JP2012186934A - Normal rotation and reverse rotation switching device - Google Patents

Normal rotation and reverse rotation switching device Download PDF

Info

Publication number
JP2012186934A
JP2012186934A JP2011048732A JP2011048732A JP2012186934A JP 2012186934 A JP2012186934 A JP 2012186934A JP 2011048732 A JP2011048732 A JP 2011048732A JP 2011048732 A JP2011048732 A JP 2011048732A JP 2012186934 A JP2012186934 A JP 2012186934A
Authority
JP
Japan
Prior art keywords
field
field winding
winding set
excitation current
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011048732A
Other languages
Japanese (ja)
Inventor
Takeo Iwai
武雄 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011048732A priority Critical patent/JP2012186934A/en
Publication of JP2012186934A publication Critical patent/JP2012186934A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a normal rotation and reverse rotation switching device capable of normally rotating or reversely rotating a DC synchronous motor which drives a hall element with chopper signal or PWM signal, with a small torque ripple and large torque.SOLUTION: Related to a normal rotation and reverse rotation switching device for switching rotation of a motor between normal direction and reverse direction, a field winding is arranged around a rotor, and an excitation current that is supplied to a field winding set is controlled by the output signal outputted from a detection means that detects magnetic pole position of the rotor, for providing a predetermined rotational speed. The switching device includes a selecting means equipped with a plurality of selectors for selecting either a first field winding set or a second field winding set to which the excitation current is supplied by the output signal outputted from one detection means, and a selector switching means which causes the selector to select the first field winding set upon receiving a command for normal direction but causes the selector to select the second field winding set upon receiving the command for reverse direction.

Description

本発明は、直流同期電動機の回転方向を切り替える正転逆転切替装置に関し、特に、直流同期電動機の回転方向の切替により電気自動車の前進と後退とを選択的に切替える正転逆転切替装置に関する。 The present invention relates to a forward / reverse switching device that switches a rotation direction of a DC synchronous motor, and more particularly to a forward / reverse switching device that selectively switches forward and backward of an electric vehicle by switching the rotation direction of the DC synchronous motor.

近年、地球環境保全、石油依存からの脱却、エネルギー効率に関する意識の高まりを背景に、エンジンとモータを併用するハイブリッド車や、蓄電池や燃料電池に蓄積された電気エネルギーでモータを駆動し走行する電気自動車が脚光を浴びている。特に、小型・高出力のモータ、蓄電池や燃料電池の開発が急速に進展したことも、その実用化に拍車をかけている。特に、電気自動車駆動用のモータは、エネルギー効率がよく、制御が容易で、比較的軽量であるといった利点を有する直流同期電動機が有力である。しかしながら、直流同期電動機は、ホール素子などの磁気センサや光センサを用いて回転子の磁極位置を検出し、界磁巻線に検出された磁極位置号に応じた励磁電流を流して回転磁界を生成し、回転子を回転させる必要がある。このため、直流同期電動機を駆動源とする電気自動車は、内燃機関自動車のように前進、後退を機械的に選択するか、あるいは、電動機の回転方向を切替えることにより行う必要がある。
一般に、回転磁界は、例えば位相がずれた交番電流を励磁電流とすることにより得ることができる。そこで、電動機の、発電機に接続される相順を切替えることにより回転子を正転あるいは逆転させる方法(特許文献1)、ホール素子の出力信号に基づいて、各界磁巻線への励磁電流の供給タイミングを制御することにより回転子を正転あるいは逆転させる方法が開示されている(特許文献2)。
In recent years, against the backdrop of global environmental protection, a departure from dependence on oil, and heightened awareness regarding energy efficiency, hybrid vehicles that use an engine and a motor together with electricity that drives a motor with electric energy accumulated in a storage battery or a fuel cell Cars are in the spotlight. In particular, the rapid development of small, high-output motors, storage batteries, and fuel cells has spurred their practical application. In particular, a motor for driving an electric vehicle is likely to be a DC synchronous motor having advantages such as energy efficiency, easy control, and relatively light weight. However, the DC synchronous motor detects the magnetic pole position of the rotor using a magnetic sensor such as a Hall element or an optical sensor, and passes the excitation current according to the magnetic pole position number detected in the field winding to generate the rotating magnetic field. Need to generate and rotate the rotor. For this reason, an electric vehicle using a DC synchronous motor as a drive source needs to be mechanically selected as in an internal combustion engine vehicle, or by switching the rotation direction of the motor.
In general, a rotating magnetic field can be obtained, for example, by using an alternating current out of phase as an exciting current. Therefore, a method of rotating the rotor forward or reverse by switching the phase sequence of the motor connected to the generator (Patent Document 1), the excitation current to each field winding based on the output signal of the Hall element A method of rotating the rotor forward or backward by controlling the supply timing is disclosed (Patent Document 2).

特許第3337126号公報Japanese Patent No. 3337126 特許第3906429号公報Japanese Patent No. 3906429

しかしながら、内燃機関自動車のように変速機のギヤチェンジによって前進、後退を機械的に選択する方法は、装置が大型になるうえ、重量が重くなるので、軽量で小型という直流同期電動機の利点を生かしきれない。また、相順を切替える方法や励磁電流の供給タイミングを制御する方法は、何れかの2相を入れ替えるなどにより簡便に実施できる、例えば3相の交番電流で励磁する電動機などには有効であるが、トルクリップルがあるうえ、高出力が得にくい。また、多相の場合には制御が複雑になり、さらに、単一のチョッパ信号やPWM信号で複数のホール素子を駆動制御する場合には不向きな方法である。
本発明は、上記事情に鑑み、単一のチョッパ信号やPWM信号でホール素子などを駆動する、トルクリップルが小さくてトルクの大きい直流同期電動機を正回転あるいは逆回転させるための正転逆転切替装置、特に電気自動車の前進と後退を直流同期電動機の回転方向の切替によって行うための正転逆転切替装置を提供することを目的とする。
However, the method of mechanically selecting forward and backward by changing the gear of the transmission, such as an internal combustion engine car, increases the size and weight of the device, taking advantage of the DC synchronous motor that is lightweight and compact. I can't. In addition, the method of switching the phase sequence and the method of controlling the supply timing of the excitation current can be easily implemented by switching any two phases, for example, effective for an electric motor that excites with a three-phase alternating current. In addition to torque ripple, high output is difficult to obtain. In addition, the control is complicated in the case of multiphase, and is not suitable for driving and controlling a plurality of Hall elements with a single chopper signal or PWM signal.
In view of the above circumstances, the present invention is a forward / reverse switching device for driving a Hall element or the like with a single chopper signal or PWM signal to rotate a DC synchronous motor having a small torque ripple and a large torque in the forward or reverse direction. In particular, it is an object of the present invention to provide a forward / reverse switching device for moving an electric vehicle forward and backward by switching the direction of rotation of a DC synchronous motor.

