JP2012188292A - Flake-shaped glass body whose both sides are smooth surfaces - Google Patents

Flake-shaped glass body whose both sides are smooth surfaces Download PDF

Info

Publication number
JP2012188292A
JP2012188292A JP2009167603A JP2009167603A JP2012188292A JP 2012188292 A JP2012188292 A JP 2012188292A JP 2009167603 A JP2009167603 A JP 2009167603A JP 2009167603 A JP2009167603 A JP 2009167603A JP 2012188292 A JP2012188292 A JP 2012188292A
Authority
JP
Japan
Prior art keywords
glass body
flake
glass
shaped glass
flaky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009167603A
Other languages
Japanese (ja)
Inventor
Nobuyuki Nakai
信之 中井
Takahisa Kida
貴久 木田
Yukihiro Ogiya
幸宏 扇谷
Norikazu Fujiura
教和 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2009167603A priority Critical patent/JP2012188292A/en
Priority to PCT/JP2010/061949 priority patent/WO2011007821A1/en
Publication of JP2012188292A publication Critical patent/JP2012188292A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flake-shaped glass body whose both surfaces are smooth and flat which cannot be produced by a conventional technology.SOLUTION: In order to obtain both surfaces being smooth and flat, a flake-shaped glass body is produced in the noncontact state without bringing glass into contact with a molding/processing device surface such as a roller or a substrate as in a conventional production method. A flake-shaped glass body whose both suefaces are smooth and flat has higher brilliance than a conventional flake-shaped glass body because both surfaces have high smoothness.

Description

本発明は塗料、インキ、化粧料、プラスチック、フィルム等に粒子として含有されるフレーク状ガラス体に関する。   The present invention relates to a flaky glass body contained as particles in paints, inks, cosmetics, plastics, films and the like.

適切な大きさに制御されたフレーク状ガラス体は、塗料、インキ、化粧料、プラスチック、フィルム等に粒子として含有される。当該フレーク状ガラス体は、表面が平坦性を有することから、フレーク状ガラス体からなる粒子を分散してなる物品では、フレーク状ガラス体の平面部に光が入射又は平面部で光が反射することで、光輝感等の独特の感応性を付与する。また、さらなる光輝感を付与するためにフレーク状ガラス体の表面に金属被覆を施したものもある。フレーク状ガラス体は、特許文献1乃至5にあるように槽底部から溶融ガラスを引き出し、引き出された溶融ガラス内に送風をして中空状ガラス薄膜体を形成、これをローラーで破砕、またはローラーで薄肉化した後に破砕することにより作製される。
実公昭63−48674号公報 実公平3−39466号公報 実公平3−39467号公報 特開平6−329429号公報 特開2001−220163号公報
The flaky glass body controlled to an appropriate size is contained as particles in paints, inks, cosmetics, plastics, films and the like. Since the surface of the flaky glass body is flat, in an article in which particles made of the flaky glass body are dispersed, light is incident on the flat portion of the flaky glass body or light is reflected by the flat portion. In this way, it gives unique sensitivity such as glitter. In addition, in order to give a further glittering feeling, there are also those in which the surface of the flaky glass body is coated with a metal. As described in Patent Documents 1 to 5, the flaky glass body draws molten glass from the bottom of the tank and blows air into the drawn molten glass to form a hollow glass thin film body, which is crushed with a roller, or roller It is made by crushing after thinning.
Japanese Utility Model Publication No. 63-48674 Japanese Utility Model Publication No. 3-39466 Japanese Utility Model Publication No. 3-39467 JP-A-6-329429 JP 2001-220163 A

