JP2012190754A - Lamp unit - Google Patents

Lamp unit Download PDF

Info

Publication number
JP2012190754A
JP2012190754A JP2011055622A JP2011055622A JP2012190754A JP 2012190754 A JP2012190754 A JP 2012190754A JP 2011055622 A JP2011055622 A JP 2011055622A JP 2011055622 A JP2011055622 A JP 2011055622A JP 2012190754 A JP2012190754 A JP 2012190754A
Authority
JP
Japan
Prior art keywords
projection lens
light
light source
plane
lamp unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011055622A
Other languages
Japanese (ja)
Other versions
JP5640306B2 (en
Inventor
Yoshiaki Nakaya
喜昭 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011055622A priority Critical patent/JP5640306B2/en
Priority to EP12001700.9A priority patent/EP2500628B1/en
Priority to US13/420,598 priority patent/US20120236561A1/en
Publication of JP2012190754A publication Critical patent/JP2012190754A/en
Application granted granted Critical
Publication of JP5640306B2 publication Critical patent/JP5640306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/14Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users
    • F21W2102/145Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having vertical cut-off lines; specially adapted for adaptive high beams, i.e. wherein the beam is broader but avoids glaring other road users wherein the light is emitted between two parallel vertical cutoff lines, e.g. selectively emitted rectangular-shaped high beam

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lamp unit capable of forming a light distribution pattern long in depth without deteriorating light utilization efficiency.SOLUTION: The lamp unit of projector type used for vehicle headlamp is provided with a projection lens, a reflecting surface which is arranged between the projection lens and the rear side focal point of the projection lens and includes a plane mirror inclined nearly 45 degrees on the projection lens side against the plane orthogonal to the optical axis of the projection lens, a light source which is arranged at the position of plane symmetry to the rear focal point of the projection lens or in its vicinity with the plane mirror as a symmetry plane, and emits light that is reflected by the reflecting surface and transmits the projection lens. The reflecting surface includes a reflecting region which is bent in a concave shape viewed from the light source so that the upper part of the light source image of the light source projected by the projection lens may be diffused to the upper direction.

Description

本発明は、灯具ユニットに係り、特に縦長の配光パターンを形成することが可能な灯具ユニットに関する。   The present invention relates to a lamp unit, and more particularly to a lamp unit capable of forming a vertically long light distribution pattern.

従来、光源の像を投影して配光を形成するように構成された車両用灯具が知られている(例えば特許文献1参照)。   Conventionally, a vehicular lamp configured to project a light source image to form a light distribution is known (see, for example, Patent Document 1).

図12に示すように、特許文献1に記載の車両用灯具200は、内周面211に鏡面処理が施された複数の筒状部材210と、リフレクタ220を介して筒状部材210の一端212から筒状部材210内に入射し鏡面処理が施された内周面211で反射されて筒状部材210の他端213(出射口)から出射する光を発光する複数の発光素子230等を備えている。複数の筒状部材210の出射口213は、投影レンズ240の後側焦点面近傍に配置されている。   As shown in FIG. 12, the vehicular lamp 200 described in Patent Document 1 includes a plurality of cylindrical members 210 whose inner peripheral surfaces 211 are mirror-finished, and one end 212 of the cylindrical member 210 via a reflector 220. A plurality of light emitting elements 230 that emit light emitted from the other end 213 (exit port) of the cylindrical member 210 by being reflected from the inner peripheral surface 211 that is incident on the cylindrical member 210 and is subjected to mirror surface treatment. ing. The exit ports 213 of the plurality of cylindrical members 210 are disposed in the vicinity of the rear focal plane of the projection lens 240.

上記構成の特許文献1に記載の灯具ユニット200においては、発光素子230からの光は、リフレクタ220を介して対応する筒状部材210の一端212から筒状部材210内に入射し、鏡面処理が施された内周面211で反射されて出射口213から出射する。これにより、出射口213に均一(又は特定)の光度分布が形成される。投影レンズ240は、出射口213(すなわち、出射口213に形成される光度分布)の像を反転投影する。これにより、配光パターンが形成される。この配光パターンの形状は、筒状部材210の出射口213の形状を調整することである程度調整することが可能である。   In the lamp unit 200 described in Patent Document 1 having the above-described configuration, light from the light emitting element 230 enters the cylindrical member 210 from one end 212 of the corresponding cylindrical member 210 via the reflector 220, and the mirror surface treatment is performed. The light is reflected by the applied inner peripheral surface 211 and is emitted from the emission port 213. Thereby, a uniform (or specific) luminous intensity distribution is formed at the exit port 213. The projection lens 240 reversely projects an image of the emission port 213 (that is, the light intensity distribution formed at the emission port 213). Thereby, a light distribution pattern is formed. The shape of this light distribution pattern can be adjusted to some extent by adjusting the shape of the emission port 213 of the cylindrical member 210.

特開2009−070679号公報JP 2009-070679 A

しかしながら、上記構成の灯具ユニット200においては、筒状部材210の出射口213の形状を調整して上方にある角度以上光を拡散させようとすると、筒状部材210内面にも、レンズ240にも入射しない光が増加し(光利用効率が低下し)、目的の方向に光を拡散させることができないという問題がある。   However, in the lamp unit 200 having the above-described configuration, when the shape of the emission port 213 of the cylindrical member 210 is adjusted to diffuse light beyond an upper angle, both the inner surface of the cylindrical member 210 and the lens 240 are used. There is a problem that light that does not enter increases (light utilization efficiency decreases), and light cannot be diffused in a target direction.

本発明は、このような事情に鑑みてなされたものであり、光利用効率を低下させることなく、縦長の配光パターンを形成することが可能な灯具ユニットを提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the lamp unit which can form a vertically long light distribution pattern, without reducing light utilization efficiency.

上記課題を解決するため、請求項1に記載の発明は、車両用前照灯に用いられるプロジェクタ型の灯具ユニットにおいて、投影レンズと、前記投影レンズと前記投影レンズの後側焦点との間に配置され、前記投影レンズの光軸に直交する平面に対して前記投影レンズ側に略45°傾斜した平面鏡を含む反射面と、前記平面鏡を対称面として前記投影レンズの後側焦点に対して面対称の位置又はその近傍に配置され、前記反射面で反射されて前記投影レンズを透過する光を放射する光源と、を備えており、前記反射面は、前記投影レンズによって投影される前記光源の光源像の上部が上方向に拡散するように前記光源から見て凹形状に湾曲した反射領域を含んでいることを特徴とする。   In order to solve the above-described problem, the invention according to claim 1 is a projector-type lamp unit used for a vehicle headlamp, and includes a projection lens, a projection lens, and a rear focal point of the projection lens. A reflecting surface including a plane mirror that is disposed and tilted by approximately 45 ° toward the projection lens with respect to a plane orthogonal to the optical axis of the projection lens; and a plane with respect to the rear focal point of the projection lens with the plane mirror as a symmetry plane A light source that is disposed at or near a symmetric position and that emits light reflected by the reflecting surface and transmitted through the projection lens, and the reflecting surface of the light source projected by the projection lens A reflection region curved in a concave shape when viewed from the light source is included so that an upper portion of the light source image diffuses upward.

請求項1に記載の発明によれば、湾曲した反射領域の作用により、投影レンズによって投影される光源像の上部が上方向に拡散された状態となる。当該上部が拡散された光源像により、光利用効率を低下させることなく、仮想鉛直スクリーン上に、上下幅が拡大した縦長の配光パターンを形成することが可能となる。   According to the first aspect of the present invention, the upper portion of the light source image projected by the projection lens is diffused upward by the action of the curved reflection region. With the light source image in which the upper part is diffused, it is possible to form a vertically long light distribution pattern having an enlarged vertical width on the virtual vertical screen without reducing light use efficiency.

請求項2に記載の発明は、請求項1に記載の発明において、前記光源は、一端である入射口が下方に配置され、他端である出射口が上方に配置され、かつ、内周面に反射面が形成された複数の筒部と、前記筒部の一端である入射口から当該筒部内に入射し前記反射面で反射されて前記筒部の他端である出射口から出射する光を発光する複数の発光素子と、を備えており、前記複数の筒部の出射口は、前記平面鏡を対称面として前記投影レンズの後側焦点に対して面対称の位置又はその近傍に、前記投影レンズの光軸に対して直交する方向かつ略水平方向に一列に隣接配置されており、前記複数の筒部の出射口のうち互いに隣接する出射口は、同一のエッジを含んで構成されるとともに当該同一のエッジで仕切られており、前記複数の筒部はそれぞれ、前記出射口から前記入射口に向かうにつれ略錐体状に狭まる形状に構成されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the light source has an incident port that is one end disposed below, an output port that is the other end disposed above, and an inner peripheral surface. And a plurality of cylindrical portions each having a reflective surface formed thereon, and light that enters the cylindrical portion from an incident port that is one end of the cylindrical portion, is reflected by the reflective surface, and exits from an output port that is the other end of the cylindrical portion A plurality of light emitting elements that emit light, and the outlets of the plurality of cylindrical portions are in plane symmetry with respect to the rear focal point of the projection lens with the plane mirror as a plane of symmetry or in the vicinity thereof, Arranged adjacently in a line in a direction orthogonal to the optical axis of the projection lens and in a substantially horizontal direction, of the plurality of tube portions, the exit ports adjacent to each other include the same edge. And the plurality of tube portions are separated by the same edge. Respectively, characterized in that it is constructed in a shape which narrows in a substantially pyramidal shape as the direction from said exit to said entrance.