本発明の正転逆転切替装置は、N極とS極が一定の間隔をあけて交互に配置された回転子の周囲に、複数の界磁巻線が等間隔に配備され、該回転子の磁極位置を検出する複数の検出手段それぞれから出力されるそれぞれの出力信号により、該界磁巻線を直列又は並列に接続して形成された複数の界磁巻線組それぞれに供給される励磁電流を制御して回転磁界を形成し、所定の回転速度を得る電動機の回転を正方向と逆方向とに切替える正転逆転切替装置であって、
上記複数の検出手段のうちの一の検出手段から出力される出力信号により励磁電流が供給される第一の界磁巻線組及び第二の界磁巻線組のうちの何れか一方を選択する選択子が複数具備された選択手段と、上記回転を正方向に切替える指令を受けたとき、上記選択子に、上記第一の界磁巻線組を選択させる動作を行い、上記回転を逆方向に切替える指令を受けたとき、該選択子に、上記第二の界磁巻線組を選択させる動作を行う選択子切替手段と、を備えたことを特徴とする。
このように、励磁電流が制御される界磁巻線組を複数の選択子を介して一斉に切替えれば、トルクリップルが小さくてトルクの大きい直流同期電動機の回転方向を円滑に切替えることができる。
ここで、上記選択子は、上記第一の界磁巻線組に接続された第一の接点と、上記第二の界磁巻線組に接続された第二の接点とを有するものであって、
上記選択子切替手段は、上記正方向に切替える指令を受けたとき、上記第一の接点を閉じて上記第二の接点を開き、上記逆方向に切替える指令を受けたとき、該第一の接点を開き該第二の接点を閉じることが好ましい。
このようにすれば、回転方向の切替が容易である。
また、上記複数の検出手段それぞれは、上記界磁巻線組のうちの一の界磁巻線組を形成する界磁巻線それぞれが巻き回された界磁極の近傍に設置されたものであって、上記第一の界磁巻線組は、上記一の検出手段が近傍に設置された上記界磁極より上記正方向における一つ先の界磁巻線又は二つ先の界磁巻線を含み、上記第二の界磁巻線組は、該界磁極より上記逆方向における一つ先の界磁巻線又は二つ先の界磁巻線を含むことが好ましい。
このようにすれば、回転方向の切替が行われた後の電動機の回転が円滑である。
In the forward / reverse switching device of the present invention, a plurality of field windings are arranged at equal intervals around a rotor in which N poles and S poles are alternately arranged with a certain interval. Excitation current supplied to each of a plurality of field winding sets formed by connecting the field windings in series or in parallel with each output signal output from each of a plurality of detection means for detecting the magnetic pole position. Is a forward / reverse switching device for switching the rotation of a motor to obtain a predetermined rotation speed between a forward direction and a reverse direction by forming a rotating magnetic field,
Select one of the first field winding set and the second field winding set to which the excitation current is supplied by the output signal output from one of the plurality of detection means. When receiving a selection means including a plurality of selectors and a command to switch the rotation in the forward direction, the selector performs an operation of selecting the first field winding set and reverses the rotation. And a selector switching means for performing an operation of selecting the second field winding set on the selector when receiving a command to switch the direction.
Thus, if the field winding group in which the excitation current is controlled is switched all at once via a plurality of selectors, the rotational direction of the DC synchronous motor having a small torque ripple and a large torque can be smoothly switched. .
Here, the selector has a first contact connected to the first field winding set and a second contact connected to the second field winding set. And
The selector switching means closes the first contact and opens the second contact when receiving a command to switch in the forward direction, and receives the command to switch in the reverse direction when receiving the command to switch in the reverse direction. It is preferable to open and close the second contact.
In this way, the rotation direction can be easily switched.
Each of the plurality of detecting means is installed in the vicinity of the field pole around which each field winding forming one field winding set of the field winding sets is wound. Thus, the first field winding set includes the first field winding or the second field winding in the positive direction with respect to the field pole where the one detecting means is installed in the vicinity. The second field winding set preferably includes one field winding or two field windings in the opposite direction from the field magnetic pole.
In this way, the rotation of the electric motor after the switching of the rotation direction is smooth.

本発明の正転逆転切替装置によれば、オンオフ信号の指令により、共通のチョッパ信号で界磁巻線を励磁し、トルクリップルが小さくてトルクの大きい直流ブラシレス電動機の回転方向を切替え、円滑に正回転あるいは逆回転させることができる。   According to the forward / reverse rotation switching device of the present invention, the field winding is excited by a common chopper signal in response to an on / off signal command, and the rotation direction of the DC brushless motor with small torque ripple and large torque is switched smoothly. It can be rotated forward or backward.

図1は、本実施形態の正転逆転切替装置が適用される直流同期電動機の一例を示す図である。FIG. 1 is a diagram illustrating an example of a DC synchronous motor to which the forward / reverse rotation switching device of the present embodiment is applied. 図2は、正転逆転切替装置を構成する選択手段の接続状態を示す図である。FIG. 2 is a diagram showing a connection state of selection means constituting the forward / reverse rotation switching device. 図3は、選択手段を動作させる継電器を示す図である。FIG. 3 is a diagram showing a relay that operates the selection means. 図4は、各励磁電流制御手段に接続された多数の接点が同心円上に配置されたロータリスイッチの固定部を示す平面図である。FIG. 4 is a plan view showing a fixed portion of the rotary switch in which a large number of contacts connected to each exciting current control means are arranged concentrically. 図5は、各ホール素子の出力端子に接続された多数の接点が同心円上に配置されたロータリスイッチの回転部を裏面から見た図である。FIG. 5 is a view of the rotary part of the rotary switch in which a large number of contact points connected to the output terminals of the hall elements are arranged concentrically as viewed from the back side. 図6は、正方向の指令を受け、正転逆転切替装置を操作したときの回転子の磁極位置と界磁極の磁化状態を示す模式図である。FIG. 6 is a schematic diagram showing the magnetic pole position of the rotor and the magnetic state of the field magnetic pole when the forward / reverse switching device is operated in response to a forward direction command. 図7は、逆方向の指令を受け、正転逆転切替装置を操作したときの回転子の磁極位置と界磁極の磁化状態を示す模式図である。FIG. 7 is a schematic diagram showing the magnetic pole position of the rotor and the magnetized state of the field magnetic pole when the forward / reverse switching device is operated upon receiving a reverse direction command.

