JP2012187591A - Laser processing head - Google Patents

Laser processing head Download PDF

Info

Publication number
JP2012187591A
JP2012187591A JP2011051153A JP2011051153A JP2012187591A JP 2012187591 A JP2012187591 A JP 2012187591A JP 2011051153 A JP2011051153 A JP 2011051153A JP 2011051153 A JP2011051153 A JP 2011051153A JP 2012187591 A JP2012187591 A JP 2012187591A
Authority
JP
Japan
Prior art keywords
temperature
laser processing
optical component
processing head
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011051153A
Other languages
Japanese (ja)
Inventor
Osamu Noda
修 野田
Atsushi Murakami
敦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Mat Proc Inst Kinki Japan
Hitachi Zosen Corp
Advanced Materials Processing Institute Kinki Japan AMPI
Original Assignee
Advanced Mat Proc Inst Kinki Japan
Hitachi Zosen Corp
Advanced Materials Processing Institute Kinki Japan AMPI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Mat Proc Inst Kinki Japan, Hitachi Zosen Corp, Advanced Materials Processing Institute Kinki Japan AMPI filed Critical Advanced Mat Proc Inst Kinki Japan
Priority to JP2011051153A priority Critical patent/JP2012187591A/en
Publication of JP2012187591A publication Critical patent/JP2012187591A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser processing head used in laser welding or the like which can exactly determine a thermal lens phenomenon of an optical component during laser processing by an extremely simple constitution.SOLUTION: A temperature of the laser light permeation center o of protection glass 5 attached in a head housing 10 as the laser processing head 1A is measured, and a monitoring mechanism capturing the thermal lens phenomenon of the protection glass 5 is added on the basis of the measurement value.

Description

本発明は、レーザ溶接等に用いるファイバーレーザやディスクレーザの如き高輝度・高収束のレーザ加工ヘッドに関する。   The present invention relates to a laser processing head with high brightness and high convergence such as a fiber laser or a disk laser used for laser welding or the like.

レーザ溶接は、高出力のレーザ光を加工ヘッドの集光レンズで絞ったスポットを被加工物の表面に照射しつつ、溶接部位に沿って照射位置を移動させることにより、照射部位の被加工物素材を連続的に溶融・固化させてゆくものであり、高密度のエネルギーを非常に狭い範囲に集中できることから、狭い溶接ビード幅で深い溶込みが得られると共に、小さい入熱量で高能率の溶接を行えるという利点がある。しかして、レーザ溶接に多用されるファイバーレーザやディスクレーザ等のレーザ波長1μm帯用のレーザ加工ヘッドの光学部品は、通常、石英母材の表面に、適用するレーザ波長に対する反射を防止するための無反射コートが施されている。   Laser welding irradiates the surface of the workpiece with a high-power laser beam focused by the condenser lens of the machining head, and moves the irradiation position along the welding site, thereby allowing the workpiece at the irradiated site to move. The material is continuously melted and solidified, and high-density energy can be concentrated in a very narrow range, so that deep penetration can be achieved with a narrow weld bead width and high efficiency welding with a small heat input. There is an advantage that can be performed. Thus, optical components of laser processing heads for a laser wavelength band of 1 μm, such as fiber lasers and disk lasers frequently used for laser welding, are usually used to prevent reflection of the applied laser wavelength on the surface of a quartz base material. Non-reflective coating is applied.

しかるに、レーザ溶接においては、一般的に溶接開始位置から離れるにしたがって溶接品位が低下する傾向が認められる。これは、熱レンズ現象として、加工ヘッド内のレーザ光路に介在する集光レンズや保護ガラス等の光学部品がレーザ光を吸収して昇温し、熱膨張及び屈折率変化を生じてレーザ光の焦点距離が変化する(通常は凸レンズ効果で焦点距離が短くなる)ことに起因している。このような熱レンズ現象に繋がるレーザ光の吸収は、光学部品の母材自体でもある程度は生じるが、光学部品表面の上記無反射コート及び表面付着物による吸収が大きい。とりわけ加工ヘッドのレーザ光出射側に配置する保護ガラスは、溶接部に対向する形で外部に露呈しているため、溶接部から発生する溶融物のスパッタ、金属蒸気やプラズマのヒューム等が付着して汚れ易く、その付着汚れが多くなると、レーザ光の吸収率が著しく増大して高温化に伴う大きな熱レンズ作用を生じることになる。従って、レーザ溶接における溶接品位の低下を回避する上で、レーザ加工ヘッドの光学部品の熱レンズ現象を監視することが重要であり、特に保護ガラスについてはその汚れに伴う熱レンズ作用が許容レベルを超える前に新品と交換する必要がある。   However, in laser welding, it is generally recognized that the weld quality tends to decrease with increasing distance from the welding start position. This is because, as a thermal lens phenomenon, an optical component such as a condensing lens or protective glass interposed in the laser beam path in the processing head absorbs the laser beam and rises in temperature, causing thermal expansion and a change in refractive index. This is because the focal length changes (usually the focal length is shortened by the convex lens effect). Absorption of laser light leading to such a thermal lens phenomenon occurs to some extent in the base material itself of the optical component, but is largely absorbed by the non-reflective coating and surface deposits on the surface of the optical component. In particular, the protective glass placed on the laser beam emission side of the processing head is exposed to the outside so as to face the welded part, so that spatter of the melt generated from the welded part, metal vapor, plasma fumes, etc., adhere to it. If the adhesion contamination increases, the absorption rate of the laser beam is remarkably increased, and a large thermal lens action is caused as the temperature rises. Therefore, it is important to monitor the thermal lens phenomenon of the optical components of the laser processing head in order to avoid the deterioration of the welding quality in laser welding. Especially, the thermal lens action due to the contamination of the protective glass has an acceptable level. It must be exchanged for a new one before it exceeds.

従来、レーザ加工ヘッドにおける熱レンズ現象に対処する手段として、集光レンズの上方に2組の温度センサを取り付けた回転自動ステージを設け、両温度センサによって集光レンズのレーザ光入射側である上面全体をスキャニングし、得られる温度データから該集光レンズの焦点距離変化量を算出し、その算出値に基づいて焦点距離自動調整装置によって集光レンズを上下に移動させることにより、焦点が常に被加工物上に結ばれるように制御する方式が提案されている(特許文献1)。一方、レーザ加工ヘッドのレーザ光出射側に配置する保護ガラスについて、その外面側に付着した粒子によるレーザ光の散乱光の強度をヘッド内周部に設けた光検出器によって測定すると共に、追加的に保護ガラス側面及びヘッド周壁部の温度を温度検出器にて測定し、これら散乱光強度及び温度の測定値を設定基準値と比較して汚れを二段階で判定する方法(特許文献2)や、保護ガラス内面側の外周部の温度を熱検出器によって測定し、その温度上昇の時間微分値が設定した閾値以上になった時に破損の懸念有りと判定する方法(特許文献3)が提案されている。   Conventionally, as a means for dealing with a thermal lens phenomenon in a laser processing head, an automatic rotary stage having two sets of temperature sensors attached above the condenser lens is provided, and the upper surface on the laser beam incident side of the condenser lens is provided by both temperature sensors. By scanning the whole, calculating the focal length change amount of the condenser lens from the obtained temperature data, and moving the condenser lens up and down by the focal length automatic adjustment device based on the calculated value, the focus is always covered. There has been proposed a method of controlling so as to be tied onto a workpiece (Patent Document 1). On the other hand, with respect to the protective glass arranged on the laser beam emitting side of the laser processing head, the intensity of the scattered light of the laser beam due to the particles adhering to the outer surface side is measured by a photodetector provided on the inner periphery of the head, and additionally In addition, the temperature of the side surface of the protective glass and the temperature of the peripheral wall of the head are measured with a temperature detector, and the measured values of the scattered light intensity and temperature are compared with a set reference value to determine dirt in two stages (Patent Document 2) A method of measuring the temperature of the outer peripheral portion of the inner surface of the protective glass with a heat detector and determining that there is a fear of breakage when the time differential value of the temperature rise exceeds a set threshold value (Patent Document 3) has been proposed. ing.

特許2612311号公報Japanese Patent No. 2612311 特開2002−361452号公報JP 2002-361252 A 特開2006−55879号公報JP 2006-55879 A

しかしながら、特許文献1のように2組の温度センサによって集光レンズの上面全体をスキャニングする方式では、2組の温度センサ、回転自動ステージとその駆動機構、焦点レンズの上下移動機構とその制御機構等を必要とするため、レーザ加工ヘッド及び付帯設備のコストが極めて高くつくと共に、温度測定値→集光レンズ全体の温度分布→熱変形量→焦点距離変化量を順次演算する熱解析手段の構築にも多大な労力を要する上、保護ガラスを装着したレーザ加工ヘッドの場合に該保護ガラスの汚れに伴う熱レンズ現象に対応できないという難点があった。   However, in the method in which the entire upper surface of the condenser lens is scanned by two sets of temperature sensors as in Patent Document 1, two sets of temperature sensors, a rotary automatic stage and its drive mechanism, a vertical movement mechanism of the focus lens and its control mechanism The cost of the laser processing head and incidental equipment is extremely high, and the construction of a thermal analysis means that calculates the temperature measurement value → temperature distribution of the entire condenser lens → thermal deformation → focal length change in order In addition, a large amount of labor is required, and in the case of a laser processing head equipped with a protective glass, there is a problem in that it cannot cope with the thermal lens phenomenon accompanying the contamination of the protective glass.

一方、特許文献2のような保護ガラスの汚れ判定方法では、保護ガラス表面に対して汚れ粒子が均等に付着せず、光検出器で測定される散乱光強度が付着粒子の分布状態によって変動して不正確になる上、汚れに伴う温度上昇も保護ガラス側面やヘッド周壁部では小さく、温度検出器では汚れがかなり酷くなった段階でしか検出できないため、保護ガラスとしての使用極限つまり汚れが表面全体に皮膜化して透過光量の減少による加工性低下をきたすような状態は判定できても、熱レンズ現象に対応する程度の汚れ度合を正確に判定することは困難である。また、特許文献3のような保護ガラスの破損予測判定方法では、やはり汚れによる保護ガラス内面側の外周部の温度上昇は少ないため、熱検出器による測定値に基づいて保護ガラスが破損寸前になる使用極限を判定できても、熱レンズ現象に対応する程度の汚れ度合を正確に判定することは困難である。   On the other hand, in the dirt determination method for protective glass as in Patent Document 2, dirt particles do not uniformly adhere to the surface of the protective glass, and the scattered light intensity measured by the photodetector varies depending on the distribution state of the adhered particles. In addition, the temperature rise due to dirt is small on the side of the protective glass and the peripheral wall of the head, and the temperature detector can detect only when the dirt becomes extremely severe. Even if it is possible to determine a state where the entire surface is made into a film and the workability is deteriorated due to a decrease in the amount of transmitted light, it is difficult to accurately determine the degree of contamination corresponding to the thermal lens phenomenon. Further, in the method for predicting damage to the protective glass as in Patent Document 3, since the temperature rise at the outer peripheral portion on the inner surface of the protective glass due to dirt is small, the protective glass is on the verge of being damaged based on the measured value by the heat detector. Even if the use limit can be determined, it is difficult to accurately determine the degree of contamination corresponding to the thermal lens phenomenon.

本発明は、上述の事情に鑑みて、レーザ溶接等に用いるレーザ加工ヘッドとして、極めて簡単な構成により、レーザ加工中における光学部品の熱レンズ現象の程度を正確に判定できるものを提供することを目的としている。   In view of the above-described circumstances, the present invention provides a laser processing head used for laser welding or the like that can accurately determine the degree of the thermal lens phenomenon of an optical component during laser processing with a very simple configuration. It is aimed.

上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係るレーザ加工ヘッド1Aは、ヘッドハウジング10内に装着された光学部品(保護ガラス5)のレーザ光透過中心部oの温度を計測し、この計測値に基づいて該光学部品の熱レンズ現象を捉えるモニタリング機構を付属してなるものとしている。   If means for achieving the above object is shown with reference numerals in the drawings, the laser processing head 1A according to the invention of claim 1 is a laser of an optical component (protective glass 5) mounted in the head housing 10. A monitoring mechanism for measuring the temperature of the light transmission center o and capturing the thermal lens phenomenon of the optical component based on the measured value is attached.

請求項2の発明は、上記請求項1のレーザ加工ヘッド1Aにおいて、光学部品のレーザ光透過中心部oの温度を、輻射赤外線を受光して電気信号に変換する1基の赤外線センサ7によって計測する構成としている。   According to a second aspect of the present invention, in the laser processing head 1A of the first aspect, the temperature of the laser light transmission center portion o of the optical component is measured by a single infrared sensor 7 that receives radiant infrared rays and converts them into electrical signals. It is configured to do.

請求項3の発明は、上記請求項1のレーザ加工ヘッド1Aにおいて、赤外線センサ7が赤外波長8〜14μmの間に感度帯を持つものとしている。   According to a third aspect of the invention, in the laser processing head 1A of the first aspect, the infrared sensor 7 has a sensitivity band between infrared wavelengths of 8 to 14 μm.

請求項4の発明は、上記請求項1〜3の何れかのレーザ加工ヘッド1Aにおいて、赤外線センサ7がヘッドハウジング10の内部に臨んで取り付けられてなる。   According to a fourth aspect of the present invention, in the laser processing head 1A according to any one of the first to third aspects, the infrared sensor 7 is attached facing the inside of the head housing 10.

請求項5の発明に係るレーザ加工ヘッド1Aは、ヘッドハウジング10内に装着された光学部品(保護ガラス5)のレーザ光透過中心部oの温度と、該光学部品の周辺部s又は支持部10aの温度とを計測し、両計測温度の差に基づいて該光学部品の熱レンズ現象を捉えるモニタリング機構を付属してなるものとしている。   The laser processing head 1A according to the invention of claim 5 includes the temperature of the laser light transmitting central portion o of the optical component (protective glass 5) mounted in the head housing 10, and the peripheral portion s or the support portion 10a of the optical component. And a monitoring mechanism for capturing the thermal lens phenomenon of the optical component based on the difference between the measured temperatures.

請求項6の発明は、上記請求項1〜5の何れかのレーザ加工ヘッド1Aにおいて、光学部品がヘッドハウジング10の先端側に装着された保護ガラス5としている。   The invention of claim 6 is the laser processing head 1 </ b> A according to any one of claims 1 to 5, wherein the optical component is the protective glass 5 mounted on the front end side of the head housing 10.

請求項7の発明は、上記請求項1〜6の何れかのレーザ加工ヘッド1Aにおいて、熱レンズ現象による焦点変移Δfの許容限界値を設定し、この許容限界値に対応した基準温度と計測温度とを比較し、計測温度が基準温度を上回った際に光学部品の交換を要することを告知する交換告知機能を備えるものとしている。   According to a seventh aspect of the present invention, in the laser processing head 1A of any one of the first to sixth aspects, an allowable limit value of the focus shift Δf due to the thermal lens phenomenon is set, and a reference temperature and a measurement temperature corresponding to the allowable limit value are set. And a replacement notification function for notifying that replacement of optical components is required when the measured temperature exceeds the reference temperature.

請求項1の発明に係るレーザ加工ヘッド1Aによれば、ヘッドハウジング1内に装着された光学部品(保護ガラス5)の熱レンズ現象のモニタリング機構として、レーザ光透過中心部oの温度を計測し、この計測値に基づいて該光学部品の汚れに伴う熱レンズ現象の程度を正確に捉えることができる。すなわち、予め汚れのない新品の光学部品を使用した時の該中心部oの温度計測データと焦点変移Δfの関係を求めておき、これを基本の参照データとして実際の加工時に得られる該中心部oの温度計測データを比較することにより、熱レンズ現象が許容範囲にあるか否か、ひいては光学部品を継続使用できるか否かを正確に判定することが可能となる。   According to the laser processing head 1A according to the first aspect of the present invention, the temperature of the laser light transmitting central portion o is measured as a mechanism for monitoring the thermal lens phenomenon of the optical component (protective glass 5) mounted in the head housing 1. Based on this measurement value, it is possible to accurately grasp the degree of the thermal lens phenomenon accompanying the contamination of the optical component. That is, the relationship between the temperature measurement data of the central portion o when using a new optical component without contamination and the focus shift Δf is obtained in advance, and this central portion obtained at the time of actual processing is used as basic reference data. By comparing the temperature measurement data of o, it is possible to accurately determine whether or not the thermal lens phenomenon is within an allowable range, and thus whether or not the optical component can be continuously used.

請求項2の発明によれば、光学部品のレーザ光透過中心部oの温度計測に1基の赤外線センサ7を用いることから、レーザ加工ヘッド1A全体が簡素でコンパクトな構成になると共に、温度計測を簡易な操作で連続的に行えるという利点がある。   According to the invention of claim 2, since one infrared sensor 7 is used for temperature measurement of the laser light transmission center portion o of the optical component, the entire laser processing head 1A has a simple and compact configuration, and temperature measurement is performed. There is an advantage that can be continuously performed with a simple operation.

請求項3の発明によれば、上記の温度計測に用いる赤外線センサ7が赤外波長8〜14μmの間に感度帯を持つから、光学部品材料として一般的な石英ガラス及び反射防止膜材から昇温に伴って放射される赤外線を確実に計測できるという利点がある。   According to the invention of claim 3, since the infrared sensor 7 used for the above temperature measurement has a sensitivity band between infrared wavelengths of 8 to 14 μm, it is raised from a general quartz glass and an antireflection film material as an optical component material. There is an advantage that infrared rays emitted with temperature can be reliably measured.

請求項4の発明によれば、上記の温度計測に用いる赤外線センサ7がヘッドハウジング10の内部に臨んで取り付けられることから、その受光部に汚れを生じにくく、もって該赤外線センサ7自体が長寿命化する。   According to the fourth aspect of the present invention, since the infrared sensor 7 used for the temperature measurement is mounted facing the inside of the head housing 10, the light receiving portion is hardly contaminated, and the infrared sensor 7 itself has a long life. Turn into.

請求項5の発明によれば、ヘッドハウジング10内に装着された光学部品(保護ガラス5)のレーザ光透過中心部oの温度と、該光学部品の周辺部s又は支持部10aの平均温度とを計測し、両計測温度の差に基づいて該光学部品の熱レンズ現象を捉えることから、予め汚れのない新品の光学部品を使用した時の中心部oの温度と周辺部s又は支持部10aの温度との関係を求めておき、これを基本の参照データとして実際の加工時の計測データを比較することにより、熱レンズ現象が許容範囲にあるか否か、ひいては光学部品を継続使用できるか否かを正確に判定することが可能となる。   According to the invention of claim 5, the temperature of the laser light transmitting central portion o of the optical component (protective glass 5) mounted in the head housing 10, and the average temperature of the peripheral portion s of the optical component or the support portion 10 a Since the thermal lens phenomenon of the optical component is captured based on the difference between the two measured temperatures, the temperature of the central portion o and the peripheral portion s or the support portion 10a when a new optical component that is not soiled in advance is used. Whether the thermal lens phenomenon is within the allowable range by comparing the actual measurement data with this as basic reference data and whether the optical components can be used continuously. It is possible to accurately determine whether or not.

請求項6の発明は、光学部品が加工ヘッド1Aの先端側に装着された保護ガラス5であり、その汚れに伴う熱レンズ現象の程度を正確に捉えて新品との交換の必要性を判定できるから、尚早な交換による無駄をなくしつつ高いレーザ加工品位を確保できる。   In the invention of claim 6, the optical component is the protective glass 5 mounted on the tip side of the processing head 1A, and the necessity of replacement with a new one can be determined by accurately grasping the degree of the thermal lens phenomenon caused by the dirt. Therefore, high laser processing quality can be secured while eliminating waste due to premature replacement.

請求項7の発明は、熱レンズ現象による焦点変位Δfの許容限界値に対応した基準温度を設定し、計測温度が基準温度を上回った際に光学部品の交換を要することを告知するから、該光学部品の交換時期に気付かずにレーザ加工品位が悪化する事態を未然に防止できる。   The invention of claim 7 sets the reference temperature corresponding to the allowable limit value of the focal displacement Δf due to the thermal lens phenomenon, and notifies that the optical component needs to be replaced when the measured temperature exceeds the reference temperature. It is possible to prevent a situation in which the quality of laser processing deteriorates without noticing the replacement timing of the optical component.

熱レンズ現象モニタリングの予備試験に用いたレーザ溶接用ファイバーレーザのレーザ加工ヘッドの模式縦断面図である。It is a model longitudinal cross-sectional view of the laser processing head of the fiber laser for laser welding used for the preliminary test of thermal lens phenomenon monitoring. 同予備試験による計測データを示し、(a)はレーザ出力−焦点変移の相関特性図、(b)はレーザ出力−光学部品の中心部温度の相関特性図である。The measurement data by the said preliminary test are shown, (a) is a correlation characteristic figure of laser output-focus shift, (b) is a correlation characteristic figure of laser output-center part temperature of an optical component. 同予備試験における保護ガラスの一径方向に沿う温度分布を示し、(a)は汚れのある既存の保護ガラス使用時の特性図、(b)は汚れのない新品の保護ガラス使用時の特性図である。The temperature distribution along the diameter direction of the protective glass in the preliminary test is shown, (a) is a characteristic diagram when using an existing protective glass with dirt, (b) is a characteristic diagram when using a new protective glass without dirt. It is. 本発明の一実施形態に係るレーザ加工ヘッドの模式縦断面図である。It is a model longitudinal cross-sectional view of the laser processing head which concerns on one Embodiment of this invention. 同実施形態における熱レンズ現象モニタリングの一評価指標の設定に用いる保護ガラス中心部温度−焦点変移の相関特性図である。It is a correlation characteristic figure of protection glass center part temperature used for setting of one evaluation index of thermal lens phenomenon monitoring in the embodiment. 本発明の他の実施形態における熱レンズ現象モニタリングの一評価指標の設定に用いる保護ガラスの中心部と周辺部との温度差−焦点変移の相関特性図である。It is a correlation characteristic figure of the temperature difference-focus shift of the center part of a protective glass used for setting of one evaluation index of thermal lens phenomenon monitoring in other embodiments of the present invention, and a peripheral part.

図1で示すレーザ加工ヘッド1Bは、レーザ溶接用ファイバーレーザの溶接ヘッドを構成するものであり、上端中央に臨んでファイバー出射端2(コア径0.2mm)が配置した縦円筒形のハウジング10内に、上部側から順次、該ファイバー出射端2から出射されるレーザ光Lを平行光に変換するコリメータレンズ3(焦点距離100mm)、その平行光を収束して被加工物(図示省略)の表面近傍で焦点Fを結ばせる集光レンズ4(焦点距離200mm)、石英ガラス製で表面に反射防止膜を有する厚さ2mmの平板状の保護ガラス5が保持されると共に、該ハウジング10の周壁内部には、コリメータレンズ3及び集光レンズ4が各々配置する位置に冷却水通路11,12が設けてある。しかして、このレーザ加工ヘッド1Bには、予備試験用に、該加工ヘッド1Bの直下位置でレーザ光Lを受光して出力を計測するパワーメータ6、保護ガラス5のレーザ光透過中心部oからの輻射赤外線を受光して電気信号に変換して温度計測する赤外線センサ7、斜め下側から保護ガラス5の前面の温度分布を捉える赤外線ビュア8、赤外線センサ7の計測信号に基づいて温度値及びモニタリング状況を表示するパーソナルコンピュータPC、がそれぞれ付設されている。   A laser processing head 1B shown in FIG. 1 constitutes a fiber laser welding head for laser welding, and a vertical cylindrical housing 10 in which a fiber emitting end 2 (core diameter 0.2 mm) is arranged facing the center of the upper end. The collimator lens 3 (focal length 100 mm) for converting the laser light L emitted from the fiber emitting end 2 into parallel light sequentially from the upper side converges the parallel light to the workpiece (not shown). A condensing lens 4 (focal length 200 mm) for converging the focal point F near the surface, a flat protective glass 5 made of quartz glass and having an antireflection film on the surface and having a thickness of 2 mm are held, and the peripheral wall of the housing 10 Inside, cooling water passages 11 and 12 are provided at positions where the collimator lens 3 and the condenser lens 4 are respectively arranged. Therefore, the laser processing head 1B includes a power meter 6 that receives the laser light L at a position immediately below the processing head 1B and measures the output for a preliminary test, and a laser light transmission central portion o of the protective glass 5. The infrared sensor 7 that receives the radiant infrared light and converts it into an electrical signal to measure the temperature, the infrared viewer 8 that captures the temperature distribution of the front surface of the protective glass 5 from the diagonally lower side, and the temperature value based on the measurement signal of the infrared sensor 7 A personal computer PC for displaying the monitoring status is attached.

上記構成のレーザ加工ヘッド1Bにおける熱レンズ現象を、下記の予備試験1〜3によって解析した。なお、これら予備試験では、レーザ加工ヘッド1Bとして市販のヘッド(結像倍率2倍)、赤外線ビュア8としてFILR Systems社製のSC620、をそれぞれ用いると共に、冷却水通路11,12の冷却水温を30℃に設定した。また、図では省略しているが、レーザ光Lの焦点Fの位置計測のために、プリムス社製のフォーカスモニターを使用した。   The thermal lens phenomenon in the laser processing head 1B having the above configuration was analyzed by the following preliminary tests 1 to 3. In these preliminary tests, a commercially available head (imaging magnification: 2) is used as the laser processing head 1B, and SC620 manufactured by FILR Systems is used as the infrared viewer 8, and the cooling water temperature of the cooling water passages 11 and 12 is set to 30. Set to ° C. Although not shown in the figure, a focus monitor manufactured by Primus Co., Ltd. was used for measuring the position of the focal point F of the laser light L.

〔予備試験1〕
パワーメータ6及び上記フォーカスモニターを利用し、保護ガラス5がない状態において、出力6kW,8kW,10kWの各レーザ光Lの出射開始から3分後及び10分後の焦点変移Δfを調べると共に、汚れのない新品の保護ガラス5と汚れのある既存の保護ガラス5の各々を使用した状態で、出力10kWのレーザ光Lの出射開始から3分後及び10分後の焦点変移Δfを調べた。その結果を図2(a)に示す。
[Preliminary test 1]
Using the power meter 6 and the focus monitor, the focus shift Δf after 3 minutes and 10 minutes from the start of emission of the laser beams L with outputs of 6 kW, 8 kW, and 10 kW in the state where the protective glass 5 is not present, and dirt The focus shift Δf after 3 minutes and 10 minutes after the start of the emission of the laser light L with an output of 10 kW was examined using each of the new protective glass 5 having no dirt and the existing protective glass 5 having dirt. The result is shown in FIG.

〔予備試験2〕
パワーメータ6及び赤外線センサー7を利用し、保護ガラス5がない状態で、出力6kW,8kW,10kWの各レーザ光Lの出射開始から3分後及び10分後における集光レンズ4のレーザ光透過中心部の温度を計測すると共に、汚れのない新品の保護ガラス5と汚れのある既存の保護ガラス5の各々を使用した状態で、出力10kWのレーザ光Lの出射開始から3分後及び10分後における保護ガラス5のレーザ光透過中心部oの温度を計測した。その結果を図2(b)に示す。
[Preliminary test 2]
Using the power meter 6 and the infrared sensor 7, the laser beam transmitted through the condenser lens 4 3 minutes and 10 minutes after the start of emission of the laser beams L of 6 kW, 8 kW, and 10 kW with no protective glass 5 While measuring the temperature of the central part and using each of the new protective glass 5 without dirt and the existing protective glass 5 with dirt, 3 minutes and 10 minutes after the start of emission of the laser light L with an output of 10 kW The temperature of the laser light transmission center part o of the protective glass 5 after that was measured. The result is shown in FIG.

〔予備試験3〕
赤外線ビュア8を利用し、汚れのある既存の保護ガラス5と汚れのない新品の保護ガラス5の各々を使用した状態で、それぞれ2kW,4kW,5kW,6kWの各レーザ出力における出射開始から 分後の該保護ガラスの径方向に沿う温度分布を調べた。その結果を、既存の保護ガラス5については図3(a)に、新品の保護ガラス5については図3(b)に、それぞれ示す。
[Preliminary test 3]
Minutes from the start of emission at laser outputs of 2 kW, 4 kW, 5 kW, and 6 kW, respectively, using the infrared viewer 8 and using the existing protective glass 5 with dirt and the new protective glass 5 without dirt. The temperature distribution along the radial direction of the protective glass was examined. The results are shown in FIG. 3A for the existing protective glass 5 and in FIG. 3B for the new protective glass 5, respectively.

図2(a)で示すように、保護ガラス5がない状態では、レーザ光Lの出力が大きいほど、また出射開始からの時間が長くなるほど、焦点変移Δfが大きくなっている。そして、保護ガラス5を設けることで更に焦点変移Δfが増すが、例えばレーザ光Lの出力10kWで出射開始から10分後における焦点変移Δfは、汚れのない新品の保護ガラス5では約12%の増加に止まるのに対し、汚れのある既存の保護ガラス5では約56%と著しく増大している。また、図2(b)で示すように、レーザ光Lの出力10kWで出射開始から3分後及び10分後における保護ガラス5のレーザ光透過中心部oの温度は、汚れのない新品の保護ガラス5では90〜100℃程度であるのに対し、汚れのある既存の保護ガラス5では280〜300℃もの高温に達している。一方、図3(a)(b)で示すように、レーザ加工ヘッド1Bの使用中における保護ガラス5の温度は、レーザ出力の違いと汚れの有無に関わらず中心部(レーザ光透過中心部o)で最も高く、且つ中心部と周辺部とで大きな温度差が現れるが、特に汚れのある既存の保護ガラスでは周辺部同士(図示では径方向の両端部同士)でもかなりの温度差を生じている。   As shown in FIG. 2A, in the state without the protective glass 5, the focal shift Δf increases as the output of the laser light L increases and as the time from the start of emission increases. Further, the focus shift Δf is further increased by providing the protective glass 5. For example, the focus shift Δf after 10 minutes from the start of emission at the output of 10 kW of the laser light L is about 12% in the new protective glass 5 without dirt. In contrast to the increase, the existing protective glass 5 with dirt is remarkably increased to about 56%. Further, as shown in FIG. 2 (b), the temperature of the laser light transmission central portion o of the protective glass 5 after 10 minutes from the start of emission at an output of 10 kW of the laser light L is the protection of a new product without contamination. While the glass 5 has a temperature of about 90 to 100 ° C., the existing protective glass 5 with dirt reaches a high temperature of 280 to 300 ° C. On the other hand, as shown in FIGS. 3 (a) and 3 (b), the temperature of the protective glass 5 during use of the laser processing head 1B depends on the central portion (laser light transmission central portion o) regardless of the difference in laser output and the presence or absence of dirt. ), And a large temperature difference appears between the central part and the peripheral part. However, in the existing protective glass, which is particularly dirty, there is a considerable temperature difference between the peripheral parts (both ends in the radial direction in the figure). Yes.

すなわち、レーザ光は光学部品の中心部を光軸中心として半径方向に減衰する強度分布を有し、そのレーザ光が光学部品を通過する際に光吸収に伴う内部発熱を生じるが、その発熱が光学部品の冷却水で冷却されている周辺部へ向かう熱伝導によって排熱されることになる。従って、レーザ加工中の光学部品は、表面の汚れによって光吸収が増大しても、それ自体が損傷するほどの汚れでなければ、常に中心部が最高となる温度分布を示すが、局所的に汚れのある部分と汚れのない部分とでは発熱量に差があるため、図3(a)の如く周辺部の温度では有意差を生じる場合が多々ある。   In other words, the laser beam has an intensity distribution that attenuates in the radial direction with the center of the optical component as the center of the optical axis. When the laser beam passes through the optical component, internal heat generation occurs due to light absorption. The heat is exhausted by heat conduction toward the peripheral part cooled by the cooling water of the optical component. Therefore, optical components during laser processing show a temperature distribution where the central portion is always the highest if the optical absorption increases due to surface contamination, but is not dirty enough to damage itself. Since there is a difference in the amount of heat generated between the part with dirt and the part without dirt, there are many cases where a significant difference occurs in the temperature of the peripheral part as shown in FIG.

これら予備試験1〜3の結果から、既存の保護ガラス5は、その汚れに起因したレーザ光Lの吸収によって中心側ほど大きく昇温し、これに伴う熱膨張によって凸レンズ状に変形する顕著な熱レンズ現象を生じるが、その熱レンズ現象による焦点変移Δfの大きさと保護ガラス5の温度との間に高い相関があるため、そのレーザ光透過中心部oの計測温度を指標として熱レンズ現象を精度よくモニタリングできることが判る。しかるに、保護ガラス5の周辺部では汚れによる温度上昇が少ない上、局所的な汚れ度合の違いで温度のばらつきを生じ易いため、該周辺部の計測温度は上記モニタリングの指標として信頼性に乏しい。従って、予め汚れのない新品の保護ガラス5を使用した時のレーザ光透過中心部oの温度計測データと焦点変移Δfの関係を求めておき、これを基本の参照データとして実際の加工時に得られる該中心部oの温度計測データを比較することにより、熱レンズ現象が許容範囲にあるか否か、ひいては光学部品を継続使用できるか否かを正確に判定することが可能となる。   From the results of these preliminary tests 1 to 3, the existing protective glass 5 is heated to a large temperature toward the center side due to the absorption of the laser light L caused by the dirt, and the remarkable heat that deforms into a convex lens shape due to the thermal expansion associated therewith. Although a lens phenomenon occurs, there is a high correlation between the magnitude of the focal shift Δf due to the thermal lens phenomenon and the temperature of the protective glass 5, so the thermal lens phenomenon is accurately measured using the measured temperature of the laser light transmission center o as an index. It turns out that it can monitor well. However, since the temperature rise due to dirt is small in the peripheral portion of the protective glass 5 and temperature variation is likely to occur due to a difference in local stain degree, the measured temperature in the peripheral portion is poor as an indicator of the monitoring. Therefore, the relationship between the temperature measurement data of the laser light transmission center o when using a new protective glass 5 without dirt and the focus shift Δf is obtained in advance and obtained as basic reference data during actual processing. By comparing the temperature measurement data of the central portion o, it is possible to accurately determine whether or not the thermal lens phenomenon is within an allowable range, and thus whether or not the optical component can be used continuously.

ここで、保護ガラス5のレーザ光透過中心部oの温度計測手段としては、特に制約されないが、上記予備試験で用いているものと同様の赤外線センサ7が好適である。すなわち、赤外線センサ7は、輻射赤外線を受光して電気信号に変換するものであるが、その1基のみを用いて該温度計測を簡易な操作で連続的に行えることに加え、構造的に簡素で且つ小型であるためにヘッドハウジング内への組み付けが容易であり、これによってレーザ加工ヘッド全体を簡素でコンパクトな構成に設定できると共に、それ自体の受光部を汚れにくくして感度低下や寿命短縮を抑制でき、また安価に入手できることから全体の設備コストも抑えられる。   Here, the temperature measuring means of the laser light transmission center portion o of the protective glass 5 is not particularly limited, but an infrared sensor 7 similar to that used in the preliminary test is suitable. That is, the infrared sensor 7 receives radiant infrared light and converts it into an electrical signal, but using only one of them, the temperature measurement can be continuously performed with a simple operation, and the structure is simple. In addition, it is easy to assemble in the head housing due to its small size, which makes it possible to set the entire laser processing head in a simple and compact configuration, and makes its own light receiving part difficult to get dirty, reducing sensitivity and shortening the service life. And the overall equipment cost can be reduced.

このような赤外線センサ7としては、特に制約されないが、赤外波長8〜14μmの間に感度帯を持つものが推奨される。これは、赤外波長8〜14μmが光学部品材料として一般的な石英ガラス及び反射防止膜材から昇温に伴って放射される赤外線の波長域になるため、その赤外線放射を確実に計測できることによる。なお、該赤外線センサ7の感度帯は、上記波長域を含んでおればよく、該波長域よりも長波長側及び短波長側の一方又は両方にわたる広い波長域に及んでいてもよいことは言うまでもない。   Such an infrared sensor 7 is not particularly limited, but a sensor having a sensitivity band between infrared wavelengths of 8 to 14 μm is recommended. This is because an infrared wavelength of 8 to 14 μm is a wavelength region of infrared rays emitted from quartz glass and an antireflection film material that are generally used as optical component materials as the temperature rises, so that the infrared radiation can be reliably measured. . It should be noted that the sensitivity band of the infrared sensor 7 only needs to include the above-mentioned wavelength range, and it goes without saying that it may extend over a wide wavelength range over one or both of the longer wavelength side and the shorter wavelength side than the wavelength range. Yes.

図4は、上記の温度計測手段として赤外線センサ7を用いた本発明の一実施形態に係るレーザ加工ヘッド1Aを示す。このレーザ加工ヘッド1Aは、基本構造が前記予備試験に用いたレーザ加工ヘッド1B(図1参照)と略同様であるため、その構成各部については該レーザ加工ヘッド1Bと同一符号を附して説明を省略するが、ヘッドハウジング10の下部側には集光レンズ4と保護ガラス5の両保持部の間に位置してセンサ取付孔13が設けてあり、このセンサ取付孔13に赤外線センサ7が検出方向を保護ガラス5の内面側の中心部oに向ける形で装填されると共に、該赤外線センサ7の信号ケーブル7aが外部のパーソナルコンピュータPCに接続されている。図中のWはレーザ溶接を行う被加工物を示す。   FIG. 4 shows a laser processing head 1A according to an embodiment of the present invention using an infrared sensor 7 as the temperature measuring means. Since the basic structure of the laser processing head 1A is substantially the same as that of the laser processing head 1B (see FIG. 1) used in the preliminary test, the constituent parts of the laser processing head 1A are denoted by the same reference numerals as the laser processing head 1B. However, a sensor mounting hole 13 is provided on the lower side of the head housing 10 between the holding portions of the condenser lens 4 and the protective glass 5, and the infrared sensor 7 is provided in the sensor mounting hole 13. It is loaded in such a manner that the detection direction is directed to the central portion o on the inner surface side of the protective glass 5, and the signal cable 7a of the infrared sensor 7 is connected to an external personal computer PC. W in the figure indicates a workpiece to be laser welded.

このレーザ加工ヘッド1Aによる加工中の熱レンズ現象のモニタリングを行うには、予め、既述の予備試験として新品の保護ガラス5を用いて該当する加工条件でレーザ加工を行い、その汚れの蓄積によって加工品位が許容限界となるまでの温度計測データと焦点変移Δfとの関係から、加工品位的に許容限界となる焦点変移量F2に対応する保護ガラス5のレーザ光透過中心部oの温度T2を求めておく。そして、この温度T2を参照温度として、レーザ加工ヘッド1Aによる加工中、パーソナルコンピュータPCにおいて、前記温度T2を参照温度として、赤外線センサ7にて継続的にモニターされる温度Txが参照温度T2以下である間は保護ガラス5を継続使用可能とし、該モニター温度Txが参照温度T2を超えた時には保護ガラス5の交換を要するとして、その交換時期の到来をディスプレイ画面での表示、警報ランプ、警報ブザー等で告知するように設定すればよい。これにより、加工品位が許容限界を超える前に保護ガラス5の寿命到来を認知できるから、該保護ガラス5を新品と交換することで高い加工品位を安定的に確保できる。   In order to monitor the thermal lens phenomenon during processing by the laser processing head 1A, laser processing is performed in advance under the corresponding processing conditions using the new protective glass 5 as a preliminary test as described above, and the accumulation of dirt is performed. From the relationship between the temperature measurement data until the processing quality reaches the allowable limit and the focus shift Δf, the temperature T2 of the laser light transmission central portion o of the protective glass 5 corresponding to the focus shift amount F2 that is the allowable limit in processing quality is obtained. I ask for it. Then, using the temperature T2 as a reference temperature, during processing by the laser processing head 1A, in the personal computer PC, the temperature Tx continuously monitored by the infrared sensor 7 using the temperature T2 as a reference temperature is equal to or lower than the reference temperature T2. The protective glass 5 can be used continuously for a certain period of time, and when the monitor temperature Tx exceeds the reference temperature T2, it is necessary to replace the protective glass 5, and the arrival of the replacement time is indicated on the display screen, an alarm lamp, an alarm buzzer. It may be set so as to be notified by, for example. Thereby, since the end of the life of the protective glass 5 can be recognized before the processed quality exceeds the allowable limit, high processed quality can be stably secured by replacing the protective glass 5 with a new one.

図5は、既述の予備試験において、新品の保護ガラス5を使用してレーザ出力を10kWに設定してレーザ加工を行った場合の、該保護ガラス5のレーザ光透過中心部oの温度と焦点変移Δfとの関係を示すデータ例である。このデータでは、使用開始時の保護ガラス5の該中心部oの温度T1が100℃で、その時の焦点変移量F1が1.25mmであったが、汚れによる光吸収で昇温するのに伴って焦点変移が大きくなり、加工品位的に限界となった時の焦点変移量F2は3.75mm、該中心部oの温度T2は200℃であった。つまり、新品の保護ガラス5の使用開始から許容限界に至るまでの焦点変移Δfは2.5mm、この焦点変移Δfに対応するレーザ光透過中心部oの温度上昇ΔTが100℃である。   FIG. 5 shows the temperature of the laser light transmission center portion o of the protective glass 5 when laser processing is performed with the laser output set to 10 kW using the new protective glass 5 in the preliminary test described above. It is an example of data which shows the relationship with focus shift (DELTA) f. In this data, the temperature T1 of the central portion o of the protective glass 5 at the start of use was 100 ° C., and the focus shift amount F1 at that time was 1.25 mm. The focus shift amount F2 when the focus shift became large and the processing quality reached the limit was 3.75 mm, and the temperature T2 of the central portion o was 200 ° C. That is, the focus shift Δf from the start of use of the new protective glass 5 to the allowable limit is 2.5 mm, and the temperature rise ΔT of the laser light transmission center portion o corresponding to the focus shift Δf is 100 ° C.

そこで、同じ機種のレーザ加工ヘッドにより、設定出力10kWでレーザ溶接等の所定の加工を行う場合、前記の参照温度T2を200℃に設定して熱レンズ現象のモニタリングを行い、赤外線センサ7によるモニター温度Txが200℃以下である間は保護ガラス5を継続使用可能とし、該モニター温度Txが200℃を超えた際に保護ガラス5を交換するように設定すればよい。   Therefore, when performing predetermined processing such as laser welding with a set output of 10 kW with the same type of laser processing head, the thermal temperature phenomenon is monitored by setting the reference temperature T2 to 200 ° C., and monitoring by the infrared sensor 7 The protective glass 5 may be continuously used while the temperature Tx is 200 ° C. or lower, and the protective glass 5 may be replaced when the monitor temperature Tx exceeds 200 ° C.

上述した実施形態における熱レンズ現象のモニタリングでは計測対象の光学部品を保護ガラス5としているが、集光レンズ4等のレーザ光路に介在する他の光学部品についても同様に熱レンズ現象のモニタリングを行える。また、例示した実施形態では光学部品(保護ガラス5)のレーザ光透過中心部の温度を計測しているが、そのレーザ光透過中心部oの温度と、周辺部s(図1参照)又はヘッドハウジング10側の支持部10a(図1参照)の温度とを計測し、両計測温度の差に基づいて該光学部品の熱レンズ現象を捉えるように構成してもよい。   In the monitoring of the thermal lens phenomenon in the above-described embodiment, the optical component to be measured is the protective glass 5. However, the thermal lens phenomenon can be similarly monitored for other optical components such as the condensing lens 4 in the laser optical path. . In the illustrated embodiment, the temperature of the laser light transmission center portion of the optical component (protective glass 5) is measured, and the temperature of the laser light transmission center portion o and the peripheral portion s (see FIG. 1) or the head. The temperature of the support portion 10a (see FIG. 1) on the housing 10 side may be measured, and the thermal lens phenomenon of the optical component may be captured based on the difference between the two measured temperatures.

図6は、既述同様の予備試験において、保護ガラス5として新品と既存品を各々使用した場合について、赤外線ビュア8を利用して計測した保護ガラス5のレーザ光透過中心部oと周辺部sの温度差Δtと、フォーカスモニターを利用して計測した焦点変移Δfとの相関を示す。この図6から明らかなように、保護ガラス5の汚れの有無によって温度差Δt及び焦点変移Δfに大きな違いがあり、例えばレーザ出力6kWでは両者の温度差Δtの違いが32℃、焦点変移Δfの違いが0.5mmになっており、該温度差Δtの違いからも熱レンズ現象の度合を判定できることが示唆される。この場合、やはり予備試験において新品の保護ガラス5を使用して得られた該温度差Δtと焦点変移Δfとの関係から、該当加工条件での基準となるレーザ光Lの焦点位置F1と、この焦点位置F1から更に変移して加工品位的に許容限界となる焦点位置F2とを設定し、許容限界の焦点位置F2に対応する温度差Δtを参照基準として、実際の加工中に計測される保護ガラス5の同温度差Δtを対比し、参照基準以下にある間は継続使用可能、参照基準を超えた時に要交換と設定すればよい。   FIG. 6 shows a laser light transmission center portion o and a peripheral portion s of the protective glass 5 measured using the infrared viewer 8 when a new product and an existing product are used as the protective glass 5 in the same preliminary test as described above. The correlation between the temperature difference Δt and the focus shift Δf measured using the focus monitor is shown. As is apparent from FIG. 6, there is a large difference between the temperature difference Δt and the focus shift Δf depending on whether the protective glass 5 is dirty. For example, at a laser output of 6 kW, the difference between the temperature differences Δt is 32 ° C. and the focus shift Δf. The difference is 0.5 mm, and it is suggested that the degree of the thermal lens phenomenon can be determined from the difference in the temperature difference Δt. In this case, from the relationship between the temperature difference Δt obtained using the new protective glass 5 in the preliminary test and the focus shift Δf, the focal position F1 of the laser light L serving as a reference under the processing conditions, Further, the focus position F2 is shifted from the focus position F1 to set a focus position F2 that is an allowable limit in terms of machining quality, and the temperature difference Δt corresponding to the focus position F2 of the allowable limit is used as a reference to measure the protection measured during actual processing. The temperature difference Δt of the glass 5 is compared, and the glass 5 can be used continuously while it is below the reference standard, and should be set as replacement when the reference standard is exceeded.

なお、このように光学部品のレーザ光透過中心部と周辺部又は支持部との温度差を指標として熱レンズ現象をモニタリングする場合、周辺部及び支持部については、汚れ度合が既述の如く不均質になって温度のばらつきを生じ易いため、全周又は複数箇所の計測値から平均温度を算出することが望ましい。この点、温度計測手段として赤外線ビュア8を用いれば、その1基を使用するだけで、得られる温度分布データから、光学部品の中心部の温度に加え、周辺部又は支持部の平均温度も算出できるが、赤外線センサ7に比べて高価である上に大型で場所を取り、操作的にも複雑になるという難点がある。   When the thermal lens phenomenon is monitored by using the temperature difference between the laser light transmission center portion of the optical component and the peripheral portion or the support portion as an index, the degree of contamination of the peripheral portion and the support portion is not as described above. It is desirable to calculate the average temperature from the measurement values at the entire circumference or at a plurality of locations, because the temperature becomes uniform and temperature variations are likely to occur. In this regard, if the infrared viewer 8 is used as the temperature measuring means, only one of them is used, and the average temperature of the peripheral part or the support part is calculated from the obtained temperature distribution data in addition to the temperature of the central part of the optical component. However, it is expensive compared to the infrared sensor 7 and has a disadvantage that it is large and takes up space and becomes complicated in terms of operation.

本発明のレーザ加工ヘッドは、ヘッドハウジング10の構造、コリメータレンズ3や集光レンズ4の如きレンズ系の配置構成、赤外線センサ7等のモニタリング機構の付設構造等、細部構成については実施形態以外に種々設計変更可能である。なお、保護ガラス5としては厚さ1〜5mmのものが好適である。   The laser processing head of the present invention has a detailed configuration such as the structure of the head housing 10, the arrangement of lens systems such as the collimator lens 3 and the condenser lens 4, and the additional structure of the monitoring mechanism such as the infrared sensor 7. Various design changes are possible. In addition, as the protective glass 5, the thing of thickness 1-5mm is suitable.

熱レンズ現象のモニタリングに利用する参照データは既述の予備試験によって得ることになるが、その予備試験はレーザ加工ヘッドのメーカー側で行い、得られた参照データをレーザ加工を行うユーザー側に提供すればよい。従って、ユーザー側では、予備試験に用いる各種の高価な計測機器は不要であり、例えば図4で示すような1基の赤外線センサのみを付設しただけの構造簡単なレーザ加工ヘッドを用い、その加工中に参照データを利用して熱レンズ現象を容易に且つ確実にモニタリングし、もって安定的に高い加工品位を確保することができる。   The reference data used for monitoring the thermal lens phenomenon is obtained by the preliminary test described above. The preliminary test is performed by the laser processing head manufacturer, and the obtained reference data is provided to the laser processing user. do it. Therefore, various expensive measuring instruments used for the preliminary test are not necessary on the user side. For example, a simple laser processing head having only one infrared sensor as shown in FIG. It is possible to easily and reliably monitor the thermal lens phenomenon by using the reference data, and to ensure a stable high processing quality.

1A,1B レーザ加工ヘッド
10 ヘッドハウジング
10a 支持部
2 ファイバー出射端
3 コリメータレンズ
4 集光レンズ
5 保護ガラス
7 赤外線センサ
o レーザ光透過中心部
s 周辺部
DESCRIPTION OF SYMBOLS 1A, 1B Laser processing head 10 Head housing 10a Support part 2 Fiber exit end 3 Collimator lens 4 Condensing lens 5 Protective glass 7 Infrared sensor o Laser light transmission center part s Peripheral part

Claims (7)

ヘッドハウジング内に装着された光学部品のレーザ光透過中心部の温度を計測し、この計測値に基づいて該光学部品の熱レンズ現象を捉えるモニタリング機構を付属してなるレーザ加工ヘッド。   A laser processing head comprising a monitoring mechanism for measuring the temperature of a laser beam transmission center of an optical component mounted in the head housing and capturing a thermal lens phenomenon of the optical component based on the measured value. 光学部品のレーザ光透過中心部の温度を、輻射赤外線を受光して電気信号に変換する1基の赤外線センサによって計測する請求項1に記載のレーザ加工ヘッド。   2. The laser processing head according to claim 1, wherein the temperature of the laser beam transmission center portion of the optical component is measured by a single infrared sensor that receives radiant infrared rays and converts them into an electrical signal. 前記赤外線センサが赤外波長8〜14μmの間に感度帯を持つものである請求項2に記載のレーザ加工ヘッド。   The laser processing head according to claim 2, wherein the infrared sensor has a sensitivity band between infrared wavelengths of 8 to 14 μm. 前記赤外線センサがヘッドハウジングの内部に臨んで取り付けられてなる請求項1〜3の何れかに記載のレーザ加工ヘッド。   The laser processing head according to claim 1, wherein the infrared sensor is attached facing the inside of the head housing. ヘッドハウジング内に装着された光学部品のレーザ光透過中心部の温度と、該光学部品の周辺部又は支持部の温度とを計測し、両計測温度の差に基づいて該光学部品の熱レンズ現象を捉えるモニタリング機構を付属してなるレーザ加工ヘッド。   The temperature of the laser light transmission center part of the optical component mounted in the head housing and the temperature of the peripheral part or the support part of the optical component are measured, and the thermal lens phenomenon of the optical component is based on the difference between the measured temperatures. A laser processing head that comes with a monitoring mechanism to capture. 前記光学部品がヘッドハウジングの先端側に装着された保護ガラスである請求項1〜5の何れかに記載のレーザ加工ヘッド。   The laser processing head according to any one of claims 1 to 5, wherein the optical component is a protective glass mounted on a front end side of a head housing. 熱レンズ現象による焦点変位の許容限界値を設定し、この許容限界値に対応した基準温度と計測温度とを比較し、計測温度が基準温度を上回った際に光学部品の交換を要することを告知する交換告知機能を備える請求項1〜6の何れかに記載のレーザ加工ヘッド。   Set the tolerance limit value for focal displacement due to thermal lens phenomenon, compare the reference temperature corresponding to this tolerance limit value and the measured temperature, and announce that the optical component needs to be replaced when the measured temperature exceeds the reference temperature. The laser processing head according to claim 1, further comprising an exchange notification function.
JP2011051153A 2011-03-09 2011-03-09 Laser processing head Pending JP2012187591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051153A JP2012187591A (en) 2011-03-09 2011-03-09 Laser processing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051153A JP2012187591A (en) 2011-03-09 2011-03-09 Laser processing head

Publications (1)

Publication Number Publication Date
JP2012187591A true JP2012187591A (en) 2012-10-04

Family

ID=47081340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051153A Pending JP2012187591A (en) 2011-03-09 2011-03-09 Laser processing head

Country Status (1)

Country Link
JP (1) JP2012187591A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104551385A (en) * 2015-01-30 2015-04-29 大族激光科技产业集团股份有限公司 Optical fiber laser machining head
JP2015229195A (en) * 2014-06-06 2015-12-21 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser GmbH Incident optical device, laser welding head, and laser welding apparatus with vacuum chamber
US9776280B2 (en) 2014-11-18 2017-10-03 Toyota Jidosha Kabushiki Kaisha Laser welding method
JP2019038000A (en) * 2017-08-23 2019-03-14 ファナック株式会社 Laser processing method for adjusting focal shift according to kind and level of contamination in external optical system before laser processing
WO2019059250A1 (en) * 2017-09-21 2019-03-28 パナソニックIpマネジメント株式会社 Laser processing head and laser processing system using same
JP2019058947A (en) * 2017-09-28 2019-04-18 株式会社アマダホールディングス Protective glass stain detection system and method
KR20190128772A (en) * 2018-05-09 2019-11-19 정우진 Laser protect glass monitoring unit for laser process apparatus
JP2020520810A (en) * 2017-12-22 2020-07-16 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Method and device for monitoring beam guide optics in a laser processing head during laser material processing
JP2020533176A (en) * 2017-09-07 2020-11-19 ザウアー ゲーエムベーハーSAUER GmbH Replaceable optical module for laser machining machines
JP2020536740A (en) * 2017-10-12 2020-12-17 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Equipment for laser machining systems, laser machining systems using it, and methods for adjusting the focal position of optics
JP2021176978A (en) * 2020-05-07 2021-11-11 株式会社ソディック Lamination molding device and method for producing three-dimensional molded part
US20210387281A1 (en) * 2018-10-05 2021-12-16 Precitec Gmbh & Co. Kg Device for setting a focus position of a laser beam in a laser machining system, laser machining system comprising the same, and method for setting a focus position of a laser beam in a laser machining system
US11571750B2 (en) 2020-01-30 2023-02-07 Sodick Co., Ltd. Lamination molding apparatus and method for producing three-dimensional molded object

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122688A (en) * 1987-11-05 1989-05-15 Sumitomo Electric Ind Ltd Automatic focal distance adjusting device for lens for laser beam machining
JP3745225B2 (en) * 1997-12-26 2006-02-15 三菱電機株式会社 Laser processing equipment
WO2011009594A1 (en) * 2009-07-20 2011-01-27 Precitec Kg Laser machining head and method of compensating for the change in focal position of a laser machining head
JP2012157893A (en) * 2011-02-01 2012-08-23 Amada Co Ltd Laser beam machining method and laser beam machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122688A (en) * 1987-11-05 1989-05-15 Sumitomo Electric Ind Ltd Automatic focal distance adjusting device for lens for laser beam machining
JP3745225B2 (en) * 1997-12-26 2006-02-15 三菱電機株式会社 Laser processing equipment
WO2011009594A1 (en) * 2009-07-20 2011-01-27 Precitec Kg Laser machining head and method of compensating for the change in focal position of a laser machining head
JP2012157893A (en) * 2011-02-01 2012-08-23 Amada Co Ltd Laser beam machining method and laser beam machine

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229195A (en) * 2014-06-06 2015-12-21 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser GmbH Incident optical device, laser welding head, and laser welding apparatus with vacuum chamber
US9776280B2 (en) 2014-11-18 2017-10-03 Toyota Jidosha Kabushiki Kaisha Laser welding method
CN104551385A (en) * 2015-01-30 2015-04-29 大族激光科技产业集团股份有限公司 Optical fiber laser machining head
JP2019038000A (en) * 2017-08-23 2019-03-14 ファナック株式会社 Laser processing method for adjusting focal shift according to kind and level of contamination in external optical system before laser processing
US10946484B2 (en) 2017-08-23 2021-03-16 Fanuc Corporation Laser machining method adjusting focus shift depending on type and level of contamination of external optical system before laser machining
JP2020533176A (en) * 2017-09-07 2020-11-19 ザウアー ゲーエムベーハーSAUER GmbH Replaceable optical module for laser machining machines
JP7265533B2 (en) 2017-09-07 2023-04-26 ザウアー ゲーエムベーハー Interchangeable optical modules for laser processing machines
US11927825B2 (en) 2017-09-07 2024-03-12 Sauer Gmbh Exchangeable optical module for a laser machining machine
CN111093884A (en) * 2017-09-21 2020-05-01 松下知识产权经营株式会社 Laser processing head and laser processing system using same
JPWO2019059250A1 (en) * 2017-09-21 2020-10-15 パナソニックIpマネジメント株式会社 Laser processing head and laser processing system using it
US11471973B2 (en) 2017-09-21 2022-10-18 Panasonic Intellectual Property Management Co., Ltd. Laser processing head and laser processing system using same
EP3685953A4 (en) * 2017-09-21 2021-03-03 Panasonic Intellectual Property Management Co., Ltd. Laser processing head and laser processing system using same
US11904406B2 (en) 2017-09-21 2024-02-20 Panasonic Intellectual Property Management Co., Ltd. Laser processing head and laser processing system using same
JP7340733B2 (en) 2017-09-21 2023-09-08 パナソニックIpマネジメント株式会社 Laser processing head and laser processing system using it
CN111093884B (en) * 2017-09-21 2022-05-24 松下知识产权经营株式会社 Laser processing head and laser processing system using same
WO2019059250A1 (en) * 2017-09-21 2019-03-28 パナソニックIpマネジメント株式会社 Laser processing head and laser processing system using same
JP2019058947A (en) * 2017-09-28 2019-04-18 株式会社アマダホールディングス Protective glass stain detection system and method
JP2020536740A (en) * 2017-10-12 2020-12-17 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Equipment for laser machining systems, laser machining systems using it, and methods for adjusting the focal position of optics
JP2020520810A (en) * 2017-12-22 2020-07-16 プレシテック ゲーエムベーハー ウント ツェーオー カーゲー Method and device for monitoring beam guide optics in a laser processing head during laser material processing
KR20190128772A (en) * 2018-05-09 2019-11-19 정우진 Laser protect glass monitoring unit for laser process apparatus
KR102105097B1 (en) * 2018-05-09 2020-04-27 정우진 Laser protect glass monitoring unit for laser process apparatus
US20210387281A1 (en) * 2018-10-05 2021-12-16 Precitec Gmbh & Co. Kg Device for setting a focus position of a laser beam in a laser machining system, laser machining system comprising the same, and method for setting a focus position of a laser beam in a laser machining system
US11571750B2 (en) 2020-01-30 2023-02-07 Sodick Co., Ltd. Lamination molding apparatus and method for producing three-dimensional molded object
JP7096284B2 (en) 2020-05-07 2022-07-05 株式会社ソディック Manufacturing method for laminated modeling equipment and 3D modeling
JP2021176978A (en) * 2020-05-07 2021-11-11 株式会社ソディック Lamination molding device and method for producing three-dimensional molded part

Similar Documents

Publication Publication Date Title
JP2012187591A (en) Laser processing head
US8094036B2 (en) Monitoring device for a laser machining device
US9116131B2 (en) Method and monitoring device for the detection and monitoring of the contamination of an optical component in a device for laser material processing
JP5911903B2 (en) Beam profiler, laser oscillator, and laser processing apparatus for measuring intensity distribution of laser light
JP6865301B2 (en) Methods and Devices for Monitoring Beam Guided Optics in Laser Machining Heads During Laser Material Machining
JP2007044739A (en) Laser machining monitoring device
JP4668229B2 (en) Measurement abnormality detection device and measurement abnormality detection method for infrared radiation thermometer
US11904406B2 (en) Laser processing head and laser processing system using same
JP2005007482A (en) Device for monitoring optical element of working head of workpiece thermal processing machine
JP5414645B2 (en) Laser processing equipment
JP6757018B2 (en) Protective glass stain detection device, laser processing machine equipped with it, and protective glass stain detection method
JP6145719B2 (en) Laser processing apparatus and laser processing method
JP2020179405A (en) Detection device and detection method for fume contamination on protective glass
KR20160019176A (en) Laser welding machine having a temperature control function
JP2019058947A (en) Protective glass stain detection system and method
JP2010094693A (en) Laser machining apparatus and laser machining method
JP7126223B2 (en) Laser processing equipment
JP2013086110A (en) Optical component diagnostic method for laser processing device, and the laser processing device
JP2010110796A (en) Method for monitoring of laser machining and device
JP7296769B2 (en) Spatter detection device, laser processing device, and method for detecting spatter
JP2019201031A (en) Converging optical unit and laser oscillator using the same, laser processing device, and abnormality diagnostic method of laser oscillator
WO2021220874A1 (en) Laser processing head and laser processing device
KR100617241B1 (en) Apparatus for monitoring weld quality
Neumeier et al. Online condition measurement of high power solid state laser cutting optics using ultrasound signals
KR101138453B1 (en) system provided laserbeam detraction with excellent linear characteristic and monitoring of optical system pollution.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150501