JP2012181192A - Method for detecting bacterium contamination level of fish meat and sensor used for detection method - Google Patents

Method for detecting bacterium contamination level of fish meat and sensor used for detection method Download PDF

Info

Publication number
JP2012181192A
JP2012181192A JP2012024834A JP2012024834A JP2012181192A JP 2012181192 A JP2012181192 A JP 2012181192A JP 2012024834 A JP2012024834 A JP 2012024834A JP 2012024834 A JP2012024834 A JP 2012024834A JP 2012181192 A JP2012181192 A JP 2012181192A
Authority
JP
Japan
Prior art keywords
fish meat
sensor
bacteria
fish
drip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012024834A
Other languages
Japanese (ja)
Other versions
JP6162362B2 (en
Inventor
Tsuneo Shiba
恒男 芝
Manabu Furushimo
学 古下
Tasuku Fukuda
翼 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT FISHERIES UNIV
NATIONAL FISHERIES UNIV
Original Assignee
NAT FISHERIES UNIV
NATIONAL FISHERIES UNIV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT FISHERIES UNIV, NATIONAL FISHERIES UNIV filed Critical NAT FISHERIES UNIV
Priority to JP2012024834A priority Critical patent/JP6162362B2/en
Publication of JP2012181192A publication Critical patent/JP2012181192A/en
Application granted granted Critical
Publication of JP6162362B2 publication Critical patent/JP6162362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method with which it can be detected easily with naked eyes and for each fish meat without requiring any technical knowledge or skills for bacterium examination whether "the number of bacteria (viable bacteria) per specimen of 1 g is less than one million (according to official laws)" frequently used as an independent reference value regarding the number of bacteria of fresh fish for raw meal supplied in distribution, without damaging article value and regardless of a packaged state for raw fish meat (including non-seasoned fish processed article) being refrigerated, and to provide a simple sensor used for the detection method.SOLUTION: A method for detecting a bacterium contamination level of fish meat includes, for raw fish meal being refrigerated, attaching a sensor which includes azo dye (edible red No. 102 or the like) in contact with drip exudated from the fish meat, and observing the presence/absence of a change in the color of the sensor with naked eyes. For the detection method, a sensor is used in which the azo dye is adsorbed onto a planar medium such as cloth or dissolved and solidified in a solid medium such as agar.

Description

本発明は、生の魚肉の細菌汚染レベルを検知する方法とその検知方法に用いるセンサーに関する。詳しくは、冷蔵状態の生の魚肉(未調味の魚肉加工品を含む)について、試料を採取して検査することなく、また、包装を開封することなく、細菌の汚染レベルを肉眼で検知する方法とその検知方法に用いる簡便なセンサーに関する。   The present invention relates to a method for detecting the level of bacterial contamination of raw fish meat and a sensor used in the detection method. Specifically, for refrigerated raw fish meat (including unseasoned processed fish products), a method for detecting the level of bacterial contamination with the naked eye without taking a sample and inspecting it and without opening the package And a simple sensor used for the detection method.

一般に、生の魚肉は、冷蔵状態で保管しても、細菌が緩やかに増殖して次第に食用に適さなくなる。すなわち、冷蔵保管中の生の魚肉では、公定法(35℃培養計数法)で計数した検体1g当りの細菌数が10の7乗を超えると初期腐敗となってアミンやアンモニア等の揮発性窒素化合物が生成し始め、さらには10の8乗を超えると揮発性窒素化合物が増加し、腐敗状態となって食用に適さなくなる。また、食中毒細菌が増殖すると食中毒を生じさせる。   In general, even when raw fish meat is stored in a refrigerated state, bacteria gradually grow and gradually become unfit for consumption. In other words, in raw fish meat that has been refrigerated, if the number of bacteria per gram of the sample counted by the official method (35 ° C culture counting method) exceeds 10 7, rotified nitrogen and volatile nitrogen such as amine and ammonia When the compound starts to be generated and further exceeds 10 8, the volatile nitrogen compound increases, and becomes rotted and unfit for consumption. In addition, when food poisoning bacteria multiply, food poisoning occurs.

そこで、食品衛生法では、多くの食品について細菌学的成分規格を定め、その規格を超えて細菌汚染が生じている食品の流通を規制している。また、成分規格のない食品(例えば弁当、惣菜、漬物、生洋菓子、生麺等)については厚生労働省が衛生規範を定め、その規範を超えた食品が流通することがないように指導している。成分規格や衛生規範のない生の魚肉については、多くの小売業者によって自主基準値が設定されており、その基準値を超えた魚肉が流通しないように自主的に規制している。   Therefore, the Food Sanitation Law defines bacteriological component standards for many foods, and regulates the distribution of foods that have been contaminated with bacteria beyond the standards. In addition, the Ministry of Health, Labor and Welfare has established a hygiene standard for foods that do not have ingredient standards (for example, bento, side dishes, pickles, raw confectionery, raw noodles, etc.), and is instructed to prevent the distribution of food that exceeds that standard. . For raw fish without ingredient standards or sanitary standards, voluntary standards are set by many retailers and voluntarily restricted so that fish exceeding that standard does not circulate.

食品衛生法の成分規格や厚生労働省の衛生規範では、許容し得る細菌汚染レベルを「公定法で計数した検体1g当りの細菌数」で定めていて、生食用の冷凍魚介類、冷凍茹でだこ、冷凍茹で蟹、茹で麺等の食品の細菌汚染レベルを検体1g当り10万以下と定め、また、生麺や具については衛生規範で細菌数を300万/g以下としている。   According to the component standards of the Food Sanitation Law and the Ministry of Health, Labor and Welfare's hygiene standards, the allowable level of bacterial contamination is determined by the “number of bacteria per gram of sample counted by the official method”. The bacterial contamination level of foods such as frozen rice cakes and boiled noodles is set to 100,000 or less per gram of sample, and the number of bacteria for raw noodles and utensils is set to 3 million / g or less according to hygiene standards.

上記のとおり、成分規格や衛生規範のない食品については流通業者が独自の基準を公定法に基づいて設けている場合が多い。例えば、某生活協同組合の流通基準では、加熱後摂取用の冷蔵切り身や鮮魚の細菌数を300万/g未満とし、生食用の冷蔵切り身や鮮魚の細菌数を10万/g未満と定めている。また、別の生活協同組合では、タラコ、イクラ、生食用鮮魚、たたき等の細菌数を検体1g当り10の6乗のオーダー以下と定めている。また、本発明者らの調査によれば、生の魚肉の管理基準を「1g当りの細菌密度が10の6乗を超えた魚肉は販売しないこと」と自主的に定めているケースが多い。   As mentioned above, distributors often set their own standards based on official laws for foods that do not have ingredient standards or hygiene standards. For example, according to the distribution standards of Sakai Living Cooperatives, the number of bacteria in chilled fillets and fresh fish for ingestion after heating should be less than 3 million / g, and the number of bacteria in refrigerated fillets and fresh fish for raw consumption should be less than 100,000 / g. Yes. In another cooperative, the number of bacteria such as octopus, salmon roe, fresh edible fish, and octopus is set at 10 6 or less per gram of specimen. Further, according to the investigations of the present inventors, there are many cases where the management standard for raw fish meat is voluntarily determined as “do not sell fish meat whose bacterial density per gram exceeds 10 6”.

しかしながら、冷蔵状態で販売されている食品がこれらの基準に適合しているか否かについては、疑問がある。すなわち、現状では、抽出した食品について、その製造時の細菌汚染レベルと保存期間中の細菌数の増大傾向を調べ、それに基づいて保存条件と消費期限や賞味期限を定め、その条件で保存され、かつ、その期間内であれば基準を超えないとしているだけである。しかし、食品の細菌汚染レベルは、その製造状態によってバラツキが大きいので、消費期限内や賞味期限内のものであっても、細菌汚染レベルが成分規格や衛生規範、あるいは自主基準値を超えたものが販売されている可能性は否定できない。   However, there are doubts as to whether foods sold in the refrigerated state meet these standards. That is, at present, for the extracted food, the bacterial contamination level at the time of manufacture and the increasing tendency of the number of bacteria during the storage period are examined, and based on that, the storage conditions, the expiration date and the expiration date are determined, and stored under the conditions, And it is only said that it does not exceed the standard within that period. However, since the level of bacterial contamination of food varies widely depending on the state of manufacture, even if it is within the expiration date or expiration date, the bacterial contamination level exceeds the component standards, hygiene standards, or voluntary standards. The possibility of being sold is undeniable.

実際、東京都では、平成20年度まで施行された「食品・容器具等の細菌検査成績の不適基準」のなかで、すし種や刺身の検体1g当りの一般細菌数が100万を超えた食品を不適と判定して衛生指導を行ってきたが、1993年から2002年の間に多摩地域で収去された893検体のすし種や刺身のうち、細菌数が1g当り100万を超えているため販売不適とされた検体が6.3%に達していた旨を報告している(2004年発行・東京都健康安全研究センター年報55)。   In fact, in Tokyo, the number of general bacteria per gram of sushi seeds and sashimi exceeded 1 million in the “unsuitable standard for bacterial test results of food and containers”, which was enforced until 2008. Has been judged to be unsuitable, but hygiene guidance has been carried out, but among 893 sushi seeds and sashimi removed in the Tama area between 1993 and 2002, the number of bacteria exceeds 1 million per gram Therefore, it has been reported that the number of specimens deemed unfit for sales reached 6.3% (published in 2004, Tokyo Health and Safety Research Center Annual Report 55).

このような実情から、魚肉を食べる前には、全ての魚肉について細菌安全性を確認することが望ましい。従来から魚肉の細菌数を調べるには、魚肉から試料を採取して行う細菌検査がなされている。細菌検査には、細菌培養用に寒天平板培地を用いるコロニー計数法や液体培地を用いるMPN法、ATPを測定する方法等があるが、一旦検査の対象になると、その魚肉は、試料を採取されたり包装を剥がされることによって商品価値が毀損されて販売に適さなくなる。また、細菌培地を用いる検査法では、判定までに2日以上を要する。すなわち、現状では、流通に供される魚肉の全数をそのままの状態で検査し、瞬時にその検査結果を知る方法が開発されていないので、消費者は、生の魚肉や魚肉食品を購入する時点で、その魚肉の細菌汚染レベルを自分で確認することができない。   From this situation, it is desirable to confirm bacterial safety for all fish before eating fish. Conventionally, in order to examine the number of bacteria in fish meat, a bacteria test is performed by collecting a sample from fish meat. Bacteria testing includes colony counting using an agar plate for bacterial culture, MPN using liquid media, ATP measurement, etc., but once the test is made, the fish meat is sampled. If the packaging is removed, the product value will be damaged, making it unsuitable for sale. Moreover, in the test | inspection method using a bacterial culture medium, two days or more are required by determination. In other words, currently, no method has been developed for inspecting the total number of fish for distribution as they are and knowing the results of the inspection instantly. Therefore, it is impossible to confirm the bacterial contamination level of the fish.

一方、従来から、食品や飲料の包装にセンサーを取り付けて、試料を採取して検査することなく、消費者自身が肉眼で鮮度を確認する方法はいくつか公表されている。例えば、特許文献1には、中性飲料を充填した包装容器の開口部に酸性ガスによって変色するインジケータを取り付け、そのインジケータの色調を確認することによって内容物の変質の有無を目視で確認するようにした包装体が開示されている。しかし、この包装体は、その開口部がスクリューキャップであるため、飲料か又は半流動性の食品にしか適用できない。また、冷蔵状態の食品にも適用できるか否かは不明である。しかも、この中性飲料が発酵又は腐敗して酸性ガスを発生するときは、細菌数が1mL当り10の8乗レベルに達しており、商品価値を確認するレベルを超えてしまっている。そのため、この包装体は、密封状態の流動食への応用例が示されているだけであり、成分規格や衛生規範、さらには自主基準のある飲料や食品には適用できない。すなわち、このインジケ−タは、魚肉1g当りの細菌数をすくなくとも10の6乗のレベルで検知する必要がある生の魚肉や魚肉食品の管理には使用できない。   On the other hand, several methods have been publicly disclosed in which consumers themselves check freshness with the naked eye without attaching a sensor to a food or beverage package and collecting and inspecting a sample. For example, in Patent Document 1, an indicator that changes color with an acid gas is attached to an opening of a packaging container filled with a neutral beverage, and the color of the indicator is checked to confirm the presence or absence of alteration of the contents. A package made in this manner is disclosed. However, this package is applicable only to beverages or semi-fluid foods because the opening is a screw cap. It is unclear whether it can be applied to refrigerated foods. In addition, when this neutral beverage is fermented or spoiled to generate acid gas, the number of bacteria has reached the 10th power level of 10 per mL, exceeding the level for confirming the commercial value. Therefore, this package only shows an application example to a liquid food in a sealed state, and cannot be applied to beverages and foods with ingredient standards, hygiene standards, and even voluntary standards. In other words, this indicator cannot be used for the management of raw fish meat or fish meat foods that need to detect the number of bacteria per gram of fish meat at a level of at least 10 6.

