JP2012184742A - Exhaust path formation method for steam and drain in drying operation of reheater - Google Patents

Exhaust path formation method for steam and drain in drying operation of reheater Download PDF

Info

Publication number
JP2012184742A
JP2012184742A JP2011049746A JP2011049746A JP2012184742A JP 2012184742 A JP2012184742 A JP 2012184742A JP 2011049746 A JP2011049746 A JP 2011049746A JP 2011049746 A JP2011049746 A JP 2011049746A JP 2012184742 A JP2012184742 A JP 2012184742A
Authority
JP
Japan
Prior art keywords
steam
reheater
drain
turbine
drying operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011049746A
Other languages
Japanese (ja)
Other versions
JP5409674B2 (en
Inventor
Eiji Egi
栄治 江木
Katsuhiko Hirashima
克彦 平島
Shinsaku Ono
真作 小野
Masanori Kawai
正範 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2011049746A priority Critical patent/JP5409674B2/en
Publication of JP2012184742A publication Critical patent/JP2012184742A/en
Application granted granted Critical
Publication of JP5409674B2 publication Critical patent/JP5409674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust path formation method for reducing an exhaust time by efficiently exhausting steam generated by the evaporation of water pressure test water remaining inside a reheater and a drain outward, and simplifying formation of an exhaust path.SOLUTION: A power generation plant has a secondary steam flowage path B through which primary steam from a high pressure turbine supplied to the reheater 12 and reheated in the reheater is sent to an intermediate pressure turbine 3. The secondary steam flowage path B includes: a drain-exhausting on-off valve 17 that is an electric valve present in a path of a drain exhaust pipe 16 branched from a low temperature reheating steam pipe 13; and drain-exhausting on-off valves 45, 46 that are electric valves present in paths of drain exhaust pipes 43, 44 branched from a high temperature reheating steam pipes 14. The drain-exhausting on-off valves are fully opened before a drying operation, and the steam generated by the evaporation of the water remaining inside the reheater and the drain obtained by condensation of the steam are exhausted outside the secondary steam flowage path B from the drain exhaust pipes, in the drying operation.

Description

この発明は、火力発電所等の発電設備のボイラーが備える再熱器について、水圧テスト後に再熱器内に残留した水を蒸発させるための乾燥運転を行うにあたって、この乾燥運転で発生した蒸気やその蒸気が凝縮したドレンを外部に排出するための経路を形成するための方法に関する。   The present invention relates to a reheater provided in a boiler of a power generation facility such as a thermal power plant, in performing a drying operation for evaporating water remaining in the reheater after a water pressure test. The present invention relates to a method for forming a path for discharging drain condensed by the steam to the outside.

この種の蒸気供給設備を備えた火力発電所等の発電設備としては、燃料を燃焼させて蒸気を発生させるボイラーと、このボイラーから蒸気が供給される蒸気タービンと、この蒸気タービンを介して駆動される発電機と、蒸気タービンに供給された蒸気を冷却する復水器とを少なくとも備えると共に、ボイラーは、復水器から復水を導入して一次蒸気を発生させ、この一次蒸気を蒸気タービンの高圧タービンに供給する過熱器と、一次蒸気を蒸気タービンの高圧タービンから導入して再熱して二次蒸気を発生させ、この二次蒸気を蒸気タービンの中圧タービンに供給する再熱器とを有した構成は、例えば特許文献1に示される発電装置として既に公知となっている。   Power generation equipment such as a thermal power plant equipped with this kind of steam supply equipment includes a boiler that generates steam by burning fuel, a steam turbine that is supplied with steam from the boiler, and driven through the steam turbine. And at least a condenser that cools the steam supplied to the steam turbine, and the boiler introduces condensate from the condenser to generate primary steam, and the primary steam is generated by the steam turbine. A superheater that supplies the high pressure turbine of the steam turbine, a reheater that introduces primary steam from the high pressure turbine of the steam turbine and reheats to generate secondary steam, and supplies the secondary steam to the intermediate pressure turbine of the steam turbine; For example, a configuration having a power generator is already known as a power generation device disclosed in Patent Document 1.

また、ボイラーの水圧テスト後に電力設備の起動のためにボイラーに点火した際に、再熱器に残留した水が要因となってウォータハンマーが発生するのを防止するために、ボイラーの水圧テスト後に、再熱器内部の水を排出した状態で、ボイラーを点火して再熱器内部を乾燥し、再熱器内部に残留した水を蒸発させる乾燥運転を行う方法は、例えば特許文献2に示されるように既に公知になっている。   In addition, after the boiler water pressure test, when the boiler is ignited for the start-up of the power equipment, after the boiler water pressure test, the water remaining in the reheater is prevented from occurring due to water remaining in the reheater. A method of performing a drying operation in which the water inside the reheater is discharged and the boiler is ignited to dry the inside of the reheater and the water remaining inside the reheater is evaporated is disclosed in Patent Document 2, for example. As already known.

更に、再熱器内部に残留した水を蒸発させて成る蒸気やこの蒸気が凝縮したドレンについて再熱器を構成要素とする二次蒸気流動経路から外部に排出する経路を形成するにあたって、上記特許文献2では、乾燥運転時において、低温再熱蒸気管のドレン弁を閉じ、高温再熱蒸気管に設けたドレン弁を開いた状態にして、再熱器内部で発生した蒸気を二次蒸気流動経路の外に排出する経路を形成する方法も示されている。   Furthermore, when forming a path for discharging the water remaining in the reheater from the secondary steam flow path having the reheater as a component to the steam formed by evaporating the water remaining in the reheater or the condensed drain of the steam, the above-mentioned patent In Reference 2, during the drying operation, the drain valve of the low-temperature reheat steam pipe is closed, the drain valve provided in the high-temperature reheat steam pipe is opened, and the steam generated in the reheater is flowed into the secondary steam. A method of forming a discharge path out of the path is also shown.

特開2008−292119号公報JP 2008-292119 A 特開2008−116162号公報JP 2008-116162 A

しかしながら、特許文献2に示されるように、低温再熱蒸気管のドレン弁を閉じ、高温再熱蒸気管に設けたドレン弁を開いて、再熱器内部の蒸気を排出するのでは、蒸気やドレンを排出するための流路面積が相対的に小さくなるので、蒸気やドレンの排出が不十分になり、又は蒸気やドレンを排出するための時間が長くなってしまうことが考えられる。   However, as shown in Patent Document 2, it is necessary to close the drain valve of the low-temperature reheat steam pipe, open the drain valve provided in the high-temperature reheat steam pipe, and discharge the steam inside the reheater. Since the flow path area for discharging the drain is relatively small, it is considered that the discharge of steam and drain becomes insufficient, or the time for discharging the steam and drain becomes long.

また、図5に示されるように、水圧テスト後に再熱器201内から水をブロータンク202に排出するための排水管204に設けた排水弁203を乾燥運転時において全開にすることにより、排水管204から二次蒸気流動経路205の外に蒸気やドレンを排出する方法もあるが、排水弁203は手動弁であるため、作業員が現場に行ってバルブハンドルを回すこと等により排水弁203を開く操作を行う必要が生ずるので、再熱器の乾燥運転時の蒸気及びドレンの排出経路を形成するための作業が煩雑となる。   Further, as shown in FIG. 5, the drainage valve 203 provided in the drainage pipe 204 for discharging the water from the reheater 201 to the blow tank 202 after the water pressure test is fully opened during the drying operation. There is also a method of discharging steam and drain from the pipe 204 to the outside of the secondary steam flow path 205. However, since the drain valve 203 is a manual valve, the drain valve 203 is operated by an operator going to the site and turning the valve handle. Therefore, the operation for forming the discharge path for the steam and drain during the drying operation of the reheater becomes complicated.

そこで、本発明は、二次蒸気流動経路に配置されている自動化された他の排出手段を利用して、再熱器内に残留した水を蒸発させて成る蒸気及びこの蒸気が凝縮したドレンを二次蒸気流動経路の外に排出し、しかも、蒸気及びドレンの排出を良くし、蒸気及びドレンの排出時間を短縮化することができると共に、蒸気及びドレン排出経路の形成を簡易に行うことが可能な再熱器の乾燥運転時の蒸気及びドレン排出経路形成方法を提供することを目的とする。   Therefore, the present invention uses other automated discharge means disposed in the secondary steam flow path to remove the steam formed by evaporating water remaining in the reheater and the drain condensed by the steam. It is possible to discharge out of the secondary steam flow path, improve steam and drain discharge, shorten the steam and drain discharge time, and easily form the steam and drain discharge path. It is an object of the present invention to provide a method for forming a steam and drain discharge path during a drying operation of a possible reheater.

