JP2012181162A - Potential difference measurement device - Google Patents

Potential difference measurement device Download PDF

Info

Publication number
JP2012181162A
JP2012181162A JP2011045851A JP2011045851A JP2012181162A JP 2012181162 A JP2012181162 A JP 2012181162A JP 2011045851 A JP2011045851 A JP 2011045851A JP 2011045851 A JP2011045851 A JP 2011045851A JP 2012181162 A JP2012181162 A JP 2012181162A
Authority
JP
Japan
Prior art keywords
sample
electrode
molecule
active substance
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011045851A
Other languages
Japanese (ja)
Inventor
Yu Ishige
悠 石毛
Masao Kamahori
政男 釜堀
Yusuke Goto
佑介 後藤
Tomoko Honma
智子 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011045851A priority Critical patent/JP2012181162A/en
Publication of JP2012181162A publication Critical patent/JP2012181162A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem in a potential difference measurement device that it has been found that a certain time period (response time) is required to generate a potential value conforming to a Nernst formula, and this response time tend to elongate with repeated use of the device.SOLUTION: The potential difference measurement device includes a sample solution holding section; a measurement electrode which is brought into contact with the sample solution to be introduced into the sample solution holding section, and on which molecules each having a hydrophilic group and molecules each having an electrochemical active material are aligned and coupled with each other; a reference electrode to be brought into contact with the sample solution to be introduced into the sample solution holding section; and a potentiometer for measuring a potential difference between the measurement electrode and the reference electrode.

Description

本発明は,電気的な計測を行い生体物質・環境物質を高精度,高感度および高スループットに測定することのできる測定装置,および測定方法に関する。   The present invention relates to a measuring apparatus and a measuring method capable of measuring a biological substance / environmental substance with high accuracy, high sensitivity and high throughput by performing electrical measurement.

血液検査は健康状態の把握や病気の早期発見の手段として広く普及している。血液検査では,要求精度,迅速性,コストなどに応じて,大型の生化学自動分析装置を用いる場合や,小型のポイント・オブ・ケア・テスティング(POCT)向け装置を用いる場合がある。大型の生化学自動分析装置は総合病院や検査センターに導入されていて,単位時間当たりの検体処理能力が高く測定精度も比較的高く,ランニングコストも比較的低いため,健康診断などの定期的な検査に適している。一方,POCT向け装置では,現状では測定精度は大型の生化学自動分析装置には及ばないものの,検体を採取したその場ですぐに検査結果が得られる迅速性を有しているため,術中検査などの緊急検査,外来患者に対する検査,救急車内での検査,診療所での検査,自己血糖測定などの在宅での自己検査に適している。   Blood tests are widely used as a means of understanding health conditions and early detection of diseases. In blood tests, depending on required accuracy, speed, cost, etc., a large biochemical automatic analyzer may be used or a small point-of-care testing (POCT) device may be used. Large automatic biochemical analyzers are installed in general hospitals and testing centers, have high sample processing capacity per unit time, relatively high measurement accuracy, and relatively low running costs. Suitable for inspection. On the other hand, with POCT equipment, the measurement accuracy is not as high as that of a large-scale automatic biochemical analyzer, but it is quick enough to obtain test results immediately after sampling. It is suitable for emergency tests such as outpatients, tests for outpatients, tests in ambulances, tests at clinics, self-tests at home such as self-blood glucose measurement.

POCT向け装置では,電気的な測定法が用いられることがしばしばある。これは,電気的な測定法を用いることで,光学的な測定法を用いる場合に比べて装置を小型化することができるためである。電気的な測定法の一つである電流計測法は,試薬と試料の反応の生成物(通常は酸化還元物質)を電極で反応させ電流値として測定し,測定対象物濃度を求める電気化学的測定法である。通常,電流計測法では,次に示すコットレルの式やこれを応用した式に従い電極に流れる電流iを測定する。   Devices for POCT often use electrical measurement methods. This is because the electrical measurement method can be used to reduce the size of the apparatus compared to the case of using the optical measurement method. The current measurement method, one of the electrical measurement methods, is an electrochemical method in which the product of reaction between a reagent and a sample (usually a redox substance) is reacted with an electrode and measured as a current value to determine the concentration of the measurement object. It is a measurement method. Usually, in the current measurement method, the current i flowing through the electrode is measured in accordance with the following Cottrell equation or an equation based on this equation.

電流計測法を用いた装置としては,血糖値を測定するグルコースセンサなどがあり(例えば特許文献1),チップは使い捨てを前提として作られている。 As a device using the current measurement method, there is a glucose sensor for measuring a blood glucose level (for example, Patent Document 1), and the chip is made on the premise of being disposable.

他の電気的な測定法である電位差計測法は電流計測法とは異なり,信号が電極面積に依存しない電気化学的測定法である。電位差計測法は,金や白金などでできた測定電極(作用電極)と参照電極で構成され,測定溶液中に酵素と酸化還元物質が存在する(特許文献2,特許文献3)。また,測定電極と参照電極は,電圧計などの電圧を測定する装置に接続されている。測定溶液中に測定対象物質が添加されると,酵素反応により測定対象物質が酸化され,同時に酸化状態の酸化還元物質が還元される。その際に生じる測定電極の表面電位は次のネルンストの式に従う。   Unlike the current measurement method, the potential difference measurement method, which is another electrical measurement method, is an electrochemical measurement method in which the signal does not depend on the electrode area. The potentiometric method is composed of a measurement electrode (working electrode) made of gold or platinum and a reference electrode, and an enzyme and a redox substance are present in the measurement solution (Patent Documents 2 and 3). Further, the measurement electrode and the reference electrode are connected to a device for measuring a voltage such as a voltmeter. When the measurement target substance is added to the measurement solution, the measurement target substance is oxidized by the enzyme reaction, and at the same time, the oxidized redox substance is reduced. The surface potential of the measurement electrode generated at that time follows the following Nernst equation.

上式には電極の面積が含まれず,表面電位は電極面積に依存しない。 The above equation does not include the electrode area, and the surface potential does not depend on the electrode area.

特開平2-245650JP-A-2-245650 特表平9-500727Special table flat 9-500727 特開2008-128803JP2008-128803

上記のような特徴を有する電位差計測方式を用いて測定装置を構築したところ,ネルンストの式に従う電位が発生するにはある程度の時間(応答時間)が必要であることがわかった。また,この応答時間は装置を繰り返して使用すると徐々に長くなる傾向が見られた。   When a measuring device was constructed using the potentiometric method with the above characteristics, it was found that a certain amount of time (response time) was required to generate a potential according to the Nernst equation. The response time tended to become longer with repeated use of the device.

上記課題を解決する手段として代表的な例として、試料溶液保持部と,前記試料溶液保持部に導入される試料溶液に接触し,親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極と,前記試料溶液保持部に導入される試料溶液に接触する参照電極と,前記測定電極と前記参照電極との間の電位差を測定する電位差計とを備えることを特徴とする。   As a typical example of means for solving the above problems, there are a sample solution holding unit, a molecule having a hydrophilic group and a molecule having an electrochemically active substance in contact with the sample solution introduced into the sample solution holding unit. A measurement electrode coupled side by side on the surface, a reference electrode in contact with the sample solution introduced into the sample solution holding unit, and a potentiometer for measuring a potential difference between the measurement electrode and the reference electrode It is characterized by.

上記構成とすることによって,応答時間を短縮することができ,装置のスループットを向上させることができる。また、繰返しの測定を行う際に,応答時間が測定精度に影響を及ぼす程度よりも短い時間を維持するため,測定の高い再現性が維持される。さらに,応答時間は試料の濃度に反比例する傾向が見られるが,上記構成とすることでより低濃度の試料を測定する際にも応答時間が短くなり,結果として装置の感度が向上する。   With the above configuration, the response time can be shortened and the throughput of the apparatus can be improved. Also, when performing repeated measurements, the response time is kept shorter than the degree that affects measurement accuracy, so that high measurement reproducibility is maintained. Furthermore, although the response time tends to be inversely proportional to the concentration of the sample, the above configuration shortens the response time even when measuring a sample having a lower concentration, and as a result, the sensitivity of the apparatus is improved.

測定電極の例である。It is an example of a measurement electrode. 電位差計測装置の構成図の例である。It is an example of a block diagram of a potential difference measuring apparatus. 図2の装置の動作を説明するフローチャートの例である。It is an example of the flowchart explaining operation | movement of the apparatus of FIG. 親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることの効果の例である。This is an example of the effect of using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface. 測定電極の等価回路の例である。It is an example of the equivalent circuit of a measurement electrode. 親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることの効果の例である。This is an example of the effect of using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface. 親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることの効果の例である。This is an example of the effect of using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface. 親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることの効果の例である。This is an example of the effect of using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface. 測定電極の例である。It is an example of a measurement electrode. グルコース濃度を測定した結果の例である。It is an example of the result of having measured glucose concentration. コレステロール濃度を測定した結果の例である。It is an example of the result of having measured cholesterol concentration. 電位差変化を測定した結果の例である。It is an example of the result of having measured potential difference change.

以下,実施例を図面を用いて説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図2は,電位差計測法により試料中の測定対象物質を測定する装置の構成図の一例である。図2(A)に示す測定装置は,駆動部201と制御部202から成り,駆動部201と制御部202は接続されている。駆動部201は,試料搬送部203,試料配置部204,試料配置部204に配置された試料を導入する試料導入部205,試料導入部からの試料を流路内に保持する試料溶液保持部206,流路内の試料と接触するように設けられた測定電極207及び参照電極208,測定電極と参照電極の間の電圧を測定する電位差計209,流路内の試料を送液する送液部210,測定後の試料などを廃液するための廃液容器211からなる。制御部202は,データ処理装置212,データ表示装置216を有し,データ処理装置212は,例えば,演算装置213,一時記憶装置214,不揮発性記憶装置215を有している。試料配置部204としては、複数の試料容器を配置させ交換できるような構成とすることができる。   FIG. 2 is an example of a configuration diagram of an apparatus for measuring a substance to be measured in a sample by a potentiometric method. 2A includes a drive unit 201 and a control unit 202, and the drive unit 201 and the control unit 202 are connected to each other. The driving unit 201 includes a sample transport unit 203, a sample placement unit 204, a sample introduction unit 205 that introduces a sample placed in the sample placement unit 204, and a sample solution holding unit 206 that holds a sample from the sample introduction unit in the flow path. , A measurement electrode 207 and a reference electrode 208 provided so as to be in contact with a sample in the flow path, a potentiometer 209 for measuring a voltage between the measurement electrode and the reference electrode, and a liquid feeding section for feeding the sample in the flow path 210, a waste liquid container 211 for draining a sample after measurement. The control unit 202 includes a data processing device 212 and a data display device 216. The data processing device 212 includes, for example, an arithmetic device 213, a temporary storage device 214, and a nonvolatile storage device 215. The sample placement unit 204 can be configured such that a plurality of sample containers can be placed and replaced.

図2(B)に測定電極207と試料溶液保持部206内の流路の拡大図を示す。送液部210により試料は矢印の方向に進み測定電極に接触する。送液部210を用いる代わりにシリンジなどで試料導入部205から試料溶液を注入しても良い。   FIG. 2B shows an enlarged view of the flow channels in the measurement electrode 207 and the sample solution holding unit 206. The sample advances in the direction of the arrow by the liquid feeding unit 210 and contacts the measurement electrode. Instead of using the liquid feeding unit 210, the sample solution may be injected from the sample introduction unit 205 with a syringe or the like.

図3は,測定手順を示す図の一例である。試料配置部204に測定したい試料数だけ試料溶液を配置する(302)。駆動部201により試料配置部204を試料導入部205まで移動させ(305),送液部210により試料配置部204内の試料溶液を試料導入部205から吸引し,試料溶液保持部206内を試料溶液で満たす(306)。一定時間待機した後(307),試料溶液が測定電極と参照電極に接触した状態で,電位差計により測定電極と参照電極の間の電位差を測定し記録する(308)。送液部により試料溶液保持部にある試料溶液を廃液容器に廃液する(309)。304〜309の動作を測定したい試料について行った後(303),ネルンストの式やそれを変形した式に従い,電位差から試料中の測定対象物質の濃度を算出し(310),結果を表示する(311)。   FIG. 3 is an example of a diagram illustrating a measurement procedure. The sample solution is arranged in the sample arrangement unit 204 by the number of samples to be measured (302). The sample placement unit 204 is moved to the sample introduction unit 205 by the driving unit 201 (305), the sample solution in the sample placement unit 204 is sucked from the sample introduction unit 205 by the liquid feeding unit 210, and the sample solution holding unit 206 is sampled in the sample solution holding unit 206. Fill with solution (306). After waiting for a certain time (307), the potential difference between the measurement electrode and the reference electrode is measured and recorded by a potentiometer while the sample solution is in contact with the measurement electrode and the reference electrode (308). The sample solution in the sample solution holding unit is drained into the waste container by the liquid feeding unit (309). After performing the operations 304 to 309 on the sample to be measured (303), the concentration of the substance to be measured in the sample is calculated from the potential difference according to the Nernst equation or a modified equation (310), and the result is displayed ( 311).

試料溶液として,検体と試薬の混合物を用いることで,検体中の測定したい物質(測定項目)の濃度を求めることができる。検体としては,一例として,血液,尿,唾液がある。試薬の組成と測定項目を表に示す。   By using a mixture of the specimen and the reagent as the sample solution, the concentration of the substance (measurement item) to be measured in the specimen can be obtained. Examples of specimens include blood, urine, and saliva. The composition of the reagent and the measurement items are shown in the table.

測定したい物質に対する抗体を用いることで,酵素免疫測定法により様々な物質を測定することができる。その際の,標識酵素と基質の組み合わせの一例を表に示す。   By using an antibody against the substance to be measured, various substances can be measured by enzyme immunoassay. An example of a combination of a labeling enzyme and a substrate is shown in the table.

図1は測定電極207の表面修飾の一例を示す図である。測定電極207には,望ましくは,親水性基を有する分子と電気化学活性物質を有する分子が,表面に並んで結合した測定電極を用いる。   FIG. 1 is a diagram showing an example of surface modification of the measurement electrode 207. The measurement electrode 207 is preferably a measurement electrode in which molecules having a hydrophilic group and molecules having an electrochemically active substance are bonded side by side on the surface.

測定電極の表面に結合させる電気化学活性物質は,一例として,6−フェロセニル−1−ヘキサンチオール(CAS番号134029-92-8),8−フェロセニル−1−オクタンチオール(CAS番号146056-20-4),11−フェロセニル−1−ウンデカンチオール(CAS番号127087-36-9)がある。   Examples of the electrochemically active substance to be bonded to the surface of the measurement electrode include 6-ferrocenyl-1-hexanethiol (CAS number 134029-92-8), 8-ferrocenyl-1-octanethiol (CAS number 146056-20-4). ), 11-ferrocenyl-1-undecanthiol (CAS No. 127087-36-9).

測定電極の表面に結合させる親水性基を有する分子は,一例として,6−ヒドロキシ−1−ヘキサンチオール(CAS番号1633-78-9),8−ヒドロキシ−1−オクタンチオール(CAS番号 33065-54-2),11−ヒドロキシ−1−ウンデカンチオール(CAS番号 73768-94-2),16−ヒドロキシ−1−ヘキサデカンチオール(CAS番号114896-32-1)11−メルカプトウンデカノールトリエチレングリコールエーテル(CAS番号130727-41-2),11−メルカプトウンデカノールヘキサエチレングリコールエーテル(CAS番号130727-44-5),16−メルカプトヘキサデカノールトリエチレングリコールエーテル,16−メルカプトヘキサデカノールヘキサエチレングリコールエーテルがある。   Examples of molecules having a hydrophilic group to be bonded to the surface of the measurement electrode include 6-hydroxy-1-hexanethiol (CAS number 1633-78-9), 8-hydroxy-1-octanethiol (CAS number 33065-54). -2), 11-hydroxy-1-undecanethiol (CAS number 73768-94-2), 16-hydroxy-1-hexadecanethiol (CAS number 114896-32-1) 11-mercaptoundecanol triethylene glycol ether ( CAS number 130727-41-2), 11-mercaptoundecanol hexaethylene glycol ether (CAS number 130727-44-5), 16-mercaptohexadecanol triethylene glycol ether, 16-mercaptohexadecanol hexaethylene glycol ether There is.

図1(A)は、比較例として電気化学活性物質を有する分子として11−フェロセニル−1−ウンデカンチオール(11-FUT)のみを並べた場合、図1(B)は11-FUTと11−ヒドロキシ−1−ウンデカンチオール(11-HUT)を並べた場合、図1(C)は11-FUTと11−メルカプトウンデカノールトリエチレングリコールエーテル(11-MUEG3)を並べた場合、図1(D)は11-FUTと11-HUTと11-MUEG3を1:8:1で並べた場合を示している。   FIG. 1 (A) shows a case where only 11-ferrocenyl-1-undecanethiol (11-FUT) is arranged as a molecule having an electrochemically active substance as a comparative example, and FIG. 1 (B) shows 11-FUT and 11-hydroxy. When -1-undecanethiol (11-HUT) is arranged, FIG. 1 (C) shows the case where 11-FUT and 11-mercaptoundecanol triethylene glycol ether (11-MUEG3) are arranged, FIG. 1 (D). Shows the case where 11-FUT, 11-HUT, and 11-MUEG3 are arranged at 1: 8: 1.

図1では金の電極にアルカンチオールを修飾することで,親水性基を有する分子と電気化学活性物質を有する分子が,表面に並んで結合した測定電極としたが,金以外にも白金や銀などの貴金属にイオン結合や共有結合による化学修飾を施しても良い。また、上記のアルカンチオールを用いた修飾以外にも、例えばチオールベンゼンなどを末端に有するチオール化合物を用いることができ、電気化学活性物質を修飾した分子、親水性基を修飾した分子がそれぞれ並んで配置されるようにできればよい。並んだときのそれぞれの分子の高さが揃う方が、電気化学活性物質の存在する雰囲気を親水性とする点および試料交換時の試料の入れ替えの点でよい。   In FIG. 1, the gold electrode is modified with alkanethiol to form a measurement electrode in which molecules having hydrophilic groups and molecules having electrochemically active substances are bonded side by side on the surface. Chemical modification by ionic bond or covalent bond may be applied to noble metals such as. In addition to the above modification using alkanethiol, for example, a thiol compound having thiol benzene or the like at its end can be used, and a molecule modified with an electrochemically active substance and a molecule modified with a hydrophilic group are arranged side by side. What is necessary is just to be able to arrange. It is sufficient that the heights of the respective molecules are aligned when they are arranged in order to make the atmosphere in which the electrochemically active substance exists hydrophilic, and to replace the sample at the time of sample replacement.

図4は,親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることの効果の一例を示す測定結果である。電気化学活性物質として11−フェロセニル−1−ウンデカンチオール(11-FUT)と、親水性基を有する分子として11−ヒドロキシ−1−ウンデカンチオール(11-HUT)とをそれぞれ表面に並んで結合させた直径1.6mmの金電極を測定電極とした(以下,11-HUT混合電極)。具体的には,11-HUTと11-FUTを合計500μmol/L含むエタノール溶液に金電極を1時間浸漬して作製した。   FIG. 4 is a measurement result showing an example of the effect of using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface. 11-ferrocenyl-1-undecanethiol (11-FUT) as an electrochemically active substance and 11-hydroxy-1-undecanethiol (11-HUT) as a molecule having a hydrophilic group were bonded side by side on the surface. A gold electrode with a diameter of 1.6 mm was used as a measurement electrode (hereinafter referred to as 11-HUT mixed electrode). Specifically, the gold electrode was immersed in an ethanol solution containing 500 μmol / L of 11-HUT and 11-FUT for 1 hour.

比較対照として,電気化学活性物質である11−フェロセニル−1−ウンデカンチオール(11-FUT)と、親水性基を含まない11−ウンデカンチオール(11-UT)とを表面に並んで結合させた直径1.6mmの金電極を測定電極とした(以下,11-UT混合電極)。具体的には,11-HUTと11-FUTを合計500μmol/L含むエタノール溶液に金電極を1時間浸漬して作製した。   As a comparative control, 11-ferrocenyl-1-undecanethiol (11-FUT), which is an electrochemically active substance, and 11-undecanethiol (11-UT) that does not contain a hydrophilic group are bound side by side on the surface. A 1.6 mm gold electrode was used as the measurement electrode (hereinafter referred to as 11-UT mixed electrode). Specifically, the gold electrode was immersed in an ethanol solution containing 500 μmol / L of 11-HUT and 11-FUT for 1 hour.

フェリシアン化カリウム5mmol/Lとフェロシアン化カリウム5mmol/Lを含むリン酸緩衝液に測定電極,参照電極(銀塩化銀参照電極),対向電極(白金電極)を配置し,3電極法を用いて測定電極の交流インピーダンスを測定した。得られた交流インピーダンスを,図5に示す等価回路で近似した。図5の抵抗Rsは溶液抵抗を,抵抗Rdlは電極表面の抵抗を,容量Cdlは電極表面の静電容量を表す。 A measuring electrode, a reference electrode (silver silver chloride reference electrode), and a counter electrode (platinum electrode) are placed in a phosphate buffer containing 5 mmol / L potassium ferricyanide and 5 mmol / L potassium ferrocyanide. AC impedance was measured. The obtained AC impedance was approximated by an equivalent circuit shown in FIG. In FIG. 5, the resistance R s represents the solution resistance, the resistance R dl represents the resistance on the electrode surface, and the capacitance C dl represents the capacitance on the electrode surface.

電気的緩和時間τをτ=RdlCdlと定義して,さらに,11-FUTと11-HUTの合計濃度に対する11-FUTの割合もしくは11-FUTと11-UTの合計濃度に対する11-UTの割合を11-FUTの割合として,横軸を11-FUTの割合,縦軸を電気的緩和時間として図4にプロットした。黒丸は11-HUT混合電極を,白丸は11-UT混合電極を表す。 The electrical relaxation time τ is defined as τ = R dl C dl, and the ratio of 11-FUT to the total concentration of 11-FUT and 11-HUT or 11-UT to the total concentration of 11-FUT and 11-UT 4 is plotted in FIG. 4 with the ratio of 11-FUT, the horizontal axis of 11-FUT, and the vertical axis of electrical relaxation time. Black circles represent 11-HUT mixed electrodes and white circles represent 11-UT mixed electrodes.