また、特許文献2には、腐敗しやすい食品を対象とし、細菌が成長する際に生成する炭酸ガスを容器中に拡散させてpH感知溶液を含むセンサーと反応させ、センサーが緑色から橙色に変化するのを目視できるようにした食品鮮度センサーについて開示している。しかし、このセンサーは、密封包装状態で腐敗した食品から発生する炭酸ガスを検知するものであり、炭酸ガスの濃度が0.5%に達するまでの時間は包装体の容積の大きさにより影響を受けるので、包装体の容積と被包される食品の比率を一定に保つ必要が予想され、対象となる食品の範囲が極めて限られる。また、その性能を示す図4のデータでは、検体1g当りの細菌数が10の7乗レベルで示されているので、特許文献1の技術と同様に、成分規格や衛生規範、さらには自主基準のある飲料や食品には適用できない。すなわち、このセンサーは、魚肉1g当りの細菌数をすくなくとも10の6乗のレベルで検知する必要がある生の魚肉や魚肉食品の管理には使用できない。   Patent document 2 targets foods that are easily spoiled and diffuses carbon dioxide generated when bacteria grow into the container to react with a sensor containing a pH sensing solution, so that the sensor changes from green to orange. It discloses a food freshness sensor that can be visually observed. However, this sensor detects carbon dioxide generated from food that has been spoiled in a sealed package, and the time until the concentration of carbon dioxide reaches 0.5% is affected by the volume of the package. Therefore, it is expected that the volume of the package and the ratio of the food to be encapsulated need to be kept constant, and the range of the target food is extremely limited. Further, in the data of FIG. 4 showing the performance, the number of bacteria per 1 g of the specimen is shown at the seventh power level of 10. Therefore, as in the technique of Patent Document 1, the component standard, the hygiene standard, and the self-standard Not applicable to beverages and foods with In other words, this sensor cannot be used for management of raw fish meat and fish foods that need to detect the number of bacteria per gram of fish meat at a level of at least 10 6.

また、非特許文献1の75頁には、魚肉用又は畜肉用の非破壊型鮮度センサーについて開示している。このセンサーは、魚肉や畜肉の鮮度が低下するに伴って増加する低分子化合物の量を腐敗菌の呼吸活性から測定しようとするもので、腐敗菌を培養してメンブランフィルター上に吸着固定し、そのフィルターを酸素電極の先端に装着したセルを魚肉又は畜肉の表面に押し当て、魚肉又は畜肉中の低分子化合物を拡散によりセル内に侵入させて腐敗菌により資化させ、その時点での電極の出力により魚肉又は畜肉の品質評価を行うものである。しかし、このセンサーは、非破壊型ではあるものの、鮮度の判定に専門的な知識や計算を必要とし、消費者自身がこれを用いて目視により簡単に鮮度を判別することはできない。このように、密封又は非密封状態を問わず、冷蔵状態の生の魚肉の細菌汚染レベルを、専門的知識や技能を要することなく、肉眼で確認する方法は未だ開発されていない。   Further, page 75 of Non-Patent Document 1 discloses a nondestructive freshness sensor for fish meat or livestock meat. This sensor is intended to measure the amount of low molecular weight compounds that increase as the freshness of fish and livestock meat declines from the respiratory activity of spoilage bacteria. The spoilage bacteria are cultured and adsorbed and fixed on a membrane filter. The cell with the filter attached to the tip of the oxygen electrode is pressed against the surface of the fish meat or livestock meat, and the low molecular weight compounds in the fish meat or livestock meat are infiltrated into the cell by diffusion to be assimilated by spoilage bacteria. Is used to evaluate the quality of fish or livestock meat. However, although this sensor is a non-destructive type, it requires specialized knowledge and calculation to determine freshness, and consumers themselves cannot easily determine freshness visually. Thus, no method has yet been developed for confirming the bacterial contamination level of raw fish meat in a refrigerated state with the naked eye, whether sealed or unsealed, without requiring specialized knowledge or skills.

次に、本発明において重要な役割を占める魚肉のドリップについて説明する。
一般に、魚が死んで呼吸による酸素供給が止まると、魚肉内のグリコーゲンの発酵・分解が始まる。この作用により魚肉のpHが低下し始めると、等電点が酸性側にある蛋白質で構成されている魚肉は、水分を保持する能力が低下し、魚肉蛋白質に水和していた水分が滲出し始める。この滲出液を「ドリップ」という。魚肉の表面をうっすらと覆っている液汁もドリップである。ドリップには魚肉蛋白質の分解によって生産された遊離アミノ酸が含まれているので、細菌は魚肉よりもドリップ内の方が増殖しやすい。すなわち、初期のドリップは、魚肉の分解があまり進んでいないときのものなので、遊離アミノ酸の量が少なく、その細菌数は魚肉の細菌数との差が小さいが、時間が経過するにつれて、ドリップの細菌数の方が魚肉の細菌数よりも大きくなる。
Next, fish meat drip, which occupies an important role in the present invention, will be described.
In general, when a fish dies and oxygen supply by respiration stops, fermentation and decomposition of glycogen in fish meat begins. When the pH of the fish meat begins to drop due to this action, the fish meat composed of proteins with an isoelectric point on the acidic side has a reduced ability to retain moisture, and the water hydrated to the fish protein exudes. start. This exudate is called “drip”. The dipping liquid that covers the surface of the fish is also drip. Because the drip contains free amino acids produced by the degradation of fish protein, bacteria are more prone to grow in the drip than in the fish meat. In other words, since the initial drip is for when the decomposition of fish meat is not progressing much, the amount of free amino acids is small and the number of bacteria is small from the number of bacteria in fish meat, but as time passes, The number of bacteria is larger than that of fish meat.

本発明者らは、魚肉やそのドリップに存在する細菌について研究する過程において、魚が死んで魚肉蛋白質の分解が進むと、ドリップ中の細菌数は魚肉の細菌数よりも高くなるという知見を得た。また、冷蔵状態の魚肉のドリップ中の細菌は、20℃培養計数法で計数したところ、その菌数が1mL当り10の8乗を超えた時点で色素を急激に分解し始めるという知見を得た。さらに、冷蔵魚肉で優先的に増殖する細菌は低温細菌であるが、その細菌数は公定法(35℃培養計数法)で計数するよりも20℃培養計数法を用いて計数した方が高い値が得られることを知った。また、この低温細菌は、4℃でも、20℃での増殖に匹敵するほどの十分な増殖活性を有するという現象に気がついた。本発明者らは、これらの知見に基づいて魚肉やドリップの細菌や細菌数について研究を続け、本発明を完成するに至った。   In the process of studying the bacteria present in fish meat and its drip, the present inventors have obtained the knowledge that when the fish dies and the decomposition of fish protein proceeds, the number of bacteria in the drip becomes higher than the number of bacteria in the fish meat. It was. In addition, the bacteria in the refrigerated fish meat drip were counted by a 20 ° C. culture counting method, and it was found that when the number of bacteria exceeded 10 8 per mL, the pigment began to degrade rapidly. . Furthermore, the bacteria that preferentially grow in chilled fish meat are psychrophilic bacteria, but the number of bacteria is higher when counted using the 20 ° C. culture counting method than with the official method (35 ° C. culture counting method). I learned that It was also noticed that this psychrophilic bacterium had sufficient growth activity even at 4 ° C, comparable to that at 20 ° C. Based on these findings, the present inventors have continued research on the fish and drip bacteria and the number of bacteria, and have completed the present invention.

特開2004−359319号公報JP 2004-359319 A 特表2008−523391号公報Special table 2008-523391

渡邉悦生編著「魚介類の鮮度と加工・貯蔵」平成10年2月8日成山堂書店改訂発行Edited by Naryo Watanabe, “Freshness and Processing / Storage of Seafood” February 8, 1998

上記の状況に鑑み、本発明は、冷蔵中の生の魚肉(未調味の魚肉加工品を含む)について、その魚肉の商品価値を損なうことなく、また、その包装状態とは無関係に、流通に供する生食用鮮魚の細菌数の自主基準値として多用されている「検体1g当りの細菌(生菌)数が100万未満(公定法による)」であるか否か、すなわち、細菌数が999,999/g以下であるか否かを、細菌検査に関する専門的な知識や技能を要することなく、肉眼で容易に、かつ魚肉ごとに検知できる方法とその検知方法に用いる簡便なセンサーを提供することを課題とする。   In view of the above situation, the present invention can be applied to raw fish meat (including unseasoned processed fish meat) that has been refrigerated without damaging the commercial value of the fish meat and regardless of its packaging state. Whether the number of bacteria (live bacteria) per gram of the sample is less than 1 million (according to the official method), which is frequently used as a voluntary standard value for the number of bacteria in fresh fish for serving, that is, the number of bacteria is 999, To provide a method that can be easily detected with the naked eye and for each fish meat, and a simple sensor that is used for the detection method, without requiring specialized knowledge and skills relating to bacterial testing, whether or not it is 999 / g or less. Is an issue.

上記の課題を解決するための本発明のうち、特許請求の範囲・請求項1に記載する発明は、冷蔵中の生の魚肉について、その魚肉から滲出するドリップに接触するようにアゾ色素を含むセンサーを取り付け、センサーの色の変化の有無を肉眼で観察することによって当該魚肉の細菌汚染レベルを検知する方法である。なお、本発明において「冷蔵」とは、概ね10℃以下の温度で、凍結させることなく保存することをいう。   Among the present inventions for solving the above-mentioned problems, the invention described in claims 1 and 2 includes an azo dye so that raw fish meat that has been refrigerated comes into contact with a drip that exudes from the fish meat. This is a method of detecting the level of bacterial contamination of the fish meat by attaching a sensor and observing the color change of the sensor with the naked eye. In the present invention, “refrigeration” means storage at a temperature of approximately 10 ° C. or less without freezing.

同請求項2に記載する発明は、細菌汚染レベルを検知する対象の魚肉が密封包装状態のものである請求項1に記載の魚肉の細菌汚染レベルを検知する方法である。   The invention described in claim 2 is the method for detecting the bacterial contamination level of fish meat according to claim 1, wherein the fish meat to be detected is in a hermetically sealed state.

また、同請求項3に記載する発明は、センサーとして、アゾ色素を紙や布等の平面媒体に吸着させたものを用いる請求項1又は2に記載の魚肉の細菌汚染レベルを検知する方法である。   The invention described in claim 3 is a method for detecting the bacterial contamination level of fish meat according to claim 1 or 2, wherein an azo dye adsorbed on a flat medium such as paper or cloth is used as a sensor. is there.

また、同請求項4に記載する発明は、センサーとして、アゾ色素を寒天やゼラチン等の固形媒体に溶解させ固化したものを用いる請求項1又は2に記載の魚肉の細菌汚染レベルを検知する方法である。   The invention described in claim 4 is a method for detecting the level of bacterial contamination in fish meat according to claim 1 or 2, wherein the sensor is obtained by dissolving and solidifying an azo dye in a solid medium such as agar or gelatin. It is.

同請求項5に記載する発明は、アゾ色素として、食用赤色2号、食用赤色40号、食用赤色102号、食用黄色4号、食用黄色5号のいずれかを用いる請求項3又は4に記載の魚肉の細菌汚染レベルを検知する方法である。   The invention described in claim 5 uses edible red No. 2, edible red No. 40, edible red No. 102, edible yellow No. 4, or edible yellow No. 5 as the azo dye. It is a method to detect the bacterial contamination level of fish meat.

同請求項6に記載する発明は、アゾ色素を紙や布等の平面媒体に吸着させたものであるか又は寒天やゼラチン等の固形媒体に溶解させ固化したものであって魚肉の細菌汚染レベルを検知するために用いるセンサーである。   In the invention described in claim 6, the azo dye is adsorbed on a flat medium such as paper or cloth, or is dissolved and solidified in a solid medium such as agar or gelatin, and the bacterial contamination level of fish meat It is a sensor used for detecting.

請求項1から5のいずれかに記載する検知方法によれば、冷蔵中の生の魚肉について、その商品価値を損なうことなく、また、その魚肉の包装状態とは無関係に、その細菌汚染レベルが流通の自主基準値として多用されている「検体1g当りの細菌(生菌)数が100万未満(公定法による)」であるか否か、すなわち、細菌数が999,999/g以下であるか否かを、当該魚肉に取り付けたセンサーの変色の有無を肉眼で観察するだけで、容易に、かつ魚肉ごとに確認できる。そのため、これらの検知方法によれば、細菌検査や魚肉の鮮度判定に関する専門的な知識や技能を有する者でなくても、ダレでも容易に、その魚肉の細菌汚染レベルが、「生の魚肉の細菌数が魚肉1gあたり10の6乗を超えたものは販売しない」という自主基準に合致するものであるか否かを判別することが可能となる。   According to the detection method described in any one of claims 1 to 5, the raw fish meat being refrigerated has a level of bacterial contamination without damaging its commercial value and irrespective of the packaging state of the fish meat. Whether or not “the number of bacteria (viable bacteria) per gram of the sample is less than 1 million (according to the official method)”, which is frequently used as a voluntary standard value for distribution, that is, the number of bacteria is 999,999 / g or less Whether or not the sensor attached to the fish meat is discolored can be easily confirmed for each fish meat simply by observing with the naked eye. Therefore, according to these detection methods, even if it is not a person who has specialized knowledge and skills regarding bacterial inspection and fish freshness determination, even if it is dripping, the bacterial contamination level of the fish It is possible to determine whether or not the number of bacteria exceeds the voluntary standard of “does not sell those exceeding 10 6 per g of fish”.

すなわち、請求項1から5のいずれかに記載する検知方法によれば、生の魚肉の細菌汚染レベルが一定値以上に達している場合にはその魚肉に取り付けたセンサーが変色するので、消費者は、消費期限や賞味期限の表示にとらわれることなく、魚肉を購入する時点ないしは魚肉を食べる時点でその魚肉の細菌安全性を自分の眼で確認できる。   That is, according to the detection method according to any one of claims 1 to 5, when the bacterial contamination level of raw fish meat reaches a certain value or more, the sensor attached to the fish meat changes color. Can be confirmed by their own eyes at the time of purchasing the fish or eating the fish without being caught by the expiration date or the expiration date.

就中、請求項2に記載する検知方法は、内容物の検査が容易には行い得ない密封包装状態の生の魚肉を対象とするものであり、密封包装のままで生の魚肉の細菌汚染レベルを検知できる点できわめて有用である。   In particular, the detection method according to claim 2 is intended for raw fish meat in a sealed packaging state in which the contents cannot be easily inspected, and bacterial contamination of the raw fish meat in the sealed packaging state. It is extremely useful in that the level can be detected.

請求項3又は4に記載する検知方法は、アゾ色素を含むセンサーを使用するものであるが、アゾ色素は、ドリップ中の細菌によって安定的に分解される性質を有するので、魚肉の細菌汚染レベルを正確に確認できる。   The detection method according to claim 3 or 4 uses a sensor including an azo dye. However, since the azo dye has a property of being stably decomposed by bacteria in the drip, the bacterial contamination level of fish meat Can be confirmed accurately.

また、請求項6に記載するセンサーは、生の魚肉に対してそのドリップと接触するように取り付けると、その魚肉の1g当りの細菌数が「10の6乗(公定法による)」に達した時点で変色するので、このセンサーを取り付けるだけで、魚肉の細菌安全性を肉眼で容易に確認できる。また、このセンサーは、安全であり、安価かつ容易に作製できるので、検査すべき魚肉や魚肉食品の全数に取り付けてもコストが嵩むには至らない。   In addition, when the sensor according to claim 6 is attached to the raw fish meat so as to come into contact with the drip, the number of bacteria per 1 g of the fish meat reaches “10 6 (the official method)”. Since it changes color at the time, simply attaching this sensor makes it easy to confirm the bacterial safety of fish meat with the naked eye. In addition, since this sensor is safe and can be manufactured inexpensively and easily, even if it is attached to the total number of fish or fish food to be inspected, the cost does not increase.

アゾ色素添加培地と無添加培地における魚肉ドリップ細菌の増殖を示したグラフである。It is the graph which showed the growth of the fish drip bacteria in an azo dye addition culture medium and a non-addition culture medium. 4℃で冷蔵したヤズの魚肉とそのドリップの細菌数の変化を示したグラフである。It is the graph which showed the change of the bacteria count of the fish meat of the yaz refrigerated at 4 degreeC, and its drip. 4℃で冷蔵したヤズの魚肉の細菌数の変化を異なる培養計数法で調べ、その変化を示したグラフである。It is the graph which showed the change by investigating the change in the number of bacteria of the fish meat of the yaz refrigerated at 4 degreeC by a different culture | cultivation counting method. 4℃培養計数法で分離された魚肉由来の細菌の「4℃で48時間」培養時と「20℃で48時間」培養時の増殖を示したグラフである。It is the graph which showed the growth at the time of "4 degreeC 48 hours" culture | cultivation and the "20 degreeC 48 hours" culture | cultivation of the fish-derived bacteria isolate | separated by the 4 degreeC culture | cultivation counting method. 20℃培養計数法で分離された魚肉由来の細菌の「4℃で48時間」培養時と「20℃で48時間」培養時の増殖を示したグラフである。It is the graph which showed the growth at the time of "48 degreeC at 48 degreeC" culture | cultivation at the time of "48 degreeC at 20 degreeC" of the bacteria derived from the fish meat isolate | separated by the 20 degreeC culture | cultivation counting method. 食用赤色102号の分解と細菌密度の関係を示したグラフである。It is the graph which showed the decomposition | disassembly of edible red No. 102, and the relationship of bacterial density. ドリップ導入部を備えた固形媒体センサーを魚肉に取り付ける方法の説明図である。It is explanatory drawing of the method of attaching the solid medium sensor provided with the drip introduction part to fish meat.

本発明において、「魚肉」とは、魚体から取り出した肉塊や肉片の総称である。すなわち、フィレーのほか、焼魚用や煮魚用の切り身、ステーキ用の切り身、生食する刺身、ミンチ状に処理したもの等の「調味していない魚肉加工品」も含む。また、「生の魚肉」とは、未加熱で未乾燥の魚肉のことであり、解凍品を含む。なお、試作・試験の結果、本発明に係る検知方法は、冷燻法を用いて作ったスモークサーモンにも十分に適用可能であるので、本発明でいう「未調味・未加熱・未乾燥の生の魚肉」には、スモークサーモンレベルの魚肉加工品を含む。   In the present invention, “fish meat” is a general term for meat chunks and pieces of meat taken out from fish bodies. In other words, in addition to fillets, “processed fish meat products that are not seasoned” such as fillets for grilled fish and boiled fish, fillets for steak, raw sashimi, and minced processed foods are included. Moreover, “raw fish meat” means unheated and undried fish meat, and includes a thawed product. As a result of trial production and testing, the detection method according to the present invention is sufficiently applicable to smoked salmon made using the cold-cooking method, so the term “unseasoned / unheated / undried” in the present invention is used. “Raw fish meat” includes processed smoked salmon fish.

本発明は、その主旨からして、未殺菌の魚肉や魚肉食品が主たる対象であるが、殺菌処理済みのものであっても、その殺菌処理が不十分な事態もあり得るので、殺菌処理を施してない生の魚肉に限定するものではない。また、本発明が対象とする生の魚肉は、未包装のものでも包装したもの(真空包装品や含気包装品)でも差し支えない。   The present invention is mainly intended for non-sterilized fish meat and fish meat foods in view of its gist, but even if it has been sterilized, the sterilization may be insufficient. It is not limited to raw fish that have not been applied. The raw fish meat targeted by the present invention may be unwrapped or packaged (vacuum packaged or aerated packaged product).

本発明は、魚肉に由来する細菌はその密度が一定のレベルを超えると急激に色素を分解するという性質を利用し、かつ、魚肉から滲出するドリップの細菌数の増加を色素を含むセンサーにより検知することによって魚肉の細菌数を判定する点に大きな特色がある。よって、まず、本発明で用いるセンサーについて説明する。   The present invention utilizes the property that bacteria derived from fish meat rapidly decompose pigment when the density exceeds a certain level, and an increase in the number of drip bacteria exuded from fish meat is detected by a sensor containing the pigment. There is a big feature in judging the number of bacteria of fish meat. Therefore, first, the sensor used in the present invention will be described.

本発明で用いるセンサーは、基本的には、食品添加物として公認されているアゾ色素をクラフト紙、絹布、ナイロン布、ポリエステル布、不織布、マイクロファイバークロス等の吸水性のよい平面媒体に吸着させたものであるか又は寒天やゼラチン等の固形媒体に溶解し固化したものである。なお、固形媒体を用いたセンサーは崩れやすいので、ポリエチレンフィルムやストマック袋フィルム等の強くて透明な補強材で一面を覆って使用することが好ましい。   The sensor used in the present invention basically adsorbs an azo dye approved as a food additive to a flat medium with good water absorption, such as kraft paper, silk cloth, nylon cloth, polyester cloth, non-woven cloth, and microfiber cloth. Or dissolved and solidified in a solid medium such as agar or gelatin. In addition, since the sensor using a solid medium is easy to collapse, it is preferable to use it by covering one side with a strong and transparent reinforcing material such as a polyethylene film or a stomat bag film.

上記のとおり、本発明のセンサーにはアゾ色素を使用する。アゾ色素を用いる理由は、アゾ色素は、魚肉ドリップ中の細菌の増殖に何らの影響も与えない上、本発明者らが多くの色素(フラボノイド系色素、モナスカス系色素、イリドイド系色素、キノイド系色素、アゾ色素)について試験した結果、唯一アゾ色素のみがドリップ中の細菌によって安定的に分解されることが判明したからである。そのため、アゾ色素を使用すれば、ドリップ中の細菌数の変化をより正確に把握できる。アゾ色素としては、食用赤色2号、食用赤色40号、食用赤色102号、食用黄色4号、食用黄色5号を使用することが好ましい。   As described above, an azo dye is used in the sensor of the present invention. The reason why the azo dye is used is that the azo dye has no influence on the growth of bacteria in the fish drip and the present inventors have used many dyes (flavonoid dyes, monascus dyes, iridoid dyes, quinoid dyes). This is because, as a result of testing with respect to dyes and azo dyes, it was found that only azo dyes were stably decomposed by bacteria in the drip. Therefore, if an azo dye is used, the change in the number of bacteria in the drip can be grasped more accurately. As the azo dye, it is preferable to use Food Red No. 2, Food Red No. 40, Food Red No. 102, Food Yellow No. 4, and Food Yellow No. 5.

本発明において、アゾ色素は、市販の原末を50〜100μM(3万分の1〜1.5万分の1)程度に希釈して使用するのが好ましい。その理由は、色素の濃度を薄くすると、検体中の細菌数が少ない段階でも変色することがあり、一方、あまり濃くすることは不経済である上、センサーの感度が鈍くなりやすいからである。なお、食品衛生法では、アゾ色素を食品の着色料として用いる場合は、その原末を1万〜5万分の1以下に希釈して使用するように定めている。   In the present invention, the azo dye is preferably used by diluting a commercially available bulk powder to about 50 to 100 μM (1 / 30,000 to 1 / 5,000). The reason is that if the concentration of the dye is decreased, the color may be changed even when the number of bacteria in the sample is small. On the other hand, if the concentration is too high, it is uneconomical and the sensitivity of the sensor tends to decrease. In the Food Sanitation Law, when an azo dye is used as a colorant for food, the bulk is diluted to 10,000 to 1 / 50,000 or less.

本発明で用いるセンサーは、魚肉から滲出するドリップに接触するように魚肉に取り付ける必要がある。センサーの取り付けには、例えば、以下の方法を採ることができる。
(1)平面媒体にアゾ色素を吸着させたセンサー(以下「平面媒体センサー」と記す)の場合は、最も簡単なのは、魚肉の表面にセンサーを貼り付ける方法である。平面媒体センサーを魚肉の表面に貼り付けると魚肉の表面にうすく滲出したドリップとセンサーが容易に接触する。なお、センサーを取り付けた魚肉を包装する場合は、包装を剥離しなくてもセンサーの状態を確認できるように、すくなくとも包材中のセンサーを覆う部分は透明なものを使用することが好ましい。
The sensor used in the present invention needs to be attached to the fish meat so as to come into contact with the drip that exudes from the fish meat. For example, the following method can be used to attach the sensor.
(1) In the case of a sensor in which an azo dye is adsorbed on a planar medium (hereinafter referred to as “planar medium sensor”), the simplest method is to attach the sensor to the surface of fish meat. When a flat medium sensor is attached to the surface of the fish meat, the drip that has exuded slightly on the surface of the fish meat and the sensor easily come into contact. In addition, when packaging the fish meat to which the sensor is attached, it is preferable to use at least a portion covering the sensor in the packaging material so that the state of the sensor can be confirmed without peeling off the package.

(2)アゾ色素を寒天等の固形媒体に溶解し固化させたセンサー(以下「固形媒体センサー」と記す)の場合は、その一面を透明な補強材で覆い、他の面を魚肉の表面に貼り付ける方法を採ればよい。また、魚肉に貼り付ける面をナイロン布のような吸水性のよいクロスに重ねて、そのクロスの面を魚肉に貼り付ける方法を採ることもできる。この方法を採ると、センサーを魚肉に直接接触させなくて済む。魚肉の表面に滲んだドリップはクロスを介してセンサーに接触する。
(3)また、上記の吸水性のよいクロスの一端にアゾ色素を吸着させるか又はアゾ色素を吸着させたクロスもしくはアゾ色素を溶解させて固化した寒天を重ねてその部分にセンサーを形成し、色素を吸着させてない方の端をドリップの導入部として魚肉に貼り付けるようにしてもよい(図7)。この方法を採ると、ドリップは、魚肉に貼り付けた部分(導入部)からクロスの中を伝わって色素を吸着させてあるセンサー形成部分に接触する。
(2) In the case of a sensor in which an azo dye is dissolved and solidified in a solid medium such as agar (hereinafter referred to as “solid medium sensor”), one surface thereof is covered with a transparent reinforcing material, and the other surface is covered with a fish meat surface. What is necessary is just to take the method of sticking. Alternatively, the surface to be affixed to the fish meat can be stacked on a cloth having good water absorption, such as a nylon cloth, and the surface of the cloth can be affixed to the fish meat. If this method is adopted, the sensor does not have to be in direct contact with the fish meat. The drip that oozes on the surface of the fish meat comes into contact with the sensor through the cloth.
(3) In addition, an azo dye is adsorbed on one end of the cloth having good water absorption, or a cross formed by adsorbing an azo dye or agar dissolved and solidified is overlapped to form a sensor on the part, You may make it affix on fish meat the edge which is not adsorb | sucking a pigment | dye as an introduction part of a drip (FIG. 7). When this method is adopted, the drip is transferred from the portion (introduction portion) attached to the fish meat through the cloth to contact the sensor forming portion where the dye is adsorbed.

(4)上記のセンサーの取り付け方法を図7に基づいて説明する。図7は、ドリップ導入部を備えたセンサーを魚肉に取り付ける方法の説明図である。図7において、黒い四角形を点線状につなげて形成したラインはマイクロファイバークロスを表しており、そのクロスの左側半分はドリップの導入部(ドリップを吸水してセンサーへ導入する部分)として魚肉の裏面に貼り付けてある。また、クロスの右側半分には、濃度50μMの食用赤色102号を溶解して固化させた0.9%アガロースからなる固形媒体センサーを載置してあり、センサーの周囲全体は透明な包装フィルムで覆ってセンサーが魚肉に接触しないようにしてある。なお、魚肉は包装フィルムで覆ってある。魚肉に対して、図7のようにセンサーを取り付けると、ドリップは、魚肉に貼り付けた導入部からマイクロファイバークロスの中を伝わってセンサー形成部分に接触する。 (4) A method for attaching the sensor will be described with reference to FIG. FIG. 7 is an explanatory view of a method for attaching a sensor having a drip introduction part to fish meat. In FIG. 7, a line formed by connecting black squares in a dotted line represents a microfiber cross, and the left half of the cross is the back side of the fish meat as a drip introduction part (a part that absorbs the drip and introduces it into the sensor). It is pasted on. In addition, a solid medium sensor made of 0.9% agarose obtained by dissolving and solidifying edible red No. 102 having a concentration of 50 μM is placed on the right half of the cloth, and the entire periphery of the sensor is a transparent packaging film. It is covered so that the sensor does not touch the fish meat. Fish meat is covered with a packaging film. When the sensor is attached to the fish meat as shown in FIG. 7, the drip travels through the microfiber cloth from the introduction portion attached to the fish meat and contacts the sensor forming portion.

(5)魚肉がトレイ包装品や真空包装品の場合は、上記の各方法のほか、トレイ等の容器の底に凹部を設け、その凹部にセンサーを取り付ける方法を採ることができる。ドリップは魚肉から凹部に滴下してセンサーと接触する。容器の底面からセンサーの反応を確認できるように凹部又は底面全体を透明にすることが好ましい。この方法の場合は、平面媒体センサーでも固形媒体センサーでも、どちらでも使用できる。
(6)センサーを魚肉に取り付ける別の方法としては、魚肉に接触する透明な包材(例えば食品用ラップフィルム)の内側にあらかじめセンサーを貼り付けておき、魚肉をその包材で覆うとセンサーの吸水面が魚肉の表面に接触するようにしてもよい。この方法の場合も、平面媒体センサーでも固形媒体センサーでも、どちらでも使用できる。
(5) In the case where the fish meat is a tray packaged product or a vacuum packaged product, in addition to the above methods, a method of providing a recess in the bottom of a container such as a tray and attaching a sensor to the recess can be employed. The drip drops from the fish into the recess and contacts the sensor. It is preferable to make the recess or the entire bottom surface transparent so that the reaction of the sensor can be confirmed from the bottom surface of the container. In this method, either a flat medium sensor or a solid medium sensor can be used.
(6) Another method of attaching the sensor to fish meat is to attach the sensor in advance to the inside of a transparent wrapping material (eg food wrap film) that comes into contact with the fish meat, and cover the fish meat with the wrapping material. You may make it a water absorption surface contact the surface of fish meat. In this method, either a flat medium sensor or a solid medium sensor can be used.

本発明で用いるセンサーの作り方を例示すると、平面媒体センサーを作る場合は、魚肉の大きさに合わせて適宜のサイズに裁断・成形した平面媒体(0.5g相当)を、市販のアゾ色素の原末を濃度10,000分の1程度に希釈した液に浸漬して色素を十分に吸収・染着させた後、適宜の方法で洗浄・乾燥し、加熱等の方法で色素を固定すればよい。また、固形媒体センサーを作る場合は、例えば、適当な濃度に調製した寒天溶融液又はゼラチン溶融液に、市販のアゾ色素の原末を最終濃度が50μM(約3万分の1)程度になるように希釈したものを溶解させてよく混合した後、冷却・固化すればよい。アゾ色素の濃度を高める場合には、色素がセンサーから魚肉に転移しないことを確認するか、或いは転移しても無視し得るほどのレベルであることを確認した方がよい。   Exemplifying how to make the sensor used in the present invention, in the case of making a flat medium sensor, a flat medium (corresponding to 0.5 g) cut and formed into an appropriate size according to the size of fish meat is used as a raw material for a commercially available azo dye. After immersing the powder in a solution diluted to about 1 / 10,000 of the density to sufficiently absorb and dye the dye, it is washed and dried by an appropriate method, and the dye is fixed by a method such as heating. . In the case of making a solid medium sensor, for example, a commercially available azo dye bulk powder is added to an agar melt or gelatin melt prepared to an appropriate concentration so that the final concentration is about 50 μM (about 1 / 30,000). What is necessary is just to cool and solidify after melt | dissolving the thing diluted to (2) and mixing well. When increasing the concentration of the azo dye, it is better to confirm that the dye does not transfer from the sensor to the fish meat, or to confirm that the level is negligible even if transferred.

アゾ色素を固形媒体に溶解させてセンサーを作る別の方法を例示すると以下のとおりである。まず、5mM濃度になるように蒸留水にアゾ色素の粉末を溶解し、これを0.2μMの孔径のヌクレポアフィルターで濾過・滅菌し、この液をA液とする。一方、蒸留水99mLに0.9〜1.2gの寒天粉末を入れ、オートクレーブして溶解・滅菌し、B液とする。次いで、B液が固まる前にA液を1mL無菌的に加えると、50μM濃度で色素を含んだ固形媒体センサーを作製することができる。この寒天粉末の量は、用いる寒天の特性を考慮に入れて、最終のゲル強度が700g/cmになるように調製することが好ましい。 Another method for producing a sensor by dissolving an azo dye in a solid medium is as follows. First, azo dye powder is dissolved in distilled water so as to have a concentration of 5 mM, and this is filtered and sterilized with a Nuclepore filter having a pore size of 0.2 μM, and this solution is designated as solution A. On the other hand, 0.9 to 1.2 g of agar powder is put in 99 mL of distilled water, dissolved and sterilized by autoclaving to obtain solution B. Next, if 1 mL of solution A is aseptically added before solution B solidifies, a solid medium sensor containing a dye at a concentration of 50 μM can be produced. The amount of the agar powder is preferably adjusted so that the final gel strength is 700 g / cm 2 in consideration of the characteristics of the agar used.

次に、本発明に係る魚肉の細菌汚染レベルの検知方法について説明する。
本発明者らは、魚肉やそのドリップに存在する細菌について研究した結果、すでに説明したとおり、いくつかの知見を得たので、その知見に基づいて本発明に係る検知方法を開発した。
Next, a method for detecting the level of bacterial contamination of fish meat according to the present invention will be described.
As a result of research on bacteria existing in fish meat and its drip, the present inventors have obtained some knowledge as described above, and based on this knowledge, developed a detection method according to the present invention.

アゾ色素を含むセンサーを魚肉のドリップと接触するように取り付けておくと、魚肉が冷蔵状態であっても、ドリップの細菌数が1mL当り10の8乗(20℃培養計数法による)を超えた時点でセンサー内の色素が急激に分解され、その色が変化する。なお、品温が10℃以下の冷蔵中の魚肉では、4℃培養計数法や20℃培養計数法に用いた平板上のコロニーから分離される低温細菌(以下「20℃培養計数法で分離された低温細菌」等と略記する。)の方が、公定法(35℃計数培養法)で分離される中温細菌よりも細菌数が多くなる。   When the sensor containing the azo dye was attached so as to be in contact with the drip of the fish meat, even if the fish meat was refrigerated, the number of bacteria in the drip exceeded 10 8 per mL (according to the 20 ° C. culture counting method). At that point, the dye in the sensor is rapidly degraded and its color changes. In the case of refrigerated fish meat with a product temperature of 10 ° C. or lower, psychrotrophic bacteria isolated from the colonies on the plate used in the 4 ° C. culture count method or the 20 ° C. culture count method (hereinafter “20 ° C. culture count method” The number of bacteria is larger than that of mesophilic bacteria isolated by the official method (35 ° C. counting culture method).

20℃培養計数法によって計数したドリップの細菌数が1mL当り10の8乗であるときは、公定法で計数した魚肉の細菌数は1g当り10の6乗である。すなわち、センサーが変色するのは魚肉の細菌数が「100万/g(公定法による)」を超えた時点であるから、センサーの色が変化しない間は、その魚肉の細菌数は「1g当り100万未満(公定法による)」であるものと推定できる。よって、生の魚肉の細菌汚染レベルの自主基準値を「100万/g未満」と定めた場合には、魚肉ドリップに接触するように取り付けたセンサーの変色の有無を確認するだけで、その魚肉の細菌汚染レベルが自主基準内のものであるか否か、ダレでも容易に判断することができる。   When the number of drip bacteria counted by 20 ° C. culture counting method is 10 8 per mL, the number of fish meat bacteria counted by official method is 10 6 per g. In other words, the sensor changes color when the number of bacteria in the fish exceeds “1 million / g (according to the official method)”, so the number of bacteria in the fish is “per g It can be estimated that it is less than 1 million (by official method). Therefore, when the voluntary standard value of bacterial contamination level of raw fish meat is set to “less than 1 million / g”, it is only necessary to check whether the sensor attached to touch the fish drip is discolored or not. Whether or not the bacterial contamination level is within the voluntary standard can be easily determined by sagging.

すなわち、センサーが反応するのに必要な細菌数が、仮に20℃培養計数法で200,000,000、つまり2×10のときに、公定法で計数される魚肉の細菌数が、その数の40分の1から200分の1であれば、そのときの魚肉の細菌数は5×106から1×106の間になる。すなわち、センサーは公定法で計数した魚肉の細菌数が1g当り10の6乗に達した時点で反応する。このように、センサーの精度は、反応に必要な細菌数と「ドリップ細菌数と魚肉細菌数の倍率の開き」の大きさによって決定される。 That is, if the number of bacteria required for the sensor to react is 200,000,000 by 20 ° C. culture counting method, that is, 2 × 10 8 , the number of fish bacteria counted by the official method is the number of bacteria. If it is 1/40 to 1/200, the number of bacteria in the fish meat will be between 5 × 10 6 and 1 × 10 6 . That is, the sensor reacts when the number of bacteria in the fish meat counted by the official method reaches the sixth power of 10 per gram. Thus, the accuracy of the sensor is determined by the number of bacteria required for the reaction and the magnitude of the “expansion of the ratio between the number of drip bacteria and the number of fish bacteria”.

本発明では、種々試験の結果、後記の試験例に示すとおり「20℃培養計数法で計数したドリップの細菌数」を「公定法で計数した魚肉の細菌数」で除した数値が常に約50〜130の間に維持されることが確認されているので、20℃培養計数法で計数したドリップの細菌数が1mL当り10の8乗であれば、公定法で計数した魚肉の細菌数は1g当り10の6乗であると判断して差し支えない。   In the present invention, as a result of various tests, as shown in the following test examples, the “number of drip bacteria counted by the 20 ° C. culture counting method” divided by “the number of fish bacteria counted by the official method” is always about 50. As long as the number of drip bacteria counted by the 20 ° C. culture counting method is 10 8 per mL, the number of fish meat bacteria counted by the official method is 1 g. It can be judged that it is 10 6 per hit.

本発明に係る魚肉の細菌汚染レベルの検知方法が正確であることは、以下の試験例と実施例によって確認されている。すなわち、
(1)試験例1と図1によって、アゾ色素は魚肉ドリップの細菌の増殖に何らの影響も与えないことが確認されている。
(2)試験例2と図2によって、冷蔵の後半には、20℃培養計数法によって計数されるドリップの細菌数は、魚肉の細菌数よりも高くなることが確認されている。
(3)試験例3と図3によって、冷蔵中の魚肉では低温細菌が活性化しているため、その細菌密度は、公定法によって計数するよりも、4℃培養計数法や20℃培養計数法で計数する方が高くなることが確認されている。また、4℃培養計数法で計数される細菌数は、20℃培養計数法で計数される細菌数とほぼ同じであることが確認されている。
(4)試験例4と図4・図5によって、ドリップ中の細菌は、4℃においてもセンサーを反応させるのに十分な活性を持っていることが確認されている。
(5)試験例5と図6によって、ドリップ中の細菌は、その細菌数が1mL当り10の8乗に至った時点で色素を急激に変色させることが確認されている。
(6)試験例6と表1によって、20℃培養計数法によって計数したドリップの細菌数が1mL当り10の8乗であるときは、公定法で計数した魚肉の細菌数は1g当り10の6乗であることが確認されている。
(7)実施例1〜実施例7に示す試作・試用の結果によって、「平面媒体センサー」でも「固形媒体センサー」でも、どちらも十分に実用に供し得ることが確認されている。
以下、試験例を持って本発明をさらに詳しく説明する。
It is confirmed by the following test examples and examples that the method for detecting the bacterial contamination level of fish meat according to the present invention is accurate. That is,
(1) From Test Example 1 and FIG. 1, it is confirmed that the azo dye has no influence on the growth of the fish drip bacteria.
(2) It is confirmed from Test Example 2 and FIG. 2 that in the second half of refrigeration, the number of drip bacteria counted by the 20 ° C. culture counting method is higher than the number of fish meat bacteria.
(3) According to Test Example 3 and FIG. 3, since the psychrophilic bacteria are activated in the refrigerated fish meat, the bacterial density is determined by the 4 ° C. culture counting method or the 20 ° C. culture counting method rather than counting by the official method. It has been confirmed that counting is higher. Further, it has been confirmed that the number of bacteria counted by the 4 ° C. culture counting method is almost the same as the number of bacteria counted by the 20 ° C. culture counting method.
(4) From Test Example 4 and FIGS. 4 and 5, it is confirmed that the bacteria in the drip have sufficient activity to react the sensor even at 4 ° C.
(5) From Test Example 5 and FIG. 6, it is confirmed that the bacteria in the drip rapidly change the color of the pigment when the number of bacteria reaches 10 8 per mL.
(6) According to Test Example 6 and Table 1, when the number of drip bacteria counted by 20 ° C. culture counting method is 10 8 per mL, the number of fish bacteria counted by official method is 10 6 per g. It has been confirmed that it is a power.
(7) From the results of trial manufacture and trial use shown in Examples 1 to 7, it has been confirmed that both the “planar medium sensor” and the “solid medium sensor” can be sufficiently put into practical use.
Hereinafter, the present invention will be described in more detail with test examples.

《試験例1》
(1)試験目的
アゾ色素が魚肉ドリップの細菌の増殖に及ぼす影響の有無の確認
(2)試験方法
センサーにアゾ色素を用いる場合、アゾ色素が魚肉ドリップの細菌の増殖に何らかの影響を与えるのであれば、魚肉ドリップ中の細菌数は正確に計測できない。そこで、魚肉ドリップに模して調製した魚肉粉末(和光純薬)の液体培地(100ppm:pH7.0)にヤズのドリップを接種し、その液体培地を「市販の食用赤色102号を50μM濃度で含んだ0.3%の寒天ゲルからなるセンサー」を3分の1の高さにまで充填した試験管Aと空(カラ)の試験管Bとに等量ずつ分注し、10℃で培養した。培養期間中に培養液を無菌的に適時採取して、これを原液とした。この原液を滅菌した生理食塩水で10倍希釈を繰り返した後、原液と希釈液のそれぞれ0.1mLを普通寒天平板培地に塗抹・接種し、この平板培地を20℃で5日間培養して、平板上に出現したコロニーを数えて、魚肉粉末液体培地中の細菌密度の変化を経時的に調べた。
<< Test Example 1 >>
(1) Test purpose :
Confirmation of the effect of azo dye on bacterial growth of fish drip (2) Test method :
When an azo dye is used for the sensor, the number of bacteria in the fish drip cannot be accurately measured if the azo dye has any influence on the growth of the fish drip bacteria. Therefore, Yazu drip was inoculated into a liquid medium (100 ppm: pH 7.0) of fish meat powder (Wako Pure Chemical Industries), which was prepared by imitating the fish meat drip, and the liquid medium was designated as “Commercial Edible Red No. 102 at a concentration of 50 μM. Dispense equal amounts into test tube A filled with 0.3% agar gel containing sensor to 1/3 height and empty test tube B, and incubate at 10 ° C did. During the culture period, the culture solution was collected aseptically and timely and used as a stock solution. This stock solution was repeatedly diluted 10 times with sterilized physiological saline, and 0.1 mL each of the stock solution and the diluted solution was smeared and inoculated on a normal agar plate medium, and this plate medium was cultured at 20 ° C. for 5 days, The colonies that appeared on the plate were counted, and changes in the bacterial density in the fish meat powder liquid medium were examined over time.

(3)試験結果
試験の結果は図1に示すとおりである。すなわち、試験管Aの培地と試験管Bの培地では、細菌の増殖に差は認められなかった。なお、本試験例では、アゾ色素として、食用赤色102号を使用したが、食用赤色2号、食用赤色40号、食用黄色4号、食用黄色5号を用いた試験についても、本試験例と同じ結果が得られている。
(4)考察
この試験結果から、アゾ色素は、魚肉ドリップ中の細菌の増殖に何らの影響も与えず、その細菌密度を正確に計測できることが確認された。
(3) Test results :
The test results are as shown in FIG. That is, there was no difference in bacterial growth between the test tube A medium and the test tube B medium. In this test example, edible red No. 102 was used as the azo dye, but the test using edible red No. 2, edible red No. 40, edible yellow No. 4 and edible yellow No. 5 was also the same as this test example. The same result is obtained.
(4) Consideration :
From this test result, it was confirmed that the azo dye had no effect on the growth of bacteria in the fish drip and could accurately measure the bacterial density.

《試験例2》
(1)試験目的
冷蔵魚肉とそのドリップの細菌数の変化傾向の確認
(2)試験方法
生食用アジの魚肉を6〜7片に分割し、それぞれ別々に含気包装して4℃で冷蔵し、冷蔵期間中に適時1包装ずつ開封して魚肉とドリップを取り出した。魚肉は、約1gを秤取し、これを9倍量の滅菌生理食塩水に浸漬した後、ストマッカーでホモジェナイズした。このホモジェナイズ液の上清を原液として、滅菌生理食塩水を用いて10倍希釈を繰り返し、原液と希釈液の0.1mLずつを普通寒天平板培地に塗抹・接種した。また、ドリップは、1mLずつ無菌的に取り出してこれを原液とし、この原液について滅菌生理食塩水を用いて10倍希釈を繰り返し、原液と希釈液の0.1mLずつを普通寒天平板培地に塗抹・接種した。次に、これらの平板培地を20℃で5日間培養し、平板上に出現したコロニーを数えて、魚肉とドリップの細菌数の変化を経時的に調べた。
<< Test Example 2 >>
(1) Test purpose :
Confirmation of change in bacterial count of refrigerated fish meat and its drip (2) Test method :
The raw meat for horse mackerel was divided into 6 to 7 pieces, each packaged separately with air and refrigerated at 4 ° C., and one package was opened at a time during the refrigeration period, and the fish meat and drip were taken out. About 1 g of fish meat was weighed and immersed in 9 times the amount of sterile physiological saline, and homogenized with a stomacher. Using the supernatant of this homogenized solution as a stock solution, dilution was repeated 10 times using sterile physiological saline, and 0.1 mL each of the stock solution and the diluted solution was smeared and inoculated on a normal agar plate medium. The drip is aseptically removed 1 mL at a time and used as a stock solution. This stock solution is diluted 10 times with sterile physiological saline, and 0.1 mL each of the stock solution and the diluted solution is smeared on a normal agar plate medium. Vaccinated. Next, these plate culture media were cultured at 20 ° C. for 5 days, colonies that appeared on the plate were counted, and changes in the number of bacteria in fish meat and drip were examined over time.

(3)試験結果
試験の結果は図2に示すとおりである。すなわち、ドリップの細菌密度は魚肉の細菌密度よりも高く、冷蔵の後半には、その差は約10倍になった。
(4)考察
この試験結果から、魚肉の細菌数を検知するには、ドリップの細菌数を検知して、間接的に魚肉の細菌数を知る方法を採る方が、感度が高く、効率的であることが確認された。
(3) Test results :
The result of the test is as shown in FIG. That is, the bacterial density of the drip is higher than that of the fish meat, and in the second half of the refrigeration, the difference was about 10 times.
(4) Consideration :
From this test result, in order to detect the number of bacteria in fish meat, it is confirmed that it is more sensitive and efficient to detect the number of bacteria in drip and indirectly know the number of bacteria in fish meat. It was done.

《試験例3》
(1)試験目的
冷蔵中の魚肉における細菌の増殖の確認
(2)試験方法
生食用ヤズの魚肉を6〜7片に分割し、それぞれ別々に含気包装して4℃で冷蔵し、試験例2で用いたのと同じ方法で魚肉の細菌数を調べた。なお、平板培地は、4℃で10日間、20℃で5日間、35℃で2日間、それぞれ別々に培養し、平板上に出現したコロニーを数えて、魚肉中の細菌数の変化を経時的に調べた。
<< Test Example 3 >>
(1) Test purpose :
Confirmation of bacterial growth in chilled fish meat (2) Test method :
Raw edible fish meat was divided into 6 to 7 pieces, each was aerated and packaged separately, refrigerated at 4 ° C., and the number of bacteria in the fish meat was examined by the same method used in Test Example 2. The plate medium was cultured separately at 4 ° C. for 10 days, at 20 ° C. for 5 days, and at 35 ° C. for 2 days, and the colonies that appeared on the plate were counted. I investigated.

(3)試験結果
試験の結果は図3に示すとおりである。すなわち、4℃で冷蔵したヤズにおいては、4℃培養計数法と20℃培養計数法でそれぞれ計数される魚肉の細菌(低温細菌)の数はほぼ同じであるが、どちらの方法を採っても、計数される細菌数は、食品衛生法で定める35℃培養計数法(公定法)で計数される細菌(中温細菌)の数よりも多くなることが確認された。
(4)考察
この試験結果から、魚肉を冷蔵したときには、低温細菌の方が中温細菌よりも多いことが判明した。すなわち、魚肉を冷蔵したときに魚肉を劣化・腐敗させるのは20℃以下でよく増殖する低温細菌であることが確認された。したがって、本発明に係る魚肉の細菌汚染レベルを検知する方法は、低温ではセンサーが主に低温細菌と反応するので、冷蔵中の魚肉について有用であることが確認された。
(3) Test results :
The result of the test is as shown in FIG. In other words, in the case of a yam refrigerated at 4 ° C., the number of fish bacteria (thermophilic bacteria) counted by the 4 ° C. culture count method and the 20 ° C. culture count method is almost the same, but whichever method is used. It was confirmed that the number of bacteria counted was larger than the number of bacteria (medium-temperature bacteria) counted by the 35 ° C. culture counting method (official method) defined by the Food Sanitation Law.
(4) Consideration :
From this test result, it was found that when fish were refrigerated, there were more psychrophilic bacteria than mesophilic bacteria. In other words, it was confirmed that when the fish meat was refrigerated, it was psychrotrophic bacteria that proliferated well at 20 ° C. or lower that caused the fish meat to deteriorate or decay. Therefore, it was confirmed that the method for detecting the bacterial contamination level of fish meat according to the present invention is useful for fish meat that has been refrigerated because the sensor mainly reacts with cold bacteria at low temperatures.

《試験例4》
(1)試験目的
冷蔵温度下における低温細菌の活性の確認
(2)試験方法
4℃で冷蔵しているヤズの魚肉から4℃培養計数法で分離された細菌と20℃培養計数法で分離された細菌をそれぞれ普通液体培地に接種して、4℃と20℃でそれぞれ48時間培養し、培養液の濁度を700nmの波長で分光光度計を用いて測定した。
<< Test Example 4 >>
(1) Test purpose :
Confirmation of activity of psychrophilic bacteria under refrigerated temperature (2) Test method :
Bacteria separated by 4 ° C. culture counting method and bacteria separated by 20 ° C. culture counting method were inoculated into ordinary liquid medium from yaz fish meat refrigerated at 4 ° C., respectively, and 48 ° C. at 4 ° C. and 20 ° C. respectively. After culturing for a time, the turbidity of the culture solution was measured using a spectrophotometer at a wavelength of 700 nm.

(3)試験結果
試験の結果は図4と図5に示すとおりである。すなわち、図4の、4℃培養計数法で分離された細菌株の増殖を示したグラフを見ると、接種直後には濁度が測定限界以下だった培養液が、4℃での48時間での増殖により、濁度は0.1から0.4の間の値に達し、一方、同じ株の20℃での48時間の増殖により、濁度は0.1から0.5の間の値に達している。すなわち、4℃培養計数法で分離された細菌株の4℃での増殖レベルは、20℃での増殖度合いにかなり近いものである。さらに、図5の、20℃培養計数法で分離された細菌株の増殖を示したグラフを見ると、接種直後には濁度が測定限界以下だった培養液が、4℃での48時間での増殖によって、濁度は0.2から0.3の間の値に達し、一方、同じ株の20℃での48時間での増殖により、濁度は0.2から0.5の間の値に達している。すなわち、20℃培養計数法で分離された細菌株の4℃での増殖レベルは、20℃での増殖レベルにかなり近いものである。そのため、20℃培養計数法で分離された細菌は、4℃でも20℃に匹敵する増殖活性があることが確認された。
(4)考察:
この試験の結果から、魚肉を劣化・腐敗させる低温細菌は、4℃でもセンサーを反応させるのに十分な活性を持っていることが解明された。
(3) Test results :
The results of the test are as shown in FIGS. That is, looking at the graph showing the growth of the bacterial strain isolated by the 4 ° C. culture counting method in FIG. 4, the culture solution whose turbidity was below the measurement limit immediately after inoculation was found in 48 hours at 4 ° C. , The turbidity reaches a value between 0.1 and 0.4, while 48 hours growth at 20 ° C. of the same strain results in a turbidity value between 0.1 and 0.5. Has reached. That is, the growth level at 4 ° C. of the bacterial strain isolated by the 4 ° C. culture counting method is quite close to the degree of growth at 20 ° C. Furthermore, in the graph showing the growth of the bacterial strain isolated by the 20 ° C. culture counting method in FIG. 5, the culture solution whose turbidity was below the measurement limit immediately after inoculation was found in 48 hours at 4 ° C. , The turbidity reached a value between 0.2 and 0.3, while growth of the same strain at 20 ° C. for 48 hours caused the turbidity to be between 0.2 and 0.5. The value has been reached. That is, the growth level at 4 ° C. of the bacterial strain isolated by the 20 ° C. culture counting method is quite close to the growth level at 20 ° C. Therefore, it was confirmed that the bacteria isolated by the 20 ° C. culture counting method have a growth activity comparable to 20 ° C. even at 4 ° C.
(4) Consideration:
From the results of this test, it was clarified that the psychrotrophic bacteria that deteriorate and rot fish meat have sufficient activity to react the sensor even at 4 ° C.

《試験例5》
(1)試験目的:
アゾ色素を分解するときの魚肉ドリップの細菌密度の範囲の確認
(2)試験方法
市販の食用赤色102号を50μM、10μM、5μM濃度で含んだ3通りの普通液体培地(肉エキス10g、ペプトン10g、NaCl3g、pH7.2)に生食用ヤズのドリップをそれぞれ接種し、これらを10℃で培養した。この培養液の507nmの波長での吸光度を分光光度計で測定してその色調を調べた。また、色調の変化を調べるのと同時に、培養液の細菌数を試験例2で説明したのと同じ方法で調べた。なお、507nmは、食用赤色102号の光吸収極大値で、この吸光度から培地に残存している食用赤色102号の残存率を計算した。
<< Test Example 5 >>
(1) Test purpose:
Confirmation of bacteria density range of fish drip when decomposing azo dye (2) Test method :
Three normal liquid media (meat extract 10 g, peptone 10 g, NaCl 3 g, pH 7.2) containing commercially available edible red No. 102 at concentrations of 50 μM, 10 μM, and 5 μM were inoculated with drip of raw edible yam, respectively. Cultured at 0 ° C. The color of this culture was examined by measuring the absorbance at a wavelength of 507 nm with a spectrophotometer. Further, at the same time as examining the change in color tone, the number of bacteria in the culture solution was examined by the same method as described in Test Example 2. In addition, 507 nm is the light absorption maximum value of edible red No. 102, and the residual ratio of edible red No. 102 remaining in the medium was calculated from this absorbance.

(3)試験結果
試験の結果は図6に示すとおりである。すなわち、食用赤色102号は、その濃度が50μMのときは液体培地中の細菌数が10の7乗を超えた時点で赤色が減少し始め、10の8乗を超えた時点で急激に減少し、ほとんど消滅している。色素の濃度が10μMのときも5μMのときも近似した傾向を示している。そのため、本発明で用いるセンサーは、冷蔵中の魚肉ドリップの細菌数が20℃培養計数法で計数して1mL当り10の8乗に至った段階で正確に変色するので、細菌数が1m当り10の9乗以上である魚肉について、例えば、それが10の6乗であるとか10の8乗である等の誤った判断をするおそれがない。なお、本試験例では、アゾ色素として食用赤色102号を使用しているが、食用赤色2号や食用赤色40号、食用黄色4号、食用黄色5号を用いた試験についても図6と同じ結果が得られている。また、このような試験では、センサーに模した寒天ゲルを用いることが望ましいが、寒天ゲルの吸光度変化を調べることは難しいので、本試験例では、液体培地を使用した。
(4)考察
この試験の結果から、センサーが示す細菌密度は、オーダーレベルで信頼できることが確認できた。
(3) Test results :
The results of the test are as shown in FIG. That is, when the concentration of edible red No. 102 is 50 μM, red begins to decrease when the number of bacteria in the liquid medium exceeds 10 7, and decreases rapidly when it exceeds 10 8. Almost disappeared. The tendency is similar when the dye concentration is 10 μM and 5 μM. Therefore, the sensor used in the present invention accurately changes the color when the number of bacteria in the fish drip during refrigeration is counted by 20 ° C. culture counting method and reaches 10 8 per mL. For example, there is no risk of misjudging the fish meat that is 9th power or higher, such as 10 6th power or 10th 8th power. In this test example, food red No. 102 is used as the azo dye, but the test using food red No. 2, food red No. 40, food yellow No. 4, and food yellow No. 5 is the same as FIG. The result is obtained. In such a test, it is desirable to use an agar gel imitating a sensor, but since it is difficult to examine the change in absorbance of the agar gel, a liquid medium was used in this test example.
(4) Consideration :
From the results of this test, it was confirmed that the bacterial density exhibited by the sensor was reliable at the order level.

《試験例6》
(1)試験目的:
冷蔵中の魚肉とそのドリップの細菌数の割合の確認
(2)試験方法:
魚肉のドリップの細菌数を調べるには、1mL以上のドリップが必要であるが、そのような多量のドリップを採取するのは通常の魚肉包装方法では無理である。そこで、漏斗状に成形された透明な可塑性の袋に魚肉を200g入れ、漏斗の筒の部分に「食用赤色102号を50μM濃度で溶解した寒天(濃度0.9%)を充填して固化させた試験管」を設置し、試験管内の食用赤色102号が変色した時点での魚肉とドリップの細菌数を、試験例2で用いたのと同じ方法で調べた。なお、平板培地は20℃で5日間、35℃で2日間培養した。
<< Test Example 6 >>
(1) Test purpose:
Confirming the proportion of bacteria in chilled fish and its drip
(2) Test method:
In order to determine the bacteria count of fish drip, 1 mL or more of drip is required, but it is impossible to collect such a large amount of drip with a normal fish packaging method. Therefore, 200 g of fish meat was put in a transparent plastic bag formed into a funnel shape, and the tube portion of the funnel was filled with solid agar (concentration 0.9%) dissolved in edible red No. 102 at a concentration of 50 μM. The number of bacteria in fish meat and drip when the food red No. 102 in the test tube changed color was examined by the same method used in Test Example 2. The plate medium was cultured at 20 ° C. for 5 days and at 35 ° C. for 2 days.

(3)試験結果:
試験の結果は表1に示すとおりである。すなわち、4℃又は10℃で保存している魚肉について、試験管内の50μM濃度の食用赤色102号が変色するのは、いずれも20℃培養計数法で計数してドリップ1mL当り10の8乗であったが、同じ魚肉を公定法で計数したときの細菌数は魚肉1g当り10の6乗であった。また、このときの20℃培養計数法で計数したドリップの細菌数と公定法で計数した魚肉の細菌数の比は47〜130の間であった。また、ドリップの細菌数を47〜130の間の数値で除しても、その細菌数は常に10の6乗であった。
(4)考察:
20℃培養計数法によるドリップの細菌数と公定法による魚肉の細菌数の比が約50〜130の間でバラついても、公定法で調べたときの魚肉の細菌数が10の6乗以上でセンサーが反応するのは、センサーが反応するときのドリップの細菌数が狭い範囲に収斂しているためであると推定される。また、ドリップの細菌数を約50〜130の間の数値で除しても、その細菌数は常に10の6乗であるので、このセンサーは、公定法で計数したときの魚肉の細菌数が10の6乗に達したときに変色することが確認された。すなわち、ドリップの細菌の増殖を色素の変化によって検知する方法を採れば、魚肉の細菌数が10の6乗未満であるか否か、正確に検知できることが確認された。
以下、実施例をもって本発明をさらに説明する。
(3) Test results:
The test results are shown in Table 1. That is, for fish meat stored at 4 ° C. or 10 ° C., the 50 μM concentration of edible red No. 102 in the test tube is discolored by counting by the 20 ° C. culture counting method at 10 8 power per mL of drip. However, the number of bacteria when the same fish meat was counted by the official method was 10 6 per gram of fish meat. The ratio of the number of bacteria in the drip counted by the 20 ° C. culture counting method and the number of bacteria in the fish meat counted by the official method at this time was between 47 and 130. Further, even when the number of bacteria in the drip was divided by a value between 47 and 130, the number of bacteria was always 10 6.
(4) Consideration:
Even if the ratio of the number of bacteria in the drip by the 20 ° C culture counting method to the number of bacteria in the fish meat by the official method varies between about 50 and 130, the number of bacteria in the fish meat when examined by the official method is 10 6 or more. It is presumed that the sensor reacts because the number of bacteria in the drip when the sensor reacts converges within a narrow range. In addition, even if the number of bacteria in the drip is divided by a value between about 50 and 130, the number of bacteria is always 10 to the sixth power. It was confirmed that the color changed when it reached 10 6. That is, it was confirmed that if the method of detecting the growth of drip bacteria by changing the pigment was used, it was possible to accurately detect whether the number of bacteria in fish meat was less than 10 6.
The present invention will be further described below with reference to examples.

<「平面媒体センサー」の作製とその使用方法の例>
(1)センサーの作製
イ.ショット瓶に蒸留水40mLを入れて、少量の酢酸を加えてpH4に調整した。
ロ.そのショット瓶に硫酸ナトリウム0.02gを添加し、さらに、白色のマイクロファ イバークロス(ナイロン20%・ポリエステル80%:2cm×1cm)を20枚入れ (0.2g相当)、30℃で60分間加熱した。
ハ.その後、アゾ色素液(0.002g/10mL:pH4)10mLを加えて100℃ で60分間加熱した。アゾ色素は、表2に示すとおり、魚種に応じて食用赤色2号、食 用赤色40号、食用赤色102号、食用黄色4号、食用黄色5号を使い分けた。
ニ.ショット瓶に入れたまま一晩放冷却した後、クロスを取り出して水洗し、自然乾燥さ せて「赤色のセンサー」を作製した。
ホ.なお、クロスの染色後に染色液に残った色素量と水洗後の洗浄液に溶出した色素量を 試験例5に示す方法で測定したところ、クロス上の色素濃度は約15,000分の1、 すなわち、100μM相当であることが確認された。
<Example of “Flat media sensor” and its usage>
(1) Production of sensor :
A. Distilled water (40 mL) was placed in a shot bottle, and a small amount of acetic acid was added to adjust the pH to 4.
B. Add 0.02 g of sodium sulfate to the shot bottle, and add 20 white microfiber cloths (20% nylon, 80% polyester: 2 cm × 1 cm) (corresponding to 0.2 g) for 60 minutes at 30 ° C. Heated.
C. Thereafter, 10 mL of an azo dye solution (0.002 g / 10 mL: pH 4) was added and heated at 100 ° C. for 60 minutes. As shown in Table 2, the azo dyes were used separately for food red No. 2, food red No. 40, food red No. 102, food yellow No. 4, and food yellow No. 5 depending on the fish species.
D. After being allowed to cool overnight in a shot bottle, the cloth was taken out, washed with water, and air-dried to produce a “red sensor”.
E. When the amount of dye remaining in the staining solution after staining of the cloth and the amount of dye eluted in the washing solution after washing with water were measured by the method shown in Test Example 5, the concentration of the dye on the cloth was about 15,000 times. , Equivalent to 100 μM.

(2)センサーの取り付け
市販の8種類・13切れの魚肉の切り身の表面に上記の平面媒体センサーを1枚ずつ貼り付け、各々をナイロンとポリエチレンのラミネート袋に入れて4℃又は10℃で保存した。保存期間中は観察を続け、センサーの色が赤色から白色に変化した時点で魚肉を袋から取り出した。
(3)センサーの検知効果の確認試験
イ 袋から取り出したそれぞれの魚肉から約10gの試料を無菌的に採取し、ストマッカ ー袋に入れ、9倍量の滅菌生理食塩水を加えて2分間ホモジェナイズして魚肉スラリー を作った。
ロ.それぞれのスラリーをコーニングチューブに移し、500rpmで10秒間遠心処理 した。
ハ.生成した上清を原液とし、滅菌した生理食塩水で10倍希釈を繰り返した後、各希釈 段階について希釈液1mLずつを滅菌したシャーレ6枚に接種し、これに滅菌後55℃ にまで冷却した標準寒天培地又は普通寒天培地を加えて混釈培養を行った。
ニ.標準寒天培地の場合は、食品衛生法の定めに基づき35℃で48時間培養して、それ ぞれの細菌数を調べた。
(2) Sensor mounting :
Each of the above flat medium sensors was attached to the surface of 8 types and 13 slices of commercially available fish meat, and each was placed in a nylon and polyethylene laminate bag and stored at 4 ° C. or 10 ° C. Observation was continued during the storage period, and the fish meat was removed from the bag when the sensor color changed from red to white.
(3) Confirmation test of sensor detection effect :
A sample of about 10 g was aseptically collected from each fish meat taken out from the bag, placed in a stomacher bag, added with 9 times the amount of sterile physiological saline, and homogenized for 2 minutes to prepare a fish meat slurry.
B. Each slurry was transferred to a Corning tube and centrifuged at 500 rpm for 10 seconds.
C. The resulting supernatant was used as a stock solution, and after 10-fold dilution with sterilized physiological saline, 1 mL of the diluted solution was inoculated into each sterilized petri dish for each dilution step, and cooled to 55 ° C after sterilization. A standard agar medium or a normal agar medium was added to perform pour culture.
D. In the case of a standard agar medium, culture was performed at 35 ° C. for 48 hours in accordance with the provisions of the Food Sanitation Law, and the number of each bacteria was examined.

(4)試験結果
表2は、平面媒体センサーが変色した時点での細菌数を魚種ごとに示したものである。表2によれば、センサーが反応した時点での細菌数は、10℃で保存した魚肉と4℃で保存した魚肉の両方とも、公定法で調べたところ、いずれも「10の6乗/g」であった。
(5)考察
すなわち、実施例1で作ったセンサーをドリップに接触するように取り付けた生の魚肉を、4〜10℃で管理している小売店等のショウケースに並べて販売した場合、生の魚肉の細菌数が「1g当り10の6乗(公定法による)に達した場合には販売しない」という自主基準を超えているか否かを、消費者が自分の眼で販売魚肉の全数について検査できることが確認できた。
(4) Test results :
Table 2 shows the number of bacteria for each fish species when the flat medium sensor changes color. According to Table 2, the number of bacteria at the time when the sensor reacted was determined by the official method for both fish preserved at 10 ° C and fish preserved at 4 ° C. "Met.
(5) Consideration :
That is, when the raw fish meat attached with the sensor made in Example 1 in contact with the drip is sold side by side in a showcase such as a retail store managed at 4 to 10 ° C., the bacterial count of the raw fish meat Confirms that consumers can inspect the total number of fish sold with their own eyes whether or not it exceeds the voluntary standard of “do not sell if it reaches 10 6 (per official law)” It was.

<「平面媒体センサー」の使用方法の例>
(1)センサーの取り付けと保存試験
市販の9種類の魚肉切り身のそれぞれを3つに分割し、その1つのグループの切り身については実施例1と同じ方法で細菌数を調べた。残る2つについては、AグループとBグループに分け、いずれも実施例1と同じ方法で作製した平面媒体センサーを切り身の上に載せて、それぞれを透明なポリエチレン製の袋に入れた。Aグループの切り身は、試験開始から0℃で12時間保存した後4℃又は10℃の室に移して保存を続けた。Bグループの切り身は、試験開始の当初から4℃又は10℃の室で保存し続けた。それぞれの切り身についてセンサーの色の変化の有無を観察し続け、Bグループの切り身のセンサーが白色に変わった時点で、実施例1と同じ方法で切り身の細菌数を調べた。
<Example of how to use the "Flat media sensor">
(1) Sensor mounting and storage test :
Each of the nine types of commercially available fish fillets was divided into three, and the number of bacteria in each group of fillets was examined by the same method as in Example 1. The remaining two were divided into Group A and Group B, both of which were placed on a fillet with a flat medium sensor produced by the same method as in Example 1, and each was placed in a transparent polyethylene bag. Group A fillets were stored at 0 ° C. for 12 hours from the start of the test and then transferred to a room at 4 ° C. or 10 ° C. for continued storage. Group B fillets were stored in a 4 ° C. or 10 ° C. room from the beginning of the test. The presence or absence of a change in sensor color was continuously observed for each fillet, and when the group B fillet sensor turned white, the number of bacteria in the fillet was examined in the same manner as in Example 1.

(2)試験結果
表3は、Bグループの切り身のセンサーが変色した時点での細菌数を魚種ごとに示したものである。表3によれば、センサーが反応した時点での細菌数は、いずれも「10の6乗/g(公定法による)」のオーダーであり、センサー未反応の切り身との差は約10倍で、最少差は2倍であった。なお、Aグループの切り身は、Bグループの切り身より先には「センサー陽性」に至らなかった。
(3)考察
実施例2よって、実施例1で作った平面媒体センサーは、およそ10倍以内の誤差範囲で魚肉の細菌数が一定値以上に達したことを検知できることが確認された。
(2) Test results :
Table 3 shows the number of bacteria for each fish species when the B group fillet sensor changes color. According to Table 3, the number of bacteria at the time when the sensor reacted was in the order of “10 6 / g (according to the official method)”, and the difference from the unreacted fillet was about 10 times. The minimum difference was twice. In addition, the fillet of group A did not reach “sensor positive” before the fillet of group B.
(3) Consideration :
According to Example 2, it was confirmed that the flat medium sensor made in Example 1 can detect that the number of bacteria in fish meat has reached a certain value or more within an error range of about 10 times.

<「真空包装魚肉」の細菌汚染レベルの検知例>
(1)センサーの取り付けと保存試験
実施例1と同じ方法でマイクロファイバークロスを用いてセンサーを作製して、実施例1と同じ方法で4種類の魚肉の切り身(赤マツ、キスゴ、アマダイ、イトヨリ)に取り付けた後、これらの切り身をそれぞれ真空包装して10℃の室に保存し、センサーの色が変化するまで観測を続け、変色時点での細菌数を、公定法を用いて計数した。
(2)試験結果
表4は、真空包装した切り身のセンサーが変色した時点での細菌数を魚種ごとに示したものである。表4によれば、真空包装をした生の魚肉を10℃で保存した場合でも、センサーは、公定法で調べた結果、全て「10の6乗」のレベルで変色していることが確認された。
(3)考察
実施例3によって、実施例1で作った平面媒体センサーは、魚肉を真空包装した場合でも有効であることが確認された。
<Example of detection of bacterial contamination level of "vacuum packaged fish meat">
(1) Sensor mounting and storage test :
A sensor was prepared using a microfiber cloth in the same manner as in Example 1 and attached to four types of fish fillets (red pine, kissgo, amadai, oyster) in the same manner as in Example 1, and then these fillets. Each was packaged in vacuum and stored in a room at 10 ° C., and observation was continued until the color of the sensor changed, and the number of bacteria at the time of color change was counted using an official method.
(2) Test results :
Table 4 shows the number of bacteria for each fish species when the vacuum-packed fillet sensor changes color. According to Table 4, even when raw fish meat that had been vacuum-packed was stored at 10 ° C., it was confirmed that all the sensors were discolored at the level of “10 6” as a result of examination by the official method. It was.
(3) Consideration :
According to Example 3, it was confirmed that the flat medium sensor made in Example 1 is effective even when fish meat is vacuum-packaged.

<「固形媒体センサー」の作製とその使用方法の例1>
(1)センサーの作製
イ.99mLの蒸留水に寒天(アガロースS)を0.9g添加し、121℃で20分間加 熱した。この寒天溶融液に、0.2μm孔のメンブレンフィルターで濾過・除菌した5 mMの食用赤色102号を1mL添加し、その15mLを内径9cmのシャーレに分注 した。
ロ.シヤーレのまま冷却して固化させた厚さ2.4mmの寒天から、2.4×1.2cm の切片を切り出した。
ハ.この切片をマイクロファイバークロスとナイロンフィルムで挟み、四方をシーラーで 熱シールして「赤いセンサー」を完成させた。このセンサーはマイクロファイバークロ スの面を魚肉に貼り付けてドリップを吸い取るものである。
ニ.センサー内での食用赤色102号の濃度は50μMであり、これは重量比0.003 %に相当する。なお、食品衛生法に定める「色素の使用基準」は0.01〜0.002 %である。
<Example 1 of production and use method of “solid medium sensor”>
(1) Production of sensor :
A. 0.9 g of agar (Agarose S) was added to 99 mL of distilled water and heated at 121 ° C. for 20 minutes. To this agar melt, 1 mL of 5 mM edible red No. 102 filtered and sterilized with a 0.2 μm pore membrane filter was added, and 15 mL thereof was dispensed into a petri dish having an inner diameter of 9 cm.
B. A section of 2.4 × 1.2 cm 2 was cut out from the agar having a thickness of 2.4 mm which was cooled and solidified while being sheared.
C. This section was sandwiched between microfiber cloth and nylon film, and heat sealed on all sides with a sealer to complete the “red sensor”. This sensor attaches the surface of the microfiber cloth to the fish meat and sucks out the drip.
D. The concentration of Edible Red No. 102 in the sensor is 50 μM, which corresponds to a weight ratio of 0.003%. In addition, the “use standard of pigment” defined in the Food Sanitation Law is 0.01 to 0.002%.

(2)センサーの取り付け
イ.山口県産のタイとカレイを下関市内の小売店で購入し、実験室で3枚に下ろした。こ の切り身の表面に上記の固形媒体センサーを載せ、その切り身をポリエチレン袋に入れ て10℃で保存した。
ロ.保存期間中に、センサーの赤色が消えて白くなった時点で切り身を袋から取り出し、 その細菌数を実施例1と同じ方法を用いて調べた。
(3)センサーの検知結果
センサーが変色した時点と細菌数は、タイの場合、保存開始96時間後で魚肉1g当り1.5×10の6乗、カレイの場合、同94時間後で1.3×10の6乗であった。
(4)考察
実施例4によって、固形媒体センサーを用いても、魚肉の細菌数が「魚肉1g当り10の6乗(公定法による)」を超えたか否かを、センサーの変色の有無によって検知できることが確認された。
(2) Sensor mounting :
A. I purchased Thai and flatfish from Yamaguchi Prefecture at a retail store in Shimonoseki City and dropped them to 3 in the laboratory. The above-mentioned solid medium sensor was placed on the surface of this fillet, and the fillet was put in a polyethylene bag and stored at 10 ° C.
B. During the storage period, when the red color of the sensor disappeared and became white, the fillet was removed from the bag, and the bacterial count was examined using the same method as in Example 1.
(3) Sensor detection results :
The time when the sensor changed color and the number of bacteria were 1.5 × 10 6 per gram of fish for 96 hours after the start of storage in Thailand, and 1.3 × 10 6 after 94 hours for flounder. there were.
(4) Consideration :
According to Example 4, it is confirmed that even if a solid medium sensor is used, whether or not the number of bacteria in fish meat has exceeded “the sixth power of 10 per g of fish (according to the official method)” can be detected by the presence or absence of discoloration of the sensor. It was.

<「未包装魚肉」の細菌汚染レベルの検知例>
(1)センサーの取り付けと展示
近くの24時間営業のスーパーマーケット鮮魚部に依頼して、早朝に入荷したキントキタイ、ホンタイ(マダイ)、ヒラメ、イトヨリからそれぞれ300g程度の切り身を作製してもらった。この切り身を10℃に調整したショウケースの端に並べてもらい、実施例1と同じ方法で作成したセンサーをそれぞれの切り身の表面に午前12時に貼り付けた。
(2)センサー変色時の細菌数:
鮮魚部に経過の観察を依頼していたところ、3日目の午前9時にキントキタイのセンサーが変色しているとの連絡を受けた。直ちに全ての切り身を回収して、実施例1で用いた方法と同じ方法によって細菌検査を行ったところ、センサーが変色したキントキタイの魚肉1g当りの細菌数は10の6乗、すなわち「1.3×106/g」であり、残りのホンタイ、ヒラメ、イトヨリの細菌数は「3.0〜7.4×10/g」の間であった。
(3)考察:
実施例5によって、本発明に係る魚肉の細菌汚染レベルを検知する方法は、実際の販売店において有用であることが確認された。
<Example of detection of bacterial contamination level of "unpackaged fish meat">
(1) Sensor installation and display :
We asked a nearby 24-hour supermarket fresh fish department to make a slice of about 300g each from Kintokitai, Hontai (Madai), Japanese flounder, and Itoyori that arrived in the early morning. This fillet was arranged on the end of a showcase adjusted to 10 ° C., and a sensor prepared by the same method as in Example 1 was attached to the surface of each fillet at 12:00 am.
(2) Number of bacteria at sensor discoloration:
When I asked the fresh fish department to observe the progress, I was informed that the sensor of Kintokitai was discolored at 9:00 am on the third day. All the fillets were immediately collected and tested for bacteria by the same method as used in Example 1. As a result, the number of bacteria per gram of Kintokitai fish whose sensor had changed color was 10 6, that is, “1.3 × 10 6 / g ”, and the remaining number of bacteria in the hontai, Japanese flounder, and cynomolgus were between“ 3.0 to 7.4 × 10 4 / g ”.
(3) Consideration:
According to Example 5, it was confirmed that the method for detecting the bacterial contamination level of fish meat according to the present invention is useful in an actual store.

<「固形媒体センサー」の作製とその使用方法の例2>
(1)センサーの作製
イ. 蒸留水で作成した99mLのpH緩衝液(10mL:HEPES、pH7.0)に 寒天(アガロースS)を0.9g添加し、121℃で20分間加熱した。この寒天融液 に0.2μm孔のメンブレンフィルターで濾過・除菌した5mMの赤色102号を1m L添加し、その15mLを内径9cmのシャーレに分注した。
ロ.シヤーレのまま冷却して固化させた厚さ2.4mmの寒天から、2.4×1.2cm の切片を切り出した。
ハ.この寒天の切片を「長尺のマイクロファイバークロス」と「切片と同尺のナイロン製 フィルム」で挟み、四方をシーラーで熱シールして「赤いセンサー」を完成させた。こ のセンサーは、長尺ではみ出たマイクロファイバークロスの面のみをドリップの導入部 として魚肉の下面に下敷きのようにして貼り付けてドリップを吸い取るものである。
(2)センサーの取り付け
<Example 2 of production and usage method of “solid medium sensor”>
(1) Production of sensor :
A. 0.9 g of agar (Agarose S) was added to 99 mL of pH buffer (10 mL: HEPES, pH 7.0) prepared with distilled water, and heated at 121 ° C. for 20 minutes. To this agar melt, 1 mL of 5 mM red No. 102 filtered and sterilized with a membrane filter having a 0.2 μm pore was added, and 15 mL thereof was dispensed into a petri dish having an inner diameter of 9 cm.
B. A section of 2.4 × 1.2 cm 2 was cut out from the agar having a thickness of 2.4 mm which was cooled and solidified while being sheared.
C. This agar slice was sandwiched between a “long microfiber cloth” and a “nylon film that is the same length as the slice” and heat sealed on all sides with a sealer to complete the “red sensor”. In this sensor, only the surface of the microfiber cloth that protrudes in the long length is attached to the bottom surface of the fish meat as a drip introduction part so as to suck out the drip.
(2) Sensor mounting :

市販のマダイの切り身の下面に、長尺ではみ出たクロスの面を下敷きのようにして取り付け(図7)、10℃の室で保存した。保存期間中はずっと観察を続け、センサーの色が赤色から白色に変化した時点で魚肉を取り出し、実施例1で用いたのと同じ方法で切り身の細菌数を計数した。
(3)センサーの検知結果
センサーが変色したのは、保存開始後98時間経過した時点であり、その細菌数は5.6×10であった。
(4)考察
実施例6の結果から、ドリップの導入部を備えた固形媒体センサーを用いても、魚肉の細菌数が「魚肉1g当り10の6乗(公定法による)」に達したか否かを、センサーの変色の有無によって確認できることが判った。
The surface of the cross that protruded in a long length was attached to the lower surface of a commercially available red sea bream fillet as an underlay (FIG. 7), and stored in a 10 ° C. room. Observation was continued throughout the storage period, and when the color of the sensor changed from red to white, fish meat was taken out and the number of bacteria in the fillets was counted in the same manner as used in Example 1.
(3) Sensor detection results :
The sensor was discolored when 98 hours had passed since the start of storage, and the bacterial count was 5.6 × 10 6 .
(4) Consideration :
From the results of Example 6, even if a solid medium sensor equipped with a drip introduction part was used, it was determined whether or not the number of bacteria in fish meat reached “the sixth power of 10 per 1 g of fish (according to the official method)”. It was found that this can be confirmed by the presence or absence of discoloration.

<「スモークサーモン」の細菌汚染レベルの検知例>
(1)センサーの作製
実施例1で用いた方法と同じ方法で同じ大きさの平面媒体センサーを4枚作製した。
(2)センサーの取り付け
4切れの市販のスモークサーモン(冷燻法で作製したもの)に上記のセンサーをそれぞれ密着するように載せ、別々に含気包装した。
(3)細菌数の測定
これら4個の包装体を10℃に調整したショウケース内に並べ、センサーの色の変化の有無を観察した。198時間後に1個の包装体のセンサーが白色に変化したので、その時点で全ての包装体を開封し、センサーと切り身を取り出し、実施例1で用いたのと同じ試験方法でそれぞれの切り身の細菌数を調べた。
(4)試験結果
<Example of detecting the level of bacterial contamination in "smoked salmon">
(1) Production of sensor :
Four planar medium sensors having the same size were produced by the same method as used in Example 1.
(2) Sensor mounting :
The above sensors were placed in close contact with four pieces of commercially available smoked salmon (prepared by a cold-cooking method) and packaged separately with air.
(3) Measurement of the number of bacteria :
These four packages were arranged in a showcase adjusted to 10 ° C., and the presence or absence of a change in the color of the sensor was observed. After 198 hours, the sensor of one package changed to white. At that time, all the packages were opened, the sensor and the fillet were taken out, and the same test method used in Example 1 was used for each fillet. The bacterial count was examined.
(4) Test results :

試験の結果、センサーが変色した包装体の切り身の細菌数は「魚肉1g当り9.6g×10の6乗(公定法による)」に達していた。
(5)考察
スモークサーモンにおいてもセンサーの有効性が確認されたが、反応までの時間は198時間で、他の事例の2倍以上の長さであった。これは、スモークサーモンでは冷燻や食塩処理により細菌の増殖が抑えられているためであると考えられる。
As a result of the test, the number of bacteria in the fillet of the package whose color changed by the sensor reached “9.6 g × 10 6 (per official method) per 1 g of fish meat”.
(5) Consideration :
The effectiveness of the sensor was also confirmed in smoked salmon, but the time to reaction was 198 hours, more than twice as long as the other cases. This is thought to be because the growth of bacteria in smoked salmon is suppressed by chilling or salt treatment.

本発明に係る魚肉の細菌レベルを検知する方法とその検知方法に用いるセンサーは、冷蔵中の生の魚肉全般に適用できる上、魚肉に限らず、牛肉や豚肉等の獣肉、鶏肉等の鳥肉及びこれらの加工食品の細菌管理についても適用できる。すなわち、本発明は、生の食肉全般の細菌管理に応用することができるので、きわめて有用である。
The method for detecting the bacterial level of fish according to the present invention and the sensor used in the detection method are applicable to all raw fish being refrigerated, and are not limited to fish, but also beef, pork, etc., and chicken, chicken, etc. It can also be applied to bacterial control of these processed foods. That is, the present invention is extremely useful because it can be applied to bacterial management of all raw meat.

Claims (6)

冷蔵中の生の魚肉について、その魚肉から滲出するドリップに接触するようにアゾ色素を含むセンサーを取り付け、センサーの色の変化の有無を肉眼で観察することによって当該魚肉の細菌汚染レベルを検知する方法。   For raw fish meat that has been refrigerated, a sensor containing an azo dye is attached so that it touches the drip that exudes from the fish meat, and the level of bacterial contamination in the fish meat is detected by visually observing whether the sensor color has changed. Method. 細菌汚染レベルを検知する対象の魚肉が密封包装したものである請求項1に記載の魚肉の細菌汚染レベルを検知する方法。   The method for detecting the bacterial contamination level of fish meat according to claim 1, wherein the target fish meat for detecting the bacterial contamination level is hermetically packaged. センサーとして、アゾ色素を紙や布等の平面媒体に吸着させたものを用いる請求項1又は2に記載の魚肉の細菌汚染レベルを検知する方法。   The method for detecting the bacterial contamination level of fish meat according to claim 1 or 2, wherein the sensor is one in which an azo dye is adsorbed on a flat medium such as paper or cloth. センサーとして、アゾ色素を寒天やゼラチン等の固形媒体に溶解させ固化したものを用いる請求項1又は2に記載の魚肉の細菌汚染レベルを検知する方法。   The method for detecting the bacterial contamination level of fish meat according to claim 1 or 2, wherein the sensor is prepared by dissolving and solidifying an azo dye in a solid medium such as agar or gelatin. アゾ色素として、食用赤色2号、食用赤色40号、食用赤色102号、食用黄色4号、食用黄色5号のいずれかを用いる請求項3又は4に記載の魚肉の細菌汚染レベルを検知する方法。   The method for detecting the bacterial contamination level of fish meat according to claim 3 or 4, wherein any one of Food Red No. 2, Food Red No. 40, Food Red No. 102, Food Yellow No. 4, and Food Yellow No. 5 is used as the azo dye. . アゾ色素を紙や布等の平面媒体に吸着させたものであるか又は寒天やゼラチン等の固形媒体に溶解させ固化したものであって魚肉の細菌汚染レベルを検知するために用いるセンサー。   A sensor used to detect the level of bacterial contamination of fish meat, which is obtained by adsorbing an azo dye on a flat medium such as paper or cloth, or by dissolving and solidifying in a solid medium such as agar or gelatin.
JP2012024834A 2011-02-09 2012-02-08 Method for detecting bacterial contamination level of fish meat and sensor used for the detection method Expired - Fee Related JP6162362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024834A JP6162362B2 (en) 2011-02-09 2012-02-08 Method for detecting bacterial contamination level of fish meat and sensor used for the detection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011026050 2011-02-09
JP2011026050 2011-02-09
JP2012024834A JP6162362B2 (en) 2011-02-09 2012-02-08 Method for detecting bacterial contamination level of fish meat and sensor used for the detection method

Publications (2)

Publication Number Publication Date
JP2012181192A true JP2012181192A (en) 2012-09-20
JP6162362B2 JP6162362B2 (en) 2017-07-12

Family

ID=47012484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024834A Expired - Fee Related JP6162362B2 (en) 2011-02-09 2012-02-08 Method for detecting bacterial contamination level of fish meat and sensor used for the detection method

Country Status (1)

Country Link
JP (1) JP6162362B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089887A (en) * 2014-03-31 2014-10-08 浙江工商大学 Device and method for detecting snowflake beef
CN113514459A (en) * 2021-03-19 2021-10-19 广州城市职业学院 Intelligent label containing corn poppy pigment, preparation method and application
US11941798B2 (en) 2020-09-03 2024-03-26 International Business Machines Corporation Food-product tracking by photogrammetry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593032A (en) * 1978-12-30 1980-07-15 Osaka Gas Co Ltd Temperature detection tool
JPH0755788A (en) * 1993-08-20 1995-03-03 Toyo Ink Mfg Co Ltd Moisture indicator
JP2001510572A (en) * 1997-07-16 2001-07-31 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ,リプリゼンテッド バイ ザ セクレタリー,デパートメント オブ ヘルス アンド ヒューマン サービス Food quality indicator device
JP2002040012A (en) * 1993-05-19 2002-02-06 California South Pacific Investors Detection means for pollutant in food
JP2005538740A (en) * 2002-09-16 2005-12-22 アグサート・インターナショナル・エルエルシー Foodborne pathogen and spoilage detection apparatus and method
JP2007514952A (en) * 2003-12-16 2007-06-07 キンバリー クラーク ワールドワイド インコーポレイテッド Detection and quantification of microorganisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593032A (en) * 1978-12-30 1980-07-15 Osaka Gas Co Ltd Temperature detection tool
JP2002040012A (en) * 1993-05-19 2002-02-06 California South Pacific Investors Detection means for pollutant in food
JPH0755788A (en) * 1993-08-20 1995-03-03 Toyo Ink Mfg Co Ltd Moisture indicator
JP2001510572A (en) * 1997-07-16 2001-07-31 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ,リプリゼンテッド バイ ザ セクレタリー,デパートメント オブ ヘルス アンド ヒューマン サービス Food quality indicator device
JP2005538740A (en) * 2002-09-16 2005-12-22 アグサート・インターナショナル・エルエルシー Foodborne pathogen and spoilage detection apparatus and method
JP2007514952A (en) * 2003-12-16 2007-06-07 キンバリー クラーク ワールドワイド インコーポレイテッド Detection and quantification of microorganisms

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089887A (en) * 2014-03-31 2014-10-08 浙江工商大学 Device and method for detecting snowflake beef
US11941798B2 (en) 2020-09-03 2024-03-26 International Business Machines Corporation Food-product tracking by photogrammetry
CN113514459A (en) * 2021-03-19 2021-10-19 广州城市职业学院 Intelligent label containing corn poppy pigment, preparation method and application

Also Published As

Publication number Publication date
JP6162362B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
Kim et al. Development of a pH indicator composed of high moisture-absorbing materials for real-time monitoring of chicken breast freshness
Realini et al. Active and intelligent packaging systems for a modern society
Rukchon et al. Development of a food spoilage indicator for monitoring freshness of skinless chicken breast
Sujiwo et al. Relation among quality traits of chicken breast meat during cold storage: correlations between freshness traits and torrymeter values
Arvanitoyannis et al. Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: a review
Hayman et al. Effects of high-pressure processing on the safety, quality, and shelf life of ready-to-eat meats
Mohan et al. Effect of filling medium on cooking time and quality of canned yellowfin tuna (Thunnus albacares)
JP2015184332A (en) food freshness label
Gokoglu Innovations in seafood packaging technologies: A review
WO2005122774A2 (en) Packaging of meat prodcuts with modified atmospheres and/or enhancers
Sujiwo et al. Relationship between quality and freshness traits and torrymeter value of beef loin during cold storage
Chmiel et al. Quality changes of chicken breast meat packaged in a normal and in a modified atmosphere
Daniloski et al. The effect of barrier properties of polymeric films on the shelf-life of vacuum packaged fresh pork meat
JP6162362B2 (en) Method for detecting bacterial contamination level of fish meat and sensor used for the detection method
Singh et al. Indicator sensors for monitoring meat quality: A review
Khodaei et al. Application of intelligent packaging for meat products: A systematic review
Sariningsih et al. Methyl red indicator on smart packaging as a freshness sensor for tilapia fillets
Soni et al. Development of colorimetric on-package indicator for monitoring of chicken meat freshness during refrigerated storage (4±1 C)
Rastiani et al. Monitoring the freshness of rainbow trout using intelligent PH-sensitive indicator during storage
Abd-Elghany et al. Ensuring the best storage temperature of Egyptian pastrami based on microbiological, physico-chemical and sensory evaluation
Mohan et al. Influence of mono-and multilayered packaging material on the quality of seer fish (Scomberomorus commerson) during chilled storage
Vahabi Anaraki et al. Effects of post‐packaging pasteurization process on microbial, chemical, and sensory qualities of ready‐to‐eat cured vacuum‐packed Turkey breast
KR20130067118A (en) The kit which can determine the freshness of food
Kasmiati et al. Quality and safety of fresh squid (Loligo forbesii) sold in Daya Traditional Market, Makassar, Indonesia
CN102177952B (en) Reformed egg preserving solution and preserving method

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160513

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R150 Certificate of patent or registration of utility model

Ref document number: 6162362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees