JP2012187341A - X-ray imaging apparatus - Google Patents

X-ray imaging apparatus Download PDF

Info

Publication number
JP2012187341A
JP2012187341A JP2011055145A JP2011055145A JP2012187341A JP 2012187341 A JP2012187341 A JP 2012187341A JP 2011055145 A JP2011055145 A JP 2011055145A JP 2011055145 A JP2011055145 A JP 2011055145A JP 2012187341 A JP2012187341 A JP 2012187341A
Authority
JP
Japan
Prior art keywords
grating
ray
phase
source
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011055145A
Other languages
Japanese (ja)
Other versions
JP5777360B2 (en
Inventor
Takashi Nakamura
高士 中村
Genta Sato
玄太 佐藤
Chigusa Ouchi
千種 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011055145A priority Critical patent/JP5777360B2/en
Publication of JP2012187341A publication Critical patent/JP2012187341A/en
Application granted granted Critical
Publication of JP5777360B2 publication Critical patent/JP5777360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray imaging apparatus that can acquire phase information in two directions perpendicular to each other and photograph an X-ray phase contrast image with high accuracy with a simple configuration.SOLUTION: The X-ray imaging apparatus includes: a source grate that is disposed between an X-ray source and an object to be examined and has a one-dimensional periodic structure; a phase diffraction grating that has a second-dimensional periodic structure forming a self-image by X-ray Talbot effect; an absorption grating that is disposed in a position where the self-image is formed by the phase diffraction grating; an X-ray detector configured to detect an intensity of the X-ray that penetrates the absorption grating; and a calculation unit that acquires the phase information by the intensity of the X-ray detected by the X-ray detector. The X-ray intensity detected by the X-ray detector is calculated by the calculation unit to acquire the phase information before and after the source grating is rotated by 90° in a plane parallel to the phase grating.

Description

本発明は、トールボット干渉法によりX線位相コントラスト像を取得するX線撮像装置に関する。   The present invention relates to an X-ray imaging apparatus that acquires an X-ray phase contrast image by Talbot interferometry.

X線は高い物質透過性を持ち、その透過能は元素や密度によって異なる。
このため、物体を透過したX線量を検出することによりコントラスト画像を得ることが可能であり、物体の非破壊検査やレントゲン撮影等へ応用されている。
しかし、X線の吸収能は軽元素ほど小さいため、生体軟組織やソフトマテリアルに対しては十分なコントラストが期待できないという問題がある。
このため、軽元素で構成される組織でも明瞭な画像を取得する方法として、X線の位相シフトに基づいてコントラストを発生させる撮像方法が検討されている。この位相コントラストを利用したX線位相イメージング法の中に、トールボット(Talbot)干渉法によりX線位相コントラスト像を取得するX線撮像装置が知られている。
X-rays have high material permeability, and their permeability varies depending on the element and density.
For this reason, it is possible to obtain a contrast image by detecting the X-ray dose transmitted through the object, and it is applied to non-destructive inspection of the object, X-ray imaging and the like.
However, there is a problem that sufficient contrast cannot be expected for soft biological tissues and soft materials because X-ray absorption capacity is smaller for light elements.
For this reason, as a method for acquiring a clear image even in a tissue composed of light elements, an imaging method for generating contrast based on the phase shift of X-rays has been studied. Among X-ray phase imaging methods using this phase contrast, an X-ray imaging device that acquires an X-ray phase contrast image by a Talbot interference method is known.

トールボット干渉法を用いたX線位相イメージング法のためには、空間的に可干渉なX線源、X線の位相を周期的に変調するための位相型回折格子(以下、位相格子と記す)、検出器が少なくとも必要である。
空間的に可干渉性を持つX線は、位相格子を透過した後のX線強度分布が位相格子3の形状を反映して周期的に変化する。このときに得られる強度分布を自己像と呼ぶ。
通常、X線により形成される自己像の周期は検出器の画素ピッチと比較して小さいため、X線を遮蔽する材料で作製され十分な厚みを持つ吸収格子を用いて撮像する。
すなわち、自己像と同等の周期構造を持つ吸収格子を、自己像が形成される位置に配置することで、自己像の変形を検出することを可能とする。
For the X-ray phase imaging method using the Talbot interferometry, a spatially coherent X-ray source and a phase type diffraction grating for periodically modulating the phase of the X-ray (hereinafter referred to as a phase grating). ), At least a detector is required.
For X-rays having spatial coherence, the X-ray intensity distribution after passing through the phase grating changes periodically reflecting the shape of the phase grating 3. The intensity distribution obtained at this time is called a self-image.
Usually, since the period of the self-image formed by X-rays is smaller than the pixel pitch of the detector, imaging is performed using an absorption grating made of a material that shields X-rays and having a sufficient thickness.
That is, by arranging an absorption grating having a periodic structure equivalent to the self-image at a position where the self-image is formed, the deformation of the self-image can be detected.

このようなトールボット干渉法によりX線位相コントラスト像を取得するX線撮像装置として、1次元の周期構造を持つ線源格子、1次元の周期構造を持つ1次元位相格子、1次元の周期構造を持つ吸収格子を備えたX線撮像装置が提案されている(特許文献1)。
この装置では、格子を格子周期方向に、格子周期を等分割した距離を移動してから撮像することが繰り返される。その後、得られた画像データを演算装置により処理し、移動方向の微分位相像が取得される。
As an X-ray imaging apparatus for acquiring an X-ray phase contrast image by such Talbot interferometry, a source grating having a one-dimensional periodic structure, a one-dimensional phase grating having a one-dimensional periodic structure, and a one-dimensional periodic structure An X-ray imaging apparatus including an absorption grating having a wavelength of 2 is proposed (Patent Document 1).
In this apparatus, the imaging is repeated after moving the grating in the grating period direction and moving the distance obtained by equally dividing the grating period. Thereafter, the obtained image data is processed by an arithmetic device, and a differential phase image in the moving direction is acquired.