槽底部から溶融ガラスを引き出し、引き出された溶融ガラス内に送風をして中空状ガラス薄膜体を形成、これをローラーで破砕、またはローラーで薄肉化した後に破砕する従来の製造方法は、中空状ガラス薄膜体にローラーを接触させるため、コンタミネーションやローラー表面の凹凸を得られるフレーク状ガラス体表面に転写してしまう可能性があった。特に、厚さが4μm未満の薄いフレーク状ガラス体を作製する場合、中空状ガラス薄膜体を形成した後に、加温したローラーにより薄くするためローラーの表面状態がフレーク状ガラス体表面に及ぼす影響が大きい傾向にあった。   The conventional manufacturing method in which molten glass is drawn out from the bottom of the tank and blown into the drawn molten glass to form a hollow glass thin film body, which is crushed with a roller, or crushed after being thinned with a roller, is hollow. Since the roller is brought into contact with the glass thin film body, there is a possibility that the film is transferred to the surface of the flaky glass body from which contamination and unevenness of the roller surface can be obtained. In particular, when producing a thin flaky glass body having a thickness of less than 4 μm, the surface condition of the roller has an influence on the surface of the flaky glass body because it is thinned by a heated roller after forming a hollow glass thin film body. There was a big trend.

本発明は、従来技術では作製することができなかった、両面が平滑な表面であるフレーク状ガラス体を提供することを課題とする。   An object of the present invention is to provide a flaky glass body having a smooth surface on both sides, which could not be produced by the prior art.

本発明のフレーク状ガラス体は、両面が平滑な表面でありガラスからなることを特徴とする。両面を平滑な表面とするためには、従来の製造方法のようにローラーや基板などの成形・加工装置表面にガラスを接触させることなく、非接触でフレーク状ガラス体を作製する。   The flaky glass body of the present invention is characterized in that both surfaces are smooth surfaces and are made of glass. In order to obtain a smooth surface on both sides, a flaky glass body is produced in a non-contact manner without bringing the glass into contact with the surface of a molding / processing apparatus such as a roller or a substrate as in the conventional production method.

本発明の好適な態様によれば、従来技術では作製することができなかった、両面が平滑な表面であるフレーク状ガラス体を提供する効果を奏す。両面の平滑性が高いため、従来のフレーク状ガラス体に比べより高い光輝感が得られる。   According to a preferred aspect of the present invention, there is an effect of providing a flaky glass body having a smooth surface on both sides, which could not be produced by the prior art. Since the smoothness of both surfaces is high, a higher glitter feeling can be obtained compared to the conventional flaky glass body.

本発明のフレーク状ガラス体は、両面が平滑な表面である。両面の平滑性が高いため、従来のフレーク状ガラス体に比べより高い光輝感が得られる。   The flaky glass body of the present invention has a smooth surface on both sides. Since the smoothness of both surfaces is high, a higher glitter feeling can be obtained compared to the conventional flaky glass body.

本発明のフレーク状ガラス体の両面の平均表面粗さRaは3.0nm以下であることが好ましい。Raが小さいほどより高い光輝感が得られるため、好ましくはRaが2.5nm以下であり、より好ましくは2.0nm以下である。さらに、Raが限りなく0.0nmに近いことが理想的である。   The average surface roughness Ra on both sides of the flaky glass body of the present invention is preferably 3.0 nm or less. As Ra is smaller, a higher glitter feeling is obtained. Therefore, Ra is preferably 2.5 nm or less, and more preferably 2.0 nm or less. Furthermore, it is ideal that Ra is as close as possible to 0.0 nm.

また、Raの標準偏差が1.0以下であることが好ましい。Raの標準偏差が小さいほどより安定した光輝感が得られるため、好ましくはRaの標準偏差が0.8以下であり、より好ましくは0.5以下である。さらに、Raの標準偏差が限りなく0.0に近いことが理想的である。   Moreover, it is preferable that the standard deviation of Ra is 1.0 or less. The smaller the standard deviation of Ra, the more stable glittering feeling can be obtained. Therefore, the standard deviation of Ra is preferably 0.8 or less, more preferably 0.5 or less. Furthermore, it is ideal that the standard deviation of Ra is as close to 0.0 as possible.

本発明のフレーク状ガラス体の厚さは0.05〜5.0μmであることが好ましい。特に0.05μm以上4μm未満であることが好ましい。従来法では、厚さが4μm未満の薄いフレーク状ガラス体を作製する場合、中空状ガラス薄膜体を形成した後に、加温したローラーにより薄くするため、両面が平滑な表面であるフレーク状ガラス体を得ることができなかったためである。   The thickness of the flaky glass body of the present invention is preferably 0.05 to 5.0 μm. In particular, it is preferably 0.05 μm or more and less than 4 μm. In the conventional method, when a thin flaky glass body having a thickness of less than 4 μm is produced, a thin glass thin film body is formed and then thinned by a heated roller. It was because I could not get.