以下に、本発明の正転逆転切替装置の実施形態について説明する。
図1は、本実施形態の正転逆転切替装置が適用される直流同期電動機の一例を示す図である。
図1に一例を示す直流同期電動機は、磁極1が配置された回転子2と、界磁巻線3が配備された固定子と、回転子2の磁極1を検出するホール素子(本発明の検出手段に相当する。)4と、正転逆転切替装置10と、固定子に回転磁界を形成する励磁電流をホール素子4の出力信号によって制御する励磁電流制御手段5と、チョッパ信号入力端子CINと、直流電源接続端子DINと、を備え、固定子の内部に回転子2が配置されたインナーロータ型である。
回転子2は、永久磁石のN極とS極が回転軸の周りに、一定の間隙(M)を開けて交互に2個ずつ配置されている。
固定子は、回転子2を挟んで対称な位置に、スロットを隔てて12個の界磁極が配備されている。スロットを隔てて配備された界磁極それぞれの中央部相互間の距離(L)は一定であり、Lは、回転子のN極とS極との間隙(M)よりも小さくなるように設定されている。それぞれの界磁極には界磁巻線3が巻回され、それら12個の界磁巻線3のうち、対置された2つの界磁巻線3は並列に接続され、6組の界磁巻線組5が形成されている。そして、6組の界磁巻線組5それぞれは、直流電源接続端子DINから、回転磁界を形成するための励磁電流が供給される。
ここで、本実施形態における界磁巻線組6は、励磁電流の向きに応じて双方同時にN極、又はS極に磁化するよう構成されているが、界磁極の数等によっては、必ずしも双方同時に同じ極性に磁化する必要はない。また、界磁巻線組6は、対置された2つの界磁巻線により形成されているが、必ずしも対置された界磁巻線によって形成する必要はなく、さらに3つ以上を組み合わせて形成してもよい。
ホール素子4は、チョッパ信号が入力する入力端子と、その入力端子からチョッパ信号が入力している状態で回転子2の磁極1を検出したとき、磁極1の強さ(含む極性)とチョッパ信号の大きさに比例した出力信号を出力する出力端子と、を備えており、固定子の界磁巻線3に形成される回転磁界の影響を受けることなく、回転子2のN極及びS極の位置を検出することができるよう界磁極の近傍に設置される。
なお、ホール素子4に入力アするチョッパ信号のデューティ比を変えることにより電動機のトルクが変化するので、負荷の大きさに応じ、回転速度を加速したり減速したりすることができる。
Hereinafter, embodiments of the forward / reverse rotation switching device of the present invention will be described.
FIG. 1 is a diagram illustrating an example of a DC synchronous motor to which the forward / reverse rotation switching device of the present embodiment is applied.
A DC synchronous motor shown as an example in FIG. 1 includes a rotor 2 in which magnetic poles 1 are arranged, a stator in which field windings 3 are arranged, and a Hall element that detects the magnetic poles 1 of the rotor 2 (of the present invention). 4), forward / reverse switching device 10, excitation current control means 5 for controlling the excitation current that forms a rotating magnetic field in the stator by the output signal of Hall element 4, and chopper signal input terminal CIN And a DC power supply connection terminal DIN, and an inner rotor type in which the rotor 2 is disposed inside the stator.
In the rotor 2, two N poles and S poles of a permanent magnet are alternately arranged around the rotation axis with a certain gap (M).
The stator is provided with twelve field poles at slots symmetrically across the rotor 2 with a slot therebetween. The distance (L) between the central portions of the field poles arranged across the slot is constant, and L is set to be smaller than the gap (M) between the N pole and S pole of the rotor. ing. A field winding 3 is wound around each field pole, and two of the twelve field windings 3 are connected in parallel, and six sets of field windings are connected. A line set 5 is formed. Each of the six field winding groups 5 is supplied with an exciting current for forming a rotating magnetic field from the DC power supply connection terminal DIN.
Here, the field winding set 6 in the present embodiment is configured to be magnetized to the N pole or the S pole at the same time depending on the direction of the excitation current. It is not necessary to magnetize to the same polarity at the same time. Further, the field winding set 6 is formed by two opposed field windings. However, the field winding set 6 is not necessarily formed by the opposed field windings, and is formed by combining three or more. May be.
When the Hall element 4 detects the magnetic pole 1 of the rotor 2 in a state where the chopper signal is inputted from the input terminal to which the chopper signal is inputted and the chopper signal is inputted from the input terminal, the strength (including polarity) of the magnetic pole 1 and the chopper signal are detected. And an output terminal that outputs an output signal proportional to the magnitude of the N pole and S pole of the rotor 2 without being affected by the rotating magnetic field formed in the field winding 3 of the stator. It is installed in the vicinity of the field pole so that the position of can be detected.
Since the torque of the motor changes by changing the duty ratio of the chopper signal input to the hall element 4, the rotational speed can be accelerated or decelerated depending on the magnitude of the load.

励磁電流制御手段5は、ホール素子4の出力端子における出力信号の極性が正のとき、その出力信号のデューティ比に応じて通電時間を変える2つのスイッチング素子51a、51bと、出力信号の極性が負のとき、その出力信号のデューティ比に応じて通電時間を変える、2つのスイッチング素子52a、52bとを有する。各スイッチング素子51a、51b、52a、52bは、界磁巻線組6に供給される励磁電流の向きを回転子2の磁極1に応じて切換える一方、励磁電流の通電時間をデューティ比に応じて変化させる。また、各スイッチング素子51a、51b、52a、52bには、サージ電圧等をバイパスするフリーホイールダイオード53が並列に接続されている。
励磁電流制御手段5に正の出力信号が送られてくると、スイッチング素子51a、51bが作動する。そして、回転子2が回転し磁石の磁極1が反転してホール素子4から負の出力信号が送られてくると、スイッチング素子52a、52bが作動する。その結果、界磁巻線組6には、出力信号のデューティ比に対応する通電時間だけ、励磁電流が間欠的に流れ、回転子2にトルクが生じる。また、通電時間と通電時間との間の非通電時間は、界磁巻線組6に交流電力が誘起されるので、並列に接続されたフリーホイールダイオード53を経由して、他の界磁巻線組6の励磁電流として活用される。
ここで、本実施形態が適用される直流同期電動機は、回転子2のN極とS極との間隙(M)が、固定子の、スロットを隔てて配備された界磁極それぞれの中央部相互間の距離(L)よりも大きくなっているので、ホール素子4の出力信号により励磁電流が制御され、界磁巻線組6によって磁化される磁極の変わり目で、必ず磁化休止時間が生じる。このため、同じ界磁巻線3により、回転子2の磁極1を吸引する力と反発する力を同時に受けることがなくなり、効率的にトルクを得ることができる。
When the polarity of the output signal at the output terminal of the Hall element 4 is positive, the exciting current control means 5 includes two switching elements 51a and 51b that change the energization time according to the duty ratio of the output signal, and the polarity of the output signal. When negative, it has two switching elements 52a and 52b that change energization time according to the duty ratio of the output signal. Each switching element 51a, 51b, 52a, 52b switches the direction of the excitation current supplied to the field winding set 6 according to the magnetic pole 1 of the rotor 2, while the energization time of the excitation current is changed according to the duty ratio. Change. A free wheel diode 53 that bypasses a surge voltage or the like is connected in parallel to each switching element 51a, 51b, 52a, 52b.
When a positive output signal is sent to the excitation current control means 5, the switching elements 51a and 51b are activated. When the rotor 2 rotates and the magnetic pole 1 of the magnet is reversed and a negative output signal is sent from the Hall element 4, the switching elements 52a and 52b are activated. As a result, the exciting current flows intermittently in the field winding set 6 for the energizing time corresponding to the duty ratio of the output signal, and torque is generated in the rotor 2. Further, during the non-energization time between the energization time and the energization time, since AC power is induced in the field winding set 6, other field windings are connected via the freewheel diodes 53 connected in parallel. This is used as the exciting current of the wire set 6.
Here, in the DC synchronous motor to which the present embodiment is applied, the gap (M) between the N pole and the S pole of the rotor 2 is set so that the center portions of the field poles of the stator arranged with the slots separated from each other. The excitation current is controlled by the output signal of the Hall element 4 and the magnetization pause time always occurs at the transition of the magnetic pole magnetized by the field winding set 6. For this reason, the same field winding 3 does not receive both the force for attracting the magnetic pole 1 of the rotor 2 and the repulsive force at the same time, and the torque can be obtained efficiently.