親水性基を有する11-HUT混合電極の方が11-UT混合電極よりも電気的緩和時間が短いことが示されている。そして、11-FUTのみを表面に結合させた場合(11-FUTの割合が1)よりも,11-FUTと11-HUTを並んで結合させた場合(11-FUTの割合が0より大きく1より小さい)のほうが電気的緩和時間が短くなった。11-HUT混合電極では、11-FUTの割合が0.2程度で緩和時間は最小になり,それよりも11-FUTの割合が減少すると電気的緩和時間は増加した。また,抵抗値の変化に比べてキャパシタンスの変化はほぼ一定であり,電気的緩和時間の変化は抵抗値の変化が支配的であった。   It has been shown that the 11-HUT mixed electrode having a hydrophilic group has a shorter electrical relaxation time than the 11-UT mixed electrode. And when 11-FUT and 11-HUT are coupled side by side (11-FUT ratio is greater than 0 and 1) than when 11-FUT alone is coupled to the surface (11-FUT ratio is 1). The smaller) the shorter the electrical relaxation time. In the 11-HUT mixed electrode, the relaxation time was minimized when the ratio of 11-FUT was about 0.2, and the electrical relaxation time increased as the ratio of 11-FUT decreased. In addition, the change in capacitance was almost constant compared to the change in resistance, and the change in electrical relaxation time was dominated by the change in resistance.

ここで図4の詳細について検討すると、11-FUTの割合としては0.01以上0.9以下の範囲内であれば電気的緩和時間は下がることが分かる。さらに11-FUTの割合として0.5以下であれば電気的緩和時間を0.01秒以下とすることができる。   Examining the details of FIG. 4 here, it can be seen that the electrical relaxation time decreases if the ratio of 11-FUT is in the range of 0.01 to 0.9. Furthermore, if the 11-FUT ratio is 0.5 or less, the electrical relaxation time can be 0.01 seconds or less.

以上の結果から,次のことが考えられる。11-FUTのみを表面に結合させた金電極に比べて11-HUTも表面に結合させた金電極はヒドロキシル基の働きで金電極表面が親水性になる。そのため,親水性であるフェリシアン化カリウムおよびフェロシアン化カリウムが金電極表面に近づきやすくなり,フェリシアン化カリウムよびフェロシアン化カリウムとフェロセン基との単位時間当たりの酸化還元反応量,すなわち酸化還元反応速度が向上する。しかし,さらに11-FUTの割合が減少するとフェリシアン化カリウムよびフェロシアン化カリウムと反応するフェロセン基の面密度が減少するため,酸化還元反応速度が減少する。   From the above results, the following can be considered. Compared to a gold electrode in which only 11-FUT is bonded to the surface, a gold electrode in which 11-HUT is also bonded to the surface makes the gold electrode surface hydrophilic by the action of hydroxyl groups. Therefore, hydrophilic ferricyanide and potassium ferrocyanide easily approach the gold electrode surface, and the redox reaction amount per unit time between potassium ferricyanide and potassium ferrocyanide and ferrocene group, that is, the redox reaction rate is improved. However, if the ratio of 11-FUT is further reduced, the surface density of the ferrocene group that reacts with potassium ferricyanide and potassium ferrocyanide decreases, so the redox reaction rate decreases.

図9は,11−フェロセニル−1−ウンデカンチオール(11-FUT)と11−ヒドロキシ−1−ウンデカンチオール(11-HUT)とを表面に並んで結合させた電極での,分子の並びを模式的に表したものである。黒丸がフェロセンを,白丸が水酸基を表している。これらの分子が蜂の巣状に並ぶ場合,(A)のように11-FUTの割合が0.33程度でフェロセン同士がとなり合わずに水酸基に囲まれる。しかし,この場合でも密度にムラがあるとフェロセン同士が隣り合う可能性があり,(B)のように11-FUTの割合が0.125程度でフェロセンが2分子以上離れることができ,フェロセン同士がとなり合わなくなる確率が高まる。また,分子が升目状に並ぶ場合,(C)のように11-FUTの割合が0.5程度でフェロセン同士が隣り合わなくなり,(D)のように0.1程度でフェロセン同士が2分子以上離れることができる。尚,11-FUTなどアルカンチオールの電極表面での並びは電極の結晶面に依存しているため,結晶面を制御せずに作製した電極ではどのような並び(蜂の巣状か升目状か)になるかは定まらない。   FIG. 9 schematically shows the arrangement of molecules at an electrode in which 11-ferrocenyl-1-undecanethiol (11-FUT) and 11-hydroxy-1-undecanethiol (11-HUT) are bonded side by side on the surface. It is shown in Black circles represent ferrocene and white circles represent hydroxyl groups. When these molecules are arranged in a honeycomb shape, the ratio of 11-FUT is about 0.33 as shown in (A), and the ferrocenes are not adjacent to each other and surrounded by hydroxyl groups. However, even in this case, if the density is uneven, ferrocenes may be adjacent to each other. As shown in (B), the ratio of 11-FUT is about 0.125, and two or more ferrocenes can be separated. Probability of not matching increases. In addition, when the molecules are arranged in a grid, the ratio of 11-FUT is about 0.5 as shown in (C), and ferrocenes are not adjacent to each other, and as shown in (D), two or more ferrocenes are separated from each other. it can. Note that the arrangement of alkanethiols such as 11-FUT on the electrode surface depends on the crystal plane of the electrode, so in what arrangement (whether honeycomb or grid) the electrode is produced without controlling the crystal plane. It will not be determined.

図6は,電気的緩和時間と図2の測定装置で実測した緩和時間の関係を示すグラフである。図2の測定装置を用いて,第1の試料配置部に500μmol/Lフェリシアン化カリウムと500μmol/Lフェロシアン化カリウムを含むリン酸緩衝液(1:1試料)を,第2の試料配置部に900μmol/Lフェリシアン化カリウムと100μmol/Lフェロシアン化カリウムを含むリン酸緩衝液(9:1試料)を配置し,順番に測定を行った。ここで測定電極としては、様々な比率で作製した11-HUT混合電極もしくは11-UT混合電極を用いた。はじめに1:1試料を試料溶液保持部に保持させた後、試料搬送部203を回転させる等の駆動部による駆動により、9:1試料が試料溶液保持部に吸引されることで,測定電極と参照電極の電位差は,1:1試料に対する電位差から9:1試料に対する電位差に変化する。電位差の応答時間を全変化に対する 1/e(自然対数の底)の変化の得られる時間と定義し,図6に,縦軸を電位差の応答時間の測定値,横軸を測定に用いた電極の電気的緩和時間としてプロットした。電気的緩和時間0.2秒付近を境に,それより長い時間域においては電気的緩和時間と電位差の応答時間が一致し,それより短い時間域においては電位差の応答時間はほぼ一定値となった。これは,   FIG. 6 is a graph showing the relationship between the electrical relaxation time and the relaxation time actually measured by the measurement apparatus of FIG. Using the measurement device of FIG. 2, a phosphate buffer (1: 1 sample) containing 500 μmol / L potassium ferricyanide and 500 μmol / L potassium ferrocyanide is placed in the first sample placement section, and 900 μmol / L in the second sample placement section. A phosphate buffer solution (9: 1 sample) containing potassium L ferricyanide and 100 μmol / L potassium ferrocyanide was placed, and measurements were performed in order. Here, 11-HUT mixed electrodes or 11-UT mixed electrodes prepared at various ratios were used as measurement electrodes. First, the 1: 1 sample is held in the sample solution holding unit, and then the 9: 1 sample is sucked into the sample solution holding unit by driving by the driving unit such as rotating the sample transport unit 203. The potential difference of the reference electrode changes from the potential difference for the 1: 1 sample to the potential difference for the 9: 1 sample. The response time of the potential difference is defined as the time at which the change of 1 / e (the base of natural logarithm) can be obtained with respect to the total change. In FIG. 6, the vertical axis is the measured value of the response time of the potential difference, and the horizontal axis is the electrode Was plotted as the electrical relaxation time. The electrical relaxation time and the response time of the potential difference coincided in the time range longer than that with the electrical relaxation time of around 0.2 seconds, and the response time of the potential difference became almost constant in the shorter time range. this is,

と考えると説明できる。すなわち電位差の応答時間は,測定電極の電気的緩和時間と試料溶液保持部での試料溶液の入れ替わりにかかる時間に支配されており,どちらか大きい因子が支配的となる。今回の測定においては,溶液交換時間が0.2秒程度であり,この時間を境に,より長い時間域では電気的緩和時間が支配要因となり,より短い時間域では溶液交換時間が支配要因となった。尚,ここで言う溶液交換時間とは,測定電極の位置で試料溶液が1:1試料から9:1試料に置換され始めてから置換され終わるまでの時間のことである。 Can be explained. That is, the response time of the potential difference is governed by the electrical relaxation time of the measurement electrode and the time required for the sample solution to be replaced in the sample solution holding portion, and the larger factor is dominant. In this measurement, the solution exchange time was about 0.2 seconds, and at this time, the electrical relaxation time became the dominant factor in the longer time zone, and the solution exchange time became the dominant factor in the shorter time zone. . The solution exchange time referred to here is the time from when the sample solution starts to be replaced from the 1: 1 sample to the 9: 1 sample at the measurement electrode until the replacement is completed.

図7は,親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることの効果の一例を示す測定結果である。図2の測定装置を用いて,第1の試料配置部に500μmol/Lフェリシアン化カリウムと500μmol/Lフェロシアン化カリウムを含むリン酸緩衝液(1:1試料)を,第2の試料配置部に900μmol/Lフェリシアン化カリウムと100μmol/Lフェロシアン化カリウムを含むリン酸緩衝液(9:1試料)を配置し,順番に測定を行った。   FIG. 7 is a measurement result showing an example of the effect of using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface. Using the measurement device of FIG. 2, a phosphate buffer (1: 1 sample) containing 500 μmol / L potassium ferricyanide and 500 μmol / L potassium ferrocyanide is placed in the first sample placement section, and 900 μmol / L in the second sample placement section. A phosphate buffer solution (9: 1 sample) containing potassium L ferricyanide and 100 μmol / L potassium ferrocyanide was placed, and measurements were performed in order.

図7中、丸印は測定電極に11-FUTのみを表面に結合させた電極を用いた場合であり、三角印は測定電極に親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した電極を用いた場合を示す。また、それぞれ白抜きは清浄な場合、黒色は下記するように電極を汚染させた場合である。   In FIG. 7, circles indicate the case where an electrode having only 11-FUT bonded to the surface is used as a measurement electrode, and triangles indicate that a molecule having a hydrophilic group and a molecule having an electrochemically active substance are present on the measurement electrode. , Shows the case of using electrodes connected side by side on the surface. In addition, each white is a clean case, and black is a case where the electrode is contaminated as described below.

まず、9:1試料中のフェロシアン化カリウム濃度を繰返し測定したところ,測定電極に11-FUTのみを表面に結合させた金電極を用いた場合,測定再現性(測定値の標準偏差を測定値の平均値で除算したもの)は0.3%であった。同様に,50μmol/L 11-FUTと5μmol/L 11-HUTを含むエタノール溶液を用いて表面に11-FUTと11-HUTを結合させた金電極を測定電極に用いた場合,測定再現性は0.3%であった。   First, the potassium ferrocyanide concentration in the 9: 1 sample was measured repeatedly. When a gold electrode with only 11-FUT bonded to the surface was used as the measurement electrode, the measurement reproducibility (the standard deviation of the measurement value The value divided by the average value was 0.3%. Similarly, when a gold electrode in which 11-FUT and 11-HUT are bonded to the surface using an ethanol solution containing 50 μmol / L 11-FUT and 5 μmol / L 11-HUT is used as the measurement electrode, the measurement reproducibility is It was 0.3%.

一方,それぞれの電極を血清に1時間浸漬した後に同様の測定を行ったところ,11-FUTのみを表面に結合させた金電極での測定再現性は9.7%と再現性が低下したが,11-FUTと11-HUTを結合させた金電極での測定再現性は0.3%と,血清に浸漬させる前と変化が無かった。   On the other hand, when each electrode was immersed in serum for 1 hour and the same measurement was performed, the reproducibility of the measurement with a gold electrode in which only 11-FUT was bound to the surface was 9.7%. The measurement reproducibility with a gold electrode combined with -FUT and 11-HUT was 0.3%, unchanged from that before immersion in serum.

この原因を調べたところ,図7に示すように,試料溶液が1:1試料から9:1試料に入れ替わる際の応答の違いが見られた。横軸は,溶液入れ替えの瞬間を0秒とした。それぞれの電位差の応答時間は,11-FUTのみを表面に結合させた金電極では,血清浸漬前が0.6秒,血清浸漬後が1.8秒であったのに対し,11-FUTと11-HUTを結合させた金電極では,血清浸漬前後で0.6秒と一定であった。   As a result of examining the cause, as shown in FIG. 7, a difference in response was observed when the sample solution was switched from the 1: 1 sample to the 9: 1 sample. On the horizontal axis, the solution replacement instant was taken as 0 seconds. The response time of each potential difference was 0.6 seconds before serum immersion and 1.8 seconds after serum immersion for the gold electrode with only 11-FUT bonded to the surface, compared with 11-FUT and 11-HUT. The bonded gold electrode was constant at 0.6 seconds before and after serum immersion.

尚、電気的緩和時間を上記の3電極法を用いて測定したところ,11-FUTのみを表面に結合させた金電極では,血清浸漬前が0.2秒,血清浸漬後が1.8秒であったのに対し,11-FUTと11-HUTを結合させた金電極では,血清浸漬前が0.2ミリ秒,血清浸漬後が3ミリ秒であった。   The electrical relaxation time was measured using the above three-electrode method. The gold electrode with only 11-FUT bonded to the surface showed 0.2 seconds before serum immersion and 1.8 seconds after serum immersion. On the other hand, the gold electrode combined with 11-FUT and 11-HUT was 0.2 milliseconds before serum immersion and 3 milliseconds after serum immersion.

本測定での溶液交換時間が0.6秒程度であるとすると,電位差の応答時間は電気的緩和時間で説明可能である。また,血清の代わりに全血を用いた場合も,11-FUTと11-HUTを結合させた金電極でも,電位差の応答時間は全血浸漬前後で0.6秒と一定であった。   If the solution exchange time in this measurement is about 0.6 seconds, the response time of the potential difference can be explained by the electrical relaxation time. In addition, even when whole blood was used instead of serum, the response time of the potential difference was constant at 0.6 seconds before and after the whole blood immersion even with the gold electrode combined with 11-FUT and 11-HUT.

図8は,親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることの別の効果も示している。図8は,図1に示した測定電極(A)〜(D)を用いて,測定電極作製直後と血清に1時間浸漬後にインピーダンス計測により電気的緩和時間を評価した結果を示している。まず図1(A)のように11-FUTのみを並べて結合させた金電極では、血清浸漬前が0.16秒,血清浸漬後が1.6秒と電気的緩和時間が大きい上、汚染に対しても影響が見られた(図8(a))。   FIG. 8 also shows another effect of using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface. FIG. 8 shows the results of evaluating the electrical relaxation time by impedance measurement immediately after the measurement electrode was prepared and after immersion in serum for 1 hour using the measurement electrodes (A) to (D) shown in FIG. First, as shown in Fig. 1 (A), a gold electrode in which only 11-FUTs are aligned and bonded has a large electrical relaxation time of 0.16 seconds before serum immersion and 1.6 seconds after serum immersion, and also has an effect on contamination. Was seen (FIG. 8 (a)).

また、図1(B)のように11-FUTと11-HUTを結合させた金電極では,血清浸漬前が0.2ミリ秒,血清浸漬後が3ミリ秒と血清への浸漬による電極汚染の影響で電気的緩和時間が15倍程度に増加した(図8(b))。   In addition, as shown in Fig. 1 (B), the gold electrode combined with 11-FUT and 11-HUT is 0.2 milliseconds before serum immersion and 3 milliseconds after serum immersion. As a result, the electrical relaxation time increased by about 15 times (FIG. 8B).

そして図1(C)のように、50μmol/L 11-FUTと5μmol/L 11−メルカプトウンデカノールトリエチレングリコールエーテル(11-MUEG3)を含むエタノール溶液を用いて表面に11-FUTと11-MUEG3を結合させた金電極を測定電極に用いた場合,血清浸漬前が4ミリ秒,血清浸漬後が5ミリ秒と血清への浸漬による電極汚染の影響で電気的緩和時間が1.25倍程度であった(図8(c))。   Then, as shown in FIG. 1C, 11-FUT and 11-FUT are formed on the surface using an ethanol solution containing 50 μmol / L 11-FUT and 5 μmol / L 11-mercaptoundecanol triethylene glycol ether (11-MUEG3). When a gold electrode combined with MUEG3 is used as a measurement electrode, the electrical relaxation time is about 1.25 times due to the effect of electrode contamination due to immersion in serum, 4 milliseconds before serum immersion and 5 milliseconds after serum immersion. (FIG. 8 (c)).

エチレングリコール基が電極表面に結合したことで,血清中の汚染物質の電極表面への結合が抑制されたことが考えられる。すなわち,親水性基を有する分子と電気化学活性物質を有する分子とが表面に並んで結合することで,(1)電気化学活性物質を取り囲む雰囲気を親水性とすることで試料溶液中の親水性の酸化還元物質との反応速度を向上させる,(2)電極表面を親水性とすることで汚染物質の吸着を抑制する,という2つの効果が得られる。   It is thought that the binding of serum contaminants to the electrode surface was suppressed by the ethylene glycol group binding to the electrode surface. That is, molecules having a hydrophilic group and molecules having an electrochemically active substance are bonded side by side on the surface, so that (1) the atmosphere surrounding the electrochemically active substance is made hydrophilic, thereby making the hydrophilicity in the sample solution Two effects are obtained: improving the reaction rate of the redox material with (2) suppressing the adsorption of contaminants by making the electrode surface hydrophilic.

この結果を踏まえて,(1)と(2)の両方の特徴を備えた電極として,図1(D)のように、11-FUTと11-HUTと11-MUEG3を1:8:1で混合した溶液で金電極の表面修飾を行ったところ,得られた電極では,初期の電気的緩和時間が小さく(2.5ミリ秒),血清浸漬後の電気的緩和時間の増加も小さかった(2.5ミリ秒→3ミリ秒)(図8(d))。   Based on this result, 11-FUT, 11-HUT, and 11-MUEG3 are 1: 8: 1 as shown in Fig. 1 (D) as an electrode having both features (1) and (2). When the surface modification of the gold electrode was performed with the mixed solution, the obtained electrode had a small initial electrical relaxation time (2.5 milliseconds) and a small increase in the electrical relaxation time after serum immersion (2.5 millisecond). Second to 3 milliseconds) (FIG. 8 (d)).

電流計測法と電位差計測法では,電極の汚染の影響が本質的に異なる。電流計測法では,電極が汚染されるとコットレルの式における電極面積Aが実効的に減少したり,酸化還元物質の拡散係数D0が実効的に減少したりする。その結果,繰返し使用により電極が汚染されると同じ濃度の測定対象物質を測定しても電流値は減少する。一方,電位差計測法では,ネルンストの式に電極面積や酸化還元物質の拡散係数が含まれないため,繰返し使用により電極が汚染されても理論的には電位差に変化は生じない。しかし,実験結果から分かるように,繰返し使用により電極が汚染されると,恐らくは拡散係数が影響を受けるなどして電気的緩和時間が増加し,この時間以上経過しないと理論的に導かれる電位差は得られなくなる。一方で,このことは電気的緩和時間以上の時間待機してから電位差計測を行えば,電極汚染の影響を受けにくくなることも意味している。従って,初期の電気的緩和時間を短くしたり,繰返し使用による電気的緩和時間の増加を抑制したりすることは,電位差計測法においてその効果を発揮するものである。というのも,電流計測法では,電極の状態が変化する場合には初期の状態やその程度に関わらず測定に影響を及ぼすためである。また,電位差の応答時間と電気的緩和時間と溶液交換時間の関係式から分かるように,電気的緩和時間<<溶液交換時間 となるようにすることで,電極汚染や個体差に起因する電気的緩和時間の変動やばらつきが,待機する時間に影響を与えなくすることができる。 The effect of electrode contamination is essentially different between current measurement and potentiometry. In the current measurement method, when the electrode is contaminated, the electrode area A in the Cottrell equation is effectively reduced, or the diffusion coefficient D 0 of the redox material is effectively reduced. As a result, if the electrode is contaminated by repeated use, the current value decreases even if the same concentration of the measurement target substance is measured. On the other hand, in the potentiometric method, the Nernst equation does not include the electrode area and the diffusion coefficient of the redox material, so that the potential difference does not change theoretically even if the electrode is contaminated by repeated use. However, as can be seen from the experimental results, when the electrode is contaminated by repeated use, the electrical relaxation time increases, possibly due to the influence of the diffusion coefficient, etc. It can no longer be obtained. On the other hand, this also means that if the potential difference is measured after waiting for a time longer than the electrical relaxation time, it is less susceptible to electrode contamination. Therefore, shortening the initial electrical relaxation time or suppressing an increase in the electrical relaxation time due to repeated use is effective in the potentiometric measurement method. This is because, in the current measurement method, when the state of the electrode changes, the measurement is affected regardless of the initial state and its degree. In addition, as can be seen from the relationship between the response time of the potential difference, the electrical relaxation time, and the solution exchange time, the electrical relaxation time << solution exchange time is set to satisfy the electrical contamination caused by electrode contamination and individual differences. Variations and variations in the relaxation time can be prevented from affecting the waiting time.

親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極を用いることで,別の効果も得られる。   Another effect can be obtained by using a measurement electrode in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface.

11−フェロセニル−1−ウンデカンチオール(11-FUT)と11−ヒドロキシ−1−ウンデカンチオール(11-HUT)とを表面に並んで結合させた直径1.6mmの金電極を測定電極とした。試料溶液としてフェリシアン化カリウムとフェロシアン化カリウムの濃度比が1:1(1:1溶液)もしくは9:1(9:1溶液)であり合計濃度が10mmol/L,1mmol/L,100μmol/Lのリン酸緩衝溶液を用いた。   A gold electrode having a diameter of 1.6 mm in which 11-ferrocenyl-1-undecanthiol (11-FUT) and 11-hydroxy-1-undecanthiol (11-HUT) were bonded side by side on the surface was used as a measurement electrode. Phosphoric acid with a concentration ratio of potassium ferricyanide and potassium ferrocyanide of 1: 1 (1: 1 solution) or 9: 1 (9: 1 solution) as the sample solution, and total concentrations of 10 mmol / L, 1 mmol / L, and 100 μmol / L A buffer solution was used.

合計濃度が等しい1:1溶液と9:1溶液を交互に測定したところ,11-FUTのみを表面に結合させた金電極に比べて,11-FUTと11-HUTを表面に並んで結合させた金電極では,100μmol/Lでの電位変化が増加し,理論値(56.5mV)に近づいた。これは,11-FUTと11-HUTを表面に並んで結合させた金電極では,電極表面のフェロセン基と溶液中のフェリシアン化カリウムおよびフェロシアン化カリウムとの反応速度が向上したため,より低濃度の試料溶液を測定できるようになったためである。   When the 1: 1 and 9: 1 solutions with the same total concentration were measured alternately, 11-FUT and 11-HUT were bonded side by side as compared to the gold electrode with only 11-FUT bonded to the surface. With the gold electrode, the potential change at 100 μmol / L increased and approached the theoretical value (56.5 mV). This is because the gold electrode with 11-FUT and 11-HUT bonded side by side has improved the reaction rate between the ferrocene group on the electrode surface and potassium ferricyanide and potassium ferrocyanide in the solution, so that the sample solution with a lower concentration can be used. It is because it became possible to measure.

さらに,それぞれの電極を血清中に1時間浸漬し,検体による電極汚染を模擬したところ,11-FUTのみを表面に結合させた金電極では1mmol/L以下の濃度での電位変化が大きく減少したのに対し(図12(B)),11-FUTと11-HUTを表面に並んで結合させた金電極では汚染の電位変化に及ぼす影響はほとんど見られなかった(図12(A))。   Furthermore, when each electrode was immersed in serum for 1 hour to simulate electrode contamination by the specimen, the potential change at a concentration of 1 mmol / L or less was greatly reduced in the gold electrode in which only 11-FUT was bound to the surface. On the other hand (FIG. 12 (B)), the influence of the contamination on the potential change was hardly observed in the gold electrode in which 11-FUT and 11-HUT were combined side by side (FIG. 12 (A)).

図10は,図2の装置を用いて血清中グルコースの測定を行った結果の例を示す。フェリシアン化カリウム,フェロシアン化カリウム,グルコースキナーゼ,グルコース6リン酸脱水素酵素,ジアホラーゼ,アデノシン3リン酸,ニコチンアミドアデニンジヌクレオチドを含む試薬と検体を混合し,5分間反応させた溶液を試料溶液とした。ここでの測定電極としては、11−フェロセニル−1−ウンデカンチオール(11-FUT)と11−ヒドロキシ−1−ウンデカンチオール(11-HUT)とを表面に並んで結合させた直径1.6mmの金電極を用いた。他の測定電極を用いた場合も同様な結果が得られた。   FIG. 10 shows an example of the result of measuring serum glucose using the apparatus of FIG. A sample mixed with a reagent containing potassium ferricyanide, potassium ferrocyanide, glucose kinase, glucose 6-phosphate dehydrogenase, diaphorase, adenosine triphosphate, and nicotinamide adenine dinucleotide, and reacted for 5 minutes was used as a sample solution. As a measurement electrode here, a 1.6 mm diameter gold electrode in which 11-ferrocenyl-1-undecanethiol (11-FUT) and 11-hydroxy-1-undecanethiol (11-HUT) are bonded side by side on the surface. Was used. Similar results were obtained when other measurement electrodes were used.

検体に,25〜200mg/dLグルコース水溶液を用いて測定を行った結果を図10(A)に示す。検体のグルコース濃度を設定グルコース濃度として横軸に,得られた電位差から求めたグルコース濃度を測定グルコース濃度として縦軸にプロットしたところ,良好な直線性が得られた。続いて,検体として血清を用いて25回繰返し測定を行ったところ,図10(B)に示す測定グルコース濃度の推移が観測された。平均値92.6mg/dLに対して標準偏差は1.0mg/dLであった。   FIG. 10 (A) shows the results of measurement using 25 to 200 mg / dL glucose aqueous solution on the specimen. When the glucose concentration of the sample was plotted on the horizontal axis as the set glucose concentration and the glucose concentration obtained from the obtained potential difference was plotted on the vertical axis as the measured glucose concentration, good linearity was obtained. Subsequently, when the measurement was repeated 25 times using serum as a specimen, the transition of the measured glucose concentration shown in FIG. 10 (B) was observed. The standard deviation was 1.0 mg / dL against the average value of 92.6 mg / dL.

図11は,図2の装置を用いて血清中コレステロールの測定を行った結果の例を示す。ここでの測定電極としては、11−フェロセニル−1−ウンデカンチオール(11-FUT)と11−ヒドロキシ−1−ウンデカンチオール(11-HUT)とを表面に並んで結合させた直径1.6mmの金電極を用いた。他の電極を用いた場合でも同様の結果が得られた。フェリシアン化カリウム,フェロシアン化カリウム,コレステロールエステラーゼ,コレステロール脱水素酵素,ジアホラーゼ,ニコチンアミドアデニンジヌクレオチドを含む試薬と検体を混合し,5分間反応させた溶液を試料溶液とした。検体にコレステロール濃度既知の血清を用いて測定を行った結果を図11(A)に示す。検体のコレステロール濃度を設定コレステロール濃度として横軸に,得られた電位差から求めたコレステロール濃度を測定コレステロール濃度として縦軸にプロットしたところ,良好な直線性が得られた。続いて,検体として血清を用いて11回繰返し測定を行ったところ,図11(B)に示すように平均値202.4mg/dL,標準偏差2.2mg/dLであった。   FIG. 11 shows an example of the result of measuring serum cholesterol using the apparatus of FIG. As a measurement electrode here, a 1.6 mm diameter gold electrode in which 11-ferrocenyl-1-undecanethiol (11-FUT) and 11-hydroxy-1-undecanethiol (11-HUT) are bonded side by side on the surface. Was used. Similar results were obtained when other electrodes were used. A sample was mixed with a reagent containing potassium ferricyanide, potassium ferrocyanide, cholesterol esterase, cholesterol dehydrogenase, diaphorase, and nicotinamide adenine dinucleotide and allowed to react for 5 minutes. FIG. 11A shows the result of measurement using serum with a known cholesterol concentration as a specimen. When the cholesterol concentration of the sample was plotted on the horizontal axis as the set cholesterol concentration and the cholesterol concentration obtained from the obtained potential difference was plotted on the vertical axis as the measured cholesterol concentration, good linearity was obtained. Subsequently, measurement was repeated 11 times using serum as a specimen. As a result, the average value was 202.4 mg / dL and the standard deviation was 2.2 mg / dL as shown in FIG.

201 駆動部
202 制御部
203 試料搬送部
204 試料配置部
205 試料導入部
206 試料溶液保持部
207 測定電極
208 参照電極
209 電位差計
210 送液部
211 廃液容器
212 データ処理装置
213 演算装置
214 一時記憶装置
215 不揮発性記憶装置
216 データ表示装置
201 driving unit 202 control unit 203 sample transport unit 204 sample placement unit 205 sample introduction unit 206 sample solution holding unit 207 measurement electrode 208 reference electrode 209 potentiometer 210 liquid feeding unit 211 waste liquid container 212 data processing unit 213 arithmetic unit 214 temporary storage unit 215 Nonvolatile memory device 216 Data display device

Claims (15)

試料溶液保持部と,
前記試料溶液保持部に導入される試料溶液に接触し,親水性基を有する分子と電気化学活性物質を有する分子とが,表面に並んで結合した測定電極と,
前記試料溶液保持部に導入される試料溶液に接触する参照電極と,
前記測定電極と前記参照電極との間の電位差を測定する電位差計とを備えた電位差測定装置。
A sample solution holder,
A measurement electrode that is in contact with the sample solution introduced into the sample solution holding unit and in which a molecule having a hydrophilic group and a molecule having an electrochemically active substance are bonded side by side on the surface;
A reference electrode in contact with the sample solution introduced into the sample solution holding unit;
A potentiometer comprising a potentiometer that measures a potential difference between the measurement electrode and the reference electrode.
前記試料溶液保持部は試料導入部を有する流路であることを特徴とする請求項1に記載の電位差測定装置。   The potentiometer according to claim 1, wherein the sample solution holding part is a flow path having a sample introduction part. 前記親水性基はOH基であることを特徴とする請求項1に記載の電位差測定装置。   The potentiometric apparatus according to claim 1, wherein the hydrophilic group is an OH group. 前記親水性基を有する分子は,さらにエチレングリコール基を有することを特徴とする請求項3に記載の電位差測定装置。   The potentiometer according to claim 3, wherein the molecule having a hydrophilic group further has an ethylene glycol group. 前記電気化学活性物質はフェロセン誘導体であることを特徴とする請求項1に記載の電位差測定装置。   The potentiometric apparatus according to claim 1, wherein the electrochemically active substance is a ferrocene derivative. 前記親水性基を有する分子と前記電気化学活性物質を有する分子の総量に対する前記電気化学活性物質の割合が,0.01以上0.9以下であることを特徴とする請求項1に記載の電位差測定装置。   The potential difference according to claim 1, wherein a ratio of the electrochemically active substance to a total amount of the molecule having the hydrophilic group and the molecule having the electrochemically active substance is 0.01 or more and 0.9 or less. measuring device. 前記親水性基を有する分子と前記電気化学活性物質を有する分子の総量に対する前記電気化学活性物質の割合が,0.01以上0.5以下であることを特徴とする請求項1に記載の電位差測定装置。   The potential difference according to claim 1, wherein a ratio of the electrochemically active substance to a total amount of the molecule having the hydrophilic group and the molecule having the electrochemically active substance is 0.01 or more and 0.5 or less. measuring device. 前記親水性基を有する分子と前記電気化学活性物質を有する分子の総量に対する前記電気化学活性物質の割合が,0.01以上0.34以下であることを特徴とする請求項1に記載の電位差測定装置。   The potential difference according to claim 1, wherein a ratio of the electrochemically active substance to a total amount of the molecule having the hydrophilic group and the molecule having the electrochemically active substance is 0.01 or more and 0.34 or less. measuring device. 前記親水性基を有する分子と前記電気化学活性物質を有する分子の総量に対する前記電気化学活性物質の割合が,0.01以上0.125以下であることを特徴とする請求項1に記載の電位差測定装置。   The potential difference according to claim 1, wherein a ratio of the electrochemically active substance to a total amount of the molecule having the hydrophilic group and the molecule having the electrochemically active substance is 0.01 or more and 0.125 or less. measuring device. 前記親水性基を有する分子と前記電気化学活性物質を有する分子の総量に対する前記電気化学活性物質の割合が,0.01以上0.1以下であることを特徴とする請求項1に記載の電位差測定装置。   The potential difference according to claim 1, wherein a ratio of the electrochemically active substance to a total amount of the molecule having the hydrophilic group and the molecule having the electrochemically active substance is 0.01 or more and 0.1 or less. measuring device. 前記測定電極は,貴金属からなることを特徴とする請求項1に記載の電位差測定装置。   The potentiometer according to claim 1, wherein the measurement electrode is made of a noble metal. 前記貴金属は,金,白金,もしくは銀からなることを特徴とする請求項11に記載の電位差測定装置。   The potentiometer according to claim 11, wherein the noble metal is made of gold, platinum, or silver. 前記試料溶液は,全血試料,血清試料もしくは尿試料を含むことを特徴とする請求項1に記載の電位差測定装置。   The potentiometer according to claim 1, wherein the sample solution includes a whole blood sample, a serum sample, or a urine sample. 請求項2に記載の電位差測定装置において、複数の試料溶液を設置させる試料溶液設置部をさらに備え、設置される前記複数の試料溶液の一つが、前記試料導入部に触れるように備えられていることを特徴とする電位差計測装置。   3. The potentiometric apparatus according to claim 2, further comprising a sample solution installing unit for installing a plurality of sample solutions, wherein one of the plurality of installed sample solutions is provided so as to touch the sample introducing unit. A potential difference measuring device. 前記試料導入部に触れる試料溶液を交換するように駆動する駆動部を備えることを特徴とする請求項14記載の電位差計測装置。   The potential difference measuring apparatus according to claim 14, further comprising a drive unit that is driven so as to exchange a sample solution that touches the sample introduction unit.
JP2011045851A 2011-03-03 2011-03-03 Potential difference measurement device Withdrawn JP2012181162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045851A JP2012181162A (en) 2011-03-03 2011-03-03 Potential difference measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045851A JP2012181162A (en) 2011-03-03 2011-03-03 Potential difference measurement device

Publications (1)

Publication Number Publication Date
JP2012181162A true JP2012181162A (en) 2012-09-20

Family

ID=47012463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045851A Withdrawn JP2012181162A (en) 2011-03-03 2011-03-03 Potential difference measurement device

Country Status (1)

Country Link
JP (1) JP2012181162A (en)

Similar Documents

Publication Publication Date Title
JP5455924B2 (en) Speed reading gate amperometry
AU2002352959B2 (en) Electrochemical detection of ischemia
CN107576707B (en) Analyte test sensor, system thereof and method for measuring at least one analyte
KR100968354B1 (en) Determination of sample volume adequacy in biosensor devices
KR101854883B1 (en) Apparatus and method for electrochemical detection
JP5139538B2 (en) Potential difference sensor chip, potential difference measuring method, and measurement kit
US8834702B2 (en) Biosensor and usage thereof
JP2008507691A (en) Electrochemical detection method and apparatus
Bagheri et al. Gold nanoparticles deposited on fluorine-doped tin oxide surface as an effective platform for fabricating a highly sensitive and specific digoxin aptasensor
CN101878428B (en) Porous particle reagent compositions, devices, and methods for biosensors
CN1975403A (en) Method and apparatus for rapid electrochemical analysis
MX2008000836A (en) Gated amperometry.
KR20100008260A (en) Protein measurement apparatus by using biosensor
RU2546862C2 (en) Biosensor system and test sensors for determination of concentration of analysed substance (versions)
Ya et al. Label-free immunosensor for morphine based on the electrochemiluminescence of luminol on indium–tin oxide coated glass functionalized with gold nanoparticles
WO2006026120A1 (en) Potentiometric measurement of chloride concentration in an acidic solution
JP2012181162A (en) Potential difference measurement device
JP2011506967A (en) Method and system for producing a reagent with reduced background current
Advantage Electrochemistry for diabetes management
CN108132284A (en) A kind of test method of electrochemical sensor
RU2731411C1 (en) Biosensor with high sensitivity factor
RU2413768C2 (en) Method of determining dna-hydrolysing activity of molecules and device for its realisation
JP7371219B2 (en) Determination of contamination of biosensors used in analyte measurement systems
CN2837839Y (en) Electronic transducer apparatus for measuring analyzed substance content in sample
WO2020250190A1 (en) Device and method for the rapid dosage of copper ion and other heavy metals on micro-volumes of human capillary blood and other biological fluids

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513