JP2012187560A - Catalyst and method for producing the same - Google Patents

Catalyst and method for producing the same Download PDF

Info

Publication number
JP2012187560A
JP2012187560A JP2011055746A JP2011055746A JP2012187560A JP 2012187560 A JP2012187560 A JP 2012187560A JP 2011055746 A JP2011055746 A JP 2011055746A JP 2011055746 A JP2011055746 A JP 2011055746A JP 2012187560 A JP2012187560 A JP 2012187560A
Authority
JP
Japan
Prior art keywords
catalyst
silica
present
thin film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011055746A
Other languages
Japanese (ja)
Inventor
Hiroshi Akama
弘 赤間
Shoji Mishima
彰司 三島
Tomohiko Okada
友彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Shinshu University NUC
Original Assignee
Nissan Motor Co Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Shinshu University NUC filed Critical Nissan Motor Co Ltd
Priority to JP2011055746A priority Critical patent/JP2012187560A/en
Publication of JP2012187560A publication Critical patent/JP2012187560A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of exhibiting excellent catalyst performance and promoting an efficient reaction even with a small carried amount of a catalyst component, and a method for producing such a catalyst.SOLUTION: The catalyst is formed in a curved double thin film structure with a curvature, and uses silica with a diameter of 0.1-10 μm to carry the catalyst component. The silica in use preferably contains a methyl group and has the content of C derived from the methyl group being 3 mass% or more and less than 25 mass%.

Description

本発明は、貴金属元素や希少元素と称される成分を含有する触媒と、その製法に係わり、特に、触媒量が少なくても高性能を発揮できる触媒と、そのような触媒の製造方法に関するものである。   The present invention relates to a catalyst containing a component called a noble metal element or a rare element, and a method for producing the catalyst, and more particularly to a catalyst capable of exhibiting high performance even with a small amount of catalyst and a method for producing such a catalyst. It is.

近年、自動車の世界的需要拡大を背景に、地球環境に対する配慮から、排気ガスのクリーン化や二酸化炭素(CO)排出量の低減が叫ばれており、対応する排気浄化技術やエネルギー関連技術の開発が精力的に行われている。
そのいずれについても核となる技術は触媒であり、要求性能が高いために、貴金属元素や希少元素と称される成分が比較的多く用いられている。
In recent years, against the backdrop of expanding global demand for automobiles, due to consideration for the global environment, clean exhaust gas and reduction of carbon dioxide (CO 2 ) emissions have been screamed. Development is underway.
In any case, the core technology is a catalyst, and since the required performance is high, components called noble metal elements and rare elements are used relatively frequently.

例えば、排気浄化触媒については、要求される排気のレベルは年々高くなっており、その性能を実現するために貴金属使用量も増加している。貴金属は高コストであるばかりでなく、資源的にも貴重であり、使用量削減のための技術が重要である。
また、自動車の普及拡大により,エネルギー問題の重要性は一層顕著になりつつあり、より高効率なハイブリッド車、燃料電池車、電気自動車などの電動車の導入も進められている。
For example, with respect to exhaust purification catalysts, the level of exhaust required is increasing year by year, and the amount of noble metal used is also increasing in order to achieve its performance. Precious metals are not only expensive, but also valuable in terms of resources, and techniques for reducing the amount of use are important.
In addition, with the widespread use of automobiles, the importance of energy issues is becoming more prominent, and the introduction of more efficient electric vehicles such as hybrid vehicles, fuel cell vehicles, and electric vehicles is also being promoted.

燃料電池車に対しては、高効率な水素製造法が必要であり、主に改質触媒が用いられる。特に、車上において、バイオエタノールを含む在来の燃料から水素を製造する場合には、より低温で改質反応を促進する必要があり、貴金属触媒が不可欠になる。
さらに、固体電解質型燃料電池(SOFC)の場合には、水素以外の燃料も有効であるが、その場合には予備燃料改質が不可欠であり、ここにも高性能が要求され、貴金属触媒が用いられる。
For a fuel cell vehicle, a highly efficient hydrogen production method is required, and a reforming catalyst is mainly used. In particular, when hydrogen is produced from a conventional fuel containing bioethanol on a vehicle, it is necessary to promote the reforming reaction at a lower temperature, and a noble metal catalyst becomes indispensable.
Furthermore, in the case of a solid oxide fuel cell (SOFC), fuels other than hydrogen are effective, but in that case, preliminary fuel reforming is indispensable. Used.

また、内燃機関を含む熱マネージメントシステムに関しても触媒の適用が提案されている。
すなわち、内燃機関からは、排気ガスと共に熱も放出され、エネルギーが無駄に捨てられている。排気ガス及び排熱のエネルギーを効果的に回収できれば、COを直接削減でき、なおかつ大きな燃費向上効果が得られることになる。
Also, the application of a catalyst has been proposed for a heat management system including an internal combustion engine.
That is, heat is released from the internal combustion engine together with the exhaust gas, and energy is wasted. If the exhaust gas and exhaust heat energy can be recovered effectively, CO 2 can be directly reduced and a great fuel efficiency improvement effect can be obtained.

このため、燃費の改善を狙って、自動車上で排気熱を利用した吸熱型の燃料改質反応を行う提案が多くなされている。その一例として、下記特許文献1があげられる。   For this reason, many proposals have been made to perform an endothermic fuel reforming reaction using exhaust heat on an automobile with the aim of improving fuel efficiency. As an example, Patent Document 1 below can be cited.

特開2004−92520号公報JP 2004-92520 A

この場合、排気ガス中の水分やCOを活用し、水蒸気改質やCO改質反応(ドライリフォーミング)といった吸熱型の燃料改質反応を行うことによって、化学的にエネルギー回収が可能になる。すなわち、反応時に燃料が排気熱を吸収することで、供給した燃料よりも熱量の多い水素含有改質ガス燃料が得られることになる。また、得られた水素は、内燃機関に活用することにより燃焼を促進することができ、燃焼改善による燃費向上も期待できるので、大きなCO削減効果が可能になる。
この吸熱型改質反応を促進するにも触媒が必要であり、より低温の600℃以下の条件でも十分に反応を促進するには高担持量の触媒が必要とされる。この場合にも,貴金属使用量の削減が重要な課題となる。
In this case, it is possible to recover energy chemically by performing an endothermic fuel reforming reaction such as steam reforming or CO 2 reforming reaction (dry reforming) using moisture or CO 2 in the exhaust gas. Become. That is, when the fuel absorbs the exhaust heat during the reaction, a hydrogen-containing reformed gas fuel having a larger amount of heat than the supplied fuel can be obtained. In addition, the obtained hydrogen can be used for an internal combustion engine to promote combustion, and an improvement in fuel consumption due to improved combustion can be expected. Therefore, a large CO 2 reduction effect is possible.
A catalyst is also required to promote the endothermic reforming reaction, and a high supported amount of catalyst is required to sufficiently promote the reaction even at a lower temperature of 600 ° C. or lower. In this case as well, reducing the amount of precious metal used is an important issue.

以上、自動車に使わる触媒に関して取り上げても、排気触媒、燃料電池、燃料改質触媒などが挙げられるように、触媒は環境・エネルギー分野で核として使われ、要求される高い性能に応えるために、貴金属成分や希少高機能元素成分の使用量が増加している。高い性能を維持したまま触媒の使用量を削減するための有効な方策が切望されている。   As mentioned above, even when dealing with catalysts used in automobiles, such as exhaust catalysts, fuel cells, fuel reforming catalysts, etc., catalysts are used as the core in the environment and energy fields to meet the required high performance. The amount of precious metal components and rare high-performance element components used is increasing. There is an urgent need for effective measures to reduce the amount of catalyst used while maintaining high performance.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、触媒量が少なくても高性能を発揮できる触媒と、そのような触媒の製法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide a catalyst capable of exhibiting high performance even with a small amount of catalyst and a method for producing such a catalyst. There is to do.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、曲率を持つ湾曲状の二重薄膜構造を有し、直径が0.1〜10μmのシリカ材料を用いることにより、触媒成分の有効利用率を高めて効率的に反応を促進でき、触媒の使用量を大幅に削減できることを見出し、本発明を完成するに到った。   As a result of intensive investigations to achieve the above object, the present inventors have used a silica material having a curved double thin film structure with a curvature and a diameter of 0.1 to 10 μm, thereby providing a catalyst. It has been found that the effective utilization rate of the components can be increased to efficiently promote the reaction, and the amount of the catalyst used can be greatly reduced, and the present invention has been completed.

すなわち、本発明は、上記知見に基づくものであって、本発明の触媒は、触媒成分とシリカを含むものであって、当該シリカは湾曲した二重薄膜構造を有し、直径が0.1〜10μmであることを特徴としている。
また、本発明の触媒製造方法においては、上記シリカと触媒成分を複合化するに際して、メチル(CH)基を有し、このメチル基に由来するCの含有量が3質量%以上25質量%未満であるシリカを用いることを特徴とする。
That is, the present invention is based on the above knowledge, and the catalyst of the present invention includes a catalyst component and silica, and the silica has a curved double thin film structure and a diameter of 0.1. 10 to 10 μm.
Further, in the catalyst production method of the present invention, when the silica and the catalyst component are combined, the content of C having a methyl (CH 3 ) group and derived from this methyl group is 3% by mass or more and 25% by mass. It is characterized by using silica which is less than.

本発明によれば、曲率をもつ湾曲状形態の二重薄膜構造を持ち、直径が0.1〜10μmのシリカを触媒に含有させ、ベース担体としたことから、少ない触媒量でも効率的に反応を促進させることができ、さらには、副反応を抑えて触媒寿命を伸ばすことができるため、触媒の使用量を大幅に削減することができる。   According to the present invention, a double thin film structure having a curved shape with a curvature, silica having a diameter of 0.1 to 10 μm is contained in the catalyst, and the base carrier is used, so that the reaction can be efficiently performed even with a small amount of catalyst. Further, since the catalyst life can be extended by suppressing side reactions, the amount of catalyst used can be greatly reduced.

本発明の触媒に用いる半球カップ状二重薄膜構造シリカのTEM(透過型電子顕微鏡)写真である。It is a TEM (transmission electron microscope) photograph of the hemispherical cup-shaped double thin film structure silica used for the catalyst of this invention. 本発明の実施例1による触媒のSEM及びTEM(透過型電子顕微鏡)写真である。It is a SEM and TEM (transmission electron microscope) photograph of the catalyst by Example 1 of this invention. 本発明の比較例1による触媒のSEM及びTEM写真である。It is a SEM and TEM photograph of the catalyst by the comparative example 1 of this invention. 本発明の実施例1及び比較例1による触媒のTEM写真に基づくCo酸化物の粒子径からそれらの批評面積を算出して比較したグラフである。It is the graph which calculated and compared those critical areas from the particle diameter of Co oxide based on the TEM photograph of the catalyst by Example 1 of this invention, and the comparative example 1. FIG. 本発明の実施例に用いたマイクロリアクターの構造を示す概略図である。It is the schematic which shows the structure of the microreactor used for the Example of this invention. 本発明の実施例及び比較例の触媒による水蒸気改質反応における水素生成能を比較して示すグラフである。It is a graph which compares and shows the hydrogen production ability in the steam reforming reaction by the catalyst of the Example of this invention, and a comparative example.

以下に、本発明の触媒について、これに用いるシリカの構造や、これに担持する触媒成分、担持方法などと共に、さらに詳細に説明する。なお、本明細書において、濃度、含有量、配合量などについての「%」は、特記しない限り、質量百分率を意味するものとする。   In the following, the catalyst of the present invention will be described in more detail together with the structure of silica used in the catalyst, the catalyst components supported thereon, the loading method, and the like. In the present specification, “%” for concentration, content, blending amount, etc. means mass percentage unless otherwise specified.

本発明の触媒は、上記したように、例えば半球カップ状、ボウル状、あるいは皿状に湾曲した曲率を持つ二重薄膜構造をなし、直径が0.1〜10μmのシリカを含有し、これに金属や金属酸化物などの触媒成分を複合化(担持)させたものである。
このシリカの膜厚は、例えば10〜100nmであるが、二重構造を持つために高い機械的強度を有する。
As described above, the catalyst of the present invention has, for example, a double thin film structure having a curvature curved in a hemispherical cup shape, a bowl shape, or a dish shape, and contains silica having a diameter of 0.1 to 10 μm. A catalyst component such as metal or metal oxide is compounded (supported).
The thickness of the silica is, for example, 10 to 100 nm, but has a high mechanical strength due to the double structure.

このようなシリカは、後述するように、W/O型エマルションに、鎖長が異なる有機ケイ素ハロゲン化物を添加し、重縮合させて得られたオルガノシロキサンを焼成することによって得ることができる。
焼成前のオルガノシロキサンは、無数の細孔を有する薄膜から成る中空球状のものであって、焼成によって中空部内の水が除去され、薄膜が密着することによって、あたかもゴムボールから空気を抜いた場合に潰れる状態となるが如く、カップ状あるいは皿状の二重薄膜構造を形成するものである。
As will be described later, such silica can be obtained by adding organosilicon halides having different chain lengths to a W / O type emulsion and calcining an organosiloxane obtained by polycondensation.
The organosiloxane before firing is a hollow sphere made of a thin film with countless pores, and the water in the hollow part is removed by firing and the thin film adheres, as if the air is extracted from the rubber balls In this way, a cup-shaped or dish-shaped double thin film structure is formed.

当該シリカは、このように、球形薄膜の中空部が潰れて膜同士が密着したものであるから、ほぼ円形の最大外径面をとる。したがって、本発明において「直径」とは、この外径を意味するものとする。
また、「膜厚」とは二重薄膜構造をなすシリカの一方の薄膜の厚さを意味するものであるからして、当該シリカ全体の肉厚としては、上記膜厚の2倍以上になる。
Thus, since the hollow part of a spherical thin film is crushed and the membranes are in close contact with each other, the silica has a substantially circular maximum outer diameter surface. Therefore, in the present invention, “diameter” means this outer diameter.
Moreover, since the “film thickness” means the thickness of one thin film of silica having a double thin film structure, the thickness of the entire silica is more than twice the above film thickness. .

上記によって得られた半球状のメチルシロキサン薄膜は、焼成が進むにしたがって、細孔やメチル(CH)基が除去されて、最終的にシリカとなる。
したがって、本発明に言う「シリカ」には、必ずしも完全なシリカ(SiO)に限らず、メチル基を備えたものについては、メチルシロキサンとシリカとの中間状態のものも含まれることになる。
The hemispherical methylsiloxane thin film obtained as described above is finally converted to silica by removing pores and methyl (CH 3 ) groups as firing proceeds.
Therefore, the “silica” referred to in the present invention is not necessarily limited to perfect silica (SiO 2 ), and those having a methyl group include those in an intermediate state between methylsiloxane and silica.

本発明に用いるシリカは、膜厚が10〜100nmであり、薄膜構造を持つため、500℃以上での焼成後でも、20〜100m/g程度の比較的高い比表面積を持ちながら、0.05cm/g以下の小さな細孔容積を有し、前表面に占める外表面の割合が高いために触媒成分を反応場に露出させることができる。このため、反応分子が触媒成分に容易に接近でき、触媒の有効利用率が高くなって、触媒の使用量を大幅に削減できるものと考えられる。 Since the silica used in the present invention has a film thickness of 10 to 100 nm and has a thin film structure, it has a relatively high specific surface area of about 20 to 100 m 2 / g even after firing at 500 ° C. Since it has a small pore volume of 05 cm 2 / g or less and the ratio of the outer surface to the front surface is high, the catalyst component can be exposed to the reaction field. For this reason, it is considered that the reaction molecule can easily approach the catalyst component, the effective utilization rate of the catalyst is increased, and the amount of the catalyst used can be greatly reduced.

また、例えば、燃料改質反応においては、油である燃料とHO又はCOを反応させる。すなわち、疎水性分子と親水性分子を反応させることになる。従来の触媒は、アルミナ、セリア、マグネシアなどの酸化物表面に各種の触媒成分を担持してなるものである。
酸化物表面はHO又はCOを活性化する助触媒としても作用するが、親水性であるため、燃料の接近を抑制する場合がある。本発明で用いるシリカは、後述するように、粒子表面にメチル基を持たせることができ、燃料に対する親和性を制御できるため、反応促進に有効に作用することができる。
In addition, for example, in the fuel reforming reaction, fuel that is oil is reacted with H 2 O or CO 2 . That is, a hydrophobic molecule and a hydrophilic molecule are reacted. Conventional catalysts have various catalyst components supported on oxide surfaces such as alumina, ceria, and magnesia.
The oxide surface also acts as a co-catalyst for activating H 2 O or CO 2 , but since it is hydrophilic, it may suppress the approach of fuel. As will be described later, the silica used in the present invention can have a methyl group on the particle surface and can control the affinity for fuel, so that it can effectively act to promote the reaction.