米国特許7180979号明細書US Patent No. 71809779

上記した従来例のトールボット干渉法によるX線撮像装置によりX線位相コントラスト像を取得する場合、つぎのような課題を有している。
すなわち、1方向の微分位相情報のみから物体の位相像を得ようとすると、一部の位相情報が欠落する。
そして、上記特許文献1に記載のX線撮像装置で、互いに直交する2方向の微分位相像を取得するためには、全格子または被検査物を90°回転する必要があり、装置構成上複雑なものとなる。
When an X-ray phase contrast image is acquired by the above-described conventional Talbot interferometry X-ray imaging apparatus, there are the following problems.
That is, when trying to obtain a phase image of an object from only differential phase information in one direction, a part of phase information is lost.
In order to acquire differential phase images in two directions orthogonal to each other in the X-ray imaging apparatus described in Patent Document 1, it is necessary to rotate the entire lattice or the inspection object by 90 °, which is complicated in terms of the apparatus configuration. It will be something.

本発明は、上記課題に鑑み、簡単な構成で互いに直交する2方向の位相情報を取得することができ、精度の高いX線位相コントラスト像の撮像が可能となるX線撮像装置の提供を目的とする。   In view of the above problems, the present invention provides an X-ray imaging apparatus capable of acquiring phase information in two directions orthogonal to each other with a simple configuration and capable of capturing an X-ray phase contrast image with high accuracy. And

本発明のX線撮像装置は、X線源を用いトールボット干渉法により位相情報を取得するX線撮像装置であって、
X線源と被検査物との間に配置され、1次元周期構造を有する線源格子と、
前記X線源から照射され前記線源格子を透過したX線のトールボット効果により自己像を形成する2次元周期構造を有する位相回折格子と、
前記位相回折格子によって自己像が形成される位置に配置される吸収格子と、
前記吸収格子を透過したX線の強度を検出可能に構成されたX線検出器と、
前記X線検出器により検出されたX線の強度により、前記位相情報を取得する演算手段と、を備え、
前記線源格子が、前記位相格子と平行な面内で90度回転可能に構成され、
前記線源格子を前記位相格子と平行な面内で90度回転させる前後において前記X線検出器で検出されたX線強度を、前記演算手段によって演算して前記位相情報を取得することを特徴とする。
An X-ray imaging apparatus of the present invention is an X-ray imaging apparatus that acquires phase information by Talbot interferometry using an X-ray source,
A source grating disposed between the X-ray source and the object to be inspected and having a one-dimensional periodic structure;
A phase diffraction grating having a two-dimensional periodic structure that forms a self-image by the Talbot effect of X-rays irradiated from the X-ray source and transmitted through the source grating;
An absorption grating disposed at a position where a self-image is formed by the phase diffraction grating;
An X-ray detector configured to detect the intensity of X-rays transmitted through the absorption grating;
Calculating means for obtaining the phase information based on the intensity of the X-rays detected by the X-ray detector;
The source grating is configured to be rotatable by 90 degrees in a plane parallel to the phase grating;
The phase information is obtained by calculating the X-ray intensity detected by the X-ray detector before and after rotating the source grating by 90 degrees in a plane parallel to the phase grating by the calculating means. And

本発明によれば、簡単な構成で互いに直交する2方向の位相情報を取得することができ、精度の高いX線位相コントラスト像の撮像が可能となるX線撮像装置を実現することができる。   According to the present invention, it is possible to realize an X-ray imaging apparatus that can acquire phase information in two directions orthogonal to each other with a simple configuration and that can capture an X-ray phase contrast image with high accuracy.

本発明の実施形態におけるトールボット干渉法により位相情報を取得するX線撮像装置の構成例について説明する図。The figure explaining the structural example of the X-ray imaging device which acquires phase information by the Talbot interferometry in embodiment of this invention. 本発明の実施形態における線源格子、位相格子、自己像を説明する図である。It is a figure explaining a source grating, a phase grating, and a self image in an embodiment of the present invention. 本発明の実施形態における吸収格子を説明する図である。It is a figure explaining the absorption lattice in embodiment of this invention. 本発明の実施形態における縞走査を説明する図である。It is a figure explaining the fringe scanning in embodiment of this invention. 本発明の実施形態における位相情報取得のためのフローチャート。The flowchart for the phase information acquisition in the embodiment of the present invention.

つぎに、本発明の実施形態について説明する。
(実施形態1)
実施形態1として、トールボット干渉法を用い線源格子を90度回転させる前後において得られた互いに直交する2方向のX線強度により、位相情報を取得するX線撮像装置の構成例について、図1を用いて説明する。
図1において、1はX線源、2線源格子、3は位相格子、4は吸収格子、5は検出器、6は線源格子移動部、7は位相格子移動部、8は吸収格子移動部、9は演算部(演算手段)、10は被検査物である。
線源格子2は1次元周期構造を、位相格子3は2次元周期構造を有している。
また、線源格子2は、線源格子移動部6により90度回転可能である。
また、各格子はそれぞれの線源格子移動部6、位相格子移動部7、吸収格子移動部8により、周期方向に移動することが可能である。
X線源1より照射されたX線は位相格子3を透過し、トールボット効果により吸収格子4上に位相格子3の形状を反映した自己像12を形成する。
例えば、図2(a)の線源格子2に図2(b)の位相格子3を用いると、図2(c)に示す自己像12が得られる。
自己像12と重なり合うように吸収格子4を配置し、吸収格子4を透過したX線を検出器5において強度を計測する。
線源格子2と位相格子3と吸収格子4は、X線源1を通る検出器5表面に対する垂直な直線と、垂直となるように配置されている。
また、X線源1と位相格子3の間に配置する線源格子2は、位相格子3と吸収格子4とトールボット・ラウ干渉計の位置に配置されおり、線源格子2の個々の開口を通ったX線により形成される自己像12が一致する。
Next, an embodiment of the present invention will be described.
(Embodiment 1)
FIG. 1 is a diagram illustrating a configuration example of an X-ray imaging apparatus that acquires phase information based on two orthogonal X-ray intensities obtained before and after rotating a source grating by 90 degrees using Talbot interferometry. 1 will be used for explanation.
In FIG. 1, 1 is an X-ray source, 2 sources grating, 3 is a phase grating, 4 is an absorption grating, 5 is a detector, 6 is a source grating moving section, 7 is a phase grating moving section, and 8 is an absorption grating moving. Reference numeral 9 denotes a calculation unit (calculation means), and 10 denotes an object to be inspected.
The source grating 2 has a one-dimensional periodic structure, and the phase grating 3 has a two-dimensional periodic structure.
The source grid 2 can be rotated 90 degrees by the source grid moving unit 6.
Each grating can be moved in the periodic direction by the respective source grating moving unit 6, phase grating moving unit 7, and absorption grating moving unit 8.
X-rays irradiated from the X-ray source 1 pass through the phase grating 3 and form a self-image 12 reflecting the shape of the phase grating 3 on the absorption grating 4 by the Talbot effect.
For example, when the phase grating 3 in FIG. 2B is used for the source grating 2 in FIG. 2A, a self-image 12 shown in FIG. 2C is obtained.
The absorption grating 4 is arranged so as to overlap the self-image 12, and the intensity of X-rays transmitted through the absorption grating 4 is measured by the detector 5.
The source grating 2, the phase grating 3, and the absorption grating 4 are disposed so as to be perpendicular to a straight line perpendicular to the surface of the detector 5 that passes through the X-ray source 1.
The source grating 2 disposed between the X-ray source 1 and the phase grating 3 is disposed at the position of the phase grating 3, the absorption grating 4, and the Talbot-Lau interferometer. Self-images 12 formed by X-rays passing through coincide.

つぎに、線源格子2を90度回転することによる自己像12形状の変化について、図2を用いて説明する。
図2(a)に示す1次元周期構造を持つ線源格子2を透過したX線は、2次元周期構造を持つ位相格子3により、1次元の周期構造を持つ自己像12を形成する。位相格子3として、例えば図2(b)に示すような市松状の2次元周期構造を用いることができる。
図2(b)において、着色部を透過した所望の波長のX線は位相がπもしくはπ/2変化する。
線源格子2後のX線は、周期方向にのみ干渉性を持つ。そのため、2次元構造を持つ位相格子3により形成される自己像12は、線源格子2の周期方向に対してのみ強度分布を示す。
例えば、図2(b)に示す形状で位相がπ変化する位相格子3により形成される自己像12は、図2(c)に示すような1次元周期構造を形成し、周期方向は線源格子3の周期方向と一致する。
なお、位相がπ/2変化する位相格子3を使用する場合は、同じピッチの自己像を得るためには、位相格子3のピッチを1/2にする必要がある。
その後、図2(d)に示すように線源格子2を位相格子3と平行な面内で90度回転した後に撮像する。
回転前と同一の位相格子3を透過するX線は、図2(e)に示すように線源格子2の周期方向と同一方向に周期構造を持つ自己像12を形成する。
つまり、線源格子2を90度回転することで、静止した同一の位相格子3を用いても自己像12を90度回転することが可能となる。
被検査物10を線源格子2と位相格子3間に入れることで、形成される自己像12形状が変形する。
このときの変形量は被検査物10の位相量に依存するので、自己像12を直接観察できれば被検査物10の位相情報を取得することができる。
しかし、一般的なX線検出器5の画素ピッチと比較して位相格子3は狭ピッチであるため、直接自己像12の変形を検出することは困難である。このために吸収格子4を用いる。
Next, a change in the shape of the self-image 12 by rotating the source grid 2 by 90 degrees will be described with reference to FIG.
X-rays transmitted through the source grating 2 having the one-dimensional periodic structure shown in FIG. 2A form a self-image 12 having a one-dimensional periodic structure by the phase grating 3 having the two-dimensional periodic structure. As the phase grating 3, for example, a checkered two-dimensional periodic structure as shown in FIG. 2B can be used.
In FIG. 2B, the phase of X-rays having a desired wavelength transmitted through the colored portion changes by π or π / 2.
The X-rays after the source grating 2 are coherent only in the periodic direction. Therefore, the self-image 12 formed by the phase grating 3 having a two-dimensional structure shows an intensity distribution only in the periodic direction of the source grating 2.
For example, the self-image 12 formed by the phase grating 3 having the shape shown in FIG. 2B and the phase changing by π forms a one-dimensional periodic structure as shown in FIG. This coincides with the periodic direction of the grating 3.
When the phase grating 3 whose phase changes by π / 2 is used, the pitch of the phase grating 3 needs to be halved in order to obtain a self-image with the same pitch.
Thereafter, as shown in FIG. 2D, the source grating 2 is imaged after being rotated 90 degrees in a plane parallel to the phase grating 3.
X-rays transmitted through the same phase grating 3 as before the rotation form a self-image 12 having a periodic structure in the same direction as the periodic direction of the source grating 2 as shown in FIG.
That is, by rotating the source grating 2 by 90 degrees, the self-image 12 can be rotated by 90 degrees even if the same stationary phase grating 3 is used.
By placing the inspection object 10 between the source grating 2 and the phase grating 3, the shape of the self-image 12 formed is deformed.
Since the deformation amount at this time depends on the phase amount of the inspection object 10, the phase information of the inspection object 10 can be acquired if the self-image 12 can be directly observed.
However, since the phase grating 3 is narrower than the pixel pitch of the general X-ray detector 5, it is difficult to directly detect the deformation of the self-image 12. For this purpose, an absorption grating 4 is used.

吸収格子4の形状としては図3(a)、(b)に示すようなメッシュ状、図3(c)に示すような市松状のものを用いることができる。
図3において、黒色部はX線遮光部、無着色部がX線透過部である。吸収格子4は自己像12と同一面内に配置する。
吸収格子4上に形成される自己像12を図3(d)、(e)に示す。
単色で可干渉性が十分なX線を用いる場合、吸収格子4を透過することにより図3(d)の位置では透過するX線強度は25%となり、図3(e)ではX線の強度が75%となる。
自己像12と吸収格子4の相対位置を変化させて撮像することにより位相情報を取得する方法として、縞走査法がある。
例えば、位相格子3を格子面内で周期方向に移動することで、自己像12は吸収格子4上を移動する。被検査物10がない状態で位相格子3を移動したときに、同一画素で検出されるX線の強度変化を図4に示す。
自己像12を移動することにより、検出されるX線の強度が増減する。X線強度は図3(d)の位置で最大となり、図3(e)の位置で最少となる。
また、自己像12が90度回転しても図3(a)、(b)、(c)に示す2次元周期構造を持つ吸収格子4を用いることにより、自己像12の位置とX線強度の関係は同様にすることができる。
また、図3(c)に示す市松状の吸収格子4を用い、この吸収格子4と上記位相格子3における2次元周期構造の周期方向が、45度で交差するようにして配置することで、自己像12を移動したときの強度変化が図4のように正弦波状となる。
As the shape of the absorption lattice 4, a mesh shape as shown in FIGS. 3A and 3B and a checkered shape as shown in FIG. 3C can be used.
In FIG. 3, the black part is an X-ray shielding part, and the non-colored part is an X-ray transmission part. The absorption grating 4 is arranged in the same plane as the self-image 12.
A self-image 12 formed on the absorption grating 4 is shown in FIGS.
When X-rays that are monochromatic and have sufficient coherence are used, the intensity of the X-ray transmitted through the absorption grating 4 is 25% at the position shown in FIG. 3D, and the intensity of the X-ray is shown in FIG. Is 75%.
There is a fringe scanning method as a method of acquiring phase information by changing the relative position of the self-image 12 and the absorption grating 4 and capturing an image.
For example, the self-image 12 moves on the absorption grating 4 by moving the phase grating 3 in the periodic direction within the grating plane. FIG. 4 shows changes in the intensity of X-rays detected by the same pixel when the phase grating 3 is moved in the absence of the inspection object 10.
By moving the self-image 12, the detected X-ray intensity increases or decreases. The X-ray intensity becomes maximum at the position shown in FIG. 3D and becomes minimum at the position shown in FIG.
Even if the self-image 12 is rotated by 90 degrees, the position and X-ray intensity of the self-image 12 can be obtained by using the absorption grating 4 having the two-dimensional periodic structure shown in FIGS. 3 (a), (b), and (c). The relationship can be similar.
In addition, by using the checkered absorption grating 4 shown in FIG. 3C, the periodic direction of the two-dimensional periodic structure in the absorption grating 4 and the phase grating 3 is arranged so as to intersect at 45 degrees, The intensity change when the self-image 12 is moved becomes sinusoidal as shown in FIG.

図4において、横軸は(自己像移動量)/(自己像の周期)であり、縦軸は自己像12と吸収格子4の位置を相対的に変化させたときに検出器5で検出されるX線の強度である。
1次元周期構造を持つ吸収格子4や、図3(a)、(b)に示す吸収格子4を用いた場合は、X線の度変化が三角波状となる。
正弦波に近い方が、少ない撮像枚数でより正確な位相情報を取得できる。
In FIG. 4, the horizontal axis is (self-image movement amount) / (self-image period), and the vertical axis is detected by the detector 5 when the positions of the self-image 12 and the absorption grating 4 are relatively changed. X-ray intensity.
When the absorption grating 4 having a one-dimensional periodic structure or the absorption grating 4 shown in FIGS. 3A and 3B is used, the change in the degree of X-rays becomes a triangular wave.
The closer to a sine wave, the more accurate phase information can be acquired with a small number of images.

図5に、互いに直交するXおよびY方向の2方向の位相情報(微分位相像または位相像)を、縞走査法により得るときのフローチャートを示す。
まず、線源格子2と位相格子3と吸収格子4を、トールボット・ラウ干渉計となるように配置する。
その後、線源格子2と位相格子3間に被検査物10を配置する。この位置を、第一の配置とする。
第一の配置において、線源格子2を周期方向に移動してから撮像することを繰り返す。
フローチャート内では、自己像周期の1/3ずつ自己像12を移動して撮像することを繰り返し、一方向での撮像回数を3回としている。
しかし、3回は一方向に対する最低の撮像回数であり、多くても良い。
FIG. 5 shows a flowchart for obtaining phase information (differential phase image or phase image) in two directions of X and Y directions orthogonal to each other by the fringe scanning method.
First, the source grating 2, the phase grating 3, and the absorption grating 4 are arranged so as to be a Talbot-Lau interferometer.
Thereafter, the inspection object 10 is placed between the source grating 2 and the phase grating 3. This position is the first arrangement.
In the first arrangement, the imaging after moving the source grid 2 in the periodic direction is repeated.
In the flowchart, the self-image 12 is repeatedly moved and imaged by 1/3 of the self-image period, and the number of times of imaging in one direction is set to three.
However, three times is the minimum number of times of imaging in one direction and may be many.

次に、線源格子2を、位相格子3と平行な面内で90度回転する。
90度回転後の配置を、第2の配置とする。第二の配置においても、第一の配置の場合と同様に少なくとも3回撮像する。
その後、演算部(演算手段)9において各画素のX線強度変化より、隣り合う画素の位相変化量から微分位相像をそれぞれの方向について得る。さらに、演算部(演算手段)9においてその取得した微分位相像を合成して積分することで、位相像を取得することもできる。
ここで、自己像12を移動するためには位相格子3を移動するほか、吸収格子4または線源格子を移動しても良い。
線源格子2は他の格子よりも小さくて軽く、縞走査時の格子移動量に対する要求精度が低くなる。
位相情報を得る手法としては縞走査法のほか、フーリエ変換法を用いることもできる。フーリエ変換法を用いる場合の撮像方法について以下に説明する。
自己像12と吸収格子4により、検出器5で検出可能なモアレ縞を形成する。
その後、被検査物10を配置した後に撮像を行う。撮像した像をフーリエ変換した空間周波数スペクトルにおいて、キャリア周波数成分を切り出す。
得られたキャリア周波数成分を原点に移動して逆フーリエ変換することで被検査物10の位相情報を取得する。
Next, the source grating 2 is rotated 90 degrees in a plane parallel to the phase grating 3.
The arrangement after 90 ° rotation is the second arrangement. Also in the second arrangement, imaging is performed at least three times as in the first arrangement.
Thereafter, a differential phase image is obtained in each direction from the phase change amount of the adjacent pixel from the X-ray intensity change of each pixel in the calculation unit (calculation means) 9. Furthermore, a phase image can also be acquired by synthesizing and integrating the acquired differential phase image in the calculation unit (calculation means) 9.
Here, in order to move the self-image 12, in addition to moving the phase grating 3, the absorption grating 4 or the source grating may be moved.
The source grating 2 is smaller and lighter than the other gratings, and the required accuracy with respect to the grating movement amount during fringe scanning is reduced.
As a method for obtaining the phase information, in addition to the fringe scanning method, a Fourier transform method can also be used. The imaging method when using the Fourier transform method will be described below.
Moire fringes that can be detected by the detector 5 are formed by the self-image 12 and the absorption grating 4.
Thereafter, imaging is performed after the inspection object 10 is arranged. A carrier frequency component is extracted from a spatial frequency spectrum obtained by Fourier transforming the captured image.
The phase information of the object to be inspected 10 is acquired by moving the obtained carrier frequency component to the origin and performing inverse Fourier transform.

線源格子3や吸収格子4において、X線遮光部はX線透過率の低い材料から形成される。
例えば金、白金、タングステン、タンタル、モリブデンなどである。これらを含む合金でも良い。
X線透過部は、X線透過率の高い材料から形成されている。例えば感光性レジストなどの樹脂やシリコンである。X線透過部は空洞となっていても良い。
位相格子3は、X線を所望の位相量変化させるための吸収がなるべく少ない材料で構成させることが好ましい。
このため、シリコンやレジストなどの樹脂材料を用いることができる。
但し、金などのX線吸収率の大きな材料により位相格子3を作製すると、アスペクト比を低くすることができる。
In the radiation source grating 3 and the absorption grating 4, the X-ray light shielding portion is formed from a material having a low X-ray transmittance.
For example, gold, platinum, tungsten, tantalum, molybdenum and the like. An alloy containing these may be used.
The X-ray transmission part is formed from a material having a high X-ray transmittance. For example, a resin such as a photosensitive resist or silicon. The X-ray transmission part may be a cavity.
The phase grating 3 is preferably made of a material that absorbs as little as possible to change the desired amount of X-ray phase.
Therefore, a resin material such as silicon or resist can be used.
However, when the phase grating 3 is made of a material having a large X-ray absorption rate such as gold, the aspect ratio can be lowered.

(実施形態2)
実施形態2として、トールボット干渉法を用い線源格子2および吸収格子4を90度回転させる前後において得られた互いに直交する2方向のX線強度により、位相情報を取得するX線撮像装置の構成例について、図2を用いて説明する。実施形態2においては、線源格子2および吸収格子4は1次元構造、位相格子3は2次元構造とする。
線源格子2および吸収格子4は、線源格子移動部6および吸収格子移動部8により90度回転可能とする。
形成される自己像12は、図2に示すように線源格子2と同一の周期方向を持つ1次元の強度分布を示す。
吸収格子4としては、ピッチが自己像と等しい1次元周期構造体を用いる。
これにより、吸収格子4を透過するX線の強度は、自己像と吸収格子の相対位置により変化する。第一の配置で撮像した後に、線源格子と吸収格子を90度回転した第二の位置で撮像する。
被検査10物の位相量を得る演算手法としては、実施形態1と同様に縞走査法とフーリエ変換法を用いることができる。
(Embodiment 2)
As an embodiment 2, an X-ray imaging apparatus that acquires phase information based on two orthogonal X-ray intensities obtained before and after rotating the source grating 2 and the absorption grating 4 by 90 degrees using Talbot interferometry. A configuration example will be described with reference to FIG. In the second embodiment, the source grating 2 and the absorption grating 4 have a one-dimensional structure, and the phase grating 3 has a two-dimensional structure.
The source grating 2 and the absorption grating 4 can be rotated 90 degrees by the source grating moving unit 6 and the absorption grating moving unit 8.
The formed self-image 12 shows a one-dimensional intensity distribution having the same periodic direction as the source grating 2 as shown in FIG.
As the absorption grating 4, a one-dimensional periodic structure having a pitch equal to the self-image is used.
As a result, the intensity of X-rays transmitted through the absorption grating 4 varies depending on the relative position between the self-image and the absorption grating. After imaging with the first arrangement, the source grating and the absorption grating are imaged at a second position rotated 90 degrees.
As a calculation method for obtaining the phase amount of the 10 objects to be inspected, the fringe scanning method and the Fourier transform method can be used as in the first embodiment.

以下に、本発明の実施例について説明する。
[実施例1]
実施例1として、縞走査法を用いたトールボット干渉法により位相像を取得するX線撮像装置の構成例について説明する。
線源格子2は22.1μmピッチで開口幅が5μmの1次元構造とし、光軸と垂直な面内で90度回転可能とする。
位相格子3は、光学ピッチ8.49μm、吸収格子4はピッチ8.24μmの市松状とする。
線源格子2、位相格子3、吸収格子4は平行になるように配置する。また、位相格子3と吸収格子4の周期方向が45度で交差するようにする。
また、それぞれの格子がトールボット・ラウ干渉計の位置となるよう、線源格子2と位相格子3間の距離は936mm、位相格子3と吸収格子4間の距離は349mmとする。
このとき線源格子2と吸収格子4は50μm厚の金から成り、位相格子3は23μm厚のSiから構成される。
X線ターゲットとして17.3keVに特性X線を持つMoを用いX線を照射する。なお、17.3keVのX線は、23μm厚Siにより位相がπ変調される。
次に、被検査物10を線源格子2と位相格子3の間に入れて撮影を行う。
1回目の撮像が終わった後に、線源格子2を移動して自己像12を周期方向に2.74μm移動して撮像する。
2回目の撮像後、線源格子2を移動して自己像12を更に2.74μm移動し撮像する。
その後、線源格子2を90度回転する。線源格子回転前と同様の方法により、X線吸収像を3回撮像する。
以上の撮像データを用い、演算部9において縞走査法により互いに直交するXおよびY方向の2方向の微分位相像を取得する。
Examples of the present invention will be described below.
[Example 1]
As Example 1, a configuration example of an X-ray imaging apparatus that acquires a phase image by a Talbot interferometry using a fringe scanning method will be described.
The source grating 2 has a one-dimensional structure with a pitch of 22.1 μm and an aperture width of 5 μm, and can be rotated 90 degrees in a plane perpendicular to the optical axis.
The phase grating 3 has an optical pitch of 8.49 μm, and the absorption grating 4 has a checkered pattern with a pitch of 8.24 μm.
The radiation source grating 2, the phase grating 3, and the absorption grating 4 are arranged in parallel. Further, the periodic directions of the phase grating 3 and the absorption grating 4 are crossed at 45 degrees.
In addition, the distance between the source grating 2 and the phase grating 3 is 936 mm, and the distance between the phase grating 3 and the absorption grating 4 is 349 mm so that each grating becomes the position of the Talbot-Lau interferometer.
At this time, the source grating 2 and the absorption grating 4 are made of gold having a thickness of 50 μm, and the phase grating 3 is made of Si having a thickness of 23 μm.
X-rays are irradiated using Mo having characteristic X-rays at 17.3 keV as an X-ray target. Note that the phase of the 17.3 keV X-ray is π-modulated by 23 μm thick Si.
Next, the inspection object 10 is placed between the source grating 2 and the phase grating 3 to perform imaging.
After the first imaging, the source grid 2 is moved to move the self-image 12 by 2.74 μm in the periodic direction.
After the second imaging, the source grid 2 is moved and the self-image 12 is further moved by 2.74 μm and imaged.
Thereafter, the source grid 2 is rotated 90 degrees. X-ray absorption images are taken three times by the same method as before the source grid rotation.
Using the above imaging data, the arithmetic unit 9 obtains differential phase images in two directions in the X and Y directions orthogonal to each other by a fringe scanning method.

