JP2012181094A - Initial breast cancer detection method - Google Patents

Initial breast cancer detection method Download PDF

Info

Publication number
JP2012181094A
JP2012181094A JP2011044047A JP2011044047A JP2012181094A JP 2012181094 A JP2012181094 A JP 2012181094A JP 2011044047 A JP2011044047 A JP 2011044047A JP 2011044047 A JP2011044047 A JP 2011044047A JP 2012181094 A JP2012181094 A JP 2012181094A
Authority
JP
Japan
Prior art keywords
protein
gene
precursor
breast cancer
expression level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011044047A
Other languages
Japanese (ja)
Inventor
Kazunori Akimoto
和憲 秋本
Shigeo Ono
茂男 大野
Hiroshi Kawasaki
博史 川崎
Hisashi Hirano
久 平野
Yoji Nagashima
洋治 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Yokohama City University
Original Assignee
Yokohama National University NUC
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC, Yokohama City University filed Critical Yokohama National University NUC
Priority to JP2011044047A priority Critical patent/JP2012181094A/en
Publication of JP2012181094A publication Critical patent/JP2012181094A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an initial breast cancer detection method capable of detecting an initial breast cancer.SOLUTION: The initial breast cancer detection method includes measuring the expression level of at least one gene selected from a specific gene group, such as a Protein BEX1 gene, a Protein LETM2 mitochondrial precursor gene, and a Major urinary protein 6 precursor gene about a test sample separated from an organism.

Description

本発明は、初期乳癌の検出方法に関する。   The present invention relates to a method for detecting early breast cancer.

日本人乳癌罹患者数は生活習慣の欧米化に伴い年々増加しており、今後更に増えると予想されている。死亡率も高く、世論の関心も極めて高い。そのため有効な早期診断法の確立と普及が求められている。   The number of Japanese patients with breast cancer has been increasing year by year due to the westernization of lifestyle, and is expected to increase further in the future. Mortality is high and public interest is very high. Therefore, establishment and popularization of an effective early diagnosis method is required.

本邦でもマンモグラフィーやエコー診断が導入され、一定の成果をあげている。しかし、検診による被爆、苦痛への不安や羞恥心などから、受診率は20%に留まっている。加えて2009年11月に乳癌検診先進国である米国政府の予防医学作業部会(USPSTF)がマンモグラフィー診断は脂肪密度の高い50歳未満(閉経前の女性)には効果がなく、勧められないと発表した。このように簡便かつ有効な新規早期診断法の確立が求められている。   In Japan, mammography and echo diagnosis have been introduced and some results have been achieved. However, the screening rate is only 20% due to exposure to exposure, anxiety about distress and shame. In addition, in November 2009, the US Government's Working Group on Preventive Medicine (USPSTF), a country that has developed breast cancer screening, will not recommend mammography diagnosis to young people under 50 years old (premenopausal women) who are not recommended. Announced. Thus, establishment of a simple and effective new early diagnosis method is demanded.

一方、既存の乳癌血清診断マーカーとしてCA 15-3やCEAなどが利用されているが(非特許文献1)、有効な早期診断マーカーは存在しない。   On the other hand, CA 15-3 and CEA are used as existing breast cancer serum diagnostic markers (Non-Patent Document 1), but there are no effective early diagnostic markers.

有効な血清マーカーが得られれば、集団健康診断での簡便な一次スクリーニングが可能となり受診率向上に寄与する。更に既存の画像診断法と組み合わせれば、早期乳癌発見の精度向上も期待できる。血清マーカーの探索研究は、早期乳癌検体の入手が困難なため、ヒト進行性乳癌検体を用いた研究が中心であった。しかしながら、早期乳癌検体を用いても、ヒト検体の多様な遺伝的背景によるノイズが多く、有効なマーカーを見いだすのは困難である。   If an effective serum marker is obtained, a simple primary screening in a group health examination becomes possible, contributing to an improvement in the consultation rate. Furthermore, when combined with existing diagnostic imaging methods, it can be expected to improve the accuracy of early breast cancer detection. Serum marker exploration studies have focused on studies using human advanced breast cancer specimens because early breast cancer specimens are difficult to obtain. However, even if an early breast cancer specimen is used, it is difficult to find an effective marker because of the large amount of noise caused by various genetic backgrounds in human specimens.

特開2011-000054JP2011-000054

臨床病理 第43巻第7号 696-702頁 1995年7月Clinical Pathology Vol.43, No.7, 696-702, July 1995

本発明の目的は、初期乳癌を検出することが可能な、初期乳癌の検出方法を提供することである。   The objective of this invention is providing the detection method of an early stage breast cancer which can detect an early stage breast cancer.