本発明に用いるシリカの比表面積は、焼成することによって制御することができるが、焼成温度に応じて数m/g〜400m/g程度の値をとることができる。触媒の担体として好ましい比表面積値は、上記のように20〜100m/gであり、これに対応する焼成温度は480〜600℃である。 The specific surface area of silica used in the present invention can be controlled by firing, it can have a value of about several m 2 / g~400m 2 / g according to the firing temperature. A preferable specific surface area value as a catalyst carrier is 20 to 100 m 2 / g as described above, and the corresponding firing temperature is 480 to 600 ° C.

また、シリカの表面には、その製法に由来してメチル基を有することは上述のとおりであるが、その量についても焼成温度によって制御することができる。
焼成温度を700℃以上とすると、メチル基は、そのほとんどが分解・脱離し、極めて緻密なシリカ粒子となるが、この場合には、上述したようなメチル基による効果が期待できなくなる。
Moreover, although it is as above-mentioned that it has a methyl group on the surface of a silica originating in the manufacturing method, The quantity can also be controlled by a calcination temperature.
If the calcination temperature is 700 ° C. or higher, most of the methyl groups are decomposed / desorbed to form extremely dense silica particles, but in this case, the effect of the methyl groups as described above cannot be expected.

本発明の触媒においては、触媒成分として、Pt(白金)、Pd(パラジウム)、Rh(ロジウム)、Ni(ニッケル)、Co(コバルト)、Cu(銅)、Mn(マンガン)、Fe(鉄)、Al(アルミニウム)、Zr(ジルコニウム)、La(ランタン)、Ce(セリウム)、Mg(マグネシウム)及びCa(カルシウム)から成る群より選ばれた少なくとも1種の金属と、これら金属の少なくとも1種の酸化物の一方又は両方を含むことが有効である。特に、使用条件が厳しい自動車用途の燃料改質触媒では、Rhが重要な触媒成分である。
これによって、触媒金属と金属酸化物成分が外表面上に分散され、反応分子と接触が容易になり、触媒の有効利用率が高まるものと考えられる。さらには、細孔容積が小さく、反応生成物が直ちに触媒表面から脱離除去されるので、副反応の進行を抑えることができる。この場合、コーキングが抑制され、触媒寿命を向上できる。したがって、触媒再生、触媒交換の頻度も減らすことができるため、貴重な資源の節約にもなり、経済的である。
In the catalyst of the present invention, Pt (platinum), Pd (palladium), Rh (rhodium), Ni (nickel), Co (cobalt), Cu (copper), Mn (manganese), Fe (iron) are used as catalyst components. At least one metal selected from the group consisting of Al (aluminum), Zr (zirconium), La (lanthanum), Ce (cerium), Mg (magnesium) and Ca (calcium), and at least one of these metals It is effective to include one or both of these oxides. In particular, Rh is an important catalyst component in a fuel reforming catalyst for automobiles, which has severe use conditions.
As a result, the catalyst metal and the metal oxide component are dispersed on the outer surface, and contact with the reaction molecule is facilitated, so that the effective utilization rate of the catalyst is increased. Furthermore, since the pore volume is small and the reaction product is immediately desorbed and removed from the catalyst surface, the progress of the side reaction can be suppressed. In this case, coking is suppressed and the catalyst life can be improved. Therefore, the frequency of catalyst regeneration and catalyst replacement can be reduced, which saves valuable resources and is economical.

本発明の触媒においては、上記金属酸化物の含有量は、1〜50%とすることが好適である。これらの成分量が少ないと効果が得られず、多過ぎると、シリカ担体が金属酸化物に被覆されてその効果を発揮できなくなる。   In the catalyst of the present invention, the content of the metal oxide is preferably 1 to 50%. If the amount of these components is small, the effect cannot be obtained. If the amount is too large, the silica support is coated with the metal oxide and the effect cannot be exhibited.

本発明の触媒製造方法においては、シリカ表面のメチル基が重要な役割を持つ。すなわち、シリカに触媒成分、すなわち金属触媒と金属酸化物を担持する工程において、シリカがメチル基を(Cとして)3%以上、25%未満含有した状態で触媒成分を担持することが有効である。
このとき、メチル基が少ないと、触媒担持の基点がなくなるために、成分が凝集する。一方、メチル基が多すぎると、触媒成分同士の距離、分散度が制御し難くなる。メチル基が多すぎると、表面疎水性が強くなり、HOやCOをカウンター反応物とするような触媒反応の場合、それらの接近を妨げてしまうため、好ましくない。
In the catalyst production method of the present invention, the methyl group on the silica surface plays an important role. That is, in the step of supporting a catalyst component, that is, a metal catalyst and a metal oxide on silica, it is effective to support the catalyst component in a state where the silica contains a methyl group (as C) of 3% or more and less than 25%. .
At this time, if the number of methyl groups is small, the base point for supporting the catalyst disappears and the components aggregate. On the other hand, when there are too many methyl groups, it becomes difficult to control the distance between the catalyst components and the degree of dispersion. When there are too many methyl groups, surface hydrophobicity becomes strong, and in the case of a catalytic reaction in which H 2 O or CO 2 is used as a counter reaction product, the approach thereof is hindered.

また、本発明の触媒の製法においては、触媒成分を構成する金属触媒及び金属酸化物の一方又は両方の出発塩として、有機酸塩や有機錯塩、あるいは金属アルコキシドなどの有機化合物を用いることが望ましい。
一般に、シリカ表面は比較的不活性であり、金属触媒や金属酸化物成分を微粒子状態で分散保持することが難しいが、本発明においては、金属触媒や金属酸化物の出発原料として、上記のような有機化合物を用いることによって、シリカ表面のメチル基を基点として触媒成分を有効に分散担持することができ、高性能を発揮できる。
Further, in the process for producing the catalyst of the present invention, it is desirable to use an organic acid salt, an organic complex salt, or an organic compound such as a metal alkoxide as a starting salt of one or both of the metal catalyst and the metal oxide constituting the catalyst component. .
In general, the silica surface is relatively inactive, and it is difficult to disperse and hold the metal catalyst or metal oxide component in a fine particle state. However, in the present invention, the starting material for the metal catalyst or metal oxide is as described above. By using such an organic compound, the catalyst component can be effectively dispersed and supported with the methyl group on the silica surface as a base point, and high performance can be exhibited.

本発明の触媒の形態としては、例えば、セラミックス製やメタル製のハニカム状やフォーム状のモノリス担体に塗布したものとすることができる。また、ハニカム状の担体におけるセル内部にオフセットフィンを設けた「オフセットハニカム」は、触媒の有効利用率を高めるうえで有効である。
当該モノリス担体のセル数としては、1平方インチあたり400〜900セル程度のものを好適に用いることができる。
As a form of the catalyst of the present invention, for example, it can be applied to a ceramic or metal honeycomb or foam monolith support. Further, the “offset honeycomb” in which offset fins are provided inside the cells of the honeycomb-shaped carrier is effective in increasing the effective utilization rate of the catalyst.
As the number of cells of the monolith carrier, those having about 400 to 900 cells per square inch can be suitably used.

モノリス担体への触媒の塗布量は、モノリスの材質にもよるが、50〜200g/L程度が好ましい。気孔を持たないメタル製の担体の場合は、比較的少量の触媒塗布量でも触媒粒子を有効に活用できるが、モノリス担体表面への触媒粒子の付着力が問題となる。   The amount of the catalyst applied to the monolith support is preferably about 50 to 200 g / L, although it depends on the material of the monolith. In the case of a metal carrier having no pores, the catalyst particles can be effectively used even with a relatively small amount of catalyst applied, but the adhesion of the catalyst particles to the surface of the monolith carrier becomes a problem.

一方、気孔を有するコージェライトなどのセラミックス製担体では、モノリス担体表面の気孔に触媒粒子が入り込み埋没するために比較的多くの触媒塗布量が必要になるが、モノリス担体表面への触媒粒子の付着力は比較的強固になる。しかし、触媒塗布量が多過ぎると、内側の粒子には燃料分子が到達し難くなるため無駄が生ずる。特に塗布量が200g/Lを超えると、内側に塗布された触媒層には、反応分子が到達できない触媒層の割合が無視できなくなり、かつ圧力損失も大きくなるために好ましくない。   On the other hand, in the case of a ceramic carrier such as cordierite having pores, a relatively large amount of catalyst is required for the catalyst particles to enter and bury the pores on the surface of the monolith carrier, but the catalyst particles are attached to the surface of the monolith carrier. The wearing power is relatively strong. However, if the amount of catalyst applied is too large, fuel molecules will hardly reach the inner particles, resulting in waste. In particular, when the coating amount exceeds 200 g / L, the ratio of the catalyst layer that cannot be reached by the reactive molecules cannot be ignored in the catalyst layer coated on the inner side, and the pressure loss increases, which is not preferable.

以下、本発明を実施例及び比較例に基づいて、さらに具体的に説明する。なお、本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples and comparative examples. The present invention is not limited to these examples.

〔実施例1〕
(1)シリカの調製
イオン交換水7.5mL、イソオクタン(2,2,4−トリメチルペンタン)500mLを混合し、よく撹拌することによって油中に水を分散させた。そこに、オクチルトリクロロシラン(OTCS)を5.8g添加して超音波撹拌することにより、油中水(W/O)エマルションを調製した。
さらに、メチルトリクロロシラン(MTCS)を2.7g添加して、よく撹拌した後、ろ過、洗浄、乾燥したのち、大気中400℃で3時間、さらに450℃で2時間の焼成を行うことによって、二重薄膜構造を有し、半球カップ状をなすシリカ担体を得た。
[Example 1]
(1) Preparation of silica Ion exchange water 7.5mL and isooctane (2,2,4-trimethylpentane) 500mL were mixed, and water was disperse | distributed in oil by stirring well. Thereto, 5.8 g of octyltrichlorosilane (OTCS) was added and ultrasonically stirred to prepare a water-in-oil (W / O) emulsion.
Furthermore, by adding 2.7 g of methyltrichlorosilane (MTCS), stirring well, filtering, washing and drying, followed by firing in the atmosphere at 400 ° C. for 3 hours and further at 450 ° C. for 2 hours, A silica carrier having a double thin film structure and a hemispherical cup shape was obtained.

得られたシリカのTEM(透過型電子顕微鏡)写真を図1に示す。なお、当該シリカの比表面積は160m/g、細孔容積は0.049cm/g、また、TEM観察による平均直径は1.2μm、膜厚は20nm程度、メチル基の含有量については、C量として13%であった。 A TEM (transmission electron microscope) photograph of the obtained silica is shown in FIG. The specific surface area of the silica is 160 m 2 / g, the pore volume is 0.049 cm 3 / g, the average diameter by TEM observation is 1.2 μm, the film thickness is about 20 nm, and the methyl group content is as follows: The amount of C was 13%.

(2)金属酸化物触媒の担持
酢酸コバルト(Co(CHCOO))をエタノールに溶解し、上記で得られた薄膜シリカを添加・混合し、2時間撹拌した後、乾燥してエタノール及び水分を取り除いた。
次いで、大気中で500℃2時間焼成することにより、上記シリカ担体に対してCo酸化物が、Coとして10%担持された本発明の改質触媒1を得た。
(2) Support of metal oxide catalyst Cobalt acetate (Co (CH 3 COO) 2 ) was dissolved in ethanol, the thin film silica obtained above was added and mixed, stirred for 2 hours, dried, and dried with ethanol and Removed moisture.
Next, the reforming catalyst 1 of the present invention in which 10% of Co oxide was supported as Co on the silica support was obtained by firing at 500 ° C. for 2 hours in the atmosphere.

上記により得られた改質触媒1のSEM(走査型電子顕微鏡)写真及びTEM写真を図2に示す。TEM写真における細かい点はCo酸化物粒子であり、シリカ表面によく分散していることが分かる。その平均粒径は10nm程度になっている。   FIG. 2 shows an SEM (scanning electron microscope) photograph and a TEM photograph of the reforming catalyst 1 obtained as described above. It can be seen that the fine points in the TEM photograph are Co oxide particles and are well dispersed on the silica surface. The average particle size is about 10 nm.

〔実施例2〕
金属酸化物源として、酢酸ジルコニル(ZrO(CHCOO))と、酢酸ランタン1.5水和物(La(CHCOO)・1.5HO)をエタノールに溶解し、実施例1で得られた半球カップ状二重薄膜構造のシリカ担体を添加・混合し、2時間撹拌した後、乾燥してエタノールおよび水分を取り除いた。
次いで、大気中で500℃2時間焼成することにより、ZrO−La(質量比90:10)が上記シリカ担体に対して12%担持された触媒前駆体を得た。
[Example 2]
As a metal oxide source, zirconyl acetate (ZrO (CH 3 COO) 2 ) and lanthanum acetate hemihydrate (La (CH 3 COO) 3 · 1.5H 2 O) were dissolved in ethanol. The silica support having a hemispherical cup-shaped double thin film structure obtained in 1 was added and mixed, stirred for 2 hours, and then dried to remove ethanol and moisture.
Then, by firing in air 500 ° C. 2 h, ZrO 2 -La 2 O 3 (weight ratio 90:10) to obtain 12% supported catalyst precursor with respect to the silica support.

そして、硝酸ロジウム(Rh(NO)を含む水溶液に上記触媒前駆体1を含浸させ、乾燥した後、500℃で2時間の焼成を行って、Rhが1.0%担持された本発明の改質触媒2を得た。 Then, the catalyst precursor 1 is impregnated in an aqueous solution containing rhodium nitrate (Rh (NO 3 ) 3 ), dried, and then calcined at 500 ° C. for 2 hours, whereby Rh is supported at 1.0%. An inventive reforming catalyst 2 was obtained.

〔実施例3〕
金属酸化物源として、酢酸セリウム(Ce(CHCOO)・HO)を用いて上記実施例2と全く同様の操作を繰り返すことによって、上記シリカ担体に対してCeOが36%担持された触媒前駆体を得た。
次いで、実施例2と同様のRh担持工程を実施し、Rhが1.0%担持された本発明の改質触媒3を得た。
Example 3
By repeating the same operation as in Example 2 using cerium acetate (Ce (CH 3 COO) 3 .H 2 O) as a metal oxide source, 36% of CeO 2 was supported on the silica support. The obtained catalyst precursor was obtained.
Next, the same Rh supporting step as in Example 2 was performed to obtain the reforming catalyst 3 of the present invention in which 1.0% Rh was supported.

〔実施例4〕
金属酸化物源として、酢酸セリウム(Ce(CHCOO)・HO)と酢酸ジルコニル(ZrO(CHCOO))とを用いて、上記実施例2と全く同様の操作を繰り返すことによって、上記シリカ担体に対してCeO−ZrO(質量比80:20)が28%担持された触媒前駆体を得た。
次いで、同様のRh担持工程を実施し、Rhが1.0%担持された本発明の改質触媒4を得た。
Example 4
Using cerium acetate (Ce (CH 3 COO) 3 .H 2 O) and zirconyl acetate (ZrO (CH 3 COO) 2 ) as the metal oxide source, the same operation as in Example 2 is repeated. Thus, a catalyst precursor in which 28% of CeO 2 —ZrO 2 (mass ratio 80:20) was supported on the silica support was obtained.
Next, the same Rh supporting step was performed to obtain the reforming catalyst 4 of the present invention in which 1.0% Rh was supported.

〔比較例1〜4〕
上記した半球カップ状の二重薄膜構造シリカ担体に替えて、比表面積が160m/gの無定形シリカ粉末を担体として用いたこと以外は、上記実施例1〜4と全く同様の操作をそれぞれ繰り返すことによって、比較例1〜4として、それぞれ参照触媒1〜4を得た。
[Comparative Examples 1-4]
In place of the above-described hemispherical cup-shaped double thin film structure silica support, operations identical to those in Examples 1 to 4 were performed except that amorphous silica powder having a specific surface area of 160 m 2 / g was used as the support. By repeating, the reference catalysts 1-4 were obtained as Comparative Examples 1-4, respectively.

比較例1により得られた参照触媒1のSEM写真及びTEM写真を図3に示す。
図2に示した実施例1による改質触媒1と比較して、Co酸化物粒子が凝集して大きな粒子となっており、本発明による触媒成分の担持法が有効であることがわかる。
The SEM photograph and TEM photograph of the reference catalyst 1 obtained in Comparative Example 1 are shown in FIG.
Compared with the reforming catalyst 1 according to Example 1 shown in FIG. 2, the Co oxide particles are aggregated into large particles, which shows that the catalyst component loading method according to the present invention is effective.

図4には、図2及び図3のTEM写真に基づいてCo酸化物の平均粒子径を求め、それを基にCo酸化物粒子の比表面積を算出した結果を示す。本発明の触媒では、比較参照触媒に対して約3倍もの比表面積が得られた。
本発明において、担体として用いた薄膜シリカ表面には、メチル基が存在しており、メチル基が基点となってCo酸化物の分散性を高めることができるものと考えられる。
FIG. 4 shows the result of calculating the specific surface area of Co oxide particles based on the average particle diameter of Co oxide based on the TEM photographs of FIGS. 2 and 3. With the catalyst of the present invention, a specific surface area of about 3 times that of the comparative reference catalyst was obtained.
In the present invention, a methyl group is present on the surface of the thin-film silica used as the carrier, and it is considered that the dispersibility of the Co oxide can be enhanced by using the methyl group as a base point.

〔燃料改質性能試験〕
図5に示すようなマイクロリアクターを用いて、上記によって得られた実施例及び比較例の粉末触媒0.01gをそれぞれ石英反応管に充填し、ガソリンの模擬燃料として、イソオクタンを用いた水蒸気改質反応を行った。反応条件は、S/C=3.6、LHSV=20h−1とした。GHSV条件は、実施例1及び比較例1の触媒評価では100,000h−1とし、実施例2〜4、比較例2〜4の触媒評価では200,000h−1とした。また、反応温度は590℃とした。
[Fuel reforming performance test]
Using a microreactor as shown in FIG. 5, 0.01 g of the powder catalysts of Examples and Comparative Examples obtained as described above were filled in a quartz reaction tube, respectively, and steam reforming using isooctane as a gasoline simulated fuel. Reaction was performed. The reaction conditions were S / C = 3.6 and LHSV = 20 h −1 . GHSV condition, the catalyst evaluation of Example 1 and Comparative Example 1 and 100,000 h -1, Examples 2-4, the catalyst evaluation of Comparative Example 2-4 was 200,000 -1. The reaction temperature was 590 ° C.

得られた改質ガス中のH濃度を水素生成能の指標として、各触媒の性能を比較した結果を図6に示す。特殊な薄膜シリカをベースとして得た実施例の改質触媒1〜4は、比較例として無定型シリカ担体を用いた参照触媒1〜4と比較して、同重量、同要領基準で高い水素生成能を示すことが確認された。
本発明の触媒においては、湾曲状の二重薄膜構造を有するシリカをベース担体とすることにより、このシリカ担体がマイクロラッシヒリングとして作用するため、触媒層内において反応物がマイクロオーダーの空間で効果的に拡散され、担持した触媒の有効利用率を向上しているものと考えられる。また、該シリカ表面のメチル基を活かした触媒成分の分散担持法による効果も加味されて高い触媒性能が発揮されている。
FIG. 6 shows the result of comparing the performance of each catalyst using the H 2 concentration in the resulting reformed gas as an index of hydrogen production ability. The reforming catalysts 1 to 4 of the examples obtained based on the special thin-film silica have higher hydrogen production with the same weight and the same standard as compared with the reference catalysts 1 to 4 using an amorphous silica carrier as a comparative example. It was confirmed to show the ability.
In the catalyst of the present invention, since silica having a curved double thin film structure is used as a base carrier, the silica carrier acts as a micro lashing ring, so that the reaction product is effective in a micro-order space in the catalyst layer. It is considered that the effective utilization rate of the supported and supported catalyst is improved. In addition, high catalyst performance is exhibited by taking into account the effect of the dispersion support method of the catalyst component utilizing the methyl group on the silica surface.

なお、ここでは、本発明の触媒について、燃料改質触媒としての有効性を示したが、燃焼触媒、排気浄化触媒などの同形態を有する触媒には同様の効果を期待することができ、上記した実施例に限定されるものではない。   Here, although the catalyst of the present invention has shown effectiveness as a fuel reforming catalyst, a catalyst having the same form such as a combustion catalyst and an exhaust purification catalyst can be expected to have the same effect. However, the present invention is not limited to the examples.

Claims (7)

湾曲状の二重薄膜構造をなし、直径が0.1〜10μmのシリカと、触媒成分を含むことを特徴とする触媒。   A catalyst having a curved double thin film structure and containing silica having a diameter of 0.1 to 10 μm and a catalyst component. 上記シリカの膜厚が10〜100nmであることを特徴とする請求項1に記載の触媒。   The catalyst according to claim 1, wherein the silica has a thickness of 10 to 100 nm. 上記触媒成分が、Pt,Pd,Rh,Ni,Co,Cu,Mn,Fe,Al,Zr,La、Ce,Mg及びCaから成る群より選ばれた少なくとも1種の金属、及び/又は上記群より選ばれた少なくとも1種の金属の酸化物を含むことを特徴とする請求項1又は2に記載の触媒。   The catalyst component is at least one metal selected from the group consisting of Pt, Pd, Rh, Ni, Co, Cu, Mn, Fe, Al, Zr, La, Ce, Mg, and Ca, and / or the group The catalyst according to claim 1 or 2, comprising an oxide of at least one kind of metal selected from the above. 上記金属酸化物の含有量が1〜50質量%であることを特徴とする請求項1〜3のいずれか1つの項に記載の触媒。   Content of the said metal oxide is 1-50 mass%, The catalyst as described in any one of Claims 1-3 characterized by the above-mentioned. 上記シリカがメチル(CH3-)基を有していることを特徴とする請求項1〜4のいずれか1つの項に記載の触媒。 The catalyst according to any one of claims 1 to 4, wherein the silica has a methyl (CH 3- ) group. 請求項5に記載の触媒の製造方法において、上記シリカと触媒成分を複合化するに際して、メチル基に由来するCの含有量が3質量%以上25質量%未満である当該シリカを用いることを特徴とする触媒製造方法。   The method for producing a catalyst according to claim 5, wherein the silica having a content of C derived from a methyl group of 3% by mass or more and less than 25% by mass is used when the silica and the catalyst component are combined. And a catalyst production method. 上記金属触媒及び/又は金属酸化物の出発原料として有機化合物を用いることを特徴とする請求項6に記載の触媒製造方法。   7. The method for producing a catalyst according to claim 6, wherein an organic compound is used as a starting material for the metal catalyst and / or metal oxide.
JP2011055746A 2011-03-14 2011-03-14 Catalyst and method for producing the same Pending JP2012187560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011055746A JP2012187560A (en) 2011-03-14 2011-03-14 Catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055746A JP2012187560A (en) 2011-03-14 2011-03-14 Catalyst and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012187560A true JP2012187560A (en) 2012-10-04

Family

ID=47081320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055746A Pending JP2012187560A (en) 2011-03-14 2011-03-14 Catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012187560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105792965A (en) * 2013-11-29 2016-07-20 Lg化学株式会社 Fuel cell and method of manufacturing same
WO2024117704A1 (en) * 2022-11-30 2024-06-06 한국화학연구원 Catalyst for dry reforming

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6015007862; 説田賢洋他: '薄膜カップ状有機シリカ担持コバルト粒子触媒の燃料改質反応への応用-触媒の調製条件の影響-' 日本化学会第91春季年会(2011)講演予稿集II , 20110311, p. 625 *
JPN6015007864; 山本愛他: '酸化マンガン担持ポリメチルシロキサン薄膜カップ状粒子触媒の調製' 第106回触媒討論会討論会A予稿集 , 20100915, p. 377 *
JPN6015007866; 説田賢洋他: '中空状及び薄膜カップ状有機シリカ担持金属粒子の調製' Journal of Flux Growth Vol. 5, No. 2, 20101203, p. 113 *
JPN6015007867; 宮本和佳他: 'ヘテロポリ酸セシウム酸性塩を内包した薄膜状中空微粒子の調製' 第106回触媒討論会討論会A予稿集 , 20100915, p. 227 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105792965A (en) * 2013-11-29 2016-07-20 Lg化学株式会社 Fuel cell and method of manufacturing same
WO2024117704A1 (en) * 2022-11-30 2024-06-06 한국화학연구원 Catalyst for dry reforming

Similar Documents

Publication Publication Date Title
WO2010023919A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using same
Zhang et al. Research progress on preparation of 3DOM-based oxide catalysts and their catalytic performances for the combustion of diesel soot particles
CN107537480B (en) Composite catalyst and method of use thereof
CN110479280B (en) CO low-temperature selective methanation Ni-ZrO 2 /NiAl 2 O 4 Catalyst, preparation method and application thereof
WO2008059858A1 (en) Exhaust gas purifying catalyst
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
JP4296908B2 (en) Catalyst body and method for producing the same
JP2007252988A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2016013552A (en) Catalyst for exhaust gas purification and production method thereof, and exhaust gas purification method
WO2010060736A1 (en) Non-noble metals based catalysts for ammonia decomposition and their preparation
WO2017146175A1 (en) Exhaust-gas purifying catalyst and manufacturing method therefor
JP5126762B2 (en) Honeycomb catalyst for carbon monoxide methanation, method for producing the catalyst, and method for methanation of carbon monoxide using the catalyst
JP5515635B2 (en) Noble metal-supported silicon carbide particles, production method thereof, catalyst containing the same, and production method thereof
EP3581268A1 (en) Exhaust gas purifying catalyst composition, method for producing same and exhaust gas purifying catalyst for automobiles
JP2012187560A (en) Catalyst and method for producing the same
JP6544880B1 (en) Catalyst for hydrogen production and catalyst for purification of exhaust gas using the same
WO2019167515A1 (en) Exhaust purification three-way catalyst and manufacturing method therefor, and exhaust purification monolithic catalyst
MX2013015107A (en) Device for purifying exhaust gases from a heat engine, comprising a catalytic ceramic support comprising an arrangement of essentially identical crystallites.
CN107537489B (en) Porous composite catalyst, preparation method and application thereof
CN107537487B (en) Composite catalyst and preparation method thereof
CN107537482B (en) Porous composite catalyst and method of using same
JP5494910B2 (en) Hydrogen production catalyst and production method thereof
JP4120862B2 (en) Catalyst for CO shift reaction
JP2013144266A (en) Fuel reforming catalyst and method for production thereof
JP2014058434A (en) Mesoporous metal oxide, fuel reforming catalyst and fuel reforming system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150703