本発明のフレーク状ガラス体は、二酸化珪素を主成分とし、酸化アルミニウム、酸化カルシウム等の金属酸化物を含有するガラスからなることが好ましい。ガラス種としては、Eガラス、Cガラス、ソーダライムガラス等が挙げられる。特に、SiO−B−ZnO−Al−CaO系の硼ケイ酸塩ガラスまたは、SiO−B−ZnO−Al−CaO−MnO系の硼ケイ酸塩ガラスは、低い溶融温度を有し、溶融成形性に優れるため、フレーク状ガラス体の原料ガラスとして好適である。 The flaky glass body of the present invention is preferably made of glass containing silicon dioxide as a main component and containing a metal oxide such as aluminum oxide or calcium oxide. Examples of the glass type include E glass, C glass, and soda lime glass. In particular, SiO 2 -B 2 O 3 -ZnO -Al 2 O 3 -CaO based borosilicate glasses or, SiO 2 -B 2 O 3 -ZnO -Al 2 O 3 -CaO-MnO 2 system the boron silicate The salt glass has a low melting temperature and is excellent in melt moldability, and is therefore suitable as a raw glass for a flaky glass body.

両面が平滑な表面とするためには、従来の製造方法のようにローラーや基板などの成形・加工装置表面にガラスを接触させることなく、非接触でフレーク状ガラス体を作製することが好ましい。フレーク状ガラス体の作製方法は、特に限定されないが、例えば、溶融ガラス中に気体を導入して気泡を作製し、該気泡にさらに気体を導入することにより該気泡の一部が溶融ガラス液面より上に出たドーム状体を形成し、該ドーム状体に気体、振動、超音波、衝撃波等を当てて破砕して、または当てずにそのままドーム状体を膨らませることによって破砕して、破砕片をフレーク状ガラス体として回収する方法が挙げられる。   In order to obtain a smooth surface on both sides, it is preferable to produce a flaky glass body in a non-contact manner without bringing the glass into contact with the surface of a molding / processing apparatus such as a roller or a substrate as in the conventional production method. The method for producing the flaky glass body is not particularly limited. For example, by introducing a gas into the molten glass to produce bubbles, and further introducing the gas into the bubbles, a part of the bubbles is molten glass liquid surface. Form a dome-like body that protrudes above, crush by applying gas, vibration, ultrasonic wave, shock wave, etc. to the dome-shaped body, or crush by inflating the dome-shaped body as it is without hitting, A method of recovering the crushed pieces as a flaky glass body is mentioned.

次に、実施例によって本発明をさらに具体的に説明する。
<フレーク状ガラス体の評価>
Next, the present invention will be described more specifically with reference to examples.
<Evaluation of flaky glass body>

1.平均表面粗さと標準偏差の算出
表面粗さの測定には島津製作所製原子間力顕微鏡(AFM)SPM−9600を用いた。フレーク状ガラス体を10サンプル採取し、1サンプルあたり1箇所で5μm× 5μmの領域で中心線平均粗さRa測定を行い、合計10点におけるデータを得た。これらのデータを用いてRaの標準偏差を算出した。
1. Calculation of Average Surface Roughness and Standard Deviation An atomic force microscope (AFM) SPM-9600 manufactured by Shimadzu Corporation was used for measuring the surface roughness. Ten samples of the flaky glass body were collected, and the centerline average roughness Ra was measured at one location per sample in a region of 5 μm × 5 μm, and data at a total of 10 points were obtained. The standard deviation of Ra was calculated using these data.