正転逆転切替装置10は、ホール素子4の出力信号により励磁電流制御手段5で励磁電流が制御される界磁巻線組6を切替えるスイッチ(本発明の選択子に相当する。)11aを6個備えた選択手段11と、その選択手段11を、回転方向の指令によって一斉に切替える継電器(本発明の選択子切替手段に相当する。)12とを備えており、詳細は後述する。
本実施形態の、スイッチ11aの接点は、界磁極よりも正逆回転方向の1つ先の界磁巻線に励磁電流を供給する励磁電流制御手段5に接続されるが、二つ先の界磁巻線に励磁電流を供給する励磁電流制御手段5に接続してもよい。また、本実施形態の正転逆転切替装置10は、選択子切替手段に、継電器12を用いているが、ロータリ式の多接点スイッチであっても、他の切替方法であってもよい。
The forward / reverse switching device 10 has 6 switches 11a (corresponding to the selector of the present invention) 11a for switching the field winding group 6 whose excitation current is controlled by the excitation current control means 5 according to the output signal of the Hall element 4. Each of the selection means 11 and a relay 12 (corresponding to the selector switching means of the present invention) 12 that switches the selection means 11 all at once according to a command in the rotation direction are provided, details of which will be described later.
In this embodiment, the contact of the switch 11a is connected to the excitation current control means 5 for supplying the excitation current to the field winding one direction forward and backward than the field magnetic pole. You may connect to the excitation current control means 5 which supplies an excitation current to a magnetic winding. Moreover, although the forward / reverse switching device 10 of the present embodiment uses the relay 12 as the selector switching means, it may be a rotary multi-contact switch or another switching method.

図2及び図3は、本実施形態の正転逆転切替装置の一例を示す図であり、図2は、正転逆転切替装置を構成する選択手段の接続状態を示す図、図3は、選択手段を動作させる継電器を示す図である。
図2において、ホール素子4a〜4fの一対の入力端子のうちの一方の端子、及び一対の出力端子のうちの一方の端子、並びにホール素子の出力端子に接続される2つのスイッチのうちの一方のスイッチは、説明の都合上、省略されている。
図2に示す選択手段11は、6つのスイッチ11a〜11fを備えている。スイッチ11a〜11fは、入力端子INと、継電器12の動作で切り替わる2つの接点を備えている。第一の接点は、各ホール素子4a〜4fが設置された位置の近傍に配備された界磁極よりも正回転方向の1つ先の界磁巻線に励磁電流を供給する励磁電流制御手段5a〜5fに接続され、第二の接点は、逆回転方向の1つ先の界磁巻線の励磁電流制御手段5a〜5fに接続されている。また、各励磁電流制御手段5a〜5fは、共通の直流源30に接続されている。
さらに、各ホール素子4a〜4fの入力端子は、共通のチョッパ信号生成手段20に接続され、出力端子は、選択手段11の各スイッチ11a〜11fに接続されている。
ここで、本実施形態の、スイッチ11a〜11fの接点は、界磁極よりも正逆回転方向の1つ先の界磁巻線に励磁電流を供給する励磁電流制御手段5a〜5fに接続されるが、二つ先の界磁巻線に励磁電流を供給する励磁電流制御手段5a〜5fに接続してもよい。また、本実施形態の正転逆転切替装置10は、選択子切替手段に、継電器を用いているが、ロータリ式の多接点スイッチを用いてもよい。
2 and 3 are diagrams illustrating an example of the forward / reverse switching device according to the present embodiment, FIG. 2 is a diagram illustrating a connection state of the selection means configuring the forward / reverse switching device, and FIG. 3 is a selection diagram. It is a figure which shows the relay which operates a means.
In FIG. 2, one of the pair of input terminals of the Hall elements 4a to 4f, one of the pair of output terminals, and one of the two switches connected to the output terminal of the Hall element. These switches are omitted for convenience of explanation.
The selection means 11 shown in FIG. 2 includes six switches 11a to 11f. The switches 11a to 11f are provided with an input terminal IN and two contacts that are switched by the operation of the relay 12. The first contact is an excitation current control means 5a for supplying an excitation current to the field winding in the forward rotation direction with respect to the field magnetic pole arranged in the vicinity of the position where the hall elements 4a to 4f are installed. To 5f, and the second contact is connected to the excitation current control means 5a to 5f of the field winding one ahead in the reverse rotation direction. In addition, each of the excitation current control means 5 a to 5 f is connected to a common DC source 30.
Furthermore, the input terminals of the Hall elements 4 a to 4 f are connected to the common chopper signal generation means 20, and the output terminals are connected to the switches 11 a to 11 f of the selection means 11.
Here, the contacts of the switches 11a to 11f of the present embodiment are connected to excitation current control means 5a to 5f for supplying an excitation current to the field winding that is one ahead of the field pole in the forward and reverse rotation direction. However, it may be connected to the excitation current control means 5a to 5f for supplying the excitation current to the field winding of the second ahead. Moreover, although the forward / reverse switching device 10 of this embodiment uses a relay as the selector switching means, a rotary multi-contact switch may be used.

本実施形態の直流同期電動機は、12個の界磁巻線を有し、2個の界磁巻線を並列に接続して6つの界磁巻線組が形成されている。すなわち、正回転方向に順次配備された第1番目から第12番目の界磁極それぞれに巻き回された第1番目から第12番目の界磁巻線のうち、第1番目と第7番目の界磁巻線、第2番目と第8番目の界磁巻線、第3番目と第9番目の界磁巻線、第4番目と第10番目の界磁巻線、第5番目と第11番目の界磁巻線、第6番目と第12番目の界磁巻線がそれぞれ並列に接続され、第2番目と第8番目の界磁巻線からなる第1の界磁巻線組6aは、第1の励磁電流制御手段5aから励磁電流が供給され、第3番目と第9番目の界磁巻線からなる第2の界磁巻線組6bは、第2の励磁電流制御手段5bから励磁電流が供給され、第4番目と第10番目の界磁巻線からなる第3の界磁巻線組6cは、第3の励磁電流制御手段5cから励磁電流が供給され、第5番目と第11番目の界磁巻線からなる第4の界磁巻線組6dは、第4の励磁電流制御手段5dから励磁電流が供給され、第6番目と第12番目の界磁巻線からなる第5の界磁巻線組6eは、第5の励磁電流制御手段5eから励磁電流が供給され、第1番目と第7番目の界磁巻線からなる第6の界磁巻線組6fは、第6の励磁電流制御手段5fから励磁電流が供給される。さらに、第1番目の界磁極の近傍に配置されたホール素子4aの出力信号は、スイッチ11aの接点によって第1の励磁電流制御手段5a又は第5の励磁電流制御手段5eに接続され、第2番目の界磁極の近傍に配置されたホール素子4bの出力信号は、スイッチ11bの接点によって第2の励磁電流制御手段5b又は第6の励磁電流制御手段5fに接続され、第3番目の界磁極の近傍に配置されたホール素子4cの出力信号は、スイッチ11cの接点によって第3の励磁電流制御手段5c又は第1の励磁電流制御手段5aに接続され、第4番目の界磁極の近傍に配置されたホール素子4dの出力信号は、スイッチ11dの接点によって第4の励磁電流制御手段5d又は第2の励磁電流制御手段5bに接続され、第5番目の界磁極の近傍に配置されたホール素子4eの出力信号は、スイッチ11eの接点によって第5の励磁電流制御手段5b又は第3の励磁電流制御手段5cに接続され、第6番目の界磁極の近傍に配置されたホール素子4fの出力信号は、のスイッチ11fの接点によって第6の励磁電流制御手段5f又は第4の励磁電流制御手段5dに接続される。 The DC synchronous motor of this embodiment has 12 field windings, and two field windings are connected in parallel to form six field winding sets. That is, among the first to twelfth field windings wound around the first to twelfth field magnetic poles sequentially arranged in the positive rotation direction, the first and seventh fields are wound. Magnetic windings, second and eighth field windings, third and ninth field windings, fourth and tenth field windings, fifth and eleventh The first field winding set 6a composed of the second and eighth field windings is connected in parallel with the sixth and twelfth field windings, An excitation current is supplied from the first excitation current control means 5a, and the second field winding set 6b composed of the third and ninth field windings is excited from the second excitation current control means 5b. A third field winding set 6c composed of the fourth and tenth field windings is supplied with an excitation current from the third excitation current control means 5c. The fourth field winding set 6d composed of the fifth and eleventh field windings is supplied with the excitation current from the fourth excitation current control means 5d, and the sixth and twelfth field windings. The fifth field winding set 6e made up of magnetic windings is supplied with exciting current from the fifth exciting current control means 5e, and the sixth field winding made up of the first and seventh field windings. The winding set 6f is supplied with an excitation current from the sixth excitation current control means 5f. Further, the output signal of the Hall element 4a arranged in the vicinity of the first field pole is connected to the first excitation current control means 5a or the fifth excitation current control means 5e by the contact of the switch 11a, and the second The output signal of the Hall element 4b arranged in the vicinity of the th field pole is connected to the second exciting current control means 5b or the sixth exciting current control means 5f by the contact of the switch 11b, and the third field pole. The output signal of the Hall element 4c arranged in the vicinity of is connected to the third exciting current control means 5c or the first exciting current control means 5a by the contact of the switch 11c, and is arranged in the vicinity of the fourth field pole. The output signal of the hall element 4d is connected to the fourth exciting current control means 5d or the second exciting current control means 5b by the contact of the switch 11d, and is arranged near the fifth field pole. The output signal of the hall element 4e is connected to the fifth excitation current control means 5b or the third excitation current control means 5c by the contact of the switch 11e, and is arranged in the vicinity of the sixth field pole. The output signal of 4f is connected to the sixth excitation current control means 5f or the fourth excitation current control means 5d through the contact of the switch 11f.

図3に示す継電器12は、回転方向を指令するレバー(指令信号生成手段)13を介して抵抗及び直流電源に接続されている。レバー13を倒し、接点が閉じると継電器12が動作し、レバー13を起こし、接点が開くと、継電器12が元に戻るようになっている。継電器12には、動作したときに一斉に閉じ、元に戻ると一斉に開く接点と、元に戻ると一斉に閉じ、動作したとき一斉に開く接点とを有するスイッチが少なくとも12あり、それらのスイッチ及び接点は、図2の選択手段11におけるスイッチ及び接点を構成する。 The relay 12 shown in FIG. 3 is connected to a resistor and a DC power source via a lever (command signal generating means) 13 that commands the rotation direction. When the lever 13 is tilted and the contact is closed, the relay 12 operates. When the lever 13 is raised and the contact is opened, the relay 12 returns. The relay 12 has at least twelve switches having contacts that close all at once when operated and open all at once when returned, and all contacts that close all when returned and open all at once when operated. And the contacts constitute the switches and contacts in the selection means 11 of FIG.

図4及び図5は、本実施形態の正転逆転切替装置の他の例として、円周上に多数の接点を有するロータリスイッチを示す図であり、図4は各励磁電流制御手段に接続された接点が同心円上に配置されたロータリスイッチの固定部を示す平面図であり、図5は、各ホール素子の出力端子に接続された多数の接点が同心円上に配置されたロータリスイッチの回転部を裏面から見た図である。
図4に示すロータリスイッチの固定部15は、中央に軸16があり、その軸16を中心にした2つの同心円上それぞれに、6つの白丸と、各白丸の両側それぞれに1つの黒丸が配置され、白丸は、ニュートラル、黒丸は、6つの励磁電流制御手段5a〜5fに接続された6つのスイッチ11a〜11fの接点に対応して、12の接点を備えている。そして、それらの白丸と黒丸は、図2に示すホール素子4a〜4fの出力端子に対応して、2つの同心円の、同じ放射線上に配置されている。また、図2で説明したように、第1の励磁電流制御手段5a又は第5の励磁電流制御手段5eに接続される接点相互、第2の励磁電流制御手段5b又は第6の励磁電流制御手段5fに接続される接点相互、第3の励磁電流制御手段5c又は第1の励磁電流制御手段5aに接続される接点相互、第4の励磁電流制御手段5d又は第2の励磁電流制御手段5bに接続される接点相互、第5の励磁電流制御手段5b又は第3の励磁電流制御手段5cに接続される接点相互、第6の励磁電流制御手段5f又は第4の励磁電流制御手段5dに接続される接点相互は、それぞれ、リード線で結ばれている。
図5に裏面を示すロータリスイッチの回転部18は、中央に、ロータリスイッチの固定部に嵌合する回転軸19があり、その回転軸19を中心にした2つの同心円の、同じ放射線上に、6つの黒丸がある。黒丸は、ホール素子4a〜4fの出力端子に接続された接点である。本実施形態のロータリスイッチは、固定部15の白丸と回転部18の黒丸が接触し、ニュートラル状態にある。そして、固定部15の軸19に回転部18の回転軸19を嵌合し、回転部18を左右に回転させ、回転部18の黒丸を1つ移動させて固定部15の接点(黒丸)に接触させることにより電動機の回転方向を指令することができる。
4 and 5 are diagrams showing a rotary switch having a large number of contacts on the circumference as another example of the forward / reverse switching device of the present embodiment, and FIG. 4 is connected to each excitation current control means. FIG. 5 is a plan view showing a fixed part of a rotary switch in which the contact points are arranged on concentric circles, and FIG. 5 is a rotating part of the rotary switch in which a large number of contact points connected to the output terminals of the hall elements are arranged on concentric circles. It is the figure which looked at from the back.
The rotary switch fixing portion 15 shown in FIG. 4 has a shaft 16 at the center, and six white circles and one black circle on each side of each white circle are arranged on two concentric circles around the shaft 16. The white circle is neutral, and the black circle is provided with 12 contacts corresponding to the contacts of the six switches 11a to 11f connected to the six exciting current control means 5a to 5f. These white circles and black circles are arranged on the same radiation in two concentric circles corresponding to the output terminals of the Hall elements 4a to 4f shown in FIG. Further, as explained in FIG. 2, the contacts connected to the first excitation current control means 5a or the fifth excitation current control means 5e, the second excitation current control means 5b or the sixth excitation current control means. The contacts connected to 5f, the contacts connected to the third excitation current control means 5c or the first excitation current control means 5a, the fourth excitation current control means 5d or the second excitation current control means 5b Connected to the contacts connected to each other, to the contacts connected to the fifth excitation current control means 5b or the third excitation current control means 5c, to the sixth excitation current control means 5f or the fourth excitation current control means 5d. The contacts are connected by lead wires.
The rotary part 18 of the rotary switch whose back surface is shown in FIG. 5 has a rotary shaft 19 fitted in the fixed part of the rotary switch at the center, and two concentric circles around the rotary axis 19 on the same radiation. There are 6 black circles. A black circle is a contact point connected to the output terminals of the Hall elements 4a to 4f. In the rotary switch of the present embodiment, the white circle of the fixed portion 15 and the black circle of the rotating portion 18 are in contact with each other and are in a neutral state. Then, the rotating shaft 19 of the rotating portion 18 is fitted to the shaft 19 of the fixed portion 15, the rotating portion 18 is rotated left and right, and the black circle of the rotating portion 18 is moved by one to the contact point (black circle) of the fixed portion 15. It is possible to command the rotation direction of the electric motor by making contact.

図6及び図7は、回転方向の指令を受け、正転逆転切替装置を操作したときの回転子の磁極位置と界磁極の磁化状態を示す模式図であり、図6は、正方向の指令を受けた場合を示し、図7は、逆方向の指令を受けた場合を示す。
図6及び図7において、回転子及び界磁極(界磁巻線)は、便宜上、直線状に展開してある。回転子は、N極とS極の磁石が交互に配置され、相互間には幅がMの間隙があり、界磁極それぞれの中央部相互間の距離はL(M>L)である。そして、図の左方のアからカに向けて正方向(図6)又は逆方向(図7)に30度ずつ回転子が回転したときの各界磁極7a〜7lの磁化状態(図の上側がN、下側がS、中央がニュートラル)を示している。
固定子は、スロットを挟んで12個の界磁極が等間隔に配置され、第1の界磁極7aには第1の界磁巻線が巻き回され、以下、同様に、第12の界磁極7lには第12の界磁巻線が巻き回されている。
ホール素子4a〜4fは、第1の界磁極から第6の界磁極それぞれの中央部の近傍に配置され、その出力信号は、正方向と逆方向それぞれに隣接した界磁極に巻き回された界磁巻線に励磁電流を供給する励磁電流制御手段に送られるように構成されている。
図2で説明したように、第2番目の界磁極7bと第8番目の界磁極7hそれぞれに巻き回された界磁巻線が並列に接続された第1の界磁巻線組は、第1のホール素子4aの出力信号(正方向)又は第3のホール素子4cの出力信号(逆方向)が入力する第1の励磁電流制御手段5aから励磁電流が供給され、第3番目の界磁極7cと第9番目の界磁極7iそれぞれに巻き回された界磁巻線が並列に接続された第2の界磁巻線組は、第2のホール素子4bの出力信号(正方向)又は第4のホール素子4dの出力信号(逆方向)が入力する第2の励磁電流制御手段5bから励磁電流が供給され、第4番目の界磁極7dと第10番目の界磁極7jそれぞれに巻き回された界磁巻線が並列に接続された第3の界磁巻線組は、第3のホール素子4cの出力信号(正方向)又は第5のホール素子4eの出力信号(逆方向)が入力する第3の励磁電流制御手段5cから励磁電流が供給され、第5番目の界磁極7cと第11番目の界磁極7kそれぞれに巻き回された界磁巻線が並列に接続された第4の界磁巻線組は、第4のホール素子4dの出力信号(正方向)又は第6のホール素子の出力信号(逆方向)が入力する第4の励磁電流制御手段から励磁電流が供給され、第6番目の界磁極7fと第12番目の界磁極7lそれぞれに巻き回された界磁巻線が並列に接続された第5の界磁巻線組は、第5のホール素子の出力信号(正方向)又は第3のホール素子の出力信号(逆方向)が入力する第5の励磁電流制御手段から励磁電流が供給され、第1番目の界磁極7aと第7番目の界磁極7gそれぞれに巻き回された界磁巻線が並列に接続された第6の界磁巻線組は、第6のホール素子の出力信号(正方向)又は第2のホール素子の出力信号(逆方向)が入力する第6の励磁電流制御手段から励磁電流が供給され、それぞれ、回転子の磁極とは逆の極性に磁化される。
6 and 7 are schematic diagrams showing the magnetic pole position of the rotor and the magnetized state of the field magnetic poles when the rotation direction command is received and the forward / reverse switching device is operated, and FIG. 6 is a forward direction command. FIG. 7 shows a case where a reverse direction command is received.
6 and 7, the rotor and the field pole (field winding) are developed in a straight line for convenience. In the rotor, N-pole and S-pole magnets are alternately arranged, there is a gap having a width of M between them, and the distance between the center portions of the field poles is L (M> L). Then, the magnetization states of the field magnetic poles 7a to 7l when the rotor is rotated by 30 degrees in the forward direction (FIG. 6) or the reverse direction (FIG. 7) from left to right in FIG. N, lower side is S, center is neutral).
The stator has twelve field poles arranged at equal intervals across the slot, and a first field winding is wound around the first field pole 7a. A twelfth field winding is wound around 7l.
The Hall elements 4a to 4f are arranged in the vicinity of the central portions of the first to sixth field poles, and their output signals are wound around the field poles adjacent to each other in the forward and reverse directions. It is configured to be sent to excitation current control means for supplying an excitation current to the magnetic winding.
As described in FIG. 2, the first field winding set in which the field windings wound around the second field pole 7b and the eighth field pole 7h are connected in parallel is the first field winding set. The excitation current is supplied from the first excitation current control means 5a to which the output signal (forward direction) of the first Hall element 4a or the output signal (reverse direction) of the third Hall element 4c is input, and the third field pole The second field winding set in which the field windings wound around the 7c and the ninth field pole 7i are connected in parallel is the output signal (positive direction) of the second Hall element 4b or the second The excitation current is supplied from the second excitation current control means 5b to which the output signal (reverse direction) of the fourth Hall element 4d is input and wound around the fourth field pole 7d and the tenth field pole 7j. The third field winding set in which the field windings connected in parallel is the output of the third Hall element 4c. An excitation current is supplied from the third excitation current control means 5c to which a signal (forward direction) or an output signal (reverse direction) of the fifth Hall element 4e is input, and the fifth field pole 7c and the eleventh field are supplied. The fourth field winding set in which the field windings wound around each of the magnetic poles 7k are connected in parallel is the output signal (positive direction) of the fourth Hall element 4d or the output signal of the sixth Hall element. The exciting current is supplied from the fourth exciting current control means for inputting (reverse direction), and the field windings wound around the sixth field pole 7f and the twelfth field pole 7l are connected in parallel. The fifth field winding set is excited current from the fifth exciting current control means to which the fifth Hall element output signal (forward direction) or the third Hall element output signal (reverse direction) is input. Is wound around each of the first field pole 7a and the seventh field pole 7g. In the sixth field winding set in which the rotated field windings are connected in parallel, the output signal of the sixth Hall element (forward direction) or the output signal of the second Hall element (reverse direction) is input. Excitation current is supplied from the sixth excitation current control means, and each is magnetized to a polarity opposite to the magnetic pole of the rotor.

図6に示すように、図の下方に磁極を移動させる正回転方向の指令を受けたとき、回転子の各磁極がアの状態のとき、各界磁極は、Aに示す磁化状態となる。その結果、回転子は、第1の界磁極7a、
第4の界磁極7d、第7の界磁極7g、第10の界磁極7jから正方向の吸引力を受けるので、正回転方向に回転し始める。そして、回転子が30度回転しイの状態のとき、各界磁極は、Bに示す磁化状態になる。そこで、第2の界磁極7b、第5の界磁極7e、第8の界磁極7h、第11の界磁極7kから正方向の吸引力を受け、正回転方向のトルクを得る。以下、回転子の各磁極がウの状態においても、第3の界磁極7c、第6の界磁極7f、第9の界磁極7i、第12の界磁極7lから正方向の吸引力を受け、正回転方向のトルクを得る。さらに、磁極がエ、オ、カの状態においても同様に正回転方向のトルクを得て回転が継続する。
As shown in FIG. 6, when receiving a command in the normal rotation direction for moving the magnetic pole downward in the figure, when each magnetic pole of the rotor is in the “a” state, each field magnetic pole is in the magnetized state shown in A. As a result, the rotor has a first field pole 7a,
Since the fourth field magnetic pole 7d, the seventh field magnetic pole 7g, and the tenth field magnetic pole 7j receive the attractive force in the positive direction, they start to rotate in the positive rotation direction. When the rotor rotates 30 degrees and is in the “a” state, each field pole is in the magnetization state shown in B. Therefore, the second field pole 7b, the fifth field pole 7e, the eighth field pole 7h, and the eleventh field pole 7k receive a positive attracting force to obtain a torque in the positive rotation direction. Hereinafter, even when the magnetic poles of the rotor are in the state of u, the attraction force in the positive direction is received from the third field magnetic pole 7c, the sixth field magnetic pole 7f, the ninth field magnetic pole 7i, and the twelfth field magnetic pole 7l. Obtain torque in the forward rotation direction. Further, even when the magnetic pole is in the state of D, F, or F, the rotation continues in the same manner by obtaining the torque in the forward rotation direction.

図7に示すように、図の上方に磁極を移動させる逆回転方向の指令を受けたとき、回転子の各磁極がアの状態のとき、各界磁極は、Aに示す磁化状態となる。その結果、回転子は、第1の界磁極7a、第4の界磁極7d、第7界磁極7g、第10の界磁極7jから逆方向の吸引力を受けるので、逆回転方向に回転し始める。そして、回転子が30度回転しイの状態のとき、各界磁極は、Bに示す磁化状態になる。そこで、第3の界磁極7c、第6の界磁極7f、第9の界磁極7i、第12の界磁極7lから逆方向の吸引力を受け、逆回転方向のトルクを得る。以下、回転子の各磁極がウの状態においても、第2の界磁極7b、第5の界磁極7e、第8の界磁極7h、第11の界磁極7kから逆方向の吸引力を受け、逆回転方向のトルクを得る。さらに、磁極がエ、オ、カの状態においても同様に逆回転方向のトルクを得て回転が継続する。
ここでは、回転子の磁極数Pが4、固定子の界磁極数Qが12、ホール素子数Hが6の直流同期電動機に基づいて各界磁極の磁化状態を説明したが、回転子の磁極数P、固定子の界磁極数Q、ホール素子数Hそれぞれは、必ずしも4、12、6の組合せである必要はなく、4、12、4の組合せであっても、4、18、6の組合せであっても、4、24、6の組合せであってもよい。また回転子の磁極数Pは、必ずしも4つである必要はなく、2の倍数であればよい。すなわち、以下の3条件を満たすようにP、Q、H、M、Lを設定し、界磁巻線をQ/Hずつ直列又は並列に接続して界磁巻線組を構成し、それらの界磁巻線組毎に励磁電流を供給することが好ましく、それによって効率的に、大きな回転トルクを得ることが可能になる。
[3条件]
条件1;Hは、Q/Pに等しいか、あるいはQ/Pより大きいこと。
条件2;N極とS極の間隙をM、スロットを隔てて配備された界磁極それぞれの中央部相互間の距離をLとしたとき、Mは、Lに等しいか、あるいはLよりも大きいこと。
条件3:Q/Hが整数になるようにQとHを選択すること。
As shown in FIG. 7, when receiving a command in the reverse rotation direction for moving the magnetic pole upward in the figure, when each magnetic pole of the rotor is in the state of “A”, each field magnetic pole is in the magnetized state shown in “A”. As a result, the rotor receives an attractive force in the reverse direction from the first field magnetic pole 7a, the fourth field magnetic pole 7d, the seventh field magnetic pole 7g, and the tenth field magnetic pole 7j, and thus starts to rotate in the reverse rotation direction. . When the rotor rotates 30 degrees and is in the “a” state, each field pole is in the magnetization state shown in B. Therefore, a reverse attractive force is received from the third field magnetic pole 7c, the sixth field magnetic pole 7f, the ninth field magnetic pole 7i, and the twelfth field magnetic pole 7l to obtain a torque in the reverse rotation direction. Hereinafter, even when each magnetic pole of the rotor is in the state of U, the second field magnetic pole 7b, the fifth field magnetic pole 7e, the eighth field magnetic pole 7h, and the eleventh field magnetic pole 7k receive an attractive force in the reverse direction, Obtain torque in the reverse direction. Further, even when the magnetic poles are in the state of D, F, and F, the rotation continues in the same manner by obtaining torque in the reverse rotation direction.
Here, the magnetization state of each field pole has been described based on a DC synchronous motor in which the number of magnetic poles P of the rotor is 4, the number of field poles Q of the stator is 12, and the number of Hall elements H is 6, but the number of magnetic poles of the rotor Each of P, the number of field poles Q of the stator, and the number of Hall elements H need not necessarily be a combination of 4, 12, 6; Or a combination of 4, 24 and 6. Further, the number P of magnetic poles of the rotor is not necessarily four, and may be a multiple of two. That is, P, Q, H, M, and L are set so as to satisfy the following three conditions, and field windings are connected in series or in parallel by Q / H to form a field winding set. It is preferable to supply an exciting current for each field winding set, thereby making it possible to obtain a large rotational torque efficiently.
[3 conditions]
Condition 1; H is equal to or greater than Q / P.
Condition 2: M is equal to or greater than L, where M is the gap between the N and S poles, and L is the distance between the central portions of the field poles arranged across the slot. .
Condition 3: Q and H are selected so that Q / H is an integer.

本発明は、直流同期電動機を駆動源とする電気自動車の前進、後退を決めるレバー等に活用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a lever or the like that determines forward and backward movement of an electric vehicle that uses a DC synchronous motor as a drive source.

1 磁極
2 回転子
3 界磁巻線
4、4a〜4f ホール素子
5、5a〜5f 励磁電流制御手段
6、6a〜6f 界磁巻線組
7a〜7l 界磁極
10 正転逆転切替装置
11 選択手段
11a〜11f スイッチ
12 継電器
13 レバー
15 固定部
16 軸
18 回転部
19 回転軸
20 チョッパ信号生成手段
30 直流電源
51a、51b、52a、52b スイッチング素子
53 フリーホイールダイオード
DESCRIPTION OF SYMBOLS 1 Magnetic pole 2 Rotor 3 Field winding 4, 4a-4f Hall element 5, 5a-5f Excitation current control means 6, 6a-6f Field winding group 7a-7l Field magnetic pole 10 Forward / reverse switching device 11 Selection means 11a to 11f Switch 12 Relay 13 Lever 15 Fixed portion 16 Shaft 18 Rotating portion 19 Rotating shaft 20 Chopper signal generating means 30 DC power supply 51a, 51b, 52a, 52b Switching element 53 Free wheel diode

Claims (3)

N極とS極が一定の間隔をあけて交互に配置された回転子の周囲に、複数の界磁巻線が等間隔に配備され、該回転子の磁極位置を検出する複数の検出手段それぞれから出力されるそれぞれの出力信号により、該界磁巻線を直列又は並列に接続して形成された複数の界磁巻線組それぞれに供給される励磁電流を制御して回転磁界を形成し、所定の回転速度を得る電動機の回転を正方向と逆方向とに切替える正転逆転切替装置であって、
前記複数の検出手段のうちの一の検出手段から出力される出力信号により励磁電流が供給される第一の界磁巻線組及び第二の界磁巻線組のうちの何れか一方を選択する選択子が複数具備された選択手段と、
前記回転を正方向に切替える指令を受けたとき、前記選択子に、前記第一の界磁巻線組を選択させる動作を行い、前記回転を逆方向に切替える指令を受けたとき、該選択子に、前記第二の界磁巻線組を選択させる動作を行う選択子切替手段と、を備えたことを特徴とする正転逆転切替装置。
A plurality of field windings are arranged at equal intervals around a rotor in which N poles and S poles are alternately arranged at regular intervals, and each of a plurality of detection means for detecting the magnetic pole position of the rotor By controlling the excitation current supplied to each of a plurality of field winding sets formed by connecting the field windings in series or in parallel with each output signal output from, a rotating magnetic field is formed, A forward / reverse switching device for switching the rotation of an electric motor to obtain a predetermined rotational speed between a forward direction and a reverse direction,
Select one of the first field winding set and the second field winding set to which the excitation current is supplied by the output signal output from one of the plurality of detection means. Selecting means comprising a plurality of selectors to be
When receiving a command to switch the rotation in the forward direction, the selector performs an operation of selecting the first field winding group, and when receiving a command to switch the rotation in the reverse direction, the selector And a selector switching means for performing an operation of selecting the second field winding set.
前記選択子は、前記第一の界磁巻線組に接続された第一の接点と、前記第二の界磁巻線組に接続された第二の接点とを有するものであって、
前記選択子切替手段は、前記正方向に切替える指令を受けたとき、前記第一の接点を閉じて前記第二の接点を開き、前記逆方向に切替える指令を受けたとき、該第一の接点を開き該第二の接点を閉じることを特徴とする請求項1又は2記載の正転逆転切替装置。
The selector has a first contact connected to the first field winding set and a second contact connected to the second field winding set,
The selector switching means closes the first contact and opens the second contact when receiving a command to switch in the forward direction, and receives the command to switch in the reverse direction when receiving the command to switch in the reverse direction. 3. The forward / reverse switching device according to claim 1, wherein the second contact is closed by opening the second contact.
前記複数の検出手段それぞれは、前記界磁巻線組のうちの一の界磁巻線組を形成する界磁巻線それぞれが巻き回された界磁極の近傍に設置されたものであって、
前記第一の界磁巻線組は、前記一の検出手段が近傍に設置された前記界磁極より前記正方向における一つ先の界磁巻線又は二つ先の界磁巻線を含み、前記第二の界磁巻線組は、該界磁極より前記逆方向における一つ先の界磁巻線又は二つ先の界磁巻線を含むことを特徴とする請求項1記載の正転逆転切替装置。
Each of the plurality of detection means is installed in the vicinity of the field pole around which each of the field windings forming one field winding set of the field winding sets is wound,
The first field winding set includes one field winding in the positive direction or two field windings in the positive direction from the field magnetic pole in which the one detecting means is installed in the vicinity, 2. The forward rotation according to claim 1, wherein the second field winding set includes one field winding or two field windings in the reverse direction from the field magnetic pole. Reverse switching device.
JP2011048732A 2011-03-07 2011-03-07 Normal rotation and reverse rotation switching device Withdrawn JP2012186934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048732A JP2012186934A (en) 2011-03-07 2011-03-07 Normal rotation and reverse rotation switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048732A JP2012186934A (en) 2011-03-07 2011-03-07 Normal rotation and reverse rotation switching device

Publications (1)

Publication Number Publication Date
JP2012186934A true JP2012186934A (en) 2012-09-27

Family

ID=47016489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048732A Withdrawn JP2012186934A (en) 2011-03-07 2011-03-07 Normal rotation and reverse rotation switching device

Country Status (1)

Country Link
JP (1) JP2012186934A (en)

Similar Documents

Publication Publication Date Title
KR100748789B1 (en) Motor
CN101218740B (en) Electromotor
US7479722B2 (en) Relative drive device
CN101874337B (en) Rotary electric machine and drive controller
US8400084B2 (en) Regenerative switched reluctance motor driving system
US9979266B2 (en) Electrical rotating machines
CN105449881B (en) Low six phase doubly-salient brushless DC generator of mutual inductance error-tolerance type
EP3032718A1 (en) Magnetic rotating device, electric motor, and electric motor generator
US10432079B2 (en) Electrical energy generating brushless DC motor
CN101615880A (en) Regulated hybrid permanent magnet generator
JPWO2009060544A1 (en) Unidirectional energization type brushless DC motor having AC voltage output winding and motor system
JP2014054094A (en) Motor drive system
KR20170122735A (en) Switched reluctance motor and its method.
US20090295250A1 (en) Magnet Type Brushless Generator and Magnet type Brushless Starter
JP5063822B1 (en) Non-sinusoidal drive motor
US8581465B2 (en) Generator
JPWO2007007413A1 (en) Motor drive system
CN106899158B (en) A kind of four phase electro-magnetic motor of electric vehicle
JP2012186934A (en) Normal rotation and reverse rotation switching device
CN111555578A (en) Full-phase double-drive brushless DC motor
JP2008236962A (en) Electric rotating machine and hybrid drive device therewith
KR101393209B1 (en) Bldc dual motor
JP5406406B1 (en) Magnetic induction constant pole rotor motor
JP2008161038A (en) Axial-gap electric motor
JP5274587B2 (en) Control device for electric motor for vehicle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513