JP2012184933A - Method and device for measuring distribution of specular reflection light - Google Patents
Method and device for measuring distribution of specular reflection light Download PDFInfo
- Publication number
- JP2012184933A JP2012184933A JP2011046283A JP2011046283A JP2012184933A JP 2012184933 A JP2012184933 A JP 2012184933A JP 2011046283 A JP2011046283 A JP 2011046283A JP 2011046283 A JP2011046283 A JP 2011046283A JP 2012184933 A JP2012184933 A JP 2012184933A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- light
- specular reflection
- measuring
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、紙やプラスチック等の画質・質感に影響を与える、試料の鏡面反射光の特性を評価するための鏡面反射光分布測定方法および装置に関するものである。また、試料の鏡面反射光ムラを簡易に短時間で測定解析する方法および装置に関するものである。 The present invention relates to a specular reflected light distribution measuring method and apparatus for evaluating the characteristics of specular reflected light of a sample that affects the image quality / texture of paper or plastic. The present invention also relates to a method and apparatus for measuring and analyzing specular reflection unevenness of a sample easily and in a short time.
ここでいう試料とは、紙、PET、RC紙(写真用支持体)、木、プラスチック、コンクリート、布、皮、金属等の、面を形成できる支持体を総称する。また、この試料にインキを部分的に、または全面に塗布した印刷物にも適用できる。さらにこの技術は人間の皮膚や粘膜の測定にも適用可能である。ここでは試料として紙を、印刷物として紙のオフセット印刷物を例に説明する。 The sample here is a generic term for a support capable of forming a surface, such as paper, PET, RC paper (photographic support), wood, plastic, concrete, cloth, leather, metal, and the like. Further, the present invention can also be applied to a printed material in which ink is applied to the sample partially or on the entire surface. Furthermore, this technique can be applied to the measurement of human skin and mucous membranes. Here, an example will be described in which paper is used as a sample, and paper offset printed material is used as printed material.
紙に入射した光は表面で反射され、内部で散乱、反射され、また、入射光の一部は吸収される。このような光の反射、散乱は、紙で発生する物理的現象である。特にグロスコート紙や写真用インクジェット用紙のような光沢の高い紙において、紙の表面で起きる鏡面反射は、人間が感じる光沢として、画質や質感といった見た目に強い影響を与える。 Light incident on the paper is reflected by the surface, scattered and reflected inside, and part of the incident light is absorbed. Such reflection and scattering of light is a physical phenomenon that occurs in paper. In particular, in glossy paper such as gloss coated paper and photographic inkjet paper, specular reflection that occurs on the surface of the paper has a strong influence on the appearance such as image quality and texture as gloss perceived by humans.
ここでいう鏡面反射とは、試料表面の法線方向から各々反対側に同じ角度で入射と受光を行う光の反射を指し、正反射とも呼ばれる。また、光沢とは、主として反射光の強さによって定められる視知覚の属性である。 The specular reflection here refers to the reflection of light that is incident and received at the same angle on the opposite side from the normal direction of the sample surface, and is also called regular reflection. Gloss is a visual perception attribute mainly determined by the intensity of reflected light.
主観的な光沢感を定量的な測定値で評価する試みが従来から行われてきた。本発明に関係する従来の主な測定値と測定方法を次に示す。しかし、これらの測定方法は光沢現象の一部を測定しているものであるため、目的により多くの測定方法が提案されてきた。 Attempts have been made to evaluate subjective glossiness with quantitative measurement values. The main measurement values and measurement methods related to the present invention are as follows. However, since these measuring methods measure part of the gloss phenomenon, many measuring methods have been proposed depending on the purpose.
鏡面光沢を測定する方法として、JIS Z8741鏡面光沢度−測定方法、JIS P8142紙及び板紙−75度鏡面光沢度の測定方法、およびこのP8142(平行光方式)等が知られている(非特許文献1、2)。測定される値は、この入射光の総量として測定される。測定結果は1つの測定値、ここでは光沢度として算出される。一般にこれら鏡面光沢を測定する方法の受光器は、フォトセル、光電管等の光の強さを電気信号に変える光電変換を行うものが用いられる。しかし、これらは反射光量を総量として測定する方法であり、鏡面反射光の微小な位置毎の分布やムラは測定できない。 As methods for measuring specular gloss, JIS Z8741 specular gloss-measurement method, JIS P8142 paper and paperboard-75-degree specular gloss measurement method, and P8142 (parallel light system) are known (non-patent literature). 1, 2). The measured value is measured as the total amount of this incident light. The measurement result is calculated as one measurement value, here glossiness. In general, as the light receiver for the method of measuring the specular gloss, a photoelectric conversion device that changes the intensity of light such as a photocell or a phototube into an electric signal is used. However, these are methods for measuring the reflected light amount as a total amount, and it is impossible to measure the distribution and unevenness of the specular reflected light at minute positions.
写像性(像鮮明度)を測定する方法として、JIS K7374プラスチック−像鮮明度の測定方法が知られている(非特許文献3)。像鮮明度は写像性とも呼ばれる。この測定方法は、試料の鏡面反射光の空間周波数特性に近い特性を求めるものである。この測定方法では、光源スリットの結像を受光器で測定する際に光学くしを通過させる工程が入る。この場合でも、鏡面光沢度と同様に、測定される値は、クシを通過したこの鏡面反射光の総量を1つの測定値として測定する。 As a method for measuring image clarity (image definition), JIS K7374 plastic-image definition measurement method is known (Non-patent Document 3). Image definition is also called image clarity. This measurement method obtains characteristics close to the spatial frequency characteristics of the specular reflected light of the sample. This measurement method includes a step of passing an optical comb when measuring the image of the light source slit with a light receiver. Even in this case, similarly to the specular gloss, the value to be measured is the total amount of the specular reflected light that has passed through the comb as one measured value.
変角光度を測定する装置として変角光度計が知られている。変角光度は、入射角と受光角を任意に変えて反射光量を測定できる測定方法である。例えば、ある入射角に対し、受光角を等しくした場合は鏡面反射となり、そのプラスマイナス何度かに角度を変えて反射光量を各々測定し、変角光度が得られる。さらに、光の入射方向に対し試料面が左右に傾く場合の角度をここでは偏角と表記する。この偏角光度の測定も知られている。変角光度も各条件で測定するのは反射光量を総量として測定する方法であり、その条件での光量分布は測定できない。 A goniophotometer is known as an apparatus for measuring a goniophotometer. The variable angle luminous intensity is a measurement method that can measure the amount of reflected light by arbitrarily changing the incident angle and the light receiving angle. For example, when the light receiving angle is made equal to a certain incident angle, specular reflection occurs, and the amount of reflected light is measured by changing the angle several times, thereby obtaining a variable angle luminous intensity. Further, an angle when the sample surface is tilted left and right with respect to the incident direction of light is referred to as a declination here. Measurement of this declination luminous intensity is also known. The variable light intensity is also measured under each condition by measuring the reflected light quantity as a total amount, and the light quantity distribution under that condition cannot be measured.
従来技術で測定できる光沢の指標としては上記の、光沢度、写像性(像鮮明度)、変角光度がある。また、対比光沢度のように、鏡面反射光と拡散反射光の比で表す指標などの複合的な評価値がある。 The gloss index that can be measured by the prior art includes the above-described glossiness, image clarity (image definition), and variable-angle light intensity. In addition, there is a composite evaluation value such as an index expressed by the ratio of specular reflection light and diffuse reflection light such as the contrast glossiness.
紙の光沢は、例えば上記の測定値で評価している。しかし、これら評価方法はある程度大きな範囲(例えば数mmφ〜数十mmφ)の反射光の総量を測定し評価している。一方、紙表面の光沢は決して完全に均一ではなく、光沢ムラが存在する。特にグロスコート紙や写真用インクジェット用紙のような光沢の高い紙において、紙の表面で起きるこれら光沢ムラは、人間が感じる光沢ムラとして、画質や質感といった見た目に強い影響を与える。 The gloss of the paper is evaluated by the above measured value, for example. However, these evaluation methods measure and evaluate the total amount of reflected light in a somewhat large range (for example, several mmφ to several tens mmφ). On the other hand, the gloss on the paper surface is never completely uniform, and gloss unevenness exists. In particular, in glossy paper such as gloss coated paper and photographic inkjet paper, these gloss unevenness that occurs on the surface of the paper has a strong influence on the appearance such as image quality and texture as gloss unevenness felt by humans.
光沢ムラとは、試料の微小エリアの反射光量の分布であり、鏡面反射光分布に基づく指標である。 The gloss unevenness is a distribution of the amount of reflected light in a minute area of the sample, and is an index based on the specular reflection light distribution.
鏡面反射光分布(光沢ムラ)測定は、鏡面反射での試料の反射光分布を測定することで実現できる。カメラは、光分布を測定できるものであり、紙の汚れや印刷の濃度のムラは、試料表面をCCDカメラのような2次元の光量分布が測定できる撮像装置で測定し解析できる。しかし、一般的にこれらは拡散反射の光を測定している。例えば、試料法線方向斜め45度から照明し、法線方向(0度)からカメラで測定する方法が広く用いられてきた。 The specular reflection light distribution (gloss unevenness) measurement can be realized by measuring the reflection light distribution of the sample by specular reflection. The camera can measure the light distribution, and paper stains and uneven printing density can be measured and analyzed on the sample surface with an imaging device such as a CCD camera that can measure a two-dimensional light amount distribution. In general, however, they measure diffusely reflected light. For example, a method of illuminating from 45 degrees oblique to the sample normal direction and measuring with a camera from the normal direction (0 degrees) has been widely used.
しかし、鏡面反射光分布(光沢ムラ)測定は、鏡面反射(正反射)角または鏡面反射角に近い条件での反射光量分布測定となる。 However, the specular reflection light distribution (gloss unevenness) measurement is a reflection light amount distribution measurement under a condition close to the specular reflection (regular reflection) angle or the specular reflection angle.
このため、試料表面を撮像素子とレンズで構成される一般のカメラシステムで測定すると、斜めの角度から測定するため、焦点は中央で合うものの前後でぼやける。また、撮像面から試料面までの距離が試料の前後、カメラシステムからみて遠近で異なるため、遠近により測定される像の撮像面上の大きさが異なって測定される。 For this reason, when the surface of the sample is measured with a general camera system composed of an image sensor and a lens, since the measurement is performed from an oblique angle, the focal point is blurred before and after being focused at the center. In addition, since the distance from the imaging surface to the sample surface differs before and after the sample and from the perspective of the camera system, the size of the image measured on the imaging surface varies depending on the perspective.
このように、鏡面反射の条件で試料の反射光量分布を面として測定することは困難であった。 As described above, it is difficult to measure the reflected light amount distribution of the sample as a surface under the condition of specular reflection.
本発明の目的は、従来の測定方法では得られなかった鏡面反射光分布を測定・評価できる測定方法および装置を提供することである。本発明により光沢ムラおよび鏡面反射光分布の新しい測定方法および装置を提供するものである。 An object of the present invention is to provide a measurement method and apparatus capable of measuring and evaluating a specular reflection light distribution that cannot be obtained by a conventional measurement method. The present invention provides a new measuring method and apparatus for uneven gloss and specular reflection light distribution.
本発明者は上記に鑑み鋭意研究した結果、本発明の鏡面反射光分布測定方法および装置を発明するに至った。 As a result of intensive studies in view of the above, the present inventors have invented the specular reflection light distribution measuring method and apparatus of the present invention.
すなわち、(1)照明光を試料に入射する工程と、その試料の表面をあおり光学系により測定する工程とを含み、その照明光を試料に入射する光軸の角度と、その試料の表面を測定する光軸の角度がその試料の法線に対して鏡面反射の関係となることを特徴とする試料の鏡面反射光分布測定方法である。 That is, (1) including a step of making the illumination light incident on the sample and a step of measuring the surface of the sample with a tilting optical system, the angle of the optical axis at which the illumination light is made incident on the sample, and the surface of the sample A method of measuring specular reflection light distribution of a sample, characterized in that the angle of the optical axis to be measured has a specular reflection relationship with respect to the normal of the sample.
(2)照明光を試料に入射する手段と、その試料の表面をあおり光学系により測定する手段とを含み、その照明光を試料に入射する光軸の角度と、その試料の表面を測定する光軸の角度がその試料の法線に対して鏡面反射の関係となることを特徴とする試料の鏡面反射光分布測定装置である。 (2) It includes means for making the illumination light incident on the sample and means for measuring the surface of the sample with a tilting optical system, and measures the angle of the optical axis for making the illumination light incident on the sample and the surface of the sample. An apparatus for measuring a specular reflection light distribution of a sample, characterized in that the angle of the optical axis has a specular reflection relationship with respect to the normal of the sample.
本発明により、試料の法線に対して0度より大きな角度をもつ鏡面反射光分布の測定においても、試料面に広く焦点を合わせることが可能となり、試料面について一度に鏡面反射光分布の測定ができる。 According to the present invention, even when measuring a specular reflection light distribution having an angle larger than 0 degrees with respect to a normal line of the sample, it is possible to focus on the sample surface widely, and the specular reflection light distribution measurement can be performed on the sample surface at a time. Can do.
鏡面反射光分布が測定できると、試料の光沢ムラが評価でき、人間が感じる主観的な光沢感を評価することができる。 If the specular reflection light distribution can be measured, the gloss unevenness of the sample can be evaluated, and the subjective glossiness felt by humans can be evaluated.
このように、本発明の鏡面反射光分布測定方法および装置は、一度の測定で試料の広い面積の鏡面反射光分布、そして光沢ムラを測定でき、これにより、測定の精度と効率を上げることができる。 As described above, the specular reflection light distribution measuring method and apparatus of the present invention can measure the specular reflection light distribution and gloss unevenness of a large area of the sample in one measurement, thereby increasing the accuracy and efficiency of the measurement. it can.
鏡面反射光分布から、人間が感じる主観的な光沢感を評価する指標を新たに導き出すこともできる。 It is also possible to derive a new index for evaluating the subjective glossiness felt by humans from the specular reflection light distribution.
本発明の鏡面反射光分布測定方法および装置は、人間の皮膚や粘膜の鏡面反射光分布特性を測定することも可能であり、医療や化粧品の開発において有用な情報を得ることを可能とする。 The specular reflection light distribution measuring method and apparatus of the present invention can also measure specular reflection light distribution characteristics of human skin and mucous membranes, and can obtain useful information in medical and cosmetic development.
特に、本発明の鏡面反射光分布測定方法および装置は、紙の鏡面反射光分布、つまり光沢ムラを測定することが可能であり、紙の開発において有用な情報を得ることを可能とする。 In particular, the specular reflection light distribution measuring method and apparatus of the present invention can measure specular reflection light distribution of paper, that is, gloss unevenness, and can obtain useful information in paper development.
以下、本発明の鏡面反射光分布測定方法および装置を、図面を使って説明する。本発明の鏡面反射光分布測定方法および装置は、例えば、図1のように構成される。 Hereinafter, a specular reflection light distribution measuring method and apparatus according to the present invention will be described with reference to the drawings. The specular reflection light distribution measuring method and apparatus of the present invention are configured as shown in FIG. 1, for example.
図1は、測定する試料2の面の法線に対して、各々反対側に等しい角度で鏡面反射の関係となるように、入射装置1と受光装置3を設置するものである。試料2の法線方向を0度とし、入射装置1の光軸が試料法線と成す角を入射角、受光装置3の光軸が試料法線と成す角を受光角とする。 In FIG. 1, the incident device 1 and the light receiving device 3 are installed so as to have a specular reflection relationship at the same angle on the opposite side with respect to the normal of the surface of the sample 2 to be measured. The normal direction of the sample 2 is defined as 0 degree, the angle formed by the optical axis of the incident device 1 with the sample normal line is defined as the incident angle, and the angle formed by the optical axis of the light receiving device 3 with the sample normal is defined as the light receiving angle.
例えば、入射装置1を入射角30度、受光装置3は法線の反対側に受光角30度に設定する。 For example, the incident device 1 is set to an incident angle of 30 degrees, and the light receiving device 3 is set to a light receiving angle of 30 degrees on the opposite side of the normal line.
紙の光沢度測定に準拠するためには、入射装置1は75度、受光装置3は75度の位置関係が好ましい。また、プラスチックの光沢度測定に準拠するためには、入射装置1は60度、受光装置3は60度の位置関係が好ましい。 In order to comply with the glossiness measurement of paper, the incident device 1 preferably has a positional relationship of 75 degrees and the light receiving device 3 has a positional relationship of 75 degrees. In order to comply with the measurement of plastic glossiness, the incident device 1 preferably has a positional relationship of 60 degrees and the light receiving device 3 has a positional relationship of 60 degrees.
入射角と受光角は試料に対して鏡面反射の関係とするが、紙のように完全な鏡面ではない試料では、鏡面反射光はその前後の角度に分布することが知られている。このため、入射角または受光角は鏡面反射角度前後に数度ずらして設定する場合がある。例えば、入射装置1を28度、受光装置3は法線の反対側に30度に設定する。 Although the incident angle and the light receiving angle have a specular reflection relationship with respect to the sample, it is known that the specular reflection light is distributed at the front and rear angles of a sample that is not a perfect mirror surface such as paper. For this reason, the incident angle or the light receiving angle may be set to be shifted by several degrees before and after the specular reflection angle. For example, the incident device 1 is set to 28 degrees, and the light receiving device 3 is set to 30 degrees on the opposite side of the normal line.
このように、鏡面反射の関係とは、狭義には入射角と受光角が法線に対して反対方向かつ等しいことを指すが、本発明では、鏡面反射の関係を鏡面反射角とその前後の角度とする。入射角または受光角は鏡面反射角±10度、好ましくは鏡面反射角±5度の範囲では任意に設定する場合がある。 In this way, the specular reflection relationship narrowly means that the incident angle and the light receiving angle are opposite to and equal to the normal, but in the present invention, the specular reflection relationship is the specular reflection angle and its front and rear. An angle. The incident angle or the light receiving angle may be arbitrarily set within the range of the specular reflection angle ± 10 degrees, preferably the specular reflection angle ± 5 degrees.
入射角または受光角を鏡面反射角度前後に数度ずらした測定は、光沢ムラの評価には重要である。 The measurement in which the incident angle or the light receiving angle is shifted by several degrees before and after the specular reflection angle is important for evaluation of gloss unevenness.
入射装置1は、例えば図2に示すように光源11、点像チャート12、そして点像を光源として平行光を生成するコリメータレンズ13で構成することができる。コリメータレンズ13は単一であっても複数のレンズで構成しても良い。 As shown in FIG. 2, for example, the incident device 1 can include a light source 11, a point image chart 12, and a collimator lens 13 that generates parallel light using the point image as a light source. The collimator lens 13 may be a single lens or a plurality of lenses.
点像チャート12は、例えば、金属板に穴を開けて作成することができる。ガラス板に金属蒸着し、点像のみ光を透過させるように作成することができる。 The point image chart 12 can be created, for example, by making a hole in a metal plate. A metal plate can be vapor-deposited on a glass plate so that only a point image can be transmitted.
図2に示した入射装置1は、セットした点像チャート12をコリメータレンズ13で平行光とし、この平行光を試料2に入射させる。 In the incident device 1 shown in FIG. 2, the set point image chart 12 is converted into parallel light by the collimator lens 13, and the parallel light is incident on the sample 2.
平行光は、入射光が等しく光軸に平行であるため、照明光は平行光であることが好ましい。 Since the parallel light has the same incident light and is parallel to the optical axis, the illumination light is preferably parallel light.
試料2は、図1に示すようにサンプルベッド21上にセットされる。サンプルベッド21は試料が透明であったり、薄いために透けたりする場合に、光を反射しないように加工されていることが望ましい。 The sample 2 is set on the sample bed 21 as shown in FIG. The sample bed 21 is desirably processed so as not to reflect light when the sample is transparent or transparent because it is thin.
受光装置3は、例えば図3に示すように、試料2に入射した照明光の鏡面反射光を受光し、レンズ群31で結像させる。結像した像の光量分布を受光センサ33に結像させ光量分布を測定する。受光センサ33はCCDセンサや撮像管のようなアレイ型のセンサを用いてこの光量分布を2次元(面、画像)のデータとして取り込む。受光センサ33は例えば、装置としてCCDカメラを用いることができる。 For example, as shown in FIG. 3, the light receiving device 3 receives the specular reflection light of the illumination light incident on the sample 2 and forms an image with the lens group 31. The light quantity distribution of the formed image is formed on the light receiving sensor 33 and the light quantity distribution is measured. The light receiving sensor 33 takes in this light quantity distribution as two-dimensional (surface, image) data using an array type sensor such as a CCD sensor or an imaging tube. For example, a CCD camera can be used as the light receiving sensor 33 as a device.
また、受光センサ33はフォトセルや光電管等を用いた微小面積の点のデータを測定する光量測定器を用いる場合には、光量分布を測定するために測定位置を変えて測定する。例えば、測定位置を変える方法としては、プログラムで自動的に可動させることができるXYステージを用いる。 In the case of using a light amount measuring device that measures data of a small area using a photocell, a phototube, or the like, the light receiving sensor 33 changes the measurement position to measure the light amount distribution. For example, as a method of changing the measurement position, an XY stage that can be automatically moved by a program is used.
受光装置3のレンズ群31はあおり光学系である。ここで、受光センサ33の面と、レンズ群31の面と、試料面が平行となる点に特徴がある。受光装置3の受光センサ33とレンズと試料を結ぶ光軸は、試料の法線に対して鏡面反射角とする。 The lens group 31 of the light receiving device 3 is a tilt optical system. Here, the surface of the light receiving sensor 33, the surface of the lens group 31, and the sample surface are characterized by being parallel. The optical axis connecting the light receiving sensor 33 of the light receiving device 3, the lens, and the sample is a specular reflection angle with respect to the normal of the sample.
あおり光学系は、写真撮影に使われてきた特殊な技術である。被写体の面とフィルム面を平行にして、これら中間のレンズも面に平行に移動することで、被写体面全体に焦点が合う。かつ、フィルム面上では被写体の面が同一の遠近で記録される。例えば、高いビルをまっすぐ全体に焦点を合わせて撮影する場合等に使われてきた。尚、あおり光学系がレンズを光軸に対して傾ける技術を指す場合もある。ここではあおり光学系を、試料面とレンズ面と撮像面を平行に構成して測定する技術と定義する。 The tilt optical system is a special technology that has been used for photography. By making the surface of the object parallel to the film surface and moving these intermediate lenses parallel to the surface, the entire object surface is focused. In addition, the surface of the subject is recorded at the same perspective on the film surface. For example, it has been used to shoot a tall building with a focus entirely on the whole. In some cases, the tilt optical system refers to a technique of tilting the lens with respect to the optical axis. Here, the tilt optical system is defined as a technique for measuring a sample surface, a lens surface, and an imaging surface in parallel.
本発明の鏡面反射光分布測定方法および装置は、このあおり光学系の技術を光沢測定に導入することで従来難しかった試料面の広い範囲での鏡面反射光の測定を可能とした。 The specular reflection light distribution measuring method and apparatus of the present invention can measure specular reflection light in a wide range of the sample surface, which has been difficult in the past, by introducing this tilting optical system technique to gloss measurement.
測定した2次元(面、画像)の光量分布データは、データの各点は試料面の各微小位置の反射光量である。鏡面反射条件で測定した場合は、データの各点は試料面の各微小位置の鏡面反射光量、つまり光沢である。これら鏡面反射光量、つまり光沢が試料面の上でどのようにムラになっているかが測定できる。 In the measured two-dimensional (surface, image) light amount distribution data, each point of the data is a reflected light amount at each minute position on the sample surface. When measured under specular reflection conditions, each point of data is the amount of specular reflection light at each minute position on the sample surface, that is, gloss. It is possible to measure how the amount of specular reflection light, that is, gloss is uneven on the sample surface.
測定された反射光量分布からウィーナースペクトルを求めることができる。ウィーナースペクトルは自己相関関数のフーリエ変換対であり、画像工学ではノイズ(ムラ、バラツキ)の解析に利用されてきた。本発明の鏡面反射光分布測定方法および装置は試料面の反射光(光沢)のムラ(ノイズ、バラツキ)を評価できるものである。 A Wiener spectrum can be obtained from the measured reflected light amount distribution. The Wiener spectrum is a Fourier transform pair of autocorrelation functions, and has been used for analysis of noise (unevenness and variation) in image engineering. The specular reflection light distribution measuring method and apparatus according to the present invention can evaluate unevenness (noise, variation) of reflected light (gloss) on a sample surface.
ここまで試料として紙を例に発明の実施の形態を示したが、この他に、本発明の方法は、印刷物や人間の皮膚や粘膜の測定に適用することが可能である。人間の皮膚や粘膜を測定することで、医療や診断、化粧品の開発に活用することができる。 Although the embodiment of the invention has been described so far by taking paper as an example, the method of the present invention can be applied to measurement of printed matter, human skin, and mucous membrane. By measuring human skin and mucous membranes, it can be used for medical treatment, diagnosis and development of cosmetics.
以下、実施例によって本発明をさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this Example.
(実施例)
入射装置1、サンプルベッド21、受光装置3は、光学部品を組み合わせて製作した。サンプルベッド21は上下方向に移動可能である。この機構により、セットした紙サンプル、試料2、の厚さに合わせて試料表面高さを調整できる。
(Example)
The incident device 1, the sample bed 21, and the light receiving device 3 were manufactured by combining optical components. The sample bed 21 can move in the vertical direction. By this mechanism, the sample surface height can be adjusted in accordance with the thickness of the set paper sample and sample 2.
試料をセットし、照明光を入射し、鏡面反射光をあおり光学系の受光装置で測定し、試料の鏡面反射光分布を得た。 A sample was set, illumination light was incident, specular reflection light was measured with a light receiving device of an optical system, and a specular reflection distribution of the sample was obtained.
入射装置1の構成を図2を用いて説明する。光源11はLEDランプを用い、光ファイバーを経由して入射装置の所定の位置に設置した。点像チャート12が平行光となるようにコリメータレンズ13を設置し作製した。光源11の明るさは調整可能である。ここでは点像として直径100マイクロメータの穴を開けた薄金属板を点像として用いた。 The configuration of the incident device 1 will be described with reference to FIG. The light source 11 is an LED lamp and is installed at a predetermined position of the incident device via an optical fiber. The collimator lens 13 was installed and produced so that the point image chart 12 became parallel light. The brightness of the light source 11 can be adjusted. Here, a thin metal plate having a hole having a diameter of 100 micrometers was used as a point image.
受光装置3の構成を図3を用いて説明する。カメラは、三井オプトロニクス社製CCDカメラDensitoCamを用いた。受光した鏡面反射光をレンズで結像させる。この結像をCCDカメラで測定できるように作製した。用いたCCDカメラは14bit階調であり、測定した画像(光量分布)はコンピュータに転送される。検出信号は、事前に光学反射濃度が既知のチャート、今回はKODAK社グレイスケールを使用し検出信号と反射濃度の関係から光量に換算した。この結果、検出信号は光量とほぼ線形な比例関係が得られたため、以下、光量として検出信号値で表記する。最小値が0、最大値が65536である(階調は14bit)。 The configuration of the light receiving device 3 will be described with reference to FIG. The camera used was a CCD camera DensitoCam manufactured by Mitsui Optronics. The received mirror-reflected light is imaged by a lens. This image was made so that it could be measured with a CCD camera. The CCD camera used has a 14-bit gradation, and the measured image (light quantity distribution) is transferred to a computer. The detection signal was converted into light quantity from the relationship between the detection signal and the reflection density using a chart having a known optical reflection density in advance, this time using a gray scale of KODAK. As a result, since the detection signal has a substantially linear proportional relationship with the light amount, the detection signal value is hereinafter expressed as the light amount. The minimum value is 0 and the maximum value is 65536 (gradation is 14 bits).
受光装置3のレンズ群はあおり光学系である。ここではCCDカメラとレンズはベローズを介して設け、撮像素子(CCDカメラ)面とレンズ面と試料面が平行となり、かつ受光装置3の撮像素子(CCDカメラ)とレンズと試料を結ぶ光軸が、試料の法線に対して鏡面反射角度とした。 The lens group of the light receiving device 3 is a tilt optical system. Here, the CCD camera and the lens are provided via a bellows, the imaging device (CCD camera) surface, the lens surface, and the sample surface are parallel, and the optical axis connecting the imaging device (CCD camera) of the light receiving device 3, the lens, and the sample is Specular reflection angle with respect to the normal of the sample.
(測定実施例1)
測定結果を以下に示す。また、従来技術の測定方法による測定結果を合わせ示し、本発明の効果を示す。
(Measurement Example 1)
The measurement results are shown below. Moreover, the measurement result by the measuring method of a prior art is shown together, and the effect of this invention is shown.
試料として方眼紙を測定した。方眼紙は1mm毎に線が引かれており、縦横の線は直交している。 Graph paper was measured as a sample. Graph paper is drawn every 1 mm, and vertical and horizontal lines are orthogonal.
実施例に述べた鏡面反射光分布測定方法に基づく装置を製作した。受光装置のレンズ群があおり光学系となっている。受光装置の光軸は試料法線に対し30度である。入射装置も試料法線に対し反対側に30度であるが、ここでは入射装置から光をあてずに周囲から均一に照明し、方眼紙を測定した。この結果、方眼紙の全面に焦点が合った画像を計測できた。 An apparatus based on the specular light distribution measurement method described in the examples was manufactured. The lens group of the light receiving device is an optical system. The optical axis of the light receiving device is 30 degrees with respect to the sample normal. The incident device was also 30 degrees on the opposite side to the sample normal, but here the grid was measured by illuminating uniformly from the surroundings without applying light from the incident device. As a result, an image focused on the entire surface of the graph paper could be measured.
測定した方眼紙は、斜め30度方向から測定しているのにもかかわらず、測定面上で方眼紙のマス目の大きさが等しく、縦横の線が平行で直交していた。かつ、測定面上全体で焦点があっていることを確認した。 Although the measured graph paper was measured from an oblique direction of 30 degrees, the grid size of the graph paper was equal on the measurement surface, and the vertical and horizontal lines were parallel and orthogonal. In addition, it was confirmed that the focus was on the entire measurement surface.
(測定比較例1)
受光装置のレンズ群を通常の光学系としたものを用意した。受光装置の光軸は試料法線に対し30度である。入射装置も試料法線に対し反対側に30度であるが、ここでは入射装置から光をあてずに周囲から均一に照明し、方眼紙を測定した。
(Measurement Comparative Example 1)
The lens group of the light receiving device was prepared as a normal optical system. The optical axis of the light receiving device is 30 degrees with respect to the sample normal. The incident device was also 30 degrees on the opposite side to the sample normal, but here the grid was measured by illuminating uniformly from the surroundings without applying light from the incident device.
この装置で測定した方眼紙は、斜め30度方向から測定しているため、測定面上で方眼紙のマス目の大きさが異なる。近くは大きく、遠くは小さい。横の線が消失点に向けて収束する傾向がわかった。かつ、測定面上の中央では焦点があっているが、遠部、近部では焦点がぼやけることが確認された。これらは、通常のカメラ測定で起こる現象である。 Since the graph paper measured with this apparatus is measured from an oblique direction of 30 degrees, the grid size of the graph paper is different on the measurement surface. The near is big and the far is small. The horizontal line tends to converge toward the vanishing point. In addition, it was confirmed that the focal point is in the center on the measurement surface, but the focal point is blurred in the far and near parts. These are phenomena that occur in normal camera measurements.
(測定実施例2)
代表的サンプルの測定結果を以下に示す。
(Measurement Example 2)
The measurement results of representative samples are shown below.
試料として3種類の紙の測定結果を示す。 The measurement results of three types of paper are shown as samples.
試料aは、写真用インクジェット用紙でグロス(光沢)タイプである。これはポリエチレンを紙にラミネートしたRC紙をベースとしたインクジェット用紙であり、光沢の写真印画紙とほぼ同じ光沢感のある紙である。以下、RCグロスIJ紙と表記し、aで識別し、測定結果を図4aに示す。 Sample a is a glossy (glossy) type of photographic inkjet paper. This is an inkjet paper based on RC paper in which polyethylene is laminated on paper, and is a paper having the same glossiness as glossy photographic printing paper. Hereinafter, it is written as RC gloss IJ paper, identified by a, and the measurement result is shown in FIG. 4a.
試料bは、印刷用コート紙でグロス(光沢)タイプである。これは顔料を塗布し光沢を上げるためにカレンダ処理した印刷用紙であり、カレンダーや女性月刊誌の写真ページに使用される光沢のある紙である。以下、グロスコート紙と表記し、bで識別し、測定結果を図4bに示す。 Sample b is a coated paper for printing and is a gloss (gloss) type. This is a printing paper that is calendered to increase its gloss by applying pigments, and is a glossy paper used for calendars and women's monthly magazine photo pages. Hereinafter, it is written as gloss coated paper, identified by b, and the measurement result is shown in FIG. 4b.
試料cは、印刷用上質紙である。これは顔料を塗布していない、光沢がない印刷用紙であり、文字の多いページや光沢の少ない写真ページに使用される光沢の少ない紙である。以下、上質紙と表記し、cで識別し、測定結果を図4cに示す。 Sample c is high-quality paper for printing. This is a non-glossy printing paper that is not coated with pigment, and is a low-gloss paper that is used for pages with many characters and photo pages with low gloss. Hereinafter, it is referred to as fine paper, identified by c, and the measurement result is shown in FIG. 4c.
本発明の鏡面反射光量分布測定方法および装置に基づき製作した測定機で上記試料を測定した。各資料の反射光量分布を図4に示す。 The sample was measured with a measuring machine manufactured based on the specular reflection light quantity distribution measuring method and apparatus of the present invention. The reflected light amount distribution of each material is shown in FIG.
図4は3次元グラフで表示した図である。x軸(図の左右)は0〜100で光線方向左右の位置である。y軸(図の奥行)は0〜100で光線方向の位置である。z軸(図の上下)は光量値(センサの検出信号値)であり、40000〜80000である。 FIG. 4 is a diagram displayed in a three-dimensional graph. The x-axis (left and right in the figure) is 0 to 100 and is the left and right position in the light beam direction. The y-axis (depth in the figure) is 0 to 100 and is the position in the light beam direction. The z-axis (up and down in the figure) is a light quantity value (detection signal value of the sensor), which is 40000-80000.
各試料は、主観的な光沢感が明らかに異なる。主観的な光沢感の高い試料から順に、RCグロスIJ紙>グロスコート紙>印刷用上質紙である。反射光量分布(図4)は、これら試料の主観的光沢感と相関する傾向にあることがわかる。 Each sample clearly differs in subjective glossiness. In order from a sample with a high subjective glossiness, RC gloss IJ paper> gloss coated paper> quality paper for printing. It can be seen that the reflected light amount distribution (FIG. 4) tends to correlate with the subjective glossiness of these samples.
以上、本発明を実施例に基づいて説明したが、本発明はこの実施例には限定されず、種種変形可能である。 As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to this Example, Various deformation | transformation is possible.
本発明により、試料の鏡面反射光分布を直接求めるための簡易で精度の高い測定方法が提供される。この測定方法により、鏡面反射の試料面上でのムラが測定でき、印刷用紙や印刷方式の開発において有用な情報を得ることを可能とする。 The present invention provides a simple and highly accurate measurement method for directly obtaining the specular reflection light distribution of a sample. By this measurement method, unevenness of specular reflection on the sample surface can be measured, and useful information can be obtained in the development of printing paper and a printing method.
1 入射装置
2 試料
3 受光装置
11 光源
12 点像チャート
13 コリメータレンズ
21 サンプルベッド
31 レンズ群
33 受光センサ
DESCRIPTION OF SYMBOLS 1 Incident apparatus 2 Sample 3 Light receiving apparatus 11 Light source 12 Point image chart 13 Collimator lens 21 Sample bed 31 Lens group 33 Light receiving sensor
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011046283A JP2012184933A (en) | 2011-03-03 | 2011-03-03 | Method and device for measuring distribution of specular reflection light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011046283A JP2012184933A (en) | 2011-03-03 | 2011-03-03 | Method and device for measuring distribution of specular reflection light |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012184933A true JP2012184933A (en) | 2012-09-27 |
Family
ID=47015167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011046283A Withdrawn JP2012184933A (en) | 2011-03-03 | 2011-03-03 | Method and device for measuring distribution of specular reflection light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012184933A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016075545A (en) * | 2014-10-06 | 2016-05-12 | 日本製紙株式会社 | Evaluation method for paper gloss unevenness, and paper evaluated by the evaluation method |
JP2016099608A (en) * | 2014-11-26 | 2016-05-30 | 京セラドキュメントソリューションズ株式会社 | Toner amount detection sensor and image forming apparatus |
JP2017194625A (en) * | 2016-04-22 | 2017-10-26 | 京セラドキュメントソリューションズ株式会社 | Toner amount detection sensor and image formation device |
-
2011
- 2011-03-03 JP JP2011046283A patent/JP2012184933A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016075545A (en) * | 2014-10-06 | 2016-05-12 | 日本製紙株式会社 | Evaluation method for paper gloss unevenness, and paper evaluated by the evaluation method |
JP2016099608A (en) * | 2014-11-26 | 2016-05-30 | 京セラドキュメントソリューションズ株式会社 | Toner amount detection sensor and image forming apparatus |
JP2017194625A (en) * | 2016-04-22 | 2017-10-26 | 京セラドキュメントソリューションズ株式会社 | Toner amount detection sensor and image formation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007297473B2 (en) | Focal plane tracking for optical microtomography | |
JP4797593B2 (en) | Gloss measuring apparatus and program | |
CN109642787B (en) | System and method for 3D surface measurement | |
CN103330557B (en) | Exposure time determination-based laser speckle blood flow imaging method | |
JP2006030203A (en) | Inspection device of optical surface characteristics and inspection method using it | |
CN102939531A (en) | Method for ascertaining material characteristics of an object | |
CN113375583A (en) | Light path system, monocular three-dimensional image acquisition system and three-dimensional strain detection system | |
JP2021047200A (en) | Multi-stage method of determining surface properties and survey device | |
JP2015068813A (en) | Evaluation method and evaluation device of metallic feeling | |
JP5204723B2 (en) | Method and apparatus for measuring specular reflected light distribution of point image | |
JP2002544497A (en) | Paper surface characteristic determination method and measuring device for determining paper surface characteristic | |
JP2002544475A (en) | Method and measuring device for measuring paper surface | |
JP2012184933A (en) | Method and device for measuring distribution of specular reflection light | |
JP2014149286A (en) | Surface roughness measurement device | |
CN106097343B (en) | Optical field imaging equipment axial resolution measurement device and method | |
JP2012220224A (en) | Method and device for measuring unevenness of reflected light | |
JP7058271B2 (en) | Sample observation device and sample observation method | |
TW201013172A (en) | Lens testing device with variable testing patterns | |
CN107239753B (en) | A kind of system of handwriting verification | |
CN105022995B (en) | Method for extracting and analyzing diffusion and permeation information of painting and calligraphy elements based on light intensity information | |
JP5557586B2 (en) | Surface texture measuring device and surface texture measuring method | |
CN204202849U (en) | CCD modulation transfer function measuring device | |
CN107122766B (en) | A kind of method of handwriting verification | |
JP5180736B2 (en) | Evaluation method and apparatus for dull skin | |
JP2007278931A (en) | Image evaluating apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140513 |