2.光輝性
得られたフレーク状ガラス体を粘着テープに塗布し、評価サンプルとした。なお、塗布量は、塗布面積1cmあたりにフレーク状ガラス体1mgであり、塗布方法は、粘着テープの粘着面側表面にフレーク状ガラス体を付着させた刷毛で塗布することで評価サンプルを得た。光輝性は、JIS Z8722に準拠して、光沢度計(日本電色工業製 Σ80)を用いて入射角45度、受光角45度でY値を測定した。
2. Brightness The obtained flaky glass body was applied to an adhesive tape to obtain an evaluation sample. The application amount is 1 mg of flaky glass body per 1 cm 2 of application area, and the application method is to apply an evaluation sample by applying with a brush with the flaky glass body attached to the adhesive surface side surface of the adhesive tape. It was. The brightness was measured according to JIS Z8722 by using a gloss meter (Σ80 manufactured by Nippon Denshoku Industries Co., Ltd.) and measuring the Y value at an incident angle of 45 degrees and a light receiving angle of 45 degrees.

実施例1
溶融炉中でEガラスを溶融させ、炉の底中央部に設けたノズルから溶融ガラス中に予め加温した空気を導入し、該ノズル先端に付着した気泡を溶融ガラス内に形成した。該気泡に連続的にノズルから空気を導入し続けて、該気泡の一部を内部に含んでなるドーム状体を溶融ガラスの液面レベルより上方に形成した。溶融炉天井部に設けたノズルから予め加温した空気をドーム状体にあてて、該ドーム状体を破砕してフレーク状ガラス体を形成した。ダクトからフレーク状ガラス体を吸引して回収し、厚さ1.0μmのフレーク状ガラス体を得た。フレーク状ガラス体の平均表面粗さRaは0.5〜2.0nmであり、その標準偏差は0.44であった。また、光輝性は81.8であった。
Example 1
E glass was melted in a melting furnace, air preheated into the molten glass was introduced from a nozzle provided at the center of the bottom of the furnace, and bubbles attached to the tip of the nozzle were formed in the molten glass. Air was continuously introduced into the bubbles from the nozzle, and a dome-like body including a part of the bubbles was formed above the liquid level of the molten glass. Air preheated from a nozzle provided on the melting furnace ceiling was applied to the dome-shaped body, and the dome-shaped body was crushed to form a flaky glass body. The flake glass body was sucked and collected from the duct to obtain a flake glass body having a thickness of 1.0 μm. The average surface roughness Ra of the flaky glass body was 0.5 to 2.0 nm, and the standard deviation thereof was 0.44. The glitter was 81.8.

実施例2
実施例1と同様に、溶融させたEガラスに予め加温した空気を導入してドーム状体を形成し、液面レベルより上方から空気を該ドーム状体にあてずに、該ドーム状体に空気を導入し続け膨らませることで破砕して、厚さ0.5μmのフレーク状ガラス体を得た。フレーク状ガラス体の平均表面粗さRaは0.5〜1.8nmであり、その標準偏差は0.39であった。また、光輝性は80.2であった。
Example 2
In the same manner as in Example 1, air that has been preheated is introduced into the melted E glass to form a dome-shaped body, and air is not applied to the dome-shaped body from above the liquid level. The glass was crushed by continuously introducing air into the swell to obtain a flaky glass body having a thickness of 0.5 μm. The average surface roughness Ra of the flaky glass body was 0.5 to 1.8 nm, and its standard deviation was 0.39. The glitter was 80.2.

比較例1
槽底部から溶融したEガラスを引き出し、引き出された溶融ガラス内に送風をして中空状ガラス薄膜体を形成、これをローラーで薄肉化した後に破砕する従来の製造方法で厚さ1.5μmのフレーク状ガラス体を得た。フレーク状ガラス体の平均表面粗さRaは0.5〜4.0nmであり、その標準偏差は1.33であった。また、光輝性は72.1であった。
Comparative Example 1
The molten E glass is drawn out from the bottom of the tank, and blown into the drawn molten glass to form a hollow glass thin film body, which is thinned with a roller and then crushed, and then has a thickness of 1.5 μm. A flaky glass body was obtained. The average surface roughness Ra of the flaky glass body was 0.5 to 4.0 nm, and its standard deviation was 1.33. The glitter was 72.1.