請求項2に記載の発明によれば、複数の出射口のうち互いに隣接する出射口の間は、肉厚部分ではなく、その幅をほとんど無視できるエッジで仕切られており、当該エッジで仕切られた複数の出射口(すなわち、各出射口に形成される光度分布)を投影レンズの作用により前方に反転投影する構成であるため、個別に点消灯制御される複数の照射領域間に隙間(周囲よりも暗い部分)ができるのを防止又は低減することが可能となる。   According to the second aspect of the present invention, the adjacent outlets among the plurality of outlets are not thick portions but are partitioned by an edge whose width is almost negligible, and are partitioned by the edges. In addition, a plurality of exit ports (that is, luminous intensity distribution formed at each exit port) is reversely projected forward by the action of the projection lens, so that gaps (around It is possible to prevent or reduce the occurrence of darker areas.

請求項3に記載の発明は、請求項2に記載の発明において、前記複数の筒部はそれぞれ、前記入射口としての一端面と前記出射口としての他端面と、前記反射面が形成された内周面としての外周面とを含み、かつ、前記他端面から前記一端面に向かうにつれ略錐体状に狭まる中実の略錐体形状のレンズ体であることを特徴とする。   The invention according to claim 3 is the invention according to claim 2, wherein each of the plurality of cylindrical portions is formed with one end surface as the incident port, the other end surface as the emission port, and the reflection surface. And a solid substantially cone-shaped lens body that narrows into a substantially cone shape as it goes from the other end surface to the one end surface.

請求項3に記載の発明によれば、複数の出射口(他端面)のうち互いに隣接する出射口(他端面)の間は、肉厚部分ではなく、その幅をほとんど無視できるエッジで仕切られており、当該エッジで仕切られた複数の出射口(すなわち、各他端面に形成される光度分布)を投影レンズの作用により前方に反転投影する構成であるため、個別に点消灯制御される複数の照射領域間に隙間(周囲よりも暗い部分)ができるのを防止又は低減することが可能となる。   According to the third aspect of the present invention, between the exit ports (other end surfaces) adjacent to each other among the plurality of exit ports (other end surfaces) is not a thick portion, but is partitioned by an edge whose width is almost negligible. The plurality of exits partitioned by the edges (that is, the luminous intensity distribution formed on each other end surface) are inverted and projected forward by the action of the projection lens, and thus are individually controlled to be turned on and off. It is possible to prevent or reduce the formation of a gap (a darker part than the surroundings) between the irradiation areas.

以上説明したように、本発明によれば、光利用効率を低下させることなく、縦長の配光パターンを形成することが可能な灯具ユニットを提供することが可能となる。   As described above, according to the present invention, it is possible to provide a lamp unit capable of forming a vertically long light distribution pattern without reducing light utilization efficiency.

本発明の一実施形態である灯具ユニット10を含む右側車両用灯具の横断面図である。It is a cross-sectional view of a right vehicle lamp including a lamp unit 10 according to an embodiment of the present invention. 灯具ユニット10の斜視図である。1 is a perspective view of a lamp unit 10. FIG. 灯具ユニット10の縦断面図である。1 is a longitudinal sectional view of a lamp unit 10. FIG. (a)平面鏡12aで反射され、投影レンズ11によって投影される光源像(光源としての各出射口31c〜31cの像)によって形成される配光パターンの例、(b)湾曲した反射領域12bで反射され、投影レンズ11によって投影される光源像(光源としての各出射口31c〜31cの像)によって形成される配光パターンの例である。(A) An example of a light distribution pattern formed by a light source image (image of each of the exit ports 31c 1 to 31c 9 as a light source) reflected by the plane mirror 12a and projected by the projection lens 11, (b) a curved reflection region it is reflected by 12b, an example of a light distribution pattern formed by the light source image projected by the projection lens 11 (an image of the exit opening 31c 1 ~31c 9 as a light source). (a)図5(b)に示した光源ユニット30のA−A断面図、(b)正面図、(c)図5(b)に示した光源ユニット30のB−B断面図である。(A) It is AA sectional drawing of the light source unit 30 shown in FIG.5 (b), (b) Front view, (c) It is BB sectional drawing of the light source unit 30 shown in FIG.5 (b). 発光素子33aからの光と投影レンズ11との関係を説明するための図である。4 is a diagram for explaining a relationship between light from a light emitting element 33a and a projection lens 11. FIG. 図3中の円内を拡大した図である。It is the figure which expanded the inside of the circle in FIG. (a)投影レンズ11の後側焦点F近傍に配置した(と仮定した)光源ユニット30(鏡像)の横断面図、(b)図8(a)中の円内を拡大した図である。(A) Cross-sectional view of the light source unit 30 (mirror image) disposed (assumed to be) in the vicinity of the rear focal point F of the projection lens 11, and (b) an enlarged view of the circle in FIG. 8 (a). (a)すれ違いビーム専用の灯具ユニット70により形成される配光パターンP2の例、(b)左側の灯具ユニット10により形成される配光パターンP1Lの例、(c)右側の灯具ユニット10により形成される配光パターンP1Rの例、(d)各配光パターンP1L、P1R、P2を重畳した合成配光パターンの例である。(A) An example of the light distribution pattern P2 formed by the lamp unit 70 dedicated to the low beam, (b) an example of the light distribution pattern P1L formed by the left lamp unit 10, and (c) formed by the right lamp unit 10. (D) an example of a combined light distribution pattern in which the light distribution patterns P1L, P1R, and P2 are superimposed. (a)遠方に存在する対向車V(又は先行車)をカバーする照射領域に対応する発光素子33aを消灯又は減光した場合に形成される合成配光パターンの例、(b)遠方に存在する対向車V(又は先行車)をカバーする照射領域に対応する発光素子33aを消灯又は減光した場合に形成される合成配光パターンの例、(c)近辺に存在する対向車V(又は先行車)をカバーする照射領域に対応する発光素子33aを消灯又は減光した場合に形成される合成配光パターンの例である。(A) Example of a combined light distribution pattern formed when the light emitting element 33a corresponding to the irradiation area covering the oncoming vehicle V (or preceding vehicle) existing in the distance is turned off or dimmed, (b) existing in the distance Example of a combined light distribution pattern formed when the light emitting element 33a corresponding to the irradiation area covering the oncoming vehicle V (or the preceding vehicle) is turned off or dimmed, (c) the oncoming vehicle V (or the vicinity) existing in the vicinity It is an example of the synthetic | combination light distribution pattern formed when the light emitting element 33a corresponding to the irradiation area | region which covers a preceding vehicle is light-extinguished or dimmed. 導光部材32の変形例を説明するための図である。It is a figure for demonstrating the modification of the light guide member. 従来の車両用灯具200の横断面図である。It is a cross-sectional view of a conventional vehicular lamp 200.

以下、本発明の一実施形態である灯具ユニットについて、図面を参照しながら説明する。   Hereinafter, a lamp unit according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態の灯具ユニット10は、プロジェクタ型の灯具ユニットであり、車両前部の左右両側にそれぞれ配置されて車両用前照灯を構成する。灯具ユニット10は、例えば、図1に示すように、ハウジング61と透光カバー62とを組み合わせて構成される灯室60内に、すれ違いビーム専用の灯具ユニット70とともに配置されている。灯具ユニット10及びすれ違いビーム専用の灯具ユニット70は、車両前部の左右両側にそれぞれ配置されている。   The lamp unit 10 of the present embodiment is a projector-type lamp unit, and is arranged on each of the left and right sides of the front portion of the vehicle to constitute a vehicle headlamp. For example, as shown in FIG. 1, the lamp unit 10 is disposed in a lamp chamber 60 configured by combining a housing 61 and a light-transmitting cover 62 together with a lamp unit 70 dedicated to a passing beam. The lamp unit 10 and the lamp unit 70 dedicated to the passing beam are respectively disposed on the left and right sides of the front portion of the vehicle.

図2、図3に示すように、灯具ユニット10は、投影レンズ11、投影レンズ11とその後側焦点Fとの間に配置された反射面12、反射面12の下方に配置された光源ユニット30等を備えている。   As shown in FIGS. 2 and 3, the lamp unit 10 includes a projection lens 11, a reflection surface 12 disposed between the projection lens 11 and the rear focal point F, and a light source unit 30 disposed below the reflection surface 12. Etc.

投影レンズ11は、例えば、前方側表面が凸面で後方側表面が平面の平凸非球面レンズである。投影レンズ11は、その後側焦点面上の光源像を反転像として投影する。投影レンズ11は、例えば、反射面12の前端部に固定されている。   The projection lens 11 is, for example, a plano-convex aspheric lens having a convex front surface and a flat rear surface. The projection lens 11 projects the light source image on the rear focal plane as a reverse image. The projection lens 11 is fixed to the front end portion of the reflecting surface 12, for example.

図3に示すように、反射面12は、投影レンズ11と投影レンズ11の後側焦点Fとの間に配置され、投影レンズ11の光軸AX軸に直交する平面に対して投影レンズ11側にθ=略45°傾斜した平面鏡12aを含んでいる。また、反射面12は、当該反射面12で反射され、投影レンズ11によって投影される光源像(光源としての各出射口31c〜31cの像)の上部が上方向に拡散するように光源ユニット30から見て凹形状に湾曲した反射領域12bを含んでいる。図3中、反射面12の上端から変曲点Aにかけての範囲が平面鏡12aの領域で、変曲点Aから反射面12の下端にかけての範囲が湾曲した反射領域12bである。なお、図3中変曲点Aは、光軸AXの下方に位置しているが、投影レンズ11のサイズや光源ユニット30のサイズその他の要因によって、光軸AXの上方に位置することがあり得る。 As shown in FIG. 3, the reflecting surface 12 is disposed between the projection lens 11 and the rear focal point F of the projection lens 11, and is on the projection lens 11 side with respect to a plane orthogonal to the optical axis AX axis of the projection lens 11. Includes a plane mirror 12a inclined at θ = approximately 45 °. The reflection surface 12 is a light source such that the upper part of the light source image (the image of each of the exit ports 31c 1 to 31c 9 as the light source) reflected by the reflection surface 12 and projected by the projection lens 11 is diffused upward. The reflection region 12b curved in a concave shape when viewed from the unit 30 is included. In FIG. 3, the range from the upper end of the reflecting surface 12 to the inflection point A is the region of the plane mirror 12a, and the range from the inflection point A to the lower end of the reflecting surface 12 is the curved reflecting region 12b. Note that the inflection point A in FIG. 3 is located below the optical axis AX, but may be located above the optical axis AX depending on the size of the projection lens 11, the size of the light source unit 30, and other factors. obtain.

湾曲した反射領域12bは、例えば、変曲点から反射面12の下端に向かうにつれ徐々に凹状に曲げられた領域であってもよいし、縦断面が一定曲率の円弧となる面であってもよい。   The curved reflection region 12b may be, for example, a region that is gradually bent in a concave shape as it goes from the inflection point to the lower end of the reflection surface 12, or may be a surface whose longitudinal section becomes an arc having a constant curvature. Good.

光源ユニット30は、図5(a)〜図5(c)に示すように、複数の発光素子33a、複数の発光素子33aの前方に配置された複数の筒部31(筒状の開口)を含んでいる。各発光素子33aは、これに対応する筒部31の入射口31bから筒部31内に入射し当該筒部31の内周面(反射面31a)で反射されて筒部31の他端である出射口31c〜31cから出射する光を発光する。これにより、各出射口31c〜31cに、均一な光度分布(又は特定の光度分布)が形成される。 As shown in FIGS. 5A to 5C, the light source unit 30 includes a plurality of light emitting elements 33a and a plurality of cylindrical portions 31 (cylindrical openings) arranged in front of the plurality of light emitting elements 33a. Contains. Each light emitting element 33a is incident on the cylindrical portion 31 from the corresponding incident port 31b of the cylindrical portion 31 and is reflected by the inner peripheral surface (reflecting surface 31a) of the cylindrical portion 31 to be the other end of the cylindrical portion 31. Light emitted from the emission ports 31c 1 to 31c 9 is emitted. Thereby, a uniform light intensity distribution (or a specific light intensity distribution) is formed at each of the exit ports 31c 1 to 31c 9 .

図3に示すように、光源ユニット30は、平面鏡12aを対称面として投影レンズ11の後側焦点Fに対して面対称の位置P1(又はその近傍)に、上向きに光を放射する姿勢(すなわち、各出射口31c〜31cを上に向けた姿勢で)で配置されている。 As shown in FIG. 3, the light source unit 30 emits light upward at a position P1 (or its vicinity) that is plane-symmetric with respect to the rear focal point F of the projection lens 11 with the plane mirror 12a as a plane of symmetry (that is, the light source unit 30). , In a posture in which each of the emission ports 31c 1 to 31c 9 faces upward.

光源ユニット30(各出射口31c〜31c)から放射される光の光路に注目すると、平面鏡12aで反射された光の光路RayAは、投影レンズ11の後側焦点F近傍に配置した(と仮定した)光源ユニット30(鏡像)から放射される光RayB(図3、図7中点線で示す光路参照)の光路と略同一となる。この場合、平面鏡12aで反射され、投影レンズ11によって投影される光源像(光源としての各出射口31c〜31cの像)によって形成される配光パターンは、図4(a)に示すように、上下幅が水平線の上方3°程度、下方1°程度の配光パターンとなり、オーバーヘッドサイン領域を照射できない。なお、オーバーヘッドサイン領域とは、車両前方(例えば25m)に設定される仮想鉛直スクリーン上において水平線よりも上方向に存在する道路標識等、運転者が運転中に認識することが好ましい物体が存在する領域であり、水平線の上方約2°から4°付近をいう。 When attention is paid to the optical path of the light emitted from the light source unit 30 (the respective exit ports 31c 1 to 31c 9 ), the optical path RayA of the light reflected by the plane mirror 12a is arranged in the vicinity of the rear focal point F of the projection lens 11 (and It is substantially the same as the optical path of the light RayB emitted from the light source unit 30 (mirror image) (see the optical path indicated by the dotted line in FIGS. 3 and 7). In this case, the light distribution pattern formed by the light source image reflected by the plane mirror 12a and projected by the projection lens 11 (images of the respective exit ports 31c 1 to 31c 9 as the light source) is as shown in FIG. In addition, the light distribution pattern has a vertical width of about 3 ° above the horizontal line and about 1 ° below, and the overhead sign area cannot be irradiated. The overhead sign area includes an object that the driver preferably recognizes during driving, such as a road sign that exists above the horizontal line on a virtual vertical screen set in front of the vehicle (for example, 25 m). This is an area, which is about 2 ° to 4 ° above the horizon.

一方、湾曲した反射領域12bで反射された光RayCの光路は、投影レンズ11の後側焦点F近傍に配置した(と仮定した)光源ユニット30(鏡像)の下方から放射される光RayD(図3、図7中点線で示す光路参照)の光路と略同一となる。この場合、湾曲した反射領域12bで反射され、投影レンズ11によって投影される光源像(光源としての各出射口31c〜31cの像)の上部が上方向に拡散された状態となる。当該上部が拡散された光源像によって形成される配光パターンは、図4(b)に示すように、上下幅が水平線の上方4.5°程度、下方1°程度の配光パターンとなる。この上部が拡散された光源像により、オーバーヘッドサイン領域を照射することが可能となる。 On the other hand, the optical path of the light RayC reflected by the curved reflection region 12b is the light RayD (see FIG. 5) radiated from below the light source unit 30 (mirror image) disposed (assumed to be) in the vicinity of the rear focal point F of the projection lens 11. 3 and the optical path of the optical path indicated by the dotted line in FIG. 7). In this case, the upper part of the light source image (the image of each of the emission ports 31c 1 to 31c 9 as the light source) reflected by the curved reflection region 12b and projected by the projection lens 11 is diffused upward. As shown in FIG. 4B, the light distribution pattern formed by the light source image in which the upper part is diffused becomes a light distribution pattern whose vertical width is about 4.5 ° above the horizontal line and about 1 ° below. The overhead sign area can be irradiated by the light source image in which the upper part is diffused.

上記構成の灯具ユニット10によれば、光源ユニット30(各出射口31c〜31c)から上向きに放射された光(光源としての各出射口31c〜31cの像)は、反射面12(平面鏡12a及び湾曲した反射領域12b)で反射され、投影レンズ11を透過して前方に照射される。これにより、仮想鉛直スクリーン上に、上下幅が拡大した縦長の(水平線の上方4.5°程度、下方1°程度)配光パターン(図4(b)参照)を形成することが可能となる。この縦長の配光パターンにより、走行ビーム照射領域(水平線Hと鉛直線V点との交点を含むホットゾーンと称される高光度領域)及びオーバーヘッドサイン領域を照射することが可能となる。 According to the lamp unit 10 having the above-described configuration, the light emitted upward from the light source unit 30 (the respective emission ports 31c 1 to 31c 9 ) (images of the respective emission ports 31c 1 to 31c 9 as light sources) is reflected on the reflection surface 12. The light is reflected by the (plane mirror 12a and the curved reflection region 12b), passes through the projection lens 11, and is irradiated forward. Thereby, it is possible to form a vertically long light distribution pattern (about 4.5 ° above the horizontal line and about 1 ° below the horizontal line) with an enlarged vertical width on the virtual vertical screen (see FIG. 4B). . With this vertically long light distribution pattern, it is possible to irradiate a traveling beam irradiation region (a high luminous intensity region called a hot zone including an intersection of the horizontal line H and the vertical line V point) and an overhead sign region.

次に、光源ユニット30について詳細に説明する。   Next, the light source unit 30 will be described in detail.

光源ユニット30は、図5(a)〜図5(c)に示すように、複数の発光素子33a、複数の発光素子33aの前方に配置された複数の筒部31(筒状の開口)が形成された導光部材32を備えている。   As shown in FIGS. 5A to 5C, the light source unit 30 includes a plurality of light emitting elements 33a and a plurality of cylindrical portions 31 (cylindrical openings) arranged in front of the plurality of light emitting elements 33a. The formed light guide member 32 is provided.

複数の発光素子33aは、ヒートシンク50の上面に固定された金属製の基板33上に、光軸AXに対して直交する方向かつ水平方向に一定間隔(2mm程度)をおいて一列に配置されている。   The plurality of light emitting elements 33a are arranged in a row on the metal substrate 33 fixed to the upper surface of the heat sink 50 in a direction perpendicular to the optical axis AX and at a constant interval (about 2 mm) in the horizontal direction. Yes.

発光素子33aとしては、例えば、0.7mm角の発光面を有する同一構成の白色LED(青色LEDチップと蛍光体とを組み合わせた白色LED、近紫外LEDチップと蛍光体とを組み合わせた白色LED、又は、RGB各色のLEDチップを組み合わせた白色LED)を用いることが可能である。また、発光素子33aとしては、その他の発光ダイオードやレーザダイオード等を用いることも可能である。   As the light emitting element 33a, for example, a white LED having the same configuration having a 0.7 mm square light emitting surface (a white LED combining a blue LED chip and a phosphor, a white LED combining a near ultraviolet LED chip and a phosphor, Alternatively, it is possible to use a white LED in which LED chips of RGB colors are combined. As the light emitting element 33a, other light emitting diodes, laser diodes, or the like can be used.

図6に示すように、発光素子33aから放射される光には、光軸AXに対し狭角方向の光Ray1だけでなく、光軸AXに対し広角方向の光Ray2がある。光軸AXに対し広角方向の光Ray2をも投影レンズ11に入射させるために、各発光素子33aの前方には、光軸AXに対し広角方向の光Ray2を制御する導光部材32が配置されている(図2、図5(a)等参照)。   As shown in FIG. 6, the light emitted from the light emitting element 33a includes not only the light Ray1 in the narrow angle direction with respect to the optical axis AX but also the light Ray2 in the wide angle direction with respect to the optical axis AX. A light guide member 32 that controls the light Ray2 in the wide-angle direction with respect to the optical axis AX is disposed in front of each light emitting element 33a so that the light Ray2 in the wide-angle direction with respect to the optical axis AX is also incident on the projection lens 11. (See FIG. 2, FIG. 5 (a), etc.).

図5(a)〜図5(c)に示すように、導光部材32は、一方の面とその反対側の面とを連通する複数の筒部31(筒状の開口)を含んでいる。各筒部31の内周面には、鏡面処理(例えばアルミ蒸着)を施すことで反射面31aが形成されている。導光部材32は、例えば、耐熱性を有するプラスチック材料を射出成形することで一体的に形成されている。   As shown in FIG. 5A to FIG. 5C, the light guide member 32 includes a plurality of cylindrical portions 31 (cylindrical openings) that communicate one surface with the opposite surface. . A reflective surface 31 a is formed on the inner peripheral surface of each cylindrical portion 31 by performing mirror surface treatment (for example, aluminum vapor deposition). The light guide member 32 is integrally formed, for example, by injection molding a plastic material having heat resistance.

導光部材32は、筒部31の一端である入射口31bがその対応する発光素子33aの前方に配置され、筒部31の他端である出射口31c〜31cが上方に配置されるように、基板33に対し位置決めされた後、基板33を挟んでヒートシンク50の上面にネジ止め固定されている(図2参照)。 The light guide member 32, the entrance 31b is one end of the cylindrical portion 31 is disposed in front of the corresponding light emitting element 33a, the exit port 31c 1 ~31c 9, which is the other end of the cylindrical portion 31 is disposed above Thus, after positioning with respect to the board | substrate 33, it fixes with the screw on the upper surface of the heat sink 50 on both sides of the board | substrate 33 (refer FIG. 2).

各入射口31bは、平面鏡12aを対称面として投影レンズ11の後側焦点Fに対して面対称の位置P1(又はその近傍)より2.0mm程度下方に配置されている。各入射口31bは、発光素子33aよりひとまわり大きな寸法に設定されている(例えば、左右幅:1mm、上下幅:1.5mm)。   Each entrance 31b is disposed about 2.0 mm below the position P1 (or its vicinity) that is plane-symmetric with respect to the rear focal point F of the projection lens 11 with the plane mirror 12a as a plane of symmetry. Each incident port 31b is set to be slightly larger than the light emitting element 33a (for example, left and right width: 1 mm, vertical width: 1.5 mm).

各出射口31c〜31cは、平面鏡12aを対称面として投影レンズ11の後側焦点Fに対して面対称の位置P(又はその近傍)に(例えば、投影レンズ11の後側焦点面に対して面対称の領域に沿うように)、光軸AXに対して直交する方向かつ略水平方向に一列に隣接配置されている(図2、図3参照)。出射口31c〜31cとしては、例えば、矩形、平行四辺形、台形その各種の形状を用いることが可能である。 Each of the exit ports 31c 1 to 31c 9 has a plane mirror 12a as a plane of symmetry and is located at a position P (or its vicinity) that is plane-symmetric with respect to the rear focal point F of the projection lens 11 (for example, on the rear focal plane of the projection lens 11). (Along a plane-symmetrical region) and adjacently arranged in a line in a direction orthogonal to the optical axis AX and in a substantially horizontal direction (see FIGS. 2 and 3). As the exit ports 31c 1 to 31c 9 , for example, a rectangular shape, a parallelogram shape, a trapezoidal shape, or the like can be used.

光源ユニット30(各出射口31c〜31c)から上向きに放射された光(光源としての各出射口31c〜31cの像)は、反射面12で反射され、投影レンズ11を透過して前方に照射される(図3参照)。これにより、仮想鉛直スクリーン上に、水平方向に隣接配置され個別に光度が増減される複数の照射領域A〜Aを含む配光パターンP1L、P1Rが形成される(図9(b)、図9(c)参照)。なお、出射口31c〜31cは、光軸AXから離れるにつれ徐々に大きくなるように設定されている(図5(b)参照。例えば、上下幅:3mm〜6mm、出射口31c〜31cの左右幅:2mm、出射口31c、31cの左右幅:4.5mm)。 Light emitted upward from the light source unit 30 (the respective exit ports 31c 1 to 31c 9 ) (images of the respective exit ports 31c 1 to 31c 9 as light sources) is reflected by the reflecting surface 12 and passes through the projection lens 11. Is irradiated forward (see FIG. 3). Thus, on a virtual vertical screen, the light distribution pattern P1L including a plurality of irradiation regions A 1 to A 9 luminous intensity separately disposed adjacent to the horizontal direction is increased or decreased, P1R is formed (FIG. 9 (b), the (See FIG. 9C). The exit ports 31c 1 to 31c 9 are set so as to gradually increase as they move away from the optical axis AX (see FIG. 5B. For example, the vertical width: 3 mm to 6 mm, the exit ports 31c 2 to 31c. 8 left and right width: 2 mm, left and right width of the exit ports 31c 1 and 31c 9 : 4.5 mm).

しかし、出射口31c〜31cの間に肉厚部分があると、この肉厚部分が前方に投影され、照射領域A〜A間に隙間ができてしまう。 However, if there is a thick portion between the exit ports 31c 1 to 31c 9 , this thick portion is projected forward, and a gap is formed between the irradiation regions A 1 to A 9 .

これを防止するために、複数の筒部31の出射口31c〜31cのうち互いに隣接する出射口(例えば出射口31cと出射口31c)は、同一のエッジE(その幅をほとんど無視することができるエッジ)を含んで構成されるとともに当該同一のエッジEで仕切られている(図5(b)参照)。これにより、出射口31c〜31cの反転投影像である複数の照射領域A〜Aを水平方向に隙間無く密に隣接配置することが可能となる(図9(b)、図9(c)参照)。 In order to prevent this, the exit ports (for example, the exit port 31c 1 and the exit port 31c 2 ) that are adjacent to each other among the exit ports 31c 1 to 31c 9 of the plurality of cylindrical portions 31 have the same edge E (almost the width thereof). And an edge that can be ignored) and is partitioned by the same edge E (see FIG. 5B). Thus, it is possible without gaps closely adjacently disposed a plurality of irradiation regions A 1 to A 9 inverting a projected image of the exit port 31c 1 ~31c 9 in the horizontal direction (FIG. 9 (b), the FIG. 9 (See (c)).

図8(a)、図8(b)は、投影レンズ11の後側焦点F近傍に配置した(と仮定した)光源ユニット30(鏡像)から水平方向に放射される光の光路を表している。   FIGS. 8A and 8B show optical paths of light emitted in the horizontal direction from the light source unit 30 (mirror image) disposed (assumed to be) in the vicinity of the rear focal point F of the projection lens 11. .

図5(a)、図8(a)、図8(b)に示すように、複数の筒部31(反射面31a)はそれぞれ、筒部31内に入射した発光素子33aからの光(光軸AXに対し広角方向の光Ray2)が一回反射で出射口31c〜31cから出射するように、出射口31c〜31cから入射口31bに向かうにつれ略錐体状に狭まる形状に構成されている。この筒部31(反射面31a)の作用により、光軸AXに対し狭角方向の光Ray1だけでなく、光軸AXに対し広角方向の光Ray2をも投影レンズ11に入射させることが可能となる(光利用効率の向上。図8(a)、図8(b)参照)。 As shown in FIG. 5A, FIG. 8A, and FIG. 8B, each of the plurality of cylindrical portions 31 (reflecting surfaces 31a) is light (light) from the light emitting element 33a that has entered the cylindrical portion 31. The light Ray 2) in the wide-angle direction with respect to the axis AX is emitted from the exit ports 31c 1 to 31c 9 with a single reflection, and narrows in a substantially conical shape as it goes from the exit ports 31c 1 to 31c 9 to the entrance port 31b. It is configured. By the action of the cylindrical portion 31 (reflection surface 31a), not only the light Ray1 in the narrow angle direction with respect to the optical axis AX but also the light Ray2 in the wide angle direction with respect to the optical axis AX can be incident on the projection lens 11. (Improvement of light utilization efficiency. See FIGS. 8A and 8B).

なお、筒部31は、出射口31c〜31cから入射口31bに向かうにつれ略錐体状に狭まる形状に構成され、かつ、互いに隣接する出射口(例えば出射口31c1と出射口31c2)が同一のエッジEを含んで構成されるとともに当該同一のエッジEで仕切られていれば、その具体的な形状や拡がり度合等は限定されない。 The cylindrical portion 31 is configured in a shape that narrows in a substantially conical shape as it goes from the exit ports 31c 1 to 31c 9 to the entrance port 31b, and the exit ports adjacent to each other (for example, the exit port 31c1 and the exit port 31c2). As long as it is configured to include the same edge E and is partitioned by the same edge E, the specific shape, degree of expansion, and the like are not limited.

本実施形態では、反射面31aは、発光素子33aから入射した光が、一回反射して投影レンズ11に入射するとともに、各出射口31c〜31cに均一な光度分布(又は特定の光度分布)を形成するように、最適化されている。 In the present embodiment, the reflecting surface 31a, the light incident from the light emitting element 33a is, as well as entering the projection lens 11 is reflected once, uniform luminous intensity distribution (or specific luminous intensity in each exit opening 31c 1 ~31c 9 Distribution).

各出射口31c〜31cのうち光源像(光源としての各出射口31c〜31cの像)の下端縁に対応する端縁(図5(b)中上端縁)は、正面視で略水平方向に延びている。これにより、反射面12で反射され、投影レンズ11によって投影される光源像(光源としての各出射口31c1〜31c9の像)の下端縁とすれ違いビーム用配光パターンP2の水平カットオフラインとを略重ねることが可能となる。 Edge corresponding to the lower edge of the light source image (an image of the exit opening 31c 1 ~31c 9 as a light source) of each exit opening 31c 1 ~31c 9 (FIG. 5 (b) Medium upper edge) is a front view It extends in a substantially horizontal direction. Thereby, the lower end edge of the light source image (image of each of the exit ports 31c1 to 31c9 as the light source) reflected by the reflection surface 12 and projected by the projection lens 11 and the horizontal cutoff line of the passing beam light distribution pattern P2 are substantially omitted. It is possible to overlap.

出射口31c〜31cは、光軸AX方向の中心が若干投影レンズ11の後側焦点F寄り(1mm程度)に配置してもよい。このようにすれば、出射口31c〜31cの上端縁近傍の光度を高くすることが可能となる。すなわち、水平方向に隣接配置される複数の照射領域A〜Aの下端縁近傍の光度を高くすることが可能となるため、水平線H−H近傍領域が特に明るい遠方視認性に優れた配光パターンP1L、P1Rを形成することが可能となる。 The exit ports 31c 1 to 31c 9 may be arranged such that the center in the optical axis AX direction is slightly closer to the rear focal point F (about 1 mm) of the projection lens 11. In this way, it is possible to increase the luminous intensity in the vicinity of the upper end edges of the emission ports 31c 1 to 31c 9 . That is, since it is possible to increase the luminous intensity in the vicinity of the lower end edges of the plurality of irradiation areas A 1 to A 9 arranged adjacent to each other in the horizontal direction, the area near the horizontal line HH is particularly bright and has excellent distant visibility. The optical patterns P1L and P1R can be formed.

一方、仮想鉛直スクリーン上の照射領域A〜Aの高さが遠方は小さく、近辺になるにしたがって大きくなるように、各出射口31c〜31cのうち光源像(光源としての各出射口31c〜31cの像)の上端縁に対応する端縁(図5(b)中下端縁)は正面視で円弧状に延びている(図5(b)参照)。これにより、遠方は光束密度が高く、近辺は広範囲に照射することが可能となる。 On the other hand, a light source image (each emission as a light source) of each of the emission ports 31c 1 to 31c 9 is set such that the height of the irradiation areas A 1 to A 9 on the virtual vertical screen is small in the distance and increases as the distance increases. End edges (lower end edges in FIG. 5B) corresponding to the upper end edges of the mouths 31c 1 to 31c 9 extend in an arc shape in front view (see FIG. 5B). As a result, the light flux density is high in the distant place, and the vicinity can be irradiated over a wide range.

次に、上記構成の灯具ユニット10により形成される配光パターンP1L、P1
Rについて説明する。
Next, the light distribution patterns P1L and P1 formed by the lamp unit 10 having the above configuration.
R will be described.

車両前部の左右両側に配置された灯具ユニット10は同一構成であり、それぞれ個別に光度が増減される複数の照射領域A〜Aを含む同一の配光パターンP1L、P1R(図9(b)、図9(c)参照)を形成する。 The lamp units 10 arranged on both the left and right sides of the front part of the vehicle have the same configuration, and the same light distribution patterns P1L and P1R including a plurality of irradiation areas A 1 to A 9 in which the light intensity is individually increased or decreased (FIG. 9 ( b), see FIG. 9C).

車両前部の左右両側に配置された灯具ユニット10はそれぞれ、互いの照射領域A〜Aが部分的に重なるように(例えば1°分左右にずらすことで)照準調整されている(図9(d)参照)。これにより、特定の照射領域A〜Aを点消灯制御(消灯又は減光)することで、合計18の領域を消灯又は減光することが可能となっている(中心付近は1°刻みで消灯又は減光することが可能である)。 The lamp units 10 arranged on the left and right sides of the front part of the vehicle are respectively adjusted in aiming so that the irradiation areas A 1 to A 9 partially overlap each other (for example, by shifting left and right by 1 °) (see FIG. 9 (d)). Thereby, it is possible to extinguish or diminish a total of 18 areas by turning on / off the specific irradiation areas A 1 to A 9 (extinguishing or dimming) (near 1 ° in the vicinity of the center). Can be turned off or dimmed).

発光素子33aからの光のうち光軸AXに対し狭角方向の光Ray1は、入射口31bから筒部31内に入射し反射面31aで反射されることなく出射口31c〜31cから出射し、投影レンズ11に直接入射する。一方、光軸AXに対し広角方向の光Ray2は、入射口31bから筒部31内に入射し反射面31aで一回反射されて出射口31c〜31cから出射し、投影レンズ11に入射する(図8(a)、図8(b)参照)。これら直接光Ray1及び一回反射光Ray2は、出射口31c〜31cに均一(又は特定)の光度分布を形成する。 Light Ray1 narrow angle direction with respect to the optical axis AX of the light from the light emitting element 33a is emitted from the emission port 31c 1 ~31c 9 without being reflected by the incident from the incident port 31b to the tubular portion 31 the reflecting surface 31a Then, the light directly enters the projection lens 11. On the other hand, a wide angle of light Ray2 respect to the optical axis AX is emitted and incident on the incident port 31b to the cylindrical portion 31 is reflected once by the reflecting surface 31a from the exit 31c 1 ~31c 9, enters the projection lens 11 (See FIGS. 8A and 8B). These direct light Ray1 and once reflected light Ray2 form a luminous intensity distribution uniform (or specific) to the exit port 31c 1 ~31c 9.

出射口31c〜31c(すなわち、出射口31c〜31cに形成される光度分布)は、投影レンズ11の作用により前方に反転投影される。これにより、仮想鉛直スクリーン上に、水平方向に隣接配置され個別に光度が増減される、明瞭な輪郭を有する複数の照射領域A〜Aを含む配光パターンP1L、P1R(図9(b)、図9(c)参照)が形成される。 The exit ports 31c 1 to 31c 9 (that is, the luminous intensity distribution formed at the exit ports 31c 1 to 31c 9 ) are inverted and projected forward by the action of the projection lens 11. Thus, on a virtual vertical screen, intensity separately disposed adjacent to the horizontal direction is increased or decreased, the light distribution pattern including a plurality of irradiation regions A 1 to A 9 having a clear contour P1L, P1R (Fig. 9 (b ) And FIG. 9C) are formed.

なお、仮想鉛直スクリーン上においては、投影レンズ11の後側焦点面上の1mm四方の大きさの像が、1°四方程度の大きさの像として形成される。   On the virtual vertical screen, an image having a size of 1 mm square on the rear focal plane of the projection lens 11 is formed as an image having a size of about 1 ° square.

出射口31c〜31cは、光軸AX方向の中心が若干投影レンズ11の後側焦点F寄り(1mm程度)に配置されているため、照射領域A〜Aは、仮想鉛直スクリーン上において、水平線H−Hに対し1°程度上方に配置される。 Since the exit ports 31c 1 to 31c 9 are arranged with the center in the optical axis AX direction slightly closer to the rear focal point F (about 1 mm) of the projection lens 11, the irradiation areas A 1 to A 9 are on the virtual vertical screen. In FIG. 5, the horizontal line HH is disposed about 1 ° above.

一方、照射領域A〜Aは、水平方向に関し次のように形成される。すなわち、出射口31c〜31cは、上下幅:3mm、左右幅:2mmの矩形形状を有しており、その中心が光軸AXを含む鉛直面上に位置するように配置されているため、これら出射口31c〜31cに対応する照射領域A〜Aは、中心がV−V線上に位置し、上下幅:3°、左右幅2°程度の略矩形領域として形成される。 On the other hand, the irradiation areas A 1 to A 9 are formed as follows in the horizontal direction. That is, the emission ports 31c 2 to 31c 8 have a rectangular shape with a vertical width of 3 mm and a horizontal width of 2 mm, and are arranged so that the center thereof is located on a vertical plane including the optical axis AX. , irradiation area a 2 to a 8 corresponding to these exit opening 31c 2 ~31c 8 is centered and positioned the line V-V, the vertical width: formed as a 3 °, substantially rectangular region of the lateral width of about 2 ° .

そして、出射口31c、31cは、上下幅:3mm左右幅4.5mmの矩形形状を有しており、出射口31c〜31cの外側に配置されているため、これら出射口31c1、31c9に対応する照射領域A、Aは、照射領域A〜Aの外側に上下幅:3°、左右幅:4.5°程度の略矩形領域として形成される。 The exit ports 31c 1 and 31c 9 have a rectangular shape with a vertical width of 3 mm and a lateral width of 4.5 mm, and are disposed outside the exit ports 31 c 2 to 31 c 8 . The irradiation areas A 1 and A 9 corresponding to 31c9 are formed outside the irradiation areas A 2 to A 8 as a substantially rectangular area having a vertical width of about 3 ° and a horizontal width of about 4.5 °.

次に、すれ違いビーム専用の灯具ユニット70により形成されるロービーム用配光パターンP2について説明する。   Next, the low beam light distribution pattern P2 formed by the lamp unit 70 dedicated to the passing beam will be described.

図9(a)に示すように、ロービーム用配光パターンP2は、左配光のロービーム用配光パターンであって、その上端縁に左右段違いのカットオフラインCLを有している。   As shown in FIG. 9 (a), the low beam light distribution pattern P2 is a left light distribution light beam distribution pattern, and has a cut-off line CL with a different left and right step at the upper edge.

このカットオフラインCLは、灯具正面方向の消点であるH−Vを通る鉛直線であるV−V線を境にして左右段違いで水平方向に延びており、V−V線よりも右側が、対向車線側カットオフラインCLRとして水平方向に延びるようにして形成されるとともに、V−V線より左側が、自車線側カットオフラインCLLとして対向車線側カットオフラインCLRよりも段上がりで水平方向に延びるようにして形成されている。そして、この自車線側カットオフラインCLLにおけるV−V線寄りの端部は、斜めカットオフラインCLSとして形成されている。この斜めカットオフラインCLSは、対向車線側カットオフラインCLRとV−V線との交点から左斜め上方へ15°の傾斜角で延びている。   This cut-off line CL extends in a horizontal direction with a difference in right and left on the VV line that is a vertical line passing through HV that is a vanishing point in the front direction of the lamp, and the right side of the VV line is The opposite lane side cut-off line CLR is formed so as to extend in the horizontal direction, and the left side of the VV line is stepped upward from the opposite lane side cut-off line CLR and extends in the horizontal direction as the own lane side cut-off line CLL. Is formed. And the edge part near VV line in this own lane side cut-off line CLL is formed as the diagonal cut-off line CLS. This oblique cut-off line CLS extends obliquely leftward and upward at an inclination angle of 15 ° from the intersection of the opposite lane side cut-off line CLR and the VV line.

このロービーム用配光パターンP2においては、対向車線側カットオフラインCLRとV−V線との交点であるエルボ点は、H−Vの0.5〜0.6°程度下方に位置しており、このエルボ点Eをやや左寄りに囲むようにして高光度領域であるホットゾーンが形成されている。   In this low beam light distribution pattern P2, the elbow point, which is the intersection of the opposite lane side cut-off line CLR and the VV line, is located about 0.5 to 0.6 ° below HV, A hot zone that is a high luminous intensity region is formed so as to surround the elbow point E slightly to the left.

以上の配光パターンP1L、P1R、P2は重畳されて図9(d)に示す合成配光パターンを形成する。   The above light distribution patterns P1L, P1R, and P2 are superimposed to form a combined light distribution pattern shown in FIG.

次に、複数の照射領域A〜A(発光素子33a)を個別に点消灯制御する例について説明する。 Next, an example in which the lighting regions A 1 to A 9 (light emitting elements 33a) are individually turned on and off will be described.

例えば、図10(a)に示すように、車両前方の遠方に先行車Vが存在する場合(又は、図10(b)に示すように、車両前方の対向車線の遠方に対向車Vが存在する場合)には、複数の照射領域A〜Aのうち遠方に存在する先行車V(又は、対向車V)をカバーする照射領域に対応する発光素子33aを消灯(又は減光)する。これにより、当該遠方に存在する先行車V(又は対向車V)に対するグレアを防止することが可能となる。これとともに、車両前方路面の視認性を向上させることが可能となる。 For example, as shown in FIG. 10 (a), when a preceding vehicle V exists in the distance ahead of the vehicle (or as shown in FIG. 10 (b), there is an oncoming vehicle V in the distance of the opposite lane in front of the vehicle. The light emitting element 33a corresponding to the irradiation area that covers the preceding vehicle V (or the oncoming vehicle V) that exists in the distance among the plurality of irradiation areas A 1 to A 9 is turned off (or dimmed). . Thereby, it becomes possible to prevent glare with respect to the preceding vehicle V (or oncoming vehicle V) existing in the distance. At the same time, the visibility of the road surface ahead of the vehicle can be improved.

一方、図10(c)に示すように、対向車Vがある程度自車に近づいた場合、すなわち、近辺に対向車が存在する場合には、複数の照射領域A〜Aのうち近辺に存在する対向車Vをカバーする照射領域に対応する発光素子33aを消灯(又は減光)する。これにより、当該近辺に存在する対向車Vに対するグレアを防止することが可能となる。これとともに、車両前方路面の視認性を向上させることが可能となる。 On the other hand, as shown in FIG. 10 (c), if the oncoming vehicle V approaches the subject vehicle to some extent, i.e., when there is an oncoming vehicle in the vicinity is a vicinity of the plurality of irradiation areas A 1 to A 9 The light emitting element 33a corresponding to the irradiation region that covers the existing oncoming vehicle V is turned off (or dimmed). Thereby, it becomes possible to prevent glare with respect to the oncoming vehicle V existing in the vicinity. At the same time, the visibility of the road surface ahead of the vehicle can be improved.

なお、車両前方の対向車(又は先行車)の仮想鉛直スクリーン上における水平方向の位置は、例えば、CCDカメラ等により車両前方を撮像し、その撮像データに基づいて対向車(又は先行車)の点灯状態にある前照灯(又は尾灯)の位置を高濃度の画素として検出すること等により、簡易に検出することが可能である。   In addition, the horizontal position on the virtual vertical screen of the oncoming vehicle (or preceding vehicle) in front of the vehicle is, for example, imaged in front of the vehicle by a CCD camera or the like, and the oncoming vehicle (or preceding vehicle) is based on the image data. It can be easily detected by detecting the position of the headlight (or taillight) in the lit state as a high-density pixel.

以上説明したように、本実施形態によれば、湾曲した反射領域12bの作用により、投影レンズ11によって投影される光源像(各出射口31c〜31cの像)の上部が上方向に拡散された状態となる。当該上部が拡散された光源像により、光利用効率を低下させることなく、仮想鉛直スクリーン上に、上下幅が拡大した縦長の配光パターン(図4(b)参照)を形成することが可能となる。 As described above, according to the present embodiment, the upper portion of the light source image (image of each of the exit ports 31c 1 to 31c 9 ) projected by the projection lens 11 is diffused upward by the action of the curved reflection region 12b. It will be in the state. With the light source image in which the upper part is diffused, it is possible to form a vertically long light distribution pattern (see FIG. 4B) having an enlarged vertical width on the virtual vertical screen without reducing light use efficiency. Become.

また、本実施形態によれば、複数の出射口31c〜31cのうち互いに隣接する出射口(例えば出射口31cと出射口31c)の間は、従来の肉厚部分(図12中肉厚部分B参照)ではなく、その幅をほとんど無視できるエッジEで仕切られており、当該エッジEで仕切られた複数の出射口31c〜31c(すなわち、各出射口31c〜31cに形成される光度分布)を投影レンズ11の作用により前方に反転投影する構成であるため(図5(b)参照)、1つの灯具ユニット10を用いるだけで、個別に点消灯制御される複数の照射領域A〜A間に隙間(周囲よりも暗い部分)ができるのを防止又は低減することが可能となる(従来は、個別に点消灯制御される複数の照射領域間の隙間(周囲よりも暗い部分)を埋めるために、当該隙間を照射する別の灯具を追加する必要があった)。 Further, according to the present embodiment, a conventional thick portion (in FIG. 12) is provided between the exit ports adjacent to each other (for example, the exit port 31 c 1 and the exit port 31 c 2 ) among the plurality of exit ports 31 c 1 to 31 c 9 . thick portion B reference), but are separated by the edge E which can hardly ignore the width, a plurality of exit port 31c partitioned by the edge E 1 ~31c 9 (i.e., the exit opening 31c 1 ~31c 9 (A light intensity distribution formed on the light source) is inverted and projected forward by the action of the projection lens 11 (see FIG. 5B). It is possible to prevent or reduce the formation of gaps (parts darker than the surroundings) between the irradiation areas A 1 to A 9 (conventionally, gaps between a plurality of irradiation areas that are individually controlled to be turned on and off ( Darker than the surrounding area It was necessary to add another lamp to irradiate the gap to fill the min)).

また、本実施形態によれば、複数の発光素子33aはその発光面が車両前方を向いた姿勢で、水平方向に一列に配置されているため(図3等参照)、複数の発光素子が光軸AX方向に分散配置されている従来と比べ(図12中発光素子230参照)、光軸AX方向寸法が短い小型の灯具ユニットを構成することが可能となる。   In addition, according to the present embodiment, the plurality of light emitting elements 33a are arranged in a line in the horizontal direction with the light emitting surface facing the front of the vehicle (see FIG. 3 and the like), and thus the plurality of light emitting elements are light. Compared to the conventional arrangement in which the light is distributed in the axis AX direction (see the light emitting element 230 in FIG. 12), it is possible to configure a small lamp unit having a shorter dimension in the direction of the optical axis AX.

また、本実施形態によれば、筒部31内に入射した発光素子33aからの光(光軸AXに対し広角方向の光Ray2)が一回反射で出射口31cから出射するように、複数の筒部31(反射面31a)はそれぞれ、出射口31cから入射口31bに向かうにつれ略錐体状に狭まる形状に構成されている(図5(b)参照)。この筒部31(反射面31a)の作用により、光軸AXに対し狭角方向の光Ray1だけでなく、光軸AXに対し広角方向の光Ray2をも投影レンズ11に入射させることが可能となる(光利用効率の向上)。   In addition, according to the present embodiment, the light from the light emitting element 33a that has entered the cylindrical portion 31 (light Ray2 in the wide-angle direction with respect to the optical axis AX) is emitted from the emission port 31c with a single reflection. Each of the cylindrical portions 31 (reflecting surfaces 31a) is formed in a shape that narrows in a substantially conical shape from the exit port 31c toward the entrance port 31b (see FIG. 5B). By the action of the cylindrical portion 31 (reflection surface 31a), not only the light Ray1 in the narrow angle direction with respect to the optical axis AX but also the light Ray2 in the wide angle direction with respect to the optical axis AX can be incident on the projection lens 11. (Improvement of light utilization efficiency)

また、本実施形態によれば、リフレクタを用いない構成であるため、リフレクタを用いる従来と比べ(図12中リフレクタ220参照)、より少ない部品点数で灯具ユニットを構成することが可能となる。   Moreover, according to this embodiment, since it is the structure which does not use a reflector, it becomes possible to comprise a lamp unit with a fewer number of parts compared with the past which uses a reflector (refer to the reflector 220 in FIG. 12).

また、本実施形態によれば、複数の発光素子33aが同一の基板33に実装されているため(すなわち、複数の発光素子33aが1ユニット化されているため)、複数の発光素子が同一の基板に実装されることなく光軸AX方向に分散配置されている従来と比べ(図12中発光素子230参照)、複数の発光素子33aの組み付けを極めて容易に行うことが可能となる。また、複数の発光素子33aの複数の筒部31に対する位置決めを極めて精度良く行うことが可能となる。   In addition, according to the present embodiment, since the plurality of light emitting elements 33a are mounted on the same substrate 33 (that is, the plurality of light emitting elements 33a are unitized), the plurality of light emitting elements are the same. As compared with the conventional case where the light emitting elements 33a are dispersed in the direction of the optical axis AX without being mounted on the substrate (see the light emitting elements 230 in FIG. 12), the plurality of light emitting elements 33a can be assembled very easily. In addition, it is possible to position the plurality of light emitting elements 33a with respect to the plurality of cylindrical portions 31 with extremely high accuracy.

また、本実施形態によれば、複数の発光素子33a自体ではなく、導光部材32の出射口31c〜31cを反転投影する構成であるため、複数の発光素子33a自体を反転投影する構成と比べ、複数の発光素子33aの配置間隔を広くすることが可能となる。これにより、発光素子33aの発光に伴って発生する熱の影響を緩和することが可能となる。 Further, according to this embodiment, instead of the plurality of light emitting elements 33a itself, since it is configured to invert projecting the exit opening 31c 1 ~31c 9 of the light guide member 32, inverts projecting a plurality of light emitting elements 33a itself configuration Compared to, it is possible to widen the arrangement interval of the plurality of light emitting elements 33a. Thereby, it becomes possible to reduce the influence of heat generated with the light emission of the light emitting element 33a.

次に、変形例について説明する。   Next, a modified example will be described.

上記実施形態では、仮想鉛直スクリーン上の照射領域A〜Aの高さが遠方は小さく、近辺になるにしたがって大きくなるように、出射口31c〜31cの下端縁は正面視で円弧状に延びているように説明したが、本発明はこれに限定されない。 In the above embodiment, the lower end edges of the exit ports 31c 1 to 31c 9 are circular in front view so that the heights of the irradiation areas A 1 to A 9 on the virtual vertical screen are small in the distance and increase as they approach the vicinity. Although described as extending in an arc, the present invention is not limited to this.

例えば、図11に示すように、出射口31c〜31cの下端縁は正面視で水平方向に直線状に延びていてもよい。 For example, as shown in FIG. 11, the lower end edges of the emission ports 31c 1 to 31c 9 may extend linearly in the horizontal direction when viewed from the front.

また、上記実施形態では、発光素子33aが9個、0.7mm角の発光面を有する例について説明したが、本発明はこれに限定されない。求められる光度に応じて適宜の数、サイズの発光面を有する発光素子を用いることが可能である。   Moreover, although the said embodiment demonstrated the example which has nine light emitting elements 33a and a 0.7 mm square light emission surface, this invention is not limited to this. It is possible to use a light-emitting element having an appropriate number and size of light-emitting surfaces according to the required light intensity.

また、上記実施形態では、中空の各筒部31を用いて灯具ユニット10を構成した例について説明したが、本発明はこれに限定されない。例えば、複数の筒部10に代えて、入射口31bとしての一端面と出射口31c〜31cとしての他端面と、反射面31aが形成された内周面としての外周面とを含み、かつ、他端面から一端面に向かうにつれ略錐体状に狭まる中実の略錐体形状の各レンズ体(図示せず)を用いて灯具ユニット10を構成してもよい。これによっても、上記実施形態と同様の効果を奏することが可能となる。 Moreover, although the said embodiment demonstrated the example which comprised the lamp unit 10 using each hollow cylinder part 31, this invention is not limited to this. For example, they comprise instead a plurality of cylindrical portion 10, and one end face of the entrance 31b and the other end face of the exit opening 31c 1 ~31c 9, and an outer peripheral surface of the inner circumferential surface reflection surface 31a is formed, Further, the lamp unit 10 may be configured using each solid lens body (not shown) having a solid cone shape that narrows in a substantially cone shape as it goes from the other end surface to the one end surface. This also makes it possible to achieve the same effects as in the above embodiment.

また、上記実施形態では、光源ユニット30を反射面12の下方に配置した例について説明したが、本発明はこれに限定されない。例えば、光源ユニット30を反射面12の上方に配置してもよい(すなわち、図3に示す灯具ユニット10の上下を逆にした構成)。この場合、変曲点Aは、反射面12の上端寄りに移動し、その変曲点Aから上方にかけての範囲が湾曲した反射領域12bとなる。これによっても、上記実施形態と同様の効果を奏することが可能となる。   Moreover, although the said embodiment demonstrated the example which has arrange | positioned the light source unit 30 below the reflective surface 12, this invention is not limited to this. For example, the light source unit 30 may be disposed above the reflecting surface 12 (that is, a configuration in which the lamp unit 10 shown in FIG. 3 is turned upside down). In this case, the inflection point A is moved toward the upper end of the reflection surface 12, and a range from the inflection point A to the upper side is a reflection region 12b that is curved. This also makes it possible to achieve the same effects as in the above embodiment.

上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限
定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することな
く他の様々な形で実施することができる。
The above embodiment is merely an example in all respects. The present invention is not construed as being limited to these descriptions. The present invention can be implemented in various other forms without departing from the spirit or main features thereof.

10…灯具ユニット、11…投影レンズ、12…反射面、30…光源ユニット、31…筒部、31a…反射面、31b…入射口、31c-31c…出射口、32…遮光部材、33…基板、33a…発光素子、40…レンズ保持枠、50…ヒートシンク、60…灯室、61…ハウジング、62…透光カバー、70…灯具ユニット 10 ... lamp unit, 11 ... projection lens, 12 ... reflecting surface, 30 ... light source unit, 31 ... cylinder portion, 31a ... reflecting surface, 31b ... entrance, 31c 1 -31c 9 ... emitting window, 32 ... light shielding member, 33 ... Substrate, 33a ... Light emitting element, 40 ... Lens holding frame, 50 ... Heat sink, 60 ... Light chamber, 61 ... Housing, 62 ... Translucent cover, 70 ... Lamp unit

Claims (3)

車両用前照灯に用いられるプロジェクタ型の灯具ユニットにおいて、
投影レンズと、
前記投影レンズと前記投影レンズの後側焦点との間に配置され、前記投影レンズの光軸に直交する平面に対して前記投影レンズ側に略45°傾斜した平面鏡を含む反射面と、
前記平面鏡を対称面として前記投影レンズの後側焦点に対して面対称の位置又はその近傍に配置され、前記反射面で反射されて前記投影レンズを透過する光を放射する光源と、
を備えており、
前記反射面は、前記投影レンズによって投影される前記光源の光源像の上部が上方向に拡散するように前記光源から見て凹形状に湾曲した反射領域を含んでいることを特徴とする灯具ユニット。
In a projector-type lamp unit used for a vehicle headlamp,
A projection lens;
A reflective surface including a plane mirror disposed between the projection lens and a rear focal point of the projection lens and inclined approximately 45 ° toward the projection lens with respect to a plane orthogonal to the optical axis of the projection lens;
A light source that radiates light that is reflected by the reflecting surface and transmitted through the projection lens, arranged at or near a plane symmetric with respect to the rear focal point of the projection lens with the plane mirror as a plane of symmetry;
With
The lamp unit, wherein the reflection surface includes a reflection region curved in a concave shape when viewed from the light source so that an upper part of a light source image of the light source projected by the projection lens diffuses upward. .
前記光源は、一端である入射口が下方に配置され、他端である出射口が上方に配置され、かつ、内周面に反射面が形成された複数の筒部と、前記筒部の一端である入射口から当該筒部内に入射し前記反射面で反射されて前記筒部の他端である出射口から出射する光を発光する複数の発光素子と、を備えており、
前記複数の筒部の出射口は、前記平面鏡を対称面として前記投影レンズの後側焦点に対して面対称の位置又はその近傍に、前記投影レンズの光軸に対して直交する方向かつ略水平方向に一列に隣接配置されており、
前記複数の筒部の出射口のうち互いに隣接する出射口は、同一のエッジを含んで構成されるとともに当該同一のエッジで仕切られており、
前記複数の筒部はそれぞれ、前記出射口から前記入射口に向かうにつれ略錐体状に狭まる形状に構成されていることを特徴とする請求項1に記載の灯具ユニット。
The light source has a plurality of cylindrical portions in which an incident port which is one end is disposed below, an emission port which is the other end is disposed on the upper side, and a reflection surface is formed on an inner peripheral surface, and one end of the cylindrical portion A plurality of light emitting elements that emit light that is incident on the cylindrical portion from the incident port and reflected by the reflecting surface and emitted from the exit port that is the other end of the cylindrical portion, and
The exit ports of the plurality of cylindrical portions are substantially horizontal and in a direction orthogonal to the optical axis of the projection lens at or near a plane symmetric with respect to the rear focal point of the projection lens with the plane mirror as a symmetry plane. Arranged in a row in the direction,
The exit ports adjacent to each other among the exit ports of the plurality of cylindrical portions are configured to include the same edge and are partitioned by the same edge,
2. The lamp unit according to claim 1, wherein each of the plurality of cylindrical portions is configured to have a substantially conical shape narrowing from the exit port toward the entrance port.
前記複数の筒部はそれぞれ、前記入射口としての一端面と前記出射口としての他端面と、前記反射面が形成された内周面としての外周面とを含み、かつ、前記他端面から前記一端面に向かうにつれ略錐体状に狭まる中実の略錐体形状のレンズ体であることを特徴とする請求項2に記載の灯具ユニット。   Each of the plurality of cylindrical portions includes one end surface as the incident port, the other end surface as the emission port, and an outer peripheral surface as an inner peripheral surface on which the reflection surface is formed, and from the other end surface, 3. The lamp unit according to claim 2, wherein the lamp unit is a solid, substantially cone-shaped lens body that narrows in a substantially cone shape toward one end surface.
JP2011055622A 2011-03-14 2011-03-14 Lamp unit Active JP5640306B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011055622A JP5640306B2 (en) 2011-03-14 2011-03-14 Lamp unit
EP12001700.9A EP2500628B1 (en) 2011-03-14 2012-03-13 Vehicle headlamp
US13/420,598 US20120236561A1 (en) 2011-03-14 2012-03-14 Lighting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055622A JP5640306B2 (en) 2011-03-14 2011-03-14 Lamp unit

Publications (2)

Publication Number Publication Date
JP2012190754A true JP2012190754A (en) 2012-10-04
JP5640306B2 JP5640306B2 (en) 2014-12-17

Family

ID=47083687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055622A Active JP5640306B2 (en) 2011-03-14 2011-03-14 Lamp unit

Country Status (1)

Country Link
JP (1) JP5640306B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096368A (en) * 2012-11-12 2014-05-22 Valeo Vision Lighting module for automobile headlight with plurality of light sources
WO2015072039A1 (en) * 2013-11-18 2015-05-21 日立マクセル株式会社 Solid state light source device, automotive lighting using same, image display device, and drive method for solid state light source device
KR20170028646A (en) * 2015-09-04 2017-03-14 현대모비스 주식회사 Vehicle lamp for implementing high beam
JP2017208347A (en) * 2017-06-27 2017-11-24 マクセルホールディングス株式会社 Solid light source device, vehicular lighting unit with the solid light source device, image display device and method for driving the solid light source device
JP2019003758A (en) * 2017-06-13 2019-01-10 株式会社小糸製作所 Vehicular lighting fixture
CN109973931A (en) * 2019-05-08 2019-07-05 成都恒坤光电科技有限公司 A kind of car light lower beam illumination dichroic reflection device, Optical devices and vehicle front lighting lamp assembly
CN113167452A (en) * 2018-10-10 2021-07-23 市光工业株式会社 Light guide for vehicle and vehicle lamp
CN113587042A (en) * 2020-04-30 2021-11-02 船井电机株式会社 Light projecting device and light projecting device for vehicle
JP7515276B2 (en) 2019-03-14 2024-07-12 ヴァレオ ビジョン A light-emitting device that projects a virtual image of the irradiated surface of the concentrator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096368A (en) * 2012-11-12 2014-05-22 Valeo Vision Lighting module for automobile headlight with plurality of light sources
US10054280B2 (en) 2013-11-18 2018-08-21 Maxell, Ltd. Solid state light source device, automotive lighting using same, image display device, and drive method for solid state light source device
WO2015072039A1 (en) * 2013-11-18 2015-05-21 日立マクセル株式会社 Solid state light source device, automotive lighting using same, image display device, and drive method for solid state light source device
CN105745485A (en) * 2013-11-18 2016-07-06 日立麦克赛尔株式会社 Solid state light source device, automotive lighting using same, image display device, and drive method for solid state light source device
JPWO2015072039A1 (en) * 2013-11-18 2017-03-16 日立マクセル株式会社 SOLID LIGHT SOURCE DEVICE, VEHICLE LAMP, VIDEO DISPLAY DEVICE, AND SOLID LIGHT SOURCE DRIVE METHOD USING THE SAME
US10619813B2 (en) 2013-11-18 2020-04-14 Maxell, Ltd. Solid state light source device, automotive lighting using same, image display device, and drive method for solid state light source device
KR102460851B1 (en) 2015-09-04 2022-10-31 현대모비스 주식회사 Vehicle lamp for implementing high beam
KR20170028646A (en) * 2015-09-04 2017-03-14 현대모비스 주식회사 Vehicle lamp for implementing high beam
JP2019003758A (en) * 2017-06-13 2019-01-10 株式会社小糸製作所 Vehicular lighting fixture
JP2017208347A (en) * 2017-06-27 2017-11-24 マクセルホールディングス株式会社 Solid light source device, vehicular lighting unit with the solid light source device, image display device and method for driving the solid light source device
CN113167452A (en) * 2018-10-10 2021-07-23 市光工业株式会社 Light guide for vehicle and vehicle lamp
CN113167452B (en) * 2018-10-10 2023-07-28 市光工业株式会社 Light guide for vehicle and lamp for vehicle
JP7515276B2 (en) 2019-03-14 2024-07-12 ヴァレオ ビジョン A light-emitting device that projects a virtual image of the irradiated surface of the concentrator
CN109973931A (en) * 2019-05-08 2019-07-05 成都恒坤光电科技有限公司 A kind of car light lower beam illumination dichroic reflection device, Optical devices and vehicle front lighting lamp assembly
CN109973931B (en) * 2019-05-08 2024-04-16 成都恒坤光电科技有限公司 Car light low beam lighting spectral reflector, optical device and car head-light assembly
CN113587042A (en) * 2020-04-30 2021-11-02 船井电机株式会社 Light projecting device and light projecting device for vehicle

Also Published As

Publication number Publication date
JP5640306B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5565094B2 (en) Vehicle lamp unit
JP5991458B2 (en) Vehicle lamp unit
JP6689198B2 (en) Lamp unit and vehicle headlight
JP5640306B2 (en) Lamp unit
US8690405B2 (en) Vehicle lighting unit
JP4615417B2 (en) Vehicle headlamp lamp unit
JP4970136B2 (en) Vehicle headlamp lamp unit
US7824086B2 (en) Lamp unit for vehicle headlamp and vehicle headlamp
JP4080780B2 (en) Light source unit
US7108412B2 (en) Headlamp for vehicle
US7670038B2 (en) LED collimator element with an asymmetrical collimator
JP5636756B2 (en) Vehicle lamp unit
US20050180158A1 (en) Vehicle lamp unit
EP2500628B1 (en) Vehicle headlamp
JP2005294176A (en) Lighting lamp for vehicle
JP4926642B2 (en) Lighting fixtures for vehicles
JP2011040247A (en) Lamp unit of headlight for vehicle
JP2005251435A (en) Vehicular headlight
JP2012256491A (en) Vehicle lamp unit
JP5692520B2 (en) Lamp unit
JP2019204616A (en) Vehicular lighting fixture
US8192062B2 (en) Vehicular lamp
US10436402B2 (en) Vehicle headlamp
CN108302456B (en) Vehicle lamp
JP4865060B2 (en) Vehicle lighting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141012

R150 Certificate of patent or registration of utility model

Ref document number: 5640306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250