本願発明者らは、細胞極性制御タンパク質であり幹・前駆細胞の維持に関わるaPKC-乳腺ノックアウトマウスを作製し、これが乳癌の早期病変を模擬する事、乳腺組織幹・前駆細胞の異常増殖が起きている事を見い出した(特許文献1)。そして、後述の実施例に具体的に記載するように、その分子機構の解析から、ヒト乳癌の15〜40%程度で過剰発現し、実際に臨床的に診断・治療標的となるErbB2(HER2)分子の遺伝子転写制御を通じて、aPKCが乳腺組織幹・前駆細胞の増殖を負に制御していることも見い出した。更に、ヒト乳癌検体104例の解析から、ヒト乳癌検体の15.2%で、乳癌幹細胞マーカー、aPKC、ErbB2 の異常など乳癌早期病変モデルマウス(以下、モデルマウスと称する)と酷似した異常を確認した。これらの一連の成果は、モデルマウスが、乳癌の診断マーカーや治療法の開発に利用できることを意味する。そして、このモデルマウスと、健常マウスの血中の各種ポリペプチドの量を測定し、両者の間で血中濃度に差があるポリペプチドを同定し、その遺伝子を特定することにより、初期乳癌のマーカーとなる遺伝子を特定し、本発明を完成した。   The present inventors have produced aPKC-mammary knockout mice that are cell polarity control proteins and are involved in the maintenance of stem / progenitor cells, which simulates early lesions of breast cancer, and abnormal growth of mammary tissue stem / progenitor cells (Patent Document 1). And, as specifically described in the examples described later, from the analysis of its molecular mechanism, ErbB2 (HER2) that is overexpressed in about 15 to 40% of human breast cancer and actually becomes a clinical diagnosis / treatment target We also found that aPKC negatively regulates the growth of mammary tissue stem / progenitor cells through molecular transcriptional control. Furthermore, analysis of 104 human breast cancer specimens confirmed abnormalities very similar to breast cancer early lesion model mice (hereinafter referred to as model mice) such as breast cancer stem cell marker, aPKC, ErbB2 abnormalities in 15.2% of human breast cancer specimens. These series of results mean that model mice can be used to develop diagnostic markers and treatments for breast cancer. Then, by measuring the amount of various polypeptides in the blood of this model mouse and healthy mice, identifying a polypeptide having a difference in blood concentration between the two, and identifying its gene, A gene serving as a marker was identified and the present invention was completed.

すなわち、本発明は、生体から分離した被検試料について、下記(1)〜(34)の遺伝子群から選ばれる少なくとも1つの遺伝子の発現量を測定することを含む、初期乳がんの検出方法を提供する。
(1) Protein BEX1
(2) Protein LETM2 mitochondrial precursor
(3) Major urinary protein 6 precursor
(4) Vacuolar protein sorting-associated protein 18 homolog
(5) Apolipoprotein E precursor
(6) Uncharacterized protein C10orf132 homolog
(7) Apolipoprotein C-I precursor
(8) YEATS domain-containing protein 2
(9) Peroxisome proliferator-activated receptor gamma coactivator-related protein 1
(10) Beta-taxilin
(11) Regulator of G-protein signaling 11
(12) Centrosomal protein of 290 kDa
(13) Sterile alpha motif domain-containing protein 9-like
(14) ATP-dependent RNA helicase DDX18
(15) Cathepsin G precursor
(16) 182 kDa tankyrase 1-binding protein
(17) Beta,beta-carotene 9',10'-dioxygenase
(18) Cyclin-dependent kinase inhibitor 2A isoform 3
(19) Centromere protein C 1
(20) Dynamin-binding protein
(21) Receptor tyrosine-protein kinase erbB-2 precursor
(22) Extended synaptotagmin-2
(23) Latent-transforming growth factor beta-binding protein 2 precursor
(24) Latexin
(25) Mastermind-like domain
(26) Serine/threonine-protein kinase PCTAIRE-3
(27) Transcription elongation regulator 1
(28) Zinc finger CCHC domain-containing protein 4
(29) Superkiller viralicidic activity 2-like 2
(30) Piwi-like protein 4
(31) Keratin type I cytoskeletal 10
(32) Keratin type I cytoskeletal 14
(33) Leukemia inhibitory factor receptor
(34) Transcription elongation factor SPT5
That is, the present invention provides a method for detecting early-stage breast cancer, comprising measuring the expression level of at least one gene selected from the following gene groups (1) to (34) for a test sample separated from a living body: To do.
(1) Protein BEX1
(2) Protein LETM2 mitochondrial precursor
(3) Major urinary protein 6 precursor
(4) Vacuolar protein sorting-associated protein 18 homolog
(5) Apolipoprotein E precursor
(6) Uncharacterized protein C10orf132 homolog
(7) Apolipoprotein CI precursor
(8) YEATS domain-containing protein 2
(9) Peroxisome proliferator-activated receptor gamma coactivator-related protein 1
(10) Beta-taxilin
(11) Regulator of G-protein signaling 11
(12) Centrosomal protein of 290 kDa
(13) Sterile alpha motif domain-containing protein 9-like
(14) ATP-dependent RNA helicase DDX18
(15) Cathepsin G precursor
(16) 182 kDa tankyrase 1-binding protein
(17) Beta, beta-carotene 9 ', 10'-dioxygenase
(18) Cyclin-dependent kinase inhibitor 2A isoform 3
(19) Centromere protein C 1
(20) Dynamin-binding protein
(21) Receptor tyrosine-protein kinase erbB-2 precursor
(22) Extended synaptotagmin-2
(23) Latent-transforming growth factor beta-binding protein 2 precursor
(24) Latexin
(25) Mastermind-like domain
(26) Serine / threonine-protein kinase PCTAIRE-3
(27) Transcription elongation regulator 1
(28) Zinc finger CCHC domain-containing protein 4
(29) Superkiller viralicidic activity 2-like 2
(30) Piwi-like protein 4
(31) Keratin type I cytoskeletal 10
(32) Keratin type I cytoskeletal 14
(33) Leukemia inhibitory factor receptor
(34) Transcription elongation factor SPT5

本発明によれば、従来法では検出が困難な早期の乳癌を検出することができる。従って、本願発明は、乳癌の早期治療や予防に大いに貢献するものと期待される。   According to the present invention, it is possible to detect early breast cancer that is difficult to detect by conventional methods. Therefore, the present invention is expected to greatly contribute to early treatment and prevention of breast cancer.