[実施例2]
フーリエ変換法を用いたトールボット干渉法により位相情報を取得するX線撮像装置の構成例について説明する。
線源格子2は25.9μmピッチで開口幅が5μmの1次元構造とし、位相格子3と平行な面内で90度回転可能とする。
位相格子3は、光学ピッチ8.49μmの市松状、吸収格子4は光学ピッチ8.24μmの市松状とする。
線源格子2、位相格子3、吸収格子4は平行になるように配置する。
また、位相格子3と吸収格子4の周期方向が45度で交差するようにする。
また、それぞれの格子がトールボット・ラウ干渉計の位置となるよう、線源格子2と位相格子3間の距離は1053mm、位相格子3と吸収格子4間の距離は335mmとする。
[Example 2]
A configuration example of an X-ray imaging apparatus that acquires phase information by Talbot interferometry using the Fourier transform method will be described.
The radiation source grating 2 has a one-dimensional structure with a pitch of 25.9 μm and an opening width of 5 μm, and can be rotated 90 degrees in a plane parallel to the phase grating 3.
The phase grating 3 is a checkered pattern with an optical pitch of 8.49 μm, and the absorption grating 4 is a checkered pattern with an optical pitch of 8.24 μm.
The radiation source grating 2, the phase grating 3, and the absorption grating 4 are arranged in parallel.
Further, the periodic directions of the phase grating 3 and the absorption grating 4 are crossed at 45 degrees.
In addition, the distance between the source grating 2 and the phase grating 3 is 1053 mm, and the distance between the phase grating 3 and the absorption grating 4 is 335 mm so that each grating is positioned at the Talbot-Lau interferometer.

このとき線源格子2と吸収格子4は50μm厚の金から成り、位相格子3は23μm厚のSiにより作製される。
X線ターゲットとして17.3keVに特性X線を持つMoを用いX線を照射する。
このとき、自己像12と吸収格子4によりモアレ縞が200μmピッチで形成されるように各格子位置を調整する。
次に被検査物10を線源格子2と位相格子3の間に入れて撮影を行う。その後、線源格子2を90度回転し、線源格子回転前と同様の方法により撮像を行う。
以上の撮像データを用い、演算部9においてフーリエ変換法により互いに直交するXおよびY方向の2方向の微分位相像を取得する。
At this time, the source grating 2 and the absorption grating 4 are made of gold having a thickness of 50 μm, and the phase grating 3 is made of Si having a thickness of 23 μm.
X-rays are irradiated using Mo having characteristic X-rays at 17.3 keV as an X-ray target.
At this time, each lattice position is adjusted so that moire fringes are formed at a pitch of 200 μm by the self-image 12 and the absorption lattice 4.
Next, the inspection object 10 is placed between the source grating 2 and the phase grating 3 to perform imaging. Thereafter, the source grid 2 is rotated 90 degrees, and imaging is performed by the same method as before the source grid is rotated.
Using the above imaging data, the arithmetic unit 9 obtains differential phase images in two directions in the X and Y directions orthogonal to each other by the Fourier transform method.

[実施例3]
1次元周期構造を持つ線源格子2および吸収格子4と、市松状の2次元周期構造をもつ位相格子3を用いた、トールボット干渉法により位相情報を取得するX線撮像装置の構成例について説明する。
線源格子2は22.1μmピッチで開口幅が5μmの1次元構造とし、吸収格子4は8.24μmピッチで線幅4.12μmの1次元構造とする。
線源格子と吸収格子は、光軸と垂直な面内で90度回転可能とする。また、位相格子は、光学ピッチ8.49μmの市松状とする。線源格子、位相格子、吸収格子は平行になるように配置する。
また、それぞれの格子がトールボット・ラウ干渉計の位置となるよう、線源格子と位相格子3間の距離は936mm、位相格子3と吸収格子4間の距離は349mmとする。
[Example 3]
Configuration example of an X-ray imaging apparatus that acquires phase information by Talbot interferometry using a source grating 2 and an absorption grating 4 having a one-dimensional periodic structure and a phase grating 3 having a checkered two-dimensional periodic structure explain.
The source grating 2 has a one-dimensional structure with a pitch of 22.1 μm and an aperture width of 5 μm, and the absorption grating 4 has a one-dimensional structure with a pitch of 8.24 μm and a line width of 4.12 μm.
The source grating and the absorption grating can be rotated 90 degrees in a plane perpendicular to the optical axis. The phase grating has a checkered pattern with an optical pitch of 8.49 μm. The source grating, phase grating, and absorption grating are arranged in parallel.
In addition, the distance between the source grating and the phase grating 3 is 936 mm, and the distance between the phase grating 3 and the absorption grating 4 is 349 mm so that each grating becomes the position of the Talbot-Lau interferometer.

このとき線源格子2と吸収格子4は50μm厚の金から成り、位相格子は23μm厚のSiによって作製される。
X線ターゲットとして17.3keVに特性X線を持つMoを用いX線を照射する。
なお、17.3keVのX線は、23μm厚Siにより位相がπ変調される。
次に、被検査物を線源格子と位相格子の間に入れて撮影を行う。
1回目の撮像が終わった後に、線源格子を移動して自己像を周期方向に2.74μm移動して撮像する。
2回目の撮像後、線源格子2を移動して自己像を更に2.74μm移動し撮像する。
その後、線源格子および吸収格子を90度回転する。線源格子回転前と同様の方法により、X線吸収像を3回撮像する。
以上の撮像データを用い、演算部9において縞走査法により互いに直交するXおよびY方向の2方向の微分位相像を取得する。
At this time, the source grating 2 and the absorption grating 4 are made of gold having a thickness of 50 μm, and the phase grating is made of Si having a thickness of 23 μm.
X-rays are irradiated using Mo having characteristic X-rays at 17.3 keV as an X-ray target.
Note that the phase of the 17.3 keV X-ray is π-modulated by 23 μm thick Si.
Next, imaging is performed with the object to be inspected placed between the source grating and the phase grating.
After the first imaging is completed, the self-image is moved by 2.74 μm in the periodic direction by moving the source grid and imaging.
After the second imaging, the source grid 2 is moved and the self-image is further moved by 2.74 μm.
Thereafter, the source grating and the absorption grating are rotated by 90 degrees. X-ray absorption images are taken three times by the same method as before the source grid rotation.
Using the above imaging data, the arithmetic unit 9 obtains differential phase images in two directions in the X and Y directions orthogonal to each other by a fringe scanning method.

1:X線源
2:線源格子
3:位相格子
4:吸収格子
5:検出器
6:線源格子移動部
7:位相格子移動部
8:吸収格子移動部
9:演算部
10:被検査物
1: X-ray source 2: Source grating 3: Phase grating 4: Absorption grating 5: Detector 6: Source grating moving unit 7: Phase grating moving unit 8: Absorption grating moving unit 9: Calculation unit 10: Inspected object

Claims (6)

X線源を用いトールボット干渉法により位相情報を取得するX線撮像装置であって、
X線源と被検査物との間に配置され、1次元周期構造を有する線源格子と、
前記X線源から照射され前記線源格子を透過したX線のトールボット効果により自己像を形成する2次元周期構造を有する位相格子と、
前記位相格子によって自己像が形成される位置に配置される吸収格子と、
前記吸収格子を透過したX線の強度を検出可能に構成されたX線検出器と、
前記X線検出器により検出されたX線の強度により、前記位相情報を取得する演算手段と、を備え、
前記線源格子が、前記位相格子と平行な面内で90度回転可能に構成され、
前記線源格子を前記位相格子と平行な面内で90度回転させる前後において前記X線検出器で検出されたX線強度を、前記演算手段によって演算して前記位相情報を取得することを特徴とするX線撮像装置。
An X-ray imaging apparatus that acquires phase information by Talbot interferometry using an X-ray source,
A source grating disposed between the X-ray source and the object to be inspected and having a one-dimensional periodic structure;
A phase grating having a two-dimensional periodic structure that forms a self-image by the Talbot effect of X-rays irradiated from the X-ray source and transmitted through the source grating;
An absorption grating disposed at a position where a self-image is formed by the phase grating;
An X-ray detector configured to detect the intensity of X-rays transmitted through the absorption grating;
Calculating means for obtaining the phase information based on the intensity of the X-rays detected by the X-ray detector;
The source grating is configured to be rotatable by 90 degrees in a plane parallel to the phase grating;
The phase information is obtained by calculating the X-ray intensity detected by the X-ray detector before and after rotating the source grating by 90 degrees in a plane parallel to the phase grating by the calculating means. X-ray imaging apparatus.
前記吸収格子が市松状の2次元周期構造による構成を備え、
前記X線源を通る前記検出器の表面に対する垂直な直線と垂直な面内において、前記吸収格子と前記位相格子の2次元周期構造における周期方向が、45度で交差するようにして配置されていることを特徴とする請求項1に記載のX線撮像装置。
The absorption grating comprises a checkered two-dimensional periodic structure,
In a plane perpendicular to a straight line perpendicular to the surface of the detector passing through the X-ray source, the periodic direction in the two-dimensional periodic structure of the absorption grating and the phase grating is arranged to intersect at 45 degrees. The X-ray imaging apparatus according to claim 1, wherein:
前記吸収格子が、1次元周期構造による構成を備えると共に、前記線源格子と平行な面内で90度回転可能に構成され、
前記線源格子および前記吸収格子を90度回転させる前後において前記X線検出器で検出されたX線強度を、前記演算手段によって演算して位相情報を取得することを特徴とする請求項1に記載のX線撮像装置。
The absorption grating has a configuration with a one-dimensional periodic structure, and is configured to be rotatable by 90 degrees in a plane parallel to the source grating,
The phase information is obtained by calculating the X-ray intensity detected by the X-ray detector before and after rotating the radiation source grating and the absorption grating by 90 degrees by the calculation means. The X-ray imaging apparatus described.
前記位相格子が、市松状で位相がπ変化する格子で構成されていることを特徴とする請求項1から3のいずれか1項に記載のX線撮像装置。   4. The X-ray imaging apparatus according to claim 1, wherein the phase grating is a checkered grating having a phase change of π. 5. 前記演算手段は、前記X線強度を縞走査法により演算して前記位相情報を取得することが可能に構成されていることを特徴とする請求項1から4のいずれか1項に記載のX線撮像装置。   5. The X according to claim 1, wherein the calculation unit is configured to be able to acquire the phase information by calculating the X-ray intensity by a fringe scanning method. 6. Line imaging device. 前記演算手段は、前記X線強度をフーリエ変換法により演算して前記位相情報を取得することが可能に構成されていることを特徴とする請求項1から4のいずれか1項に記載のX線撮像装置。   5. The X according to claim 1, wherein the calculation unit is configured to be able to acquire the phase information by calculating the X-ray intensity by a Fourier transform method. 6. Line imaging device.
JP2011055145A 2011-03-14 2011-03-14 X-ray imaging device Expired - Fee Related JP5777360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011055145A JP5777360B2 (en) 2011-03-14 2011-03-14 X-ray imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011055145A JP5777360B2 (en) 2011-03-14 2011-03-14 X-ray imaging device

Publications (2)

Publication Number Publication Date
JP2012187341A true JP2012187341A (en) 2012-10-04
JP5777360B2 JP5777360B2 (en) 2015-09-09

Family

ID=47081155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055145A Expired - Fee Related JP5777360B2 (en) 2011-03-14 2011-03-14 X-ray imaging device

Country Status (1)

Country Link
JP (1) JP5777360B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066333A1 (en) * 2013-10-31 2015-05-07 Sigray, Inc. X-ray interferometric imaging system
WO2015176023A1 (en) * 2014-05-15 2015-11-19 Sigray, Inc. X-ray method for measurement, characterization, and analysis of periodic structures
WO2018111170A1 (en) * 2016-12-14 2018-06-21 Scint-X Ab X-ray absorbing gratings for phase contrast imaging
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
CN110049725A (en) * 2016-11-22 2019-07-23 株式会社岛津制作所 X-ray phase imaging device
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102598A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system
JP2008545981A (en) * 2005-06-06 2008-12-18 パウル・シェラー・インスティトゥート Interferometer for quantitative phase contrast imaging and tomography using an incoherent polychromatic X-ray source
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
WO2010109368A1 (en) * 2009-03-27 2010-09-30 Koninklijke Philips Electronics N.V. Differential phase-contrast imaging with circular gratings
JP2010249533A (en) * 2009-04-10 2010-11-04 Canon Inc Source grating for talbot-lau-type interferometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545981A (en) * 2005-06-06 2008-12-18 パウル・シェラー・インスティトゥート Interferometer for quantitative phase contrast imaging and tomography using an incoherent polychromatic X-ray source
WO2008102598A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
WO2010109368A1 (en) * 2009-03-27 2010-09-30 Koninklijke Philips Electronics N.V. Differential phase-contrast imaging with circular gratings
JP2010249533A (en) * 2009-04-10 2010-11-04 Canon Inc Source grating for talbot-lau-type interferometer

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10976273B2 (en) 2013-09-19 2021-04-13 Sigray, Inc. X-ray spectrometer system
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
WO2015066333A1 (en) * 2013-10-31 2015-05-07 Sigray, Inc. X-ray interferometric imaging system
US10653376B2 (en) 2013-10-31 2020-05-19 Sigray, Inc. X-ray imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
WO2015176023A1 (en) * 2014-05-15 2015-11-19 Sigray, Inc. X-ray method for measurement, characterization, and analysis of periodic structures
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
CN110049725A (en) * 2016-11-22 2019-07-23 株式会社岛津制作所 X-ray phase imaging device
US10466185B2 (en) 2016-12-03 2019-11-05 Sigray, Inc. X-ray interrogation system using multiple x-ray beams
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
WO2018111170A1 (en) * 2016-12-14 2018-06-21 Scint-X Ab X-ray absorbing gratings for phase contrast imaging
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11143605B2 (en) 2019-09-03 2021-10-12 Sigray, Inc. System and method for computed laminography x-ray fluorescence imaging
US11175243B1 (en) 2020-02-06 2021-11-16 Sigray, Inc. X-ray dark-field in-line inspection for semiconductor samples
US11215572B2 (en) 2020-05-18 2022-01-04 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11428651B2 (en) 2020-05-18 2022-08-30 Sigray, Inc. System and method for x-ray absorption spectroscopy using a crystal analyzer and a plurality of detector elements
US11549895B2 (en) 2020-09-17 2023-01-10 Sigray, Inc. System and method using x-rays for depth-resolving metrology and analysis
US11686692B2 (en) 2020-12-07 2023-06-27 Sigray, Inc. High throughput 3D x-ray imaging system using a transmission x-ray source
US11885755B2 (en) 2022-05-02 2024-01-30 Sigray, Inc. X-ray sequential array wavelength dispersive spectrometer

Also Published As

Publication number Publication date
JP5777360B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5777360B2 (en) X-ray imaging device
JP5174180B2 (en) X-ray imaging apparatus and X-ray imaging method
JP6448649B2 (en) Large-field phase contrast imaging method based on detuning configuration including acquisition and reconstruction techniques
JP6422123B2 (en) Radiation image generator
JP5601909B2 (en) X-ray imaging apparatus and X-ray imaging method using the same
JP5759474B2 (en) Phase contrast imaging apparatus and method having movable x-ray detector elements
JP5789613B2 (en) Non-parallel grating device with on-the-fly phase stepping, X-ray system and method of use
JP5461438B2 (en) X-ray detector for phase contrast imaging
EP2442722A1 (en) Correction method for differential phase contrast imaging
JP2013063099A (en) X-ray imaging device
WO2007125833A1 (en) X-ray image picking-up device and x-ray image picking-up method
WO2014104186A9 (en) Interferometer and inspection subject information acquisition system
JP2011174715A (en) X-ray imaging device
EP3344979B1 (en) Dual phase grating interferometer for x-ray phase contrast imaging
JP2017090414A (en) Two-dimensional interference pattern imaging device
WO2018168621A1 (en) Radiographic image generating device
JP6789591B2 (en) Radiation phase imager
JP2017083413A (en) X-ray Talbot interferometer
JP2013042983A (en) Tomosynthesis imaging device and imaging method of tomosynthesis image
Bopp et al. X-ray Phase Contrast: Research on a Future Imaging Modality
JP2015227784A (en) Interferometer
JP2020038153A (en) Radiation image generating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

LAPS Cancellation because of no payment of annual fees