この発明に係る再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法は、燃料を燃焼させて蒸気を発生させるボイラーと、このボイラーから蒸気が供給される蒸気タービンと、この蒸気タービンを介して駆動される発電機と、前記蒸気タービンに供給された蒸気を冷却する復水器とを少なくとも備え、前記ボイラーは、前記復水器から復水を導入して一次蒸気を発生させ、この一次蒸気を前記蒸気タービンの一次タービンに供給する過熱器と、前記一次蒸気を前記一次タービンから導入して再熱することで二次蒸気を発生させ、この二次蒸気を前記蒸気タービンの二次タービンに供給する再熱器とを有する発電設備において、前記一次タービンと前記再熱器と前記二次タービンとを蒸気配管で接続して二次蒸気流動経路を構成し、この二次蒸気流動経路の前記再熱器よりも二次蒸気の流れの上流側に前記蒸気配管内で発生したドレンを前記二次蒸気流動経路の外に排出するための第1のドレン排出管と前記ドレン排出管を開閉するための第1のドレン排出用開閉弁とを配置すると共に、前記二次蒸気流動経路の前記再熱器よりも二次蒸気の流れの下流側に前記蒸気配管内で発生したドレンを前記二次蒸気流動経路の外に排出するための第2のドレン排出管と前記ドレン排出管を開閉するための第2のドレン排出用開閉弁とを配置し、前記ボイラーに液体を注入して行うテストの後に前記再熱器内部の液体を排出した状態であって、前記ボイラーを点火して前記再熱器内部を乾燥する再熱器の乾燥運転を行う前に、前記第1のドレン排出用開閉弁と前記第2のドレン排出用開閉弁との双方を開放状態にして、前記再熱器の乾燥運転により前記再熱器内に残留した液体が蒸発して発生する蒸気及びこの蒸気が凝縮したドレンを前記二次蒸気配管内に流すことにより、前記蒸気を前記第1及び第2のドレン排出管の双方から前記二次蒸気流動経路の外に排出することを可能としたことを特徴としている(請求項1)。ここで、発電設備とは、例えば火力発電所である。一次タービンとは、例えば高圧タービンであり、二次タービンとは、例えば中圧タービンである。ボイラーに液体を注入して行うテストとは、例えばボイラーを構成する再熱器等の構成部品からの水漏れの有無を検査する水圧テストであり、この水圧テストで用いられる液体は例えば水である。第1及び第2のドレン排出管は、例えば発電設備の復水器に接続されている。   A steam and drain discharge path forming method for drying operation of a reheater according to the present invention includes a boiler that generates steam by burning fuel, a steam turbine to which steam is supplied from the boiler, and the steam turbine. A generator driven through the condenser and a condenser for cooling the steam supplied to the steam turbine, the boiler introduces condensate from the condenser to generate primary steam, and A superheater that supplies primary steam to the primary turbine of the steam turbine, and introduces the primary steam from the primary turbine and reheats to generate secondary steam, and the secondary steam is secondary to the steam turbine. In a power generation facility having a reheater for supplying to a turbine, a secondary steam flow path is configured by connecting the primary turbine, the reheater and the secondary turbine with a steam pipe. The first drain discharge pipe and the drain for discharging the drain generated in the steam pipe to the upstream side of the flow of the secondary steam from the reheater of the steam flow path to the outside of the secondary steam flow path A first drain discharge on-off valve for opening and closing the discharge pipe is disposed, and is generated in the steam pipe on the downstream side of the flow of the secondary steam from the reheater of the secondary steam flow path. A second drain discharge pipe for discharging the drain out of the secondary steam flow path and a second drain discharge on-off valve for opening and closing the drain discharge pipe are arranged, and liquid is injected into the boiler After the test, the liquid inside the reheater is discharged, and before performing the drying operation of the reheater for igniting the boiler and drying the reheater, Drain discharge on-off valve and the second drain discharge on-off valve Both are opened and the vapor generated by evaporation of the liquid remaining in the reheater by the drying operation of the reheater and the drain condensed by the vapor are caused to flow into the secondary steam pipe. The steam can be discharged out of the secondary steam flow path from both the first and second drain discharge pipes (Claim 1). Here, the power generation facility is, for example, a thermal power plant. The primary turbine is, for example, a high-pressure turbine, and the secondary turbine is, for example, an intermediate-pressure turbine. The test performed by injecting liquid into the boiler is, for example, a water pressure test for inspecting the presence or absence of water leakage from components such as a reheater constituting the boiler. The liquid used in the water pressure test is, for example, water. . The first and second drain discharge pipes are connected to, for example, a condenser of the power generation facility.

これによって、再熱器の乾燥運転によりボイラーに液体を注入して行うテスト後に再熱器内に残留した水等の液体を蒸発させ、この液体が気化した蒸気及びこの蒸気が凝縮したドレンを当該乾燥運転中に二次蒸気流動経路の外に排出することができるので、発電設備の起動時に再熱器に残留した液体が要因となってウォータハンマーが発生するという不具合を解消するという基本的な目的を達成することができる。   As a result, the liquid such as water remaining in the reheater is evaporated after the test conducted by injecting the liquid into the boiler by the drying operation of the reheater, and the vaporized vapor of this liquid and the condensed drain of this vapor are Since it can be discharged out of the secondary steam flow path during the drying operation, the basic problem of eliminating the water hammer caused by the liquid remaining in the reheater at the start-up of the power generation equipment Aim can be achieved.

また、二次蒸気流動経路のうち再熱器より二次蒸気の流れの上流側に位置する第1のドレン排出用開閉弁と再熱器より二次蒸気の流れの下流側に位置する第2のドレン排出用開閉弁との双方を全開にするので、ボイラーに液体を注入して行うテスト後に再熱器に残留した液体を蒸発させて成る蒸気及びこの蒸気が凝縮したドレンを、第1のドレン排出管と第2のドレン排出管との双方から二次蒸気流動経路の外に排出することが可能となる。   Further, in the secondary steam flow path, a first drain discharge on-off valve located on the upstream side of the secondary steam flow from the reheater and a second located on the downstream side of the secondary steam flow from the reheater. Since both of the drain discharge on-off valve of the boiler are fully opened, the vapor formed by evaporating the liquid remaining in the reheater after the test conducted by injecting the liquid into the boiler, and the drain condensed with the vapor, It becomes possible to discharge out of the secondary steam flow path from both the drain discharge pipe and the second drain discharge pipe.

そして、この発明に係る再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法にあって、前記第1のドレン排出用開閉弁と前記第2のドレン排出用開閉弁とは、自動制御により開閉されることを特徴としている(請求項2)。   In the method for forming a steam and drain discharge path during the drying operation of the reheater according to the present invention, the first drain discharge on-off valve and the second drain discharge on-off valve are automatically controlled. (Claim 2).

これにより、再熱器内に残留した液体を蒸発させて成る蒸気を第1及び第2のドレン排出管から排出するための第1及び第2のドレン排出用開閉弁は、自動制御で開閉することができるので、作業員が現場にいって開閉弁の開放作業をする必要がなくなる。   Thus, the first and second drain discharge on / off valves for discharging the vapor obtained by evaporating the liquid remaining in the reheater from the first and second drain discharge pipes are opened and closed by automatic control. This eliminates the need for the operator to go to the site to open the on-off valve.

更に、この発明に係る再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法にあって、前記二次蒸気流動経路は、前記再熱器内の液体を抜くための液体排出系統等のドレン排出以外を目的とした所定の系統を備えると共に、これらの所定の系統を構成する配管の経路の上流側に開閉弁が設けられ、前記開閉弁は、前記再熱器の乾燥運転時には閉じた状態にされることを特徴としている(請求項3)。   Further, in the method for forming a steam and drain discharge path during the drying operation of the reheater according to the present invention, the secondary steam flow path is a liquid discharge system or the like for draining the liquid in the reheater. A predetermined system for purposes other than drainage is provided, and an on-off valve is provided on the upstream side of the piping path constituting the predetermined system, and the on-off valve is closed during the drying operation of the reheater. (Claim 3).

これにより、再熱器の乾燥運転で発生した蒸気やこの蒸気が凝縮したドレンが、第1及び第2のドレン排出管以外となる、再熱器内の液体を抜くための液体排出系統等の所定の系統に流入することがない。   Thereby, the steam generated in the drying operation of the reheater and the drain condensed with this steam are other than the first and second drain discharge pipes, such as a liquid discharge system for draining the liquid in the reheater. It does not flow into a given system.

更にまた、この発明に係る再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法にあって、前記二次蒸気流動経路は、前記第1のドレン排出管が設けられた部位よりも前記一次タービン側と前記第2のドレン排出管が設けられた部位よりも前記二次タービン側とに、前記二次蒸気流動経路内での蒸気やドレンの流動を規制する規制手段が設けられ、前記規制手段は、前記再熱器の乾燥運転時には前記二次蒸気流動経路内での蒸気やドレンの流動を規制することを特徴としている(請求項4)。ここで、規制手段とは、低温再熱蒸気管側にあっては例えば閉塞部であり、高温再熱蒸気管側にあっては例えば再熱蒸気止め弁である。   Furthermore, in the method for forming a discharge path for steam and drain during the drying operation of the reheater according to the present invention, the secondary steam flow path is more than the portion where the first drain discharge pipe is provided. Regulating means for regulating the flow of steam and drain in the secondary steam flow path is provided on the secondary turbine side rather than on the primary turbine side and the portion where the second drain discharge pipe is provided, The regulating means regulates the flow of steam and drain in the secondary steam flow path during the drying operation of the reheater (Claim 4). Here, the restricting means is, for example, a closed portion on the low temperature reheat steam pipe side, and is, for example, a reheat steam stop valve on the high temperature reheat steam pipe side.

これにより、再熱器の乾燥運転で発生した蒸気やこの蒸気が凝縮したドレンが不用意に一次タービンや二次タービンに流入することがない。   Thereby, the steam generated in the drying operation of the reheater or the drain condensed with this steam does not inadvertently flow into the primary turbine or the secondary turbine.

以上のように、この発明によれば、再熱器の乾燥運転によりボイラーに液体を注入して行うテスト後に再熱器内に残留した水等の液体を蒸発させ、この液体が気化した蒸気及びこの蒸気が凝縮したドレンを当該乾燥運転中に二次蒸気流動経路の外に排出することができるので、発電設備を起動するためのボイラーの点火時に再熱器に残留した液体が要因となってウォータハンマーが発生するのを防止することが可能である。   As described above, according to the present invention, the liquid such as water remaining in the reheater after the test performed by injecting the liquid into the boiler by the drying operation of the reheater is evaporated, This steam condensed drain can be discharged out of the secondary steam flow path during the drying operation, which is caused by the liquid remaining in the reheater when the boiler is ignited to start the power generation equipment. It is possible to prevent the water hammer from occurring.

また、この発明によれば、二次蒸気流動経路のうち再熱器より二次蒸気の流れの上流側に位置する第1のドレン排出用開閉弁と再熱器より二次蒸気の流れの下流側に位置する第2のドレン排出用開閉弁との双方を全開にして、再熱器に残留した液体を蒸発させて成る蒸気及びこの蒸気が凝縮したドレンを、第1のドレン排出管と第2のドレン排出管との双方から二次蒸気流動経路の外に排出することが可能となるので、蒸気及びドレンの排出を効率良く行うことができ、蒸気及びドレンを外部に排出するための時間の短縮化を図ることが可能となる。   Further, according to the present invention, the first drain discharge on-off valve located on the upstream side of the secondary steam flow from the reheater in the secondary steam flow path and the downstream of the secondary steam flow from the reheater. Both the second drain discharge on-off valve located on the side is fully opened, and the vapor formed by evaporating the liquid remaining in the reheater and the drain condensed by the vapor are supplied to the first drain discharge pipe and the second drain discharge pipe. Since it is possible to discharge from both the drain discharge pipe and the secondary steam flow path, it is possible to efficiently discharge the steam and drain, and the time for discharging the steam and drain to the outside. Can be shortened.

更に、この発明によれば、第1及び第2のドレン排出管及びド第1及び第2のドレン排出用開閉弁は発電設備に既設のものであり、新たに設ける必要がないので、現在の発電設備でもこの方法を用いることが可能であり、設備の増設によるコスト増を招くこともない。   Furthermore, according to the present invention, the first and second drain discharge pipes and the drain first and second drain discharge on-off valves are already installed in the power generation facility and do not need to be newly provided. This method can also be used in a power generation facility, and there is no increase in cost due to the expansion of the facility.

特に請求項2に記載の発明によれば、再熱器内に残留した液体を蒸発させて成る蒸気及びこの蒸気が凝縮したドレンを第1及び第2のドレン排出管から排出するための第1及び第2のドレン排出用開閉弁のいずれも、自動制御で開閉することができるので、作業員が現場にいって開閉弁を開く作業をする必要がなく、再熱器の乾燥運転時の蒸気排出経路を形成するという、再熱器の乾燥運転前の環境整備のための作業の簡便化を図ることが可能である。   In particular, according to the second aspect of the present invention, the first vapor for discharging the vapor formed by evaporating the liquid remaining in the reheater and the drain condensed by the vapor from the first and second drain discharge pipes. And the second drain discharge on-off valve can be opened and closed by automatic control, so there is no need for an operator to go to the site to open the on-off valve, and steam during the drying operation of the reheater. It is possible to simplify the work for environmental maintenance before the drying operation of the reheater to form the discharge path.

特に請求項3に記載の発明によれば、再熱器の乾燥運転で発生した蒸気やこの蒸気が凝縮したドレンが、第1及び第2のドレン排出管以外となる、再熱器内の液体を抜くための液体排出系統等のドレン排出以外を目的とした他の系統に流入するのを防止することができる。   In particular, according to the third aspect of the present invention, the steam in the reheater, in which the steam generated in the drying operation of the reheater and the drain condensed by this steam are other than the first and second drain discharge pipes. It is possible to prevent inflow into other systems other than drain discharge such as a liquid discharge system for removing water.

特に請求項4に記載の発明によれば、再熱器の乾燥運転で発生した蒸気やこの蒸気が凝縮したドレンが一次タービンや二次タービンに対して不用意に流入するのを防止することができる。   In particular, according to the invention described in claim 4, it is possible to prevent inadvertent inflow of steam generated in the drying operation of the reheater or drain condensed from the steam into the primary turbine and the secondary turbine. it can.

図1は、電力設備の再熱器等の配置構成を示す概略図である。FIG. 1 is a schematic diagram showing an arrangement configuration of a reheater or the like of a power facility. 図2は、電力設備の二次蒸気流動経路の構成を説明すると共に、この発明の再熱器の乾燥運転時の蒸気及びドレンの排出経路を示した説明図である。FIG. 2 is an explanatory diagram showing the configuration of the secondary steam flow path of the power equipment and the steam and drain discharge path during the drying operation of the reheater of the present invention. 図3は、ボイラーの水圧テスト後に、再熱器内からの排水、再熱器の乾燥運転の環境整備、再熱器の乾燥運転を経て、再熱器のホットクリーンアップ・安全弁テストを行う工程を示すフローチャートである。Figure 3 shows the process of performing a hot cleanup / safety valve test of the reheater after draining from the reheater, preparing the reheater drying environment, and reheating the reheater after the boiler water pressure test. It is a flowchart which shows. 図4は、再熱器の乾燥運転、再熱器のホットクリーンアップ及び安全弁テストにおける温度管理状態を示す特性線図である。FIG. 4 is a characteristic diagram showing the temperature management state in the drying operation of the reheater, the hot cleanup of the reheater, and the safety valve test. 図5は、この発明以外の再熱器の乾燥運転時の蒸気及びドレンの排出経路を示した説明図である。FIG. 5 is an explanatory diagram showing a steam and drain discharge path during the drying operation of the reheater other than the present invention.

以下、この発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1において、発電設備1の概略図が示されている。この発電設備1は、燃料を燃焼させて蒸気を発生させるボイラー2と、このボイラー2から蒸気が供給される蒸気タービンたる、高圧タービン3、中圧タービン4及び低圧タービン5と、これらの高圧タービン3、中圧タービン4及び低圧タービン5を介して駆動される発電機6と、高圧タービン3、中圧タービン4及び低圧タービン5に供給された蒸気を冷却する復水器7とを少なくとも有することで構成されている。高圧タービン3、中圧タービン4及び低圧タービン5と発電機6とは、この実施形態では、軸部8により、発電機6、高圧タービン3、中圧タービン4、低圧タービン5の順にて、同一軸上に連結されている。但し、これらのタービン3、4、5及び発電機6の連結の順番は図示された構成に限定されず、例えば発電機6が低圧タービン5側にて連結されていても良い。   In FIG. 1, a schematic diagram of a power generation facility 1 is shown. The power generation facility 1 includes a boiler 2 that burns fuel to generate steam, a high-pressure turbine 3, an intermediate-pressure turbine 4, and a low-pressure turbine 5 that are steam turbines to which steam is supplied from the boiler 2, and these high-pressure turbines. 3. It has at least a generator 6 driven via the intermediate pressure turbine 4 and the low pressure turbine 5, and a condenser 7 for cooling the steam supplied to the high pressure turbine 3, the intermediate pressure turbine 4 and the low pressure turbine 5. It consists of In this embodiment, the high-pressure turbine 3, the intermediate-pressure turbine 4, the low-pressure turbine 5, and the generator 6 are the same in the order of the generator 6, the high-pressure turbine 3, the intermediate-pressure turbine 4, and the low-pressure turbine 5. It is connected on the shaft. However, the connection order of the turbines 3, 4, 5 and the generator 6 is not limited to the illustrated configuration, and the generator 6 may be connected on the low-pressure turbine 5 side, for example.

ボイラー2は、復水器7から復水を導入して加熱により一次蒸気を発生さる蒸気管10と、この一次蒸気を過熱して高温高圧の蒸気にし、高圧タービン3に供給する過熱器11と、一次蒸気を高圧タービン3から導入して再熱することで二次蒸気(再熱蒸気)を発生させ、この二次蒸気を中圧タービン4に供給する再熱器12とを有している。   The boiler 2 includes a steam pipe 10 that introduces condensate from the condenser 7 and generates primary steam by heating, and a superheater 11 that superheats the primary steam into high-temperature and high-pressure steam and supplies the steam to the high-pressure turbine 3. And a reheater 12 that generates secondary steam (reheated steam) by introducing primary steam from the high-pressure turbine 3 and reheating it, and supplies the secondary steam to the intermediate pressure turbine 4. .

過熱器11は、この実施形態では、図1に示されるように、蒸気管10の下流側に近接して位置する一次過熱器11aと、蒸気管10に対して一次過熱器11aよりも離れるかたちで蒸気管10の下流側に位置する二次過熱器11bとの2つで構成されている。再熱器12は、図2に示されるように、管巣12a,12bと、蛇行状に折り返して形成されると共に管巣12a,12b間に配置されて各管巣12a,12bに接続された再熱器管12cとを有して構成されている。   In this embodiment, the superheater 11 is, as shown in FIG. 1, a primary superheater 11 a located close to the downstream side of the steam pipe 10, and a form away from the primary superheater 11 a with respect to the steam pipe 10. And the secondary superheater 11b located on the downstream side of the steam pipe 10. As shown in FIG. 2, the reheater 12 is formed to be folded back in a meandering manner with the tube nests 12 a and 12 b and is arranged between the tube nests 12 a and 12 b and connected to the tube nests 12 a and 12 b. And a reheater tube 12c.

かかる構成により、この発電設備1は、復水器7からボイラー2の蒸気管10、一次過熱器11a、二次過熱器11bを経て高圧タービン3に至る一次蒸気流動経路Aと、高圧タービン3からボイラー2の再熱器12を経て中圧タービン4に至る二次蒸気流動経路Bと、中圧タービン4から低圧タービン5を経て復水器7に至る蒸気等流動経路Cとを備えたものにもなっている。   With this configuration, the power generation facility 1 includes a primary steam flow path A from the condenser 7 to the high pressure turbine 3 via the steam pipe 10 of the boiler 2, the primary superheater 11 a, the secondary superheater 11 b, and the high pressure turbine 3. A secondary steam flow path B that reaches the intermediate pressure turbine 4 through the reheater 12 of the boiler 2 and a steam constant flow path C that passes from the intermediate pressure turbine 4 through the low pressure turbine 5 to the condenser 7. It is also.

次に、二次蒸気流動経路Bについて図2を用いて以下に詳述する。この二次蒸気流動経路Bは、高圧タービン3と再熱器12の入口側とを連結する低温再熱蒸気管13と、再熱器12の出口側と中圧タービン4とを連結する高温再熱蒸気管14とを有し、図2の実線の矢印の方向に蒸気が流れるようになっている。   Next, the secondary steam flow path B will be described in detail below with reference to FIG. The secondary steam flow path B includes a low-temperature reheat steam pipe 13 that connects the high-pressure turbine 3 and the inlet side of the reheater 12, and a high-temperature regenerator that connects the outlet side of the reheater 12 and the intermediate pressure turbine 4. And a steam vapor pipe 14 so that steam flows in the direction of the solid arrow in FIG.

低温再熱蒸気管13は、図2に示されるように、かかる低温再熱蒸気管13内を蒸気が流れるのを塞ぐ閉塞部15を備え、この閉塞部15よりも再熱器12側にてドレン排出管16が分岐している。このドレン排出管16は、低温再熱蒸気管13内で生じたドレンを二次蒸気流動経路Bの外に排出するためのもので、この実施形態では復水器7に繋がっている。そして、ドレン排出管16は、少なくともドレン排出管16を開閉するためのドレン排出用開閉弁17と、高温高圧の蒸気を復水器7に送る前に一旦入れる収納部18とがその経路上に設けられている。ドレン排出用開閉弁17はモータ17aによりドレン排出管16を自動で開閉する電動弁となっている。   As shown in FIG. 2, the low-temperature reheat steam pipe 13 includes a closed portion 15 that blocks the flow of steam through the low-temperature reheat steam pipe 13, and is closer to the reheater 12 than the closed portion 15. The drain discharge pipe 16 is branched. The drain discharge pipe 16 is for discharging drain generated in the low-temperature reheat steam pipe 13 to the outside of the secondary steam flow path B, and is connected to the condenser 7 in this embodiment. The drain discharge pipe 16 includes at least a drain discharge on-off valve 17 for opening and closing the drain discharge pipe 16 and a storage unit 18 for temporarily inserting the high-temperature and high-pressure steam before sending it to the condenser 7. Is provided. The drain discharge on-off valve 17 is an electric valve that automatically opens and closes the drain discharge pipe 16 by a motor 17a.

また、低温再熱蒸気管13は、ドレン排出管16の分岐部位よりも二次蒸気の下流側において、図示しない所定の給水加熱器(例えば第7給水加熱器)に加熱用蒸気を供給するための加熱用蒸気供給系統19や、発電設備1の起動時に補助蒸気を高圧タービン3に供給して高圧タービン3のウォーミングを実施するための補助蒸気供給系統20や、減温器21や、この減温器21と配管接続されて再熱蒸気温度が上昇した場合に再熱器12に水を注入して再熱器12内温度を低下させるための再熱蒸気温度低下系統22とについて、更に有している。そして、加熱用蒸気供給系統19、補助蒸気供給系統20、再熱蒸気温度低下系統22は、各系統を構成する配管の上流側に開閉弁23、24、25、26を有している。   Further, the low-temperature reheat steam pipe 13 supplies heating steam to a predetermined feed water heater (for example, a seventh feed water heater) (not shown) on the downstream side of the secondary steam from the branch portion of the drain discharge pipe 16. The heating steam supply system 19, the auxiliary steam supply system 20 for supplying the auxiliary steam to the high-pressure turbine 3 to warm the high-pressure turbine 3 when the power generation facility 1 is started, the temperature reducer 21, A reheat steam temperature lowering system 22 for injecting water into the reheater 12 to lower the temperature in the reheater 12 when the reheat steam temperature rises due to pipe connection with the temperature reducer 21, Have. The heating steam supply system 19, auxiliary steam supply system 20, and reheat steam temperature lowering system 22 have on-off valves 23, 24, 25, and 26 on the upstream side of the pipes constituting each system.

再熱器12は、安全弁テスト時にフラッシュタンク28からこの再熱器12に水張りを行うための注水系統29と、水圧テスト後に再熱器12内の水をブロータンク30に排出するための排水系統31とが蒸気の入口側にて連結されており、注水系統29を構成する配管の経路上には開閉弁32、33が設けられ、排水系統31を構成する配管の経路上には開閉弁34が設けられている。尚、少なくとも開閉弁34はバルブハンドルを回すことにより開閉する手動弁である。また、再熱器12は、蒸気の出口側において、再熱器12から空気を抜くための空気抜き系統35を有しており、この空気抜き系統35はその経路上に一次開閉弁36と二次開閉弁37が設けられている。そして、この空気抜き系統35は、一次開閉弁36と二次開閉弁37との間に窒素ガス(N)を再熱器12の出口側に封入するための窒素封入系統38が接続され、この窒素封入系統38はその経路上に開閉弁39が設けられている。 The reheater 12 includes a water injection system 29 for filling the reheater 12 with water from the flash tank 28 during the safety valve test, and a drainage system for discharging water in the reheater 12 to the blow tank 30 after the water pressure test. 31 is connected to the steam inlet side, and on-off valves 32 and 33 are provided on the piping path constituting the water injection system 29, and the on-off valve 34 is provided on the piping path constituting the drainage system 31. Is provided. At least the on-off valve 34 is a manual valve that opens and closes by turning the valve handle. The reheater 12 has an air vent system 35 for extracting air from the reheater 12 on the outlet side of the steam. The air vent system 35 has a primary on-off valve 36 and a secondary on-off on the path. A valve 37 is provided. The air venting system 35 is connected with a nitrogen sealing system 38 for sealing nitrogen gas (N 2 ) on the outlet side of the reheater 12 between the primary switching valve 36 and the secondary switching valve 37. The nitrogen-filled system 38 is provided with an open / close valve 39 on its path.

高温再熱蒸気管14は、この実施形態では、空気抜き系統35及び窒素封入系統38よりも下流側において、第1の高温再熱蒸気管14aと第2の高温再熱蒸気管14bとに分かれており、第1の高温再熱蒸気管14aと第2の高温再熱蒸気管14bとはそれぞれ中圧タービン4に繋がっている。そして、第1の高温再熱蒸気管14aと第2の高温再熱蒸気管14bとは、その経路上にそれぞれ再熱蒸気止め弁41、42が設けられている。   In this embodiment, the high-temperature reheat steam pipe 14 is divided into a first high-temperature reheat steam pipe 14 a and a second high-temperature reheat steam pipe 14 b on the downstream side of the air vent system 35 and the nitrogen-filled system 38. The first high-temperature reheat steam pipe 14a and the second high-temperature reheat steam pipe 14b are connected to the intermediate pressure turbine 4, respectively. The first high-temperature reheat steam pipe 14a and the second high-temperature reheat steam pipe 14b are provided with reheat steam stop valves 41 and 42 on their paths, respectively.

更に、第1の高温再熱蒸気管14aと第2の高温再熱蒸気管14bとは、その途中からドレン排出管43、44がそれぞれ分岐している。ドレン排出管43、44は、高温再熱蒸気管14内で生じたドレンを二次蒸気流動経路Bの外に排出するためのもので、この実施形態ではそれぞれ復水器7に繋がっている。そして、ドレン排出管43は、少なくともドレン排出管43を開閉するためのドレン排出用開閉弁45と、高温高圧の蒸気を復水器7に送る前に一旦入れる収納部47とがその経路上に設けられ、ドレン排出管44は、少なくともドレン排出管44を開閉するためのドレン排出用開閉弁46と、高温高圧の蒸気を復水器7に送る前に一旦入れる収納部47とがその経路上に設けられている。ドレン排出用開閉弁45、46は、それぞれモータ45a、46aによりドレン排出管43又はドレン排出管44を自動で開閉する電動弁となっている。   Further, drain discharge pipes 43 and 44 are branched from the middle of the first high-temperature reheat steam pipe 14a and the second high-temperature reheat steam pipe 14b, respectively. The drain discharge pipes 43 and 44 are for discharging the drain generated in the high-temperature reheat steam pipe 14 to the outside of the secondary steam flow path B, and are connected to the condenser 7 in this embodiment. The drain discharge pipe 43 includes at least a drain discharge on-off valve 45 for opening and closing the drain discharge pipe 43 and a storage section 47 for temporarily inserting the high-temperature and high-pressure steam before sending it to the condenser 7. The drain discharge pipe 44 includes at least a drain discharge on-off valve 46 for opening and closing the drain discharge pipe 44 and a storage portion 47 for temporarily inserting high-temperature and high-pressure steam before being sent to the condenser 7. Is provided. The drain discharge on-off valves 45 and 46 are motor-operated valves that automatically open and close the drain discharge pipe 43 or the drain discharge pipe 44 by motors 45a and 46a, respectively.

ところで、発電設備1のボイラー2は、漏水等の有無や耐圧性を検査すべく法令に基づいて水圧テストを行う必要がある一方で、ボイラー2を構成する再熱器12内に水が残留している場合には、発電設備1の起動時(ボイラー2の点火時)にウォータハンマーが発生するおそれがある。これに伴い、このウォータハンマーの発生を防止するための水圧テスト後に行う再熱器12に対する工程の概略について、図3のスタートのステップ100からエンドのステップ106までとして示されるフローチャートを用い、更に、図4の特性線図の記載を付加して以下に説明する。   By the way, while the boiler 2 of the power generation facility 1 needs to perform a water pressure test based on laws and regulations in order to check the presence or absence of water leakage and the pressure resistance, water remains in the reheater 12 constituting the boiler 2. In such a case, a water hammer may be generated when the power generation facility 1 is started (when the boiler 2 is ignited). Along with this, an outline of the process for the reheater 12 performed after the water pressure test for preventing the occurrence of this water hammer will be described using the flowchart shown from the start step 100 to the end step 106 in FIG. A description of the characteristic diagram of FIG. 4 will be added and described below.

まず、水圧テスト後となるステップ101において、再熱器12内の水圧テスト用水を排出する。この再熱器12内からの排水は、図2に示される開閉弁34を作業員が現場にて手動で開き、再熱器12から排水系統31を経てブロータンク30に水圧テスト用水を送出することで行われる。更に、この実施形態では、開閉弁36、39を開いて窒素ガスを再熱器12の出口側から再熱器12内に封入することにより、窒素ガスの加圧によっても再熱器12内の水を排水管31から排出する作業が行われる。   First, in Step 101 after the water pressure test, the water for water pressure test in the reheater 12 is discharged. For drainage from the reheater 12, the operator manually opens the on-off valve 34 shown in FIG. 2 at the site, and sends water for water pressure test from the reheater 12 to the blow tank 30 through the drainage system 31. Is done. Furthermore, in this embodiment, the on-off valves 36 and 39 are opened and nitrogen gas is sealed in the reheater 12 from the outlet side of the reheater 12, so that the inside of the reheater 12 is also pressurized by nitrogen gas. An operation of discharging water from the drain pipe 31 is performed.

次に、ステップ102において、再熱器12の乾燥運転の環境整備を行う。この再熱器12の乾燥運転の環境整備は、ステップ101での排水後でも再熱器12内に残留している水が乾燥運転で蒸気となり、更にはこの蒸気が凝縮してドレンとなった場合に、この蒸気及びドレンを二次蒸気流動経路Bの外に排出するための経路を形成し、その蒸気及びドレンを排出する経路を確認する作業(再熱器乾燥運転前蒸気及びドレンの排出経路形成・確認)や、再熱器12の乾燥運転準備をする作業(再熱器乾燥運転準備)が含まれる。この再熱器乾燥運転前蒸気及びドレンの排出経路形成・確認や、再熱器乾燥運転準備は、所定の操作要領書に従って行われるようにすることで、操作内容等を明確化して誤操作を防止することが図られる。かかる操作は、例えば再熱器乾燥運転前蒸気及びドレンの排出経路形成・確認では、開閉弁23、24、25、26、33、36の全閉を行うと共にその全閉状態の確認を行う。また、高圧タービン3や中圧タービン4の蒸気流入による不用意な駆動を防止し、高圧タービン3や中圧タービン4にドレンが浸入するのを防止するために、閉塞部15を閉塞すると共に再熱蒸気止め弁41、42を閉塞する場合には、それらの閉塞部15の閉塞、再熱蒸気止め弁41、42の全閉とこれらの閉塞・全閉状態の確認も行う。尚、蒸気排出経路を形成する開閉弁の全開作業やその全開状態の確認もこの再熱器乾燥運転前蒸気及びドレン排出経路形成・確認の中で行うが、全開にする開閉弁については後述する。   Next, in step 102, the environment of the drying operation of the reheater 12 is improved. In the maintenance of the drying operation of the reheater 12, the water remaining in the reheater 12 after the drainage in Step 101 becomes steam in the drying operation, and further, the steam is condensed and drained. In this case, an operation for forming a path for discharging the steam and drain out of the secondary steam flow path B and confirming a path for discharging the steam and drain (discharge of steam and drain before the reheater drying operation) Route formation / confirmation) and work for preparing the reheater 12 for drying operation (preparation for reheater drying operation). The pre-reheater drying operation steam and drain discharge path formation / confirmation, and the reheater drying operation preparation are performed according to the specified operation manual, thereby clarifying the operation details and preventing misoperation. It is planned to do. In this operation, for example, in the formation and confirmation of the steam and drain discharge path before the reheater drying operation, the on-off valves 23, 24, 25, 26, 33, and 36 are fully closed and the fully closed state is confirmed. Further, in order to prevent inadvertent driving due to the steam inflow of the high-pressure turbine 3 and the intermediate-pressure turbine 4 and to prevent the drain from entering the high-pressure turbine 3 and the intermediate-pressure turbine 4, the closing portion 15 is closed and the When the thermal steam stop valves 41 and 42 are closed, the closed portion 15 is closed, the reheat steam stop valves 41 and 42 are fully closed, and the closed / fully closed state is also confirmed. The opening and closing of the on-off valve that forms the steam discharge path and the confirmation of the fully open state are also performed during the formation and confirmation of the steam and drain discharge path before the reheater drying operation. The on-off valve that is fully opened will be described later. .

更に、ステップ103において、再熱器12の乾燥運転(図4の再熱器の乾燥運転)を行う。この再熱器12の乾燥運転は、図4に示されるようにボイラー2を点火することで開始され、この再熱器12の乾燥運転は例えば約8時間にわたって行われる。そして、再熱器12の乾燥運転時には、図1に示されるように一次過熱器11aの入口側に配置された温度センサ49により一次過熱器11aの入口の蒸気温度を監視して、図4に示されるように、一次過熱器11aの入口の蒸気温度が190℃を越えないようにボイラー2の燃焼の制御が行われる。   Further, in step 103, the reheater 12 is dried (the reheater is dried in FIG. 4). The drying operation of the reheater 12 is started by igniting the boiler 2 as shown in FIG. 4, and the drying operation of the reheater 12 is performed, for example, for about 8 hours. During the drying operation of the reheater 12, the steam temperature at the inlet of the primary superheater 11a is monitored by the temperature sensor 49 disposed on the inlet side of the primary superheater 11a as shown in FIG. As shown, the combustion control of the boiler 2 is controlled so that the steam temperature at the inlet of the primary superheater 11a does not exceed 190 ° C.

また、図1に示されるように、再熱器12内部の再熱蒸気圧力を測定するための圧力センサ50が二次蒸気流動経路Bの経路上に配置されていると共に、再熱器12の出口側のメタル温度Tを測定するための温度センサ51が再熱器12の出口側に配置されているので、この乾燥運転時における再熱器12内部の再熱蒸気圧力や再熱器12の出口側のメタル温度Tを測定し、この結果得られた再熱蒸気圧力値やメタル温度Tを用いて、再熱器12の乾燥運転の継続や終了が決定される。 Further, as shown in FIG. 1, a pressure sensor 50 for measuring the reheat steam pressure inside the reheater 12 is disposed on the secondary steam flow path B, and the reheater 12 since the temperature sensor 51 for measuring the metal temperature T M of the outlet side is disposed on the outlet side of the reheater 12, the drying reheater during operation 12 inside the reheat steam pressure and reheaters 12 of the metal temperature T M of the outlet side was measured by using the resulting reheat steam pressure value and metal temperature T M, continuous or the end of the drying operation of the reheater 12 is determined.

すなわち、表1に示される飽和温度表に基づいて、測定結果により得られた再熱蒸気圧力値に対応する飽和温度Tを算出し、この飽和温度値Tと前記の測定したメタル温度Tとを対比しながら再熱器12の乾燥運転を行うもので、メタル温度Tが飽和温度Tに予め定めた温度Tを加えた乾燥終了温度よりも低いと判断した場合には再熱器12の乾燥運転の継続が決定され、メタル温度Tが飽和温度Tに予め定めた温度Tを加えた乾燥終了温度以上になったと判断した場合には再熱器12の乾燥運転の終了が決定される。尚、前記温度Tは任意に定めることができ、例えば10℃から20℃に定めることができる。 That is, based on the saturation temperature table shown in Table 1, the saturation temperature T 0 corresponding to the reheat steam pressure value obtained from the measurement result is calculated, and this saturation temperature value T 0 and the measured metal temperature T are calculated. and performs drying operation reheater 12 while comparing the M, again in the case of metal temperature T M is determined to be lower than the end of the drying temperature plus temperature T a determined in advance to the saturation temperature T 0 determined continuation of the drying operation of the heat sink 12, the drying operation of the reheater 12 when determining that the metal temperature T M becomes predetermined temperature T a drying finish temperature greater than or equal to the added to the saturation temperature T 0 The end of is determined. Incidentally, the temperature T a can be arbitrarily determined, it can be determined, for example, from 10 ° C. to 20 ° C..

Figure 2012184742
Figure 2012184742

この再熱器12の乾燥運転終了後は、ステップ104に進んで再熱器12のホットクリーンアップ(図4のホットクリーンアップ)を行う。乾燥運転終了からホットクリーンアップへの移行は、図4に示されるように、ボイラー2の図示しないバーナー(例えば、3、4セル目のバーナー)を追加点火して再熱器12の乾燥運転時よりも昇温を図ることで行われる。このホットクリーンアップは、例えば約3時間にわたって行われる。また、このホットクリーンアップの期間中において、温度センサ49により一次過熱器11aの入口の蒸気温度を監視して、一次過熱器11aの入口の蒸気温度が275℃を越えないようにボイラー2の燃焼の制御が行われる。   After the drying operation of the reheater 12 is completed, the process proceeds to step 104 to perform hot cleanup of the reheater 12 (hot cleanup in FIG. 4). As shown in FIG. 4, the transition from the end of the drying operation to the hot clean-up is performed when the reheater 12 is in the drying operation by additionally igniting a burner (not shown) of the boiler 2 (for example, the third and fourth cell burners) This is done by raising the temperature. This hot cleanup is performed, for example, for about 3 hours. Further, during this hot cleanup period, the temperature of the steam at the inlet of the primary superheater 11a is monitored by the temperature sensor 49 so that the steam temperature at the inlet of the primary superheater 11a does not exceed 275 ° C. Is controlled.

更に、ホットクリーンアップが終了した後は、ステップ105に進んで、再熱器12のウォーミングと安全弁テスト(図4の再熱器ウォーミング・安全弁テスト)を行う。ホットクリーンアップから再熱器ウォーミング・安全弁テストへの移行も、ホットクリーンアップ時よりも昇温を図ることで行われる。そして、この再熱器ウォーミング・安全弁テストの期間中でも、温度センサ49により一次過熱器11aの入口の蒸気温度を監視して、一次過熱器11aの入口の蒸気温度が369℃を越えないようにボイラー2の燃焼の制御が行われる。   Further, after the hot cleanup is completed, the routine proceeds to step 105 where warming of the reheater 12 and a safety valve test (reheater warming / safety valve test of FIG. 4) are performed. The transition from hot cleanup to reheater warming / safety valve test is also performed by raising the temperature of the hot cleanup. During the reheater warming / safety valve test, the temperature sensor 49 monitors the steam temperature at the inlet of the primary superheater 11a so that the steam temperature at the inlet of the primary superheater 11a does not exceed 369 ° C. Control of combustion of the boiler 2 is performed.

そして、これらの再熱器の乾燥運転、ホットクリーンアップ及び再熱器ウォーミング・安全弁テストも所定の操作要領書に従って行われるようにすることで、操作内容等を明確化して誤操作を防止することが図られる。   And, by making the drying operation of these reheaters, hot cleanup and reheater warming / safety valve tests also in accordance with the prescribed operation manual, the operation details etc. are clarified and erroneous operations are prevented. Is planned.

ここで、再熱器乾燥運転前蒸気及びドレンの排出経路を形成するために再熱器12の乾燥運転前に全開にされ、且つその全開状態が確認される開閉弁は、図2に示されるように、低温再熱蒸気管13側に存するドレン排出用開閉弁17と高温再熱蒸気管14側に存するドレン排出用開閉弁45、46とである。そして、再熱器12と高圧タービン3とを連結する低温再熱蒸気管13は、この実施形態では閉塞部15で閉塞された状態にあり、再熱器12と中圧タービン4とを連結する高温再熱蒸気管14のうちの高温再熱蒸気管14a、14bは、この実施形態では再熱蒸気止め弁42、43が全閉にされている。尚、図2に示されるように、ドレン排出管16のドレン排出用開閉弁17よりも低温再熱蒸気管13側に開閉弁53があり、ドレン排出管43のドレン排出用開閉弁45よりも高温再熱蒸気管14側に開閉弁54があり、更にドレン排出管44のドレン排出用開閉弁46よりも高温再熱蒸気管14側に開閉弁55がある場合には、これらの開閉弁53、54、55も全開状態にされる。   Here, the on-off valve that is fully opened before the reheating operation of the reheater 12 in order to form a discharge path for steam and drain before the reheater drying operation and whose fully opened state is confirmed is shown in FIG. Thus, the drain discharge on-off valve 17 existing on the low-temperature reheat steam pipe 13 side and the drain discharge on-off valves 45, 46 existing on the high-temperature reheat steam pipe 14 side. The low-temperature reheat steam pipe 13 that connects the reheater 12 and the high-pressure turbine 3 is in a state of being closed by the closing portion 15 in this embodiment, and connects the reheater 12 and the intermediate pressure turbine 4. In this embodiment, the reheat steam stop valves 42 and 43 of the high temperature reheat steam pipes 14a and 14b among the high temperature reheat steam pipes 14 are fully closed. As shown in FIG. 2, there is an open / close valve 53 on the low-temperature reheat steam pipe 13 side of the drain discharge pipe 16 than the drain discharge open / close valve 17, and more than the drain discharge open / close valve 45 of the drain discharge pipe 43. When there is an on-off valve 54 on the high-temperature reheat steam pipe 14 side, and there is an on-off valve 55 on the high-temperature reheat steam pipe 14 side than the drain discharge on-off valve 46 of the drain discharge pipe 44, these on-off valves 53 , 54 and 55 are also fully opened.

これにより、再熱器12内に残留していた水は再熱器12の乾燥運転で蒸発して蒸気となるところ、この再熱器12の乾燥運転で発生した蒸気(この蒸気が凝縮したドレンも含む。)の一方は、破線の矢印に示されるように、二次蒸気の流れる方向(実線の矢印)と同じく、再熱器12の出口側から高温再熱蒸気管14を通って高温再熱蒸気管14a、14bにそれぞれ至り、この高温再熱蒸気管14a、14bから分岐したドレン排出管43、44を経て復水器7まで送られ、再熱器12の乾燥運転で発生した蒸気(この蒸気が凝縮したドレンも含む。)の他方は、破線の矢印に示されるように、二次蒸気の流れる方向(実線の矢印)とは逆に、再熱器12の入口側から低温再熱蒸気管13を通って、この低温再熱蒸気管13から分岐したドレン排出管16を経て復水器7まで送られる。   As a result, the water remaining in the reheater 12 evaporates into a vapor during the drying operation of the reheater 12, and the steam generated during the drying operation of the reheater 12 (the drain condensed with this vapor). As shown by the broken arrow, one side of the other is also in the same direction as the secondary steam flows (solid arrow) from the outlet side of the reheater 12 through the high temperature reheat steam pipe 14 and the high temperature reheat steam pipe 14. Steam (14a and 14b) is sent to the condenser 7 through drain discharge pipes 43 and 44 branched from the high-temperature reheat steam pipes 14a and 14b, and steam generated in the drying operation of the reheater 12 ( The other side of the steam also includes condensate). As indicated by the dashed arrow, the low-temperature reheat from the inlet side of the reheater 12 is opposite to the direction in which the secondary steam flows (solid arrow). Branched from the low-temperature reheat steam pipe 13 through the steam pipe 13 Sent to the condenser 7 via the lens discharge pipe 16.

よって、乾燥運転で発生した蒸気及びこの蒸気が凝縮したドレンは、高温再熱蒸気管14から分岐したドレン排出管43、44及び低温再熱蒸気管13から分岐したドレン排出管16より二次蒸気流動経路Bの外に排出されるので、その蒸気及びドレンの排出は、高温再熱蒸気管14のみから排出される場合よりも効率良く行われる。また、ドレン排出用開閉弁17、45、46は全て電動弁であるため、作業者が現場に行って開閉弁を開く操作が不要となっている。   Therefore, the steam generated in the drying operation and the drain condensed by the steam are secondary steam from the drain discharge pipes 43 and 44 branched from the high-temperature reheat steam pipe 14 and the drain discharge pipe 16 branched from the low-temperature reheat steam pipe 13. Since it is discharged out of the flow path B, the steam and drain are discharged more efficiently than the case where the steam and drain are discharged only from the high-temperature reheat steam pipe 14. Further, since the drain discharge on-off valves 17, 45, and 46 are all electrically operated valves, there is no need for the operator to go to the site and open the on-off valves.

1 発電設備
2 ボイラー
3 高圧タービン(蒸気タービン:一次タービン)
4 中圧タービン(蒸気タービン:二次タービン)
5 低圧タービン(蒸気タービン)
6 発電機
7 復水器
11 過熱器
11a 一次過熱器
11b 二次過熱器
12 再熱器
13 低温再熱蒸気管
14(14a、14b) 高温再熱蒸気管
16、43、44 ドレン排出管
17、45、46 ドレン排出用開閉弁
17a、45a、46a モータ
19 加熱用蒸気供給系統
20 補助蒸気供給系統
22 再熱蒸気温度低下系統
23、24、25、26、32、34、36、39 開閉弁
29 注水系統
31 排水系統
35 空気抜き系統
38 窒素封入系統
41、42 再熱蒸気止め弁
A 一次蒸気流動経路
B 二次蒸気流動経路
C 蒸気等流動経路
1 Power generation equipment 2 Boiler 3 High-pressure turbine (steam turbine: primary turbine)
4 Medium-pressure turbine (steam turbine: secondary turbine)
5 Low pressure turbine (steam turbine)
6 Generator 7 Condenser 11 Superheater 11a Primary superheater 11b Secondary superheater 12 Reheater 13 Low-temperature reheat steam pipe 14 (14a, 14b) High-temperature reheat steam pipe 16, 43, 44 Drain discharge pipe 17, 45, 46 Drain discharge open / close valves 17a, 45a, 46a Motor 19 Heating steam supply system 20 Auxiliary steam supply system 22 Reheat steam temperature lowering system 23, 24, 25, 26, 32, 34, 36, 39 Open / close valve 29 Water injection system 31 Drainage system
35 Air venting system 38 Nitrogen-filled systems 41, 42 Reheat steam stop valve A Primary steam flow path B Secondary steam flow path C Steam flow path

Claims (4)

燃料を燃焼させて蒸気を発生させるボイラーと、このボイラーから蒸気が供給される蒸気タービンと、この蒸気タービンを介して駆動される発電機と、前記蒸気タービンに供給された蒸気を冷却する復水器とを少なくとも備え、前記ボイラーは、前記復水器から復水を導入して一次蒸気を発生させ、この一次蒸気を前記蒸気タービンの一次タービンに供給する過熱器と、前記一次蒸気を前記一次タービンから導入して再熱することで二次蒸気を発生させ、この二次蒸気を前記蒸気タービンの二次タービンに供給する再熱器とを有する発電設備において、
前記一次タービンと前記再熱器と前記二次タービンとを蒸気配管で接続して二次蒸気流動経路を構成し、この二次蒸気流動経路の前記再熱器よりも二次蒸気の流れの上流側に前記蒸気配管内で発生したドレンを前記二次蒸気流動経路の外に排出するための第1のドレン排出管と前記ドレン排出管を開閉するための第1のドレン排出用開閉弁とを配置すると共に、前記二次蒸気流動経路の前記再熱器よりも二次蒸気の流れの下流側に前記蒸気配管内で発生したドレンを前記二次蒸気流動経路の外に排出するための第2のドレン排出管と前記ドレン排出管を開閉するための第2のドレン排出用開閉弁とを配置し、
前記ボイラーに液体を注入して行うテストの後に前記再熱器内部の液体を排出した状態であって、前記ボイラーを点火して前記再熱器内部を乾燥する再熱器の乾燥運転を行う前に、前記第1のドレン排出用開閉弁と前記第2のドレン排出用開閉弁との双方を開放状態にして、前記再熱器の乾燥運転により前記再熱器内に残留した液体が蒸発して発生する蒸気及びこの蒸気が凝縮したドレンを前記二次蒸気配管内に流すことにより、前記蒸気を前記第1及び第2のドレン排出管の双方から前記二次蒸気流動経路の外に排出することを可能としたことを特徴とする再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法。
A boiler that generates steam by burning fuel, a steam turbine that is supplied with steam from the boiler, a generator that is driven through the steam turbine, and a condensate that cools the steam supplied to the steam turbine And the boiler introduces condensate from the condenser to generate primary steam, supplies the primary steam to the primary turbine of the steam turbine, and the primary steam to the primary steam. In a power generation facility having a reheater for generating secondary steam by introducing from a turbine and reheating, and supplying the secondary steam to the secondary turbine of the steam turbine,
The primary turbine, the reheater, and the secondary turbine are connected by a steam pipe to form a secondary steam flow path, and the secondary steam flow is upstream of the reheater in the secondary steam flow path. A first drain discharge pipe for discharging drain generated in the steam pipe to the outside of the secondary steam flow path and a first drain discharge on-off valve for opening and closing the drain discharge pipe. And a second for discharging the drain generated in the steam pipe to the downstream side of the flow of the secondary steam from the reheater of the secondary steam flow path to the outside of the secondary steam flow path. A drain discharge pipe and a second drain discharge on-off valve for opening and closing the drain discharge pipe,
After the test conducted by injecting the liquid into the boiler, the liquid inside the reheater is discharged, and before the reheater drying operation for igniting the boiler and drying the reheater inside is performed. In addition, both the first drain discharge on-off valve and the second drain discharge on-off valve are opened, and the liquid remaining in the reheater evaporates by the drying operation of the reheater. The generated steam and the condensed drain of the steam are caused to flow into the secondary steam pipe, so that the steam is discharged out of the secondary steam flow path from both the first and second drain discharge pipes. A method for forming a discharge path for steam and drain during the drying operation of the reheater, characterized in that
前記第1のドレン排出用開閉弁と前記第2のドレン排出用開閉弁とは、自動制御により開閉されることを特徴とする請求項1に記載の再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法。   The steam and drain during the drying operation of the reheater according to claim 1, wherein the first drain discharge on-off valve and the second drain discharge on-off valve are opened and closed by automatic control. Discharge route formation method. 前記二次蒸気流動経路は、前記再熱器内の液体を抜くための液体排出系統等のドレン排出以外を目的とした所定の系統を備えると共に、これらの所定の系統を構成する配管の経路の上流側に開閉弁が設けられ、
前記開閉弁は、前記再熱器の乾燥運転時には閉じた状態にされることを特徴とする請求項1又は請求項2に記載の再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法。
The secondary steam flow path is provided with a predetermined system for purposes other than drain discharge, such as a liquid discharge system for draining the liquid in the reheater, and is a path of piping constituting these predetermined systems. An on-off valve is provided upstream,
The method for forming a discharge path for steam and drain during the drying operation of the reheater according to claim 1 or 2, wherein the on-off valve is closed during the drying operation of the reheater. .
前記二次蒸気流動経路は、前記第1のドレン排出管が設けられた部位よりも前記一次タービン側と前記第2のドレン排出管が設けられた部位よりも前記二次タービン側とに、前記二次蒸気流動経路内での蒸気やドレンの流動を規制する規制手段が設けられ、
前記規制手段は、前記再熱器の乾燥運転時には前記二次蒸気流動経路内での蒸気やドレンの流動を規制することを特徴とする請求項1、2、又は3のいずれかに記載の再熱器の乾燥運転時の蒸気及びドレンの排出経路形成方法。
The secondary steam flow path includes the primary turbine side from the portion where the first drain discharge pipe is provided and the secondary turbine side from the portion where the second drain discharge pipe is provided. A regulation means is provided to regulate the flow of steam and drain in the secondary steam flow path,
The said restriction | limiting means regulates the flow of the vapor | steam and drain in the said secondary vapor | steam flow path | route at the time of the drying operation of the said reheater, The recycle in any one of Claim 1, 2, or 3 characterized by the above-mentioned. A method for forming a discharge path for steam and drain during drying operation of a heater.
JP2011049746A 2011-03-08 2011-03-08 Method for forming steam and drain discharge path during drying operation of reheater Active JP5409674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049746A JP5409674B2 (en) 2011-03-08 2011-03-08 Method for forming steam and drain discharge path during drying operation of reheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049746A JP5409674B2 (en) 2011-03-08 2011-03-08 Method for forming steam and drain discharge path during drying operation of reheater

Publications (2)

Publication Number Publication Date
JP2012184742A true JP2012184742A (en) 2012-09-27
JP5409674B2 JP5409674B2 (en) 2014-02-05

Family

ID=47015020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049746A Active JP5409674B2 (en) 2011-03-08 2011-03-08 Method for forming steam and drain discharge path during drying operation of reheater

Country Status (1)

Country Link
JP (1) JP5409674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365084A (en) * 2020-02-24 2020-07-03 东方电气集团东方汽轮机有限公司 Power station steam turbine maintenance system with rapid cooling function and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200008A (en) * 1982-05-18 1983-11-21 Hitachi Ltd Control device for steam temperature in case of starting power generating plant
JPH0223213A (en) * 1988-07-13 1990-01-25 Mitsubishi Heavy Ind Ltd Reheating type combined plant
JP2006183902A (en) * 2004-12-27 2006-07-13 Ebara Kogyo Senjo Kk Method for collective chemical cleaning of once-through boiler and system therefor
JP2007120773A (en) * 2005-10-24 2007-05-17 Chugoku Electric Power Co Inc:The Blowing operation method for power generation system
JP2008116162A (en) * 2006-11-07 2008-05-22 Chugoku Electric Power Co Inc:The Drying operation method for reheater
JP2008292119A (en) * 2007-05-28 2008-12-04 Chugoku Electric Power Co Inc:The Power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200008A (en) * 1982-05-18 1983-11-21 Hitachi Ltd Control device for steam temperature in case of starting power generating plant
JPH0223213A (en) * 1988-07-13 1990-01-25 Mitsubishi Heavy Ind Ltd Reheating type combined plant
JP2006183902A (en) * 2004-12-27 2006-07-13 Ebara Kogyo Senjo Kk Method for collective chemical cleaning of once-through boiler and system therefor
JP2007120773A (en) * 2005-10-24 2007-05-17 Chugoku Electric Power Co Inc:The Blowing operation method for power generation system
JP2008116162A (en) * 2006-11-07 2008-05-22 Chugoku Electric Power Co Inc:The Drying operation method for reheater
JP2008292119A (en) * 2007-05-28 2008-12-04 Chugoku Electric Power Co Inc:The Power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111365084A (en) * 2020-02-24 2020-07-03 东方电气集团东方汽轮机有限公司 Power station steam turbine maintenance system with rapid cooling function and method
CN111365084B (en) * 2020-02-24 2022-08-19 东方电气集团东方汽轮机有限公司 Power station steam turbine maintenance system with rapid cooling function and method

Also Published As

Publication number Publication date
JP5409674B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CN104279058B (en) Combined cycle power plant and the method for operating combined cycle power plant
CN1328485C (en) Waste heat steam generator
JP5027887B2 (en) Steam turbine power plant and method for increasing steam mass flow of a high pressure turbine in a steam turbine power plant
JP6224858B1 (en) Power plant and operation method thereof
JP2010106835A (en) Rapid heating of steam pipe in electric power station
JP5183305B2 (en) Startup bypass system in steam power plant
EP2698507A1 (en) System and method for temperature control of reheated steam
JP2011179494A (en) Systems and methods for prewarming heat recovery steam generator piping
JP5725913B2 (en) Combined cycle plant
JP5050013B2 (en) Combined power plant and control method thereof
CN101305163A (en) Method for starting a steam turbine installation
WO2018198836A1 (en) Power generation plant and operation method therefor
JP5409674B2 (en) Method for forming steam and drain discharge path during drying operation of reheater
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP5946697B2 (en) Gas turbine high temperature cooling system
CN212673163U (en) Steam heating starting system of once-through boiler
JP5008372B2 (en) Boiler ignition (temperature increase / pressure increase) method
JP6891090B2 (en) Power plant and its operation method
JP4090668B2 (en) Combined cycle power generation facility
JP5409882B2 (en) Operation method of start-up bypass system in steam power plant
JP2020176736A (en) Power generation plant and method for operating the same
RU2529748C1 (en) Method for preservation of thermal condition of shut down drum steam boiler
TWI824415B (en) Thermal power plant and control method of thermal power plant
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2019027387A (en) Combined cycle power generation plant, and its operation method and modification method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250