下記実施例で行った、ヒト乳癌標本の免疫染色の結果を示す図である。It is a figure which shows the result of the immuno-staining of the human breast cancer sample performed in the following Example. 下記実施例で行った、ヒト乳癌標本の免疫蛍光分析の結果を示す図である。It is a figure which shows the result of the immunofluorescence analysis of the human breast cancer sample performed in the following Example.

上記の通り、本発明の方法では、上記した(1)〜(34)の遺伝子群から選ばれる少なくとも1つの遺伝子の発現量を測定することを含む。(1)〜(34)の各遺伝子は公知であり、その塩基配列(ゲノミック)、cDNA配列及びそれによりコードされるポリペプチドのアミノ酸配列は、UniProtKB/Swiss-Prot及び/又は NCBI(GenBank)に登録されている。なお、異なるデータベースに登録されているものでも、NCBI(GenBank)のウェブサイト(http://www.ncbi.nlm.nih.gov/genbank/index.html)から串刺し検索可能である。マウス及びヒトにおけるこれらの遺伝子のAccession No.は下記表1の通りである。また、各遺伝子のcDNA配列及びそれがコードするポリペプチドのアミノ酸配列を配列番号1〜162の奇数番号に示す。それらからアミノ酸配列のみを取り出したものを配列番号1〜162の偶数番号に示す。なお、下記表1に示されるように、同一の遺伝子であっても複数のcDNAアイソフォームが存在するものもある。   As described above, the method of the present invention includes measuring the expression level of at least one gene selected from the gene groups (1) to (34) described above. Each gene of (1) to (34) is known, and its nucleotide sequence (genomic), cDNA sequence, and amino acid sequence of the polypeptide encoded thereby can be found in UniProtKB / Swiss-Prot and / or NCBI (GenBank). It is registered. Even those registered in different databases can be skewered from the NCBI (GenBank) website (http://www.ncbi.nlm.nih.gov/genbank/index.html). The accession numbers of these genes in mice and humans are as shown in Table 1 below. Further, the cDNA sequence of each gene and the amino acid sequence of the polypeptide encoded by the gene are shown in the odd numbers of SEQ ID NOs: 1 to 162. Those obtained by extracting only the amino acid sequence from them are shown in the even numbers of SEQ ID NOs: 1 to 162. In addition, as shown in Table 1 below, some cDNA isoforms exist even in the same gene.

これらの遺伝子は、下記実施例に具体的に記載するように、初期乳癌モデルマウス/コントロール(健常)マウス比が1.2以上と0.75以下になったポリペプチドをコードする遺伝子をピックアップしたものである。これらの遺伝子のうち、(1)〜(13)は、統計学的有意差(P<0.05)が認められたものである。(14)〜(34)は、同定できたポリペプチド数が少なく統計学的処理ができなかったものである。   These genes were picked up from genes encoding polypeptides with an early breast cancer model mouse / control (healthy) mouse ratio of 1.2 or more and 0.75 or less, as specifically described in the Examples below. Among these genes, (1) to (13) are statistically significant differences (P <0.05). In (14) to (34), the number of polypeptides that could be identified was small and statistical processing could not be performed.

被検試料としては、血液試料(血清試料、血漿試料を包含)等の体液試料、癌組織からの生検試料等を挙げることができるが、患者の負担が少ない体液試料、特に血液試料が好ましい。下記実施例でも血中の濃度を測定している。   Examples of the test sample include body fluid samples such as blood samples (including serum samples and plasma samples), biopsy samples from cancer tissues, etc., but body fluid samples with a low burden on patients, particularly blood samples are preferred. . The blood concentration is also measured in the following examples.

遺伝子の発現量は、周知の種々の方法により測定することができる。例えば、下記実施例に具体的に記載する方法により、各遺伝子の遺伝子産物のタンパク質又はその断片(下記実施例で測定した各ポリペプチドのアミノ酸配列は実施例に記載)の濃度を測定することにより行うことができる。また、各遺伝子の遺伝子産物のタンパク質又はその断片のアミノ酸配列がわかっているので、これらのタンパク質又はその断片に対する特異抗体を常法により作製することができ、それらの特異抗体を用いた周知の免疫測定により上記各遺伝子の遺伝子産物のタンパク質又はその断片を定量することもできる。また、被検試料中の各遺伝子のmRNA量を測定することによっても行うことができる(mRNA量を測定する場合には、被検試料は、乳房の生検試料が好ましい)。mRNA量の測定は、常法によりmRNAからcDNAを調製し、その量を、各遺伝子に特徴的なプライマーセット(サイズは18塩基〜50塩基程度が好ましい)を用いたリアルタイム検出PCR等の定量的遺伝子増幅法により測定することもできるし、各cDNAを標識し、上記遺伝子(1)〜(34)を固定化したDNAチップと反応させてその結合量を測定する方法等により行うことができる。これらの方法は、遺伝子検査の分野において周知の方法であり、必要なキットも市販されているので、塩基配列がわかっている遺伝子については、当業者であれば容易に実施可能である。   The gene expression level can be measured by various known methods. For example, by measuring the concentration of the protein of the gene product of each gene or a fragment thereof (the amino acid sequence of each polypeptide measured in the following examples is described in the examples) by the method specifically described in the following examples. It can be carried out. In addition, since the amino acid sequences of the proteins of the gene products of each gene or fragments thereof are known, specific antibodies against these proteins or fragments thereof can be prepared by conventional methods. The protein or fragment thereof of the gene product of each gene can also be quantified by measurement. It can also be performed by measuring the amount of mRNA of each gene in the test sample (in the case of measuring the amount of mRNA, the test sample is preferably a breast biopsy sample). For the measurement of the amount of mRNA, cDNA is prepared from mRNA by a conventional method, and the amount is quantitatively determined by PCR such as real-time detection PCR using a primer set characteristic of each gene (preferably about 18 to 50 bases). It can be measured by a gene amplification method, or by a method in which each cDNA is labeled and reacted with a DNA chip on which the genes (1) to (34) are immobilized to measure the amount of binding. These methods are well-known methods in the field of genetic testing, and necessary kits are also available on the market. Therefore, those skilled in the art can easily carry out a gene whose base sequence is known.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

1.モデルマウスとコントロールマウスの血液中の各種ポリペプチドの定量
(1) 糖鎖親和性カラム(WGA)による血清糖鎖タンパク質分画をかました解析法
糖鎖親和性カラム(より詳細にはWheat Germ Agglutinin (WGA)カラム、商品名Glycoprotein Isolation Kit, WGA)を用い、以下の操作により特許文献1記載の初期乳癌モデルマウスの血液中の各ポリペプチドの濃度を測定した。なお、以下の記述で「KOマウス」は特許文献1に記載されたモデルマウスである。
1. Quantification of various polypeptides in the blood of model mice and control mice
(1) Analysis method of serum sugar chain protein fractionation using a sugar chain affinity column (WGA) Sugar chain affinity column (more specifically Wheat Germ Agglutinin (WGA) column, trade name Glycoprotein Isolation Kit, WGA) The concentration of each polypeptide in the blood of an early breast cancer model mouse described in Patent Document 1 was measured by the following operation. In the following description, “KO mouse” is a model mouse described in Patent Document 1.

各5μLずつプールしたサンプル(control, KO)
2) Control KOの各14.6w, 21w, 40wのペア
↓各サンプル20mlずつ使用
抗体カラムで高濃度血清タンパク質を除去(Agilent社マルチプルアフィニティ除去スピンカートリッジ マウス用)

脱塩、濃縮後タンパク質濃度75mg/60mlに調整

各サンプルを異なる質量のiTRAQ(商品名)試薬でラベルして混合

糖鎖抗体カラム(PIERCE社製、WGA)を用いて、糖たんぱく質と糖の結合していないタンパク質とで分画(吸着分画と非吸着分画に分ける)

トリプシンで消化後2D-LC(SCXとC18)で8フラクションに分ける。

質量分析解析
MALDI TOF-TOF: 4800(ABI)用いた。Protein Pilot Software 2.0解析を行った。
Samples pooled 5μL each (control, KO)
2) Pair of Control KO 14.6w, 21w, 40w ↓ Use 20ml of each sample Remove high-concentration serum protein with an antibody column (Agilent Multiple Affinity Removal Spin Cartridge for mouse)

Adjusted to 75mg / 60ml protein concentration after desalting and concentration ↓
Label each sample with iTRAQ (trade name) reagent of different mass and mix ↓
Using a sugar chain antibody column (PIERCE, WGA), fractionation between glycoprotein and non-sugar-bound protein (separated into adsorbed fraction and non-adsorbed fraction)

After digestion with trypsin, it is divided into 8 fractions with 2D-LC (SCX and C18).

Mass spectrometry analysis
MALDI TOF-TOF: 4800 (ABI) was used. Protein Pilot Software 2.0 analysis was performed.

その結果、モデルマウス/コントロールマウス比が1.2以上と0.75以下であったポリペプチドをコードする遺伝子として、上記遺伝子(1)〜(30)が同定された。各遺伝子についてのモデルマウス/コントロールマウス比及び定量されたポリペプチド断片のアミノ酸配列の配列番号を下記表2に示す。   As a result, the genes (1) to (30) were identified as genes encoding polypeptides having a model mouse / control mouse ratio of 1.2 or more and 0.75 or less. The model mouse / control mouse ratio for each gene and the SEQ ID NOs of the amino acid sequences of the quantified polypeptide fragments are shown in Table 2 below.

(2) SDS-PAGEによる解析法
4μLずつ採りプールしたもの(計44μL)をサンプルとした。

抗体カラムで高濃度血清タンパク質を除去(ProteoPrep(商品名) 20 Plasma Immunodepletion Kit(SIGMA)またはProteomeLab(商品名)IgY-R7 SC(BECKMAN COULTER)

脱塩、濃縮後約200-250mgタンパク質を回収

control, KOサンプルを異なる質量のiTRAQ(商品名)試薬でラベルして混合
↓(i)HPLCもしくは(ii)SDS-PAGEによる分離分画
(ii)HPLCによる分離分画
iTRAQ(商品名)試薬でラベルをしたサンプル20μgをSMART(商品名)System(GE Healthcare)を用いて分離分画を行った。カラムはゲルろ過カラム(Superose 6)を用いた。
(iii) SDS-PAGEによる分離分画
iTRAQ(商品名)試薬でラベルをしたサンプル20μgを10%SDSポリアクリルアミドゲルで電気泳動を行い、レーンのゲルを分子量毎に20個に切り分けた。

質量分析解析
ESI LIT-TOF:NanoFrontier LD(日立ハイテク)及びESI Q-TOF:Q-Tof micro(Waters)、ESI Q-TOF:SYNAPT MS(Waters)を用いて分析した。MascotのMS/MS ion searchによる解析でタンパク質を同定した。
(2) SDS-PAGE analysis
Samples were taken by pooling 4 μL each (total 44 μL).

Remove high-concentration serum proteins with antibody column (ProteoPrep (trade name) 20 Plasma Immunodepletion Kit (SIGMA) or ProteomeLab (trade name) IgY-R7 SC (BECKMAN COULTER)

Approximately 200-250mg of protein is recovered after desalting and concentration ↓
Control and KO samples are labeled with different mass of iTRAQ (trade name) reagent and mixed ↓ (i) Separation fraction by HPLC or (ii) SDS-PAGE
(ii) Separation fraction by HPLC
A 20 μg sample labeled with iTRAQ (trade name) reagent was subjected to separation fractionation using SMART (trade name) System (GE Healthcare). As the column, a gel filtration column (Superose 6) was used.
(iii) Separation fraction by SDS-PAGE
A 20 μg sample labeled with iTRAQ (trade name) reagent was electrophoresed on a 10% SDS polyacrylamide gel, and the lane gel was divided into 20 gels for each molecular weight.

Mass spectrometry analysis
Analysis was performed using ESI LIT-TOF: NanoFrontier LD (Hitachi High-Tech), ESI Q-TOF: Q-Tof micro (Waters), and ESI Q-TOF: SYNAPT MS (Waters). Proteins were identified by Mascot MS / MS ion search analysis.

その結果、モデルマウス/コントロールマウス比が1.2以上と0.75以下であったペプチドをコードする遺伝子として、上記遺伝子(31)〜(34)が同定された。各遺伝子についてのモデルマウス/コントロールマウス比及び定量されたペプチド断片のアミノ酸配列の配列番号を下記表3に示す。なお、遺伝子番号(31)と(32)は、定量されたアミノ酸配列は同じであるが、異なるポリペプチドに由来するものである。その根拠は、実験手法的な問題で定量はできなかったが、(31)と(32)にそれぞれ特異的な(マウス)ペプチドが多数同定されていることによる (データ示さず)。   As a result, the genes (31) to (34) were identified as genes encoding peptides having a model mouse / control mouse ratio of 1.2 or more and 0.75 or less. The model mouse / control mouse ratio for each gene and the SEQ ID NOs of the amino acid sequences of the quantified peptide fragments are shown in Table 3 below. The gene numbers (31) and (32) have the same quantified amino acid sequence but are derived from different polypeptides. The grounds for this were experimental methods that could not be quantified, but a large number of (mouse) peptides specific to (31) and (32) were identified (data not shown).

2. ヒト乳癌標本の免疫組織化学分析
(1) 抗体
この実験に用いた抗体は次の通りであった。抗aPKC(λ)マウスモノクローナル抗体(BD Biosciences社製)、抗ALDHマウスモノクローナル抗体(BD Biosciences社製)、抗ALDHウサギモノクローナル抗体(Abcam社製)及び抗HER2(ErbB2)ラットモノクローナル抗体(Abcam社製)。
2. Immunohistochemical analysis of human breast cancer specimens
(1) Antibody The antibodies used in this experiment were as follows. Anti-aPKC (λ) mouse monoclonal antibody (BD Biosciences), anti-ALDH mouse monoclonal antibody (BD Biosciences), anti-ALDH rabbit monoclonal antibody (Abcam) and anti-HER2 (ErbB2) rat monoclonal antibody (Abcam) ).

(2) 免疫染色
ヒト乳癌標本は、神奈川がん臨床研究・情報機構(KCRIA)から提供された。この実験に用いた研究プロトコールは、横浜市立大学及び神奈川がん臨床研究・情報機構の倫理委員会により承認された。全ての患者から、組織サンプルを研究目的に使用することについて事前にインフォームドコンセントを得た。ヒト乳癌組織の凍結切片(4μm)を10%フォルマリンで固定した。一次抗体として、上記抗体を用いた。標識抗原は、DAB plus(商品名、DAKO社製)で可視化し、切片をヘマトキシリンで対比染色した。
(2) Immunostaining Human breast cancer specimens were provided by Kanagawa Cancer Clinical Research and Information Agency (KCRIA). The research protocol used in this experiment was approved by the Yokohama City University and the Ethics Committee of Kanagawa Cancer Research and Information Organization. Informed consent was obtained in advance from all patients for use of tissue samples for research purposes. A frozen section (4 μm) of human breast cancer tissue was fixed with 10% formalin. The above antibody was used as a primary antibody. The labeled antigen was visualized with DAB plus (trade name, manufactured by DAKO), and the sections were counterstained with hematoxylin.

上記操作は、具体的には次のように行った。
一次抗体(A) anti-aPKCiota/lambda(TDL) (mouse monoclo)1/500dil.
(B) anti-ALDH(TDL)(mouse monoclo) 1/50 dil.
(i)凍結切片を10%ホルマリン, on ice, 5min固定
(ii) H2O, 5min
(iii) PBS, 5min.
(iv) 0.3% hydrogen peroxide/PBS, RT, 30min.
(v) PBS, 5min
(vi) 10%正常ウサギ血清/PBSでblocking, 37℃, 15min
(vii) 一次抗体 4℃, O/N
(viii) PBS 5min×3回
(ix) ビオチン化抗マウス二次抗体 10min(以降,ヒストファインキット,ニチレイCode:426032)
(x) PBS 5min×3回
(xi) ペルオキシダーゼ標識ストレプトアビジン 5min(ニチレイCode:426062)
(xii) PBS 5min×3回
(xiii) DAB plus(DAKO Code:K3468)
(xiv) 核染 脱水 透徹 封入
Specifically, the above operation was performed as follows.
Primary antibody (A) anti-aPKCiota / lambda (TDL) (mouse monoclo) 1 / 500dil.
(B) anti-ALDH (TDL) (mouse monoclo) 1/50 dil.
(i) Fix frozen section to 10% formalin, on ice, 5 min
(ii) H 2 O, 5min
(iii) PBS, 5min.
(iv) 0.3% hydrogen peroxide / PBS, RT, 30min.
(v) PBS, 5min
(vi) Blocking with 10% normal rabbit serum / PBS, 37 ℃, 15min
(vii) Primary antibody 4 ℃, O / N
(viii) PBS 5min x 3 times
(ix) Biotinylated anti-mouse secondary antibody 10 min (hereinafter, Histofine Kit, Nichirei Code: 426032)
(x) PBS 5min x 3 times
(xi) Peroxidase-labeled streptavidin 5min (Nichirei Code: 426062)
(xii) PBS 5min x 3 times
(xiii) DAB plus (DAKO Code: K3468)
(xiv) Nuclear dye Dehydration Toru

結果を図1に示す。図1中、a、bはヒト乳癌標本中のaPKCλの代表的な免疫染色像である。aPKCλ陽性(a)、同陰性(b)。cはaPKCλ陰性癌のALDHの免疫染色像を示す。矢印はALDH陽性癌細胞を示す。スケールバーは100μmである。   The results are shown in FIG. In FIG. 1, a and b are representative immunostained images of aPKCλ in a human breast cancer specimen. aPKCλ positive (a), negative (b). c shows an immunostained image of ALDH of aPKCλ-negative cancer. Arrows indicate ALDH positive cancer cells. The scale bar is 100 μm.

(3) 免疫蛍光法
Cy3-結合抗ウサギ抗体(Amersham社製)、Cy5-結合抗ラット抗体(Amersham社製)及びAlexa 488抗マウス抗体(Invitrogen社製)を用いた。核染色には、DAPI(商品名、Roche社製)を用いた。染色切片は、Prolong gold antifade reagent(商品名、Invitrogen社製)に包埋した。
(3) Immunofluorescence
Cy3-conjugated anti-rabbit antibody (Amersham), Cy5-conjugated anti-rat antibody (Amersham) and Alexa 488 anti-mouse antibody (Invitrogen) were used. DAPI (trade name, manufactured by Roche) was used for nuclear staining. The stained section was embedded in Prolong gold antifade reagent (trade name, manufactured by Invitrogen).

上記操作は具体的には次のように行った。
一次抗体 (A) anti-aPKCiota/lambda(TDL) (mouse monoclo)1/500dil.
(B) anti-ALDH(Abcam)(rabbit monoclo) 1/200 dil.
(C) anti-HER2(Abcam)(rat monoclo) 1/50dil.
(i) 凍結切片を10%ホルマリン, on ice, 5min固定
(ii) H2O, 5min
(iii) PBS, 5min.
(iv) 10%正常ウサギ血清/TBSTでblocking, RT, 30min
(v) 一次抗体 4℃, O/N
(vi) TBST 5min×3回
(vii) 蛍光標識2次抗体 (1/500ずつ;anti-mouse Alexa488, anti-rabbit cy3, anti-rat cy5 )+DAPI
(viii) TBST 5min×3回
(ix) Prolong gold antifade (Invitrogen)で包埋。
Specifically, the above operation was performed as follows.
Primary antibody (A) anti-aPKCiota / lambda (TDL) (mouse monoclo) 1 / 500dil.
(B) anti-ALDH (Abcam) (rabbit monoclo) 1/200 dil.
(C) anti-HER2 (Abcam) (rat monoclo) 1 / 50dil.
(i) Fix frozen section to 10% formalin, on ice, 5 min
(ii) H 2 O, 5min
(iii) PBS, 5min.
(iv) Blocking with 10% normal rabbit serum / TBST, RT, 30 min
(v) Primary antibody 4 ℃, O / N
(vi) TBST 5min x 3 times
(vii) Fluorescently labeled secondary antibody (1/500 each; anti-mouse Alexa488, anti-rabbit cy3, anti-rat cy5) + DAPI
(viii) TBST 5min × 3 times
(ix) Embedded in Prolong gold antifade (Invitrogen).

結果を図2に示す。図2中、a〜cはaPKCλ陽性の乳癌症例、d〜iはaPKCλ陰性の乳癌症例-1、j〜oは、さらなるaPKCλ陰性の乳癌症例-2。aPKCλ(a, d, j)の染色及びDAPI(b, e, k)染色並びにaPKCλとDAPIの統合画像(c,f,i)。(i,o)は、aPKCλ、ALDH、HER2の三重染色の統合画像。スケールバーは10μm。これらの2例の乳癌症例では、ほとんどの細胞はaPKCλを発現しておらず、ALDHとHER2の両方を発現していた。   The results are shown in FIG. In FIG. 2, a to c are aPKCλ-positive breast cancer cases, d to i are aPKCλ-negative breast cancer cases-1, and j to o are further aPKCλ-negative breast cancer cases-2. aPKCλ (a, d, j) staining and DAPI (b, e, k) staining and aPKCλ and DAPI integrated image (c, f, i). (i, o) is an integrated image of triple staining of aPKCλ, ALDH, and HER2. Scale bar is 10μm. In these two breast cancer cases, most cells did not express aPKCλ and expressed both ALDH and HER2.

(4) 統計処理
全ての統計解析は、PASW statistics 18 (商品名、SPSS Inc.製)を用いて行った。P値が<0.05の場合、有意であると考えた。この実験で用いた臨床病理学的パラメーターを下記表4に示す。臨床病理学的特徴とaPKCλ発現の相関を解析するために、χ2検定を用いた。症例数が5例未満の場合には、Fisherの正確確率検定を適用した。χ2検定及びFisherの正確確率検定の両方においてP値が0.05未満の場合、残差分析を行った。調製済残差の絶対値が1.96よりも大きい場合には、P値が0.05未満であることを反映していると考えた。
(4) Statistical processing All statistical analyzes were performed using PASW statistics 18 (trade name, manufactured by SPSS Inc.). A P value <0.05 was considered significant. The clinicopathological parameters used in this experiment are shown in Table 4 below. To analyze the correlation between clinicopathological features and aPKCλ expression, the χ 2 test was used. When the number of cases was less than 5, Fisher's exact test was applied. Residual analysis was performed when the P value was less than 0.05 in both the χ 2 test and Fisher's exact test. When the absolute value of the prepared residual was greater than 1.96, it was considered that the P value was less than 0.05.

下記表4に、この実験で調べた104例の乳癌症例の臨床病理学的パラメーター及びいくつかの組織化学パラメーターを列挙した。ER、PgR、HER2、ALDH及びaPKCλの発現を評価するために凍結組織切片を用いた。ERとPgRは、免疫組織化学反応性が10%を超える場合に陽性であると定義した。HER2については、Hercep検定で+2及び+3を陽性と定義した。ALDHについては、腫瘍細胞の5%が免疫組織化学反応性を示す場合に陽性とした。aPKCλについては、腫瘍細胞の20%未満が免疫組織化学反応性を示す場合に陰性であると定義した。   Table 4 below lists the clinicopathological parameters and some histochemical parameters of the 104 breast cancer cases examined in this experiment. Frozen tissue sections were used to assess ER, PgR, HER2, ALDH and aPKCλ expression. ER and PgR were defined as positive when immunohistochemical reactivity was greater than 10%. For HER2, +2 and +3 were defined as positive by Hercep test. ALDH was positive when 5% of the tumor cells showed immunohistochemical reactivity. aPKCλ was defined as negative when less than 20% of the tumor cells showed immunohistochemical reactivity.

下記表5に臨床病理学的パラメーターとaPKCλ発現の相関を示す。臨床病理学的特徴(上記表4に記載)とaPKCλ発現の相関を解析するために、χ2検定を用いた。症例数が5例未満の場合には、Fisherの正確確率検定を適用した。 Table 5 below shows the correlation between clinicopathological parameters and aPKCλ expression. To analyze the correlation between clinicopathological features (described in Table 4 above) and aPKCλ expression, a χ 2 test was used. When the number of cases was less than 5, Fisher's exact test was applied.

aPKCλ陰性乳癌におけるHER2とALDHの相関も、Fisherの正確確率検定で解析した。χ2検定及びFisherの正確確率検定の両方においてP値が0.05未満の場合、残差分析を行った。調製済残差の絶対値が1.96よりも大きい場合には、P値が0.05未満であることを反映していると考えた。結果を下記表6に示す。 The correlation between HER2 and ALDH in aPKCλ-negative breast cancer was also analyzed by Fisher's exact test. Residual analysis was performed when the P value was less than 0.05 in both the χ 2 test and Fisher's exact test. When the absolute value of the prepared residual was greater than 1.96, it was considered that the P value was less than 0.05. The results are shown in Table 6 below.

表6に示されるように、aPKCλ陰性乳癌症例(n=40)において、ALDHはHER2と正に相関していた(P=0.015、Fisherの正確確率検定)。ALDH+/HER2+の調製済残差の値は+2.5であった。 As shown in Table 6, ALDH was positively correlated with HER2 in aPKCλ-negative breast cancer cases (n = 40) (P = 0.015, Fisher exact test). The value of the prepared residual of ALDH + / HER2 + was +2.5.

Claims (6)