Claims (2)

両面の平均表面粗さRaが3.0nm以下であり、かつ、Raの標準偏差が1.0以下であることを特徴とするフレーク状ガラス体。 A flaky glass body having an average surface roughness Ra on both sides of 3.0 nm or less and a standard deviation of Ra of 1.0 or less. 厚さが0.05〜5.0μmであることを特徴とする請求項1に記載のフレーク状ガラス体。 Thickness is 0.05-5.0 micrometers, The flaky glass body of Claim 1 characterized by the above-mentioned.
JP2009167603A 2009-07-16 2009-07-16 Flake-shaped glass body whose both sides are smooth surfaces Pending JP2012188292A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009167603A JP2012188292A (en) 2009-07-16 2009-07-16 Flake-shaped glass body whose both sides are smooth surfaces
PCT/JP2010/061949 WO2011007821A1 (en) 2009-07-16 2010-07-15 Method for producing flake-like glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009167603A JP2012188292A (en) 2009-07-16 2009-07-16 Flake-shaped glass body whose both sides are smooth surfaces

Publications (1)

Publication Number Publication Date
JP2012188292A true JP2012188292A (en) 2012-10-04

Family

ID=43449430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009167603A Pending JP2012188292A (en) 2009-07-16 2009-07-16 Flake-shaped glass body whose both sides are smooth surfaces

Country Status (2)

Country Link
JP (1) JP2012188292A (en)
WO (1) WO2011007821A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142764U (en) * 1976-04-24 1977-10-28
JPS5965750U (en) * 1982-10-26 1984-05-02 日本硝子繊維株式会社 Glass flake manufacturing equipment
DE10009569C2 (en) * 2000-02-29 2003-03-27 Schott Glas Method and device for comminuting glass bodies by means of microwave heating
AU2004289365A1 (en) * 2003-11-12 2005-05-26 Freedom-2, Inc Variable appearance tissue markings
JP5123501B2 (en) * 2005-12-13 2013-01-23 株式会社ホンダロック Sheet glass cutting method and apparatus

Also Published As

Publication number Publication date
WO2011007821A1 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
CN104684858B (en) Textured method is carried out to glass surface
US20220063241A1 (en) Textured glass laminates using low-tg clad layer
CN100427974C (en) Optical film coating
Chen et al. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging
TWI540109B (en) Glass article having antireflective layer and method of making
CN103534219B (en) Anti-glare surface treatment method and goods thereof
TWI698403B (en) Glass article comprising light extraction features and methods for making the same
JP2021523870A (en) Ultra-thin glass with impact resistance
JP2006335881A (en) DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION AND SUBSTRATE HAVING REFLECTION-PREVENTING COATING
CN107428594A (en) Housing with anti-fingerprint surface
TW201406693A (en) Delamination resistant glass containers with heat-tolerant coatings
CN104968626A (en) Glass containers with delamination resistance and improved strength
TW200702178A (en) Antireflection film, production method of the same, polarizing plate and display
WO2008041681A1 (en) Coating composition for formation of antireflective film, and article having antireflective film formed therein
CN101241199A (en) Optical transparent member and optical system using the same
TW202023985A (en) Strengthened glass articles exhibiting improved headform impact performance and automotive interior systems incorporating the same
TW202134197A (en) Stress profiles of highly frangible glasses
WO2012107406A1 (en) Mechanical stable, transparent, superhydrophobic, and -oleophobic surfaces made of hybrid raspberry-like particles
WO2015125929A1 (en) Article with anti-glare film, manufacturing method therefor, and image display device
Farzam et al. Advances in the fabrication and characterization of superhydrophobic surfaces inspired by the Lotus leaf
Ji et al. Preparation of super-hydrophobic antireflective films by rod-like MgF2 and SiO2 mixed sol
Tsai et al. Growing invisible silica nanowires on fused silica plates provides highly transparent and superwetting substrates
JPWO2017007014A1 (en) Functional glass article and manufacturing method thereof
JP2012188292A (en) Flake-shaped glass body whose both sides are smooth surfaces
Rajput et al. Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates