイス構造を示す断面図。Sectional drawing which shows the device structure of the power device using GaN. 本発明に係る半導体装置の他のチップ実装例Other chip mounting examples of the semiconductor device according to the present invention 本発明の課題を説明するための回路図The circuit diagram for explaining the subject of the present invention 本発明の効果を説明するためのグラフであり、スイッチング時のゲート電圧の立ち上がり及び立ち下がりの、ゲート電圧の変化を示すグラフIt is a graph for demonstrating the effect of this invention, and is a graph which shows the change of the gate voltage of the rise and fall of the gate voltage at the time of switching 本発明の効果を説明するためのグラフであり、スイッチング時においてFETに生じる電力損失の時間変化を示すグラフIt is a graph for demonstrating the effect of this invention, and is a graph which shows the time change of the power loss which arises in FET at the time of switching

〈第1実施形態〉
本発明のチップ実装構造を有する半導体装置10の構成例を図1に示す。図1は、半導体装置10の実装後の形態の模式図である。尚、比較のため、従来の方法で半導体装置10をチップ実装した場合の実装後の形態の模式図を、図2に示す。尚、以降の実施形態の説明に用いる図面では、同一の構成要素には同一の符号を付すこととし、また、名称及び機能も同一であるので、同様の説明を繰り返すことはしない。
<First Embodiment>
A configuration example of a semiconductor device 10 having a chip mounting structure of the present invention is shown in FIG. FIG. 1 is a schematic diagram of a form after the semiconductor device 10 is mounted. For comparison, FIG. 2 shows a schematic diagram of a form after mounting when the semiconductor device 10 is mounted on a chip by a conventional method. In the drawings used for the description of the following embodiments, the same components are denoted by the same reference numerals, and the names and functions are also the same, so the same description will not be repeated.

半導体装置10は、GaNを用いて構成されるパワーデバイスであり、基板表面側に、ソース端子11、ドレイン端子12、ゲート端子13が形成されている。そして、ダイパッド14上に半導体装置10が搭載され、固定されている。   The semiconductor device 10 is a power device configured using GaN, and a source terminal 11, a drain terminal 12, and a gate terminal 13 are formed on the substrate surface side. The semiconductor device 10 is mounted and fixed on the die pad 14.

GaNを用いる当該パワーデバイスのデバイス構造の模式的な断面図を図3に示す。図3に示すデバイスは、HEMT(High Electron Mobility Transistor)構造のFETであり、Si基板20上に、AlとGaの組成比が異なるAlGaNの多層膜からなるバッファ層21を介してGaN層22が積層され、GaN層22の上にAlGaNの層23が積層されている。GaN層22上の所定の領域には、AlGaN層23を貫通するようにソース電極24とドレイン電極25が形成され、ゲート電極26が、AlGaN層23上の所定の領域に、ソース電極24とドレイン電極25がゲート電極26を挟んで互いに対向するように形成されている。ドレイン電極25は、絶縁膜27上に形成されたドレイン端子12と、コンタクトホール28を介して電気的に接続される。同様に、図示しないが、ソース電極24は、別の断面において、絶縁膜27上に形成されたソース端子11と電気的に接続され、ゲート電極25は、更に別の断面において、絶縁膜27上に形成されたゲート端子13と電気的に接続される。   FIG. 3 shows a schematic cross-sectional view of the device structure of the power device using GaN. The device shown in FIG. 3 is an FET having a HEMT (High Electron Mobility Transistor) structure, and a GaN layer 22 is formed on a Si substrate 20 via a buffer layer 21 made of an AlGaN multilayer film having different composition ratios of Al and Ga. The AlGaN layer 23 is laminated on the GaN layer 22. A source electrode 24 and a drain electrode 25 are formed in a predetermined region on the GaN layer 22 so as to penetrate the AlGaN layer 23, and a gate electrode 26 is formed in the predetermined region on the AlGaN layer 23. The electrodes 25 are formed so as to face each other with the gate electrode 26 interposed therebetween. The drain electrode 25 is electrically connected to the drain terminal 12 formed on the insulating film 27 through the contact hole 28. Similarly, although not shown, the source electrode 24 is electrically connected to the source terminal 11 formed on the insulating film 27 in another cross section, and the gate electrode 25 is formed on the insulating film 27 in another cross section. Are electrically connected to the gate terminal 13 formed in the circuit.

AlGaN層23とGaN層22とのヘテロ接合界面近傍において、2次元電子ガス層29が形成され、ゲート電極26に電圧(ゲート電圧)を印加することで、当該ゲート電極26の下方の当該2次元電子ガス層の濃度が変調され、ソース電極24とドレイン電極25間に流れる電流が制御される。尚、図3に示すデバイスは、ドレイン電極25に印加される電圧とゲート電圧との差が高電圧となるため、放電しないようにゲート電極26とドレイン電極25との距離を、ゲート電極26とソース電極24との距離よりも大きくとり、ゲート電極26がドレイン電極25よりもソース電極24側に片寄って配置された非対称なデバイス構造を有している。   In the vicinity of the heterojunction interface between the AlGaN layer 23 and the GaN layer 22, a two-dimensional electron gas layer 29 is formed, and by applying a voltage (gate voltage) to the gate electrode 26, the two-dimensional electron gas layer 29 below the gate electrode 26. The concentration of the electron gas layer is modulated, and the current flowing between the source electrode 24 and the drain electrode 25 is controlled. In the device shown in FIG. 3, since the difference between the voltage applied to the drain electrode 25 and the gate voltage becomes a high voltage, the distance between the gate electrode 26 and the drain electrode 25 is set so as not to discharge. The device has an asymmetric device structure in which the gate electrode 26 is arranged closer to the source electrode 24 side than the drain electrode 25 with a distance greater than the distance from the source electrode 24.

図1及び図2に戻ると、半導体装置10に隣接して、ソースリード15、ドレインリード16、ゲートリード17がこの順で形成されている。即ち、ドレインリード16が、ゲートリード17とソースリード15の間に挟まれて配置されている。これらのリード端子15,16,17は夫々、半導体装置1のソース端子11、ドレイン端子12、ゲート端子13とワイヤ接続(ワイヤボンディング)される。更に、図1又は図2の点線で示す領域18内において、ワイヤ接続される部分を覆うように樹脂封止がされ、半導体装置10がパッケージされる。   Returning to FIG. 1 and FIG. 2, a source lead 15, a drain lead 16, and a gate lead 17 are formed in this order adjacent to the semiconductor device 10. That is, the drain lead 16 is disposed between the gate lead 17 and the source lead 15. These lead terminals 15, 16, and 17 are respectively connected to the source terminal 11, the drain terminal 12, and the gate terminal 13 of the semiconductor device 1 by wire connection (wire bonding). Further, resin sealing is performed so as to cover the wire-connected portion in the region 18 indicated by the dotted line in FIG. 1 or FIG. 2, and the semiconductor device 10 is packaged.

本発明では、図1に示すように、ソースリード15とダイパッド14は、両者が一体成形されてリードフレームを構成しており、ソース端子11とソースリード15の接続が、ソース端子11とダイパッド14をワイヤボンディングすることによりなされている。一方、ドレインリード16及びゲートリード17は、夫々、ダイパッド14と分離形成され、ドレインリード16とドレイン端子12、ゲートリード17とゲート端子13との接続が、ワイヤボンディングによりなされている。   In the present invention, as shown in FIG. 1, the source lead 15 and the die pad 14 are integrally formed to form a lead frame, and the connection between the source terminal 11 and the source lead 15 is connected to the source terminal 11 and the die pad 14. Are made by wire bonding. On the other hand, the drain lead 16 and the gate lead 17 are formed separately from the die pad 14, and the drain lead 16 and the drain terminal 12, and the gate lead 17 and the gate terminal 13 are connected by wire bonding.

これに対し、従来例では、図2に示すように、ドレインリード16とダイパッド14が一体成形されてリードフレームを構成しており、ドレイン端子12とドレインリード16の接続が、ドレイン端子12とダイパッド14をワイヤボンディングすることによりなされている。一方、ソースリード15及びゲートリード17は、夫々、ダイパッド14と分離形成され、ソースリード15とソース端子11、ゲートリード17とゲート端子13との接続が、ワイヤボンディングによりなされている。   On the other hand, in the conventional example, as shown in FIG. 2, the drain lead 16 and the die pad 14 are integrally formed to constitute a lead frame, and the connection between the drain terminal 12 and the drain lead 16 is connected to the drain terminal 12 and the die pad. 14 is formed by wire bonding. On the other hand, the source lead 15 and the gate lead 17 are formed separately from the die pad 14, and the source lead 15 and the source terminal 11 and the gate lead 17 and the gate terminal 13 are connected by wire bonding.

上述の通り、本発明では、ソースリード15とダイパッド14が一体成形され、ソース端子11とダイパッド14がワイヤボンディングされて接続されているため、チップ裏面の電位を介して基板の電位がソース電圧に固定され、基板を経由してチップ裏面に流れるリーク電流を減らし、結果、オン抵抗を小さくすることができる。また、ソース配線の寄生インダクタンスが抑制され、ゲート電圧の発振を抑えることができる。   As described above, in the present invention, since the source lead 15 and the die pad 14 are integrally formed and the source terminal 11 and the die pad 14 are connected by wire bonding, the potential of the substrate becomes the source voltage via the potential on the back surface of the chip. The leakage current that is fixed and flows to the back surface of the chip via the substrate can be reduced, and as a result, the on-resistance can be reduced. Further, the parasitic inductance of the source wiring is suppressed, and the oscillation of the gate voltage can be suppressed.

尚、本発明では、ドレインリード16はドレイン端子12とワイヤボンディングされるが、このため、ドレインリード16とダイパッド14が一体成形され、ドレイン端子12とダイパッド14をワイヤボンディングされる従来の構成(図2)と比較すると、ドレイン配線の寄生インダクタンスはかえって増加することとなる。しかしながら、図6より、ソース配線側の寄生インダクタンス(図5のLs1)を低減することが、ドレイン配線側の寄生インダクタンス(図5のLd)を低減することよりも、ゲート電圧の発振を抑制するという点において重要であることが示されている。別の言い方をすると、図6は、ゲート電圧の発振を抑制するという点において、ソース配線側の寄生インダクタンスを低減することで、ドレイン配線の寄生インダクタンスが増加することによるデメリットをはるかに上回るメリットが得られることを示すものである。そして、本発明は、これを積極的に利用するものである。   In the present invention, the drain lead 16 is wire-bonded to the drain terminal 12. For this reason, the drain lead 16 and the die pad 14 are integrally formed, and the drain terminal 12 and the die pad 14 are wire-bonded in a conventional configuration (FIG. Compared with 2), the parasitic inductance of the drain wiring increases on the contrary. However, from FIG. 6, reducing the parasitic inductance on the source wiring side (Ls1 in FIG. 5) suppresses the oscillation of the gate voltage than reducing the parasitic inductance on the drain wiring side (Ld in FIG. 5). In that respect. In other words, FIG. 6 has the advantage that the parasitic inductance on the source wiring side is reduced and the disadvantage due to the increase in the parasitic inductance of the drain wiring is much reduced in that the oscillation of the gate voltage is suppressed. It shows that it is obtained. And this invention utilizes this positively.

更に、半導体装置10の他の実装例を図4に示す。図4では、ドレインリード16の領域18との重なり部分、即ちドレインリード16内の樹脂封止される部分(インナーリード)の面積を、ゲートリード17の領域18との重なり部分、即ちゲートリード17内の樹脂封止される部分の面積よりも大きくしている。上記ドレインリード16(ゲートリード17)の樹脂封止される部分は、ワイヤボンディングが可能な部分の面積に相当する。ドレインリード16のワイヤボンディング可能な部分の面積を大きくすることで、ドレインリード16とドレイン端子12との接続を、複数のワイヤを介して行うことが可能になるため、ソース配線側の寄生インダクタンスと併せて、ドレイン配線側の寄生インダクタンスを低減することが可能になる。これにより、ゲート電圧の発振を防止できるとともに、オン抵抗を削減することができる。   Furthermore, another mounting example of the semiconductor device 10 is shown in FIG. In FIG. 4, the area of the portion of the drain lead 16 overlapping the region 18, that is, the area of the resin lead-sealed portion (inner lead) in the drain lead 16 is the same as the portion of the gate lead 17 overlapping the region 18, that is, the gate lead 17. The area is larger than the area of the resin-sealed portion. The resin-sealed portion of the drain lead 16 (gate lead 17) corresponds to the area of the portion where wire bonding is possible. By increasing the area of the portion of the drain lead 16 that can be wire bonded, the drain lead 16 and the drain terminal 12 can be connected via a plurality of wires. In addition, the parasitic inductance on the drain wiring side can be reduced. As a result, oscillation of the gate voltage can be prevented and on-resistance can be reduced.

本発明は、GaNをスイッチング素子として用いるパワーデバイスの実装に利用可能である。   The present invention can be used for mounting a power device using GaN as a switching element.

10: 半導体装置(GaNデバイス)
11: ソース端子
12: ドレイン端子
13: ゲート端子
14: ダイパッド
15: ソースリード
16: ドレインリード
17: ゲートリード
18: 樹脂封止される領域
20: 基板
21: バッファ層
22: GaN層
23: AlGaN層
24: ソース電極
25: ドレイン電極
26: ゲート電極
27: 絶縁膜
28: コンタクトホール
29: 2次元電子ガス
10: Semiconductor device (GaN device)
11: Source terminal 12: Drain terminal 13: Gate terminal 14: Die pad 15: Source lead 16: Drain lead 17: Gate lead 18: Resin-sealed region 20: Substrate 21: Buffer layer 22: GaN layer 23: AlGaN layer 24: Source electrode 25: Drain electrode 26: Gate electrode 27: Insulating film 28: Contact hole 29: Two-dimensional electron gas

Claims (5)

ソース端子、ドレイン端子、ゲート端子の少なくとも三端子が基板表面側に設けられた、GaNを用いるパワーデバイスが、
ソースリード部とダイパッド部とが一体成形されたリードフレームの前記ダイパッド部に搭載され、
前記パワーデバイスの前記ソース端子が前記ダイパッド部とワイヤ接続され、
前記パワーデバイスの前記ドレイン端子がドレインリードと、前記パワーデバイスの前記ゲート端子がゲートリードとワイヤ接続されてなるデバイス実装構造を有する半導体装置。
A power device using GaN, in which at least three terminals of a source terminal, a drain terminal, and a gate terminal are provided on the substrate surface side,
Mounted on the die pad portion of the lead frame in which the source lead portion and the die pad portion are integrally molded,
The source terminal of the power device is wire-connected to the die pad portion;
A semiconductor device having a device mounting structure in which the drain terminal of the power device is connected to a drain lead, and the gate terminal of the power device is connected to a gate lead by wire.
前記ドレインリードが、前記ゲートリードと前記リードフレームの前記ソースリード部との間に配置されることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the drain lead is disposed between the gate lead and the source lead portion of the lead frame. 前記パワーデバイスを構成するトランジスタが、
前記ソース端子と接続するソース電極、前記ドレイン端子と接続するドレイン電極、及び、前記ゲート端子と接続するゲート電極を備え、
前記ゲート電極が前記ドレイン電極よりも前記ソース電極側に片寄って配置される非対称構造を有することを特徴とする請求項1または2に記載の半導体装置。
Transistors constituting the power device are
A source electrode connected to the source terminal; a drain electrode connected to the drain terminal; and a gate electrode connected to the gate terminal;
The semiconductor device according to claim 1, wherein the gate electrode has an asymmetric structure in which the gate electrode is arranged closer to the source electrode side than the drain electrode.
前記ドレインリード内の樹脂封止されるインナーリード部分の面積が、前記ゲートリード内の樹脂封止されるインナーリード部分の面積よりも大きいことを特徴とする請求項1〜3の何れか1項に記載の半導体装置。   The area of the inner lead portion to be resin-sealed in the drain lead is larger than the area of the inner lead portion to be resin-sealed in the gate lead. A semiconductor device according to 1. 前記リードフレームの前記ソースリードには、前記ドレインリードよりも低電圧が供給されることを特徴とする請求項1〜4の何れか一項に記載の半導体装置。
The semiconductor device according to claim 1, wherein a voltage lower than that of the drain lead is supplied to the source lead of the lead frame.
JP2011052083A 2011-03-09 2011-03-09 Device mounting structure of semiconductor device Pending JP2012190936A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011052083A JP2012190936A (en) 2011-03-09 2011-03-09 Device mounting structure of semiconductor device
CN2012800122915A CN103415924A (en) 2011-03-09 2012-01-24 Device mounting structure of semiconductor device
PCT/JP2012/051405 WO2012120930A1 (en) 2011-03-09 2012-01-24 Device mounting structure of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052083A JP2012190936A (en) 2011-03-09 2011-03-09 Device mounting structure of semiconductor device

Publications (1)

Publication Number Publication Date
JP2012190936A true JP2012190936A (en) 2012-10-04

Family

ID=46797901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052083A Pending JP2012190936A (en) 2011-03-09 2011-03-09 Device mounting structure of semiconductor device

Country Status (3)

Country Link
JP (1) JP2012190936A (en)
CN (1) CN103415924A (en)
WO (1) WO2012120930A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227432A (en) * 2011-04-21 2012-11-15 Fujitsu Semiconductor Ltd Semiconductor device
US9236317B2 (en) 2013-04-16 2016-01-12 Rohm Co., Ltd. Semiconductor device
US10431532B2 (en) 2014-05-12 2019-10-01 Rohm Co., Ltd. Semiconductor device with notched main lead

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578985B (en) * 2013-11-01 2018-06-26 中航(重庆)微电子有限公司 Semiconductor devices and preparation method thereof
US10211144B2 (en) 2015-07-29 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device having a plurality of top surface connection terminals
CN112420681B (en) * 2019-08-20 2024-02-27 苏州捷芯威半导体有限公司 Chip packaging structure
CN116093058B (en) * 2023-02-28 2024-01-09 中科华艺(天津)科技有限公司 Gallium nitride semiconductor anti-interference packaging structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261756A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Semiconductor device and its manufacture
JP2006005005A (en) * 2004-06-15 2006-01-05 Toshiba Corp Nitrogen-compound-containing semiconductor device
JP2008066553A (en) * 2006-09-08 2008-03-21 Furukawa Electric Co Ltd:The Semiconductor device
JP2010238892A (en) * 2009-03-31 2010-10-21 Sharp Corp Semiconductor device, and method of manufacturing the same
JP2011129875A (en) * 2009-11-20 2011-06-30 Panasonic Corp Semiconductor device and lead frame thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261756A (en) * 1997-03-19 1998-09-29 Hitachi Ltd Semiconductor device and its manufacture
JP2006005005A (en) * 2004-06-15 2006-01-05 Toshiba Corp Nitrogen-compound-containing semiconductor device
JP2008066553A (en) * 2006-09-08 2008-03-21 Furukawa Electric Co Ltd:The Semiconductor device
JP2010238892A (en) * 2009-03-31 2010-10-21 Sharp Corp Semiconductor device, and method of manufacturing the same
JP2011129875A (en) * 2009-11-20 2011-06-30 Panasonic Corp Semiconductor device and lead frame thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227432A (en) * 2011-04-21 2012-11-15 Fujitsu Semiconductor Ltd Semiconductor device
US9236317B2 (en) 2013-04-16 2016-01-12 Rohm Co., Ltd. Semiconductor device
US9490194B2 (en) 2013-04-16 2016-11-08 Rohm Co., Ltd. Semiconductor device
US9859182B2 (en) 2013-04-16 2018-01-02 Rohm Co., Ltd. Semiconductor device
US10312171B2 (en) 2013-04-16 2019-06-04 Rohm Co., Ltd. Semiconductor device
US10431532B2 (en) 2014-05-12 2019-10-01 Rohm Co., Ltd. Semiconductor device with notched main lead

Also Published As

Publication number Publication date
CN103415924A (en) 2013-11-27
WO2012120930A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP6909881B2 (en) Switching circuit with ferrite beads
US9041456B2 (en) Power semiconductor device
WO2012120930A1 (en) Device mounting structure of semiconductor device
JP6827776B2 (en) Semiconductor device
JP5883392B2 (en) Package configuration for low EMI circuit
JP6277429B2 (en) Semiconductor device
US9171837B2 (en) Cascode circuit
JP5789967B2 (en) Semiconductor device, manufacturing method thereof, and power supply device
JP6565223B2 (en) Semiconductor device and manufacturing method thereof, power supply device, and high-frequency amplifier
JP5653326B2 (en) Nitride semiconductor device
US9331572B2 (en) Semiconductor device and power conversion device
JP2013058640A (en) Semiconductor device
US20220392887A1 (en) Semiconductor device
JP6996241B2 (en) Compound semiconductor equipment and its manufacturing method, power supply equipment, high frequency amplifier
WO2013157300A1 (en) Device-mounting structure in semiconductor device
WO2014192348A1 (en) Semiconductor device
JP2013026342A (en) Nitride semiconductor device
CN214477434U (en) Packaging structure of double-transistor
TWI777389B (en) Package structure of dual transistors
CN214477435U (en) Packaging structure of double-transistor
TWI751008B (en) Package structure of double transistor
TWI751009B (en) Package structure of double transistor
CN214477437U (en) Packaging structure of double-transistor
JP5935425B2 (en) Semiconductor device
CN115810624A (en) Semiconductor device with a plurality of semiconductor chips

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224