生体から分離した被検試料について、下記(1)〜(34)の遺伝子群から選ばれる少なくとも1つの遺伝子の発現量を測定することを含む、初期乳がんの検出方法。
(1) Protein BEX1
(2) Protein LETM2 mitochondrial precursor
(3) Major urinary protein 6 precursor
(4) Vacuolar protein sorting-associated protein 18 homolog
(5) Apolipoprotein E precursor
(6) Uncharacterized protein C10orf132 homolog
(7) Apolipoprotein C-I precursor
(8) YEATS domain-containing protein 2
(9) Peroxisome proliferator-activated receptor gamma coactivator-related protein 1
(10) Beta-taxilin
(11) Regulator of G-protein signaling 11
(12) Centrosomal protein of 290 kDa
(13) Sterile alpha motif domain-containing protein 9-like
(14) ATP-dependent RNA helicase DDX18
(15) Cathepsin G precursor
(16) 182 kDa tankyrase 1-binding protein
(17) Beta,beta-carotene 9',10'-dioxygenase
(18) Cyclin-dependent kinase inhibitor 2A isoform 3
(19) Centromere protein C 1
(20) Dynamin-binding protein
(21) Receptor tyrosine-protein kinase erbB-2 precursor
(22) Extended synaptotagmin-2
(23) Latent-transforming growth factor beta-binding protein 2 precursor
(24) Latexin
(25) Mastermind-like domain
(26) Serine/threonine-protein kinase PCTAIRE-3
(27) Transcription elongation regulator 1
(28) Zinc finger CCHC domain-containing protein 4
(29) Superkiller viralicidic activity 2-like 2
(30) Piwi-like protein 4
(31) Keratin type I cytoskeletal 10
(32) Keratin type I cytoskeletal 14
(33) Leukemia inhibitory factor receptor
(34) Transcription elongation factor SPT5
An early breast cancer detection method comprising measuring an expression level of at least one gene selected from the following gene groups (1) to (34) for a test sample separated from a living body.
(1) Protein BEX1
(2) Protein LETM2 mitochondrial precursor
(3) Major urinary protein 6 precursor
(4) Vacuolar protein sorting-associated protein 18 homolog
(5) Apolipoprotein E precursor
(6) Uncharacterized protein C10orf132 homolog
(7) Apolipoprotein CI precursor
(8) YEATS domain-containing protein 2
(9) Peroxisome proliferator-activated receptor gamma coactivator-related protein 1
(10) Beta-taxilin
(11) Regulator of G-protein signaling 11
(12) Centrosomal protein of 290 kDa
(13) Sterile alpha motif domain-containing protein 9-like
(14) ATP-dependent RNA helicase DDX18
(15) Cathepsin G precursor
(16) 182 kDa tankyrase 1-binding protein
(17) Beta, beta-carotene 9 ', 10'-dioxygenase
(18) Cyclin-dependent kinase inhibitor 2A isoform 3
(19) Centromere protein C 1
(20) Dynamin-binding protein
(21) Receptor tyrosine-protein kinase erbB-2 precursor
(22) Extended synaptotagmin-2
(23) Latent-transforming growth factor beta-binding protein 2 precursor
(24) Latexin
(25) Mastermind-like domain
(26) Serine / threonine-protein kinase PCTAIRE-3
(27) Transcription elongation regulator 1
(28) Zinc finger CCHC domain-containing protein 4
(29) Superkiller viralicidic activity 2-like 2
(30) Piwi-like protein 4
(31) Keratin type I cytoskeletal 10
(32) Keratin type I cytoskeletal 14
(33) Leukemia inhibitory factor receptor
(34) Transcription elongation factor SPT5
前記(1)、(2)、(4)〜(34)の遺伝子群から選ばれる少なくとも1つの遺伝子の発現量を測定することを含む請求項1記載の方法。   The method according to claim 1, comprising measuring the expression level of at least one gene selected from the gene group of (1), (2), (4) to (34). 前記(1)〜(13)の遺伝子群から選ばれる少なくとも1つの遺伝子の発現量を測定することを含む請求項1記載の方法。   The method according to claim 1, comprising measuring the expression level of at least one gene selected from the gene group of (1) to (13). 前記(1)、(2)、(4)〜(13)の遺伝子群から選ばれる少なくとも1つの遺伝子の発現量を測定することを含む請求項3記載の方法。   4. The method according to claim 3, comprising measuring the expression level of at least one gene selected from the gene group of (1), (2), (4) to (13). 前記被検試料が血液試料である請求項1〜4のいずれか1項に記載の方法。   The method according to claim 1, wherein the test sample is a blood sample. 遺伝子の発現量は、前記被検試料中に含まれる遺伝子産物の濃度に基づき測定される請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the gene expression level is measured based on a concentration of a gene product contained in the test sample.
JP2011044047A 2011-03-01 2011-03-01 Initial breast cancer detection method Pending JP2012181094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011044047A JP2012181094A (en) 2011-03-01 2011-03-01 Initial breast cancer detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011044047A JP2012181094A (en) 2011-03-01 2011-03-01 Initial breast cancer detection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015024636A Division JP2015127711A (en) 2015-02-10 2015-02-10 Initial breast cancer detection method

Publications (1)

Publication Number Publication Date
JP2012181094A true JP2012181094A (en) 2012-09-20

Family

ID=47012412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044047A Pending JP2012181094A (en) 2011-03-01 2011-03-01 Initial breast cancer detection method

Country Status (1)

Country Link
JP (1) JP2012181094A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005A (en) * 1850-01-08 Improvement in coating iron with copper or its alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005A (en) * 1850-01-08 Improvement in coating iron with copper or its alloy

Similar Documents

Publication Publication Date Title
Yip-Schneider et al. Vascular endothelial growth factor, a novel and highly accurate pancreatic fluid biomarker for serous pancreatic cysts
CN104487591A (en) Molecular markers for prognostically predicting prostate cancer, method and kit thereof
Heawchaiyaphum et al. Peroxiredoxin-2 and zinc-alpha-2-glycoprotein as potentially combined novel salivary biomarkers for early detection of oral squamous cell carcinoma using proteomic approaches
Gerber et al. Systematic identification and characterization of novel human skin-associated genes encoding membrane and secreted proteins
EP3602068B1 (en) Biomarker for predicting cognitive decline
WO2013087929A2 (en) Method for identifying marker sequences for gynaecological malignant tumours
CN106164676A (en) SRM for PD L1 measures
TWI532994B (en) Biomarkers for breast cancer
ES2364496T3 (en) PROCEDURE FOR CHECKING AND CONTROLLING THE PROCESS OF FERMENTATION OF LACTIC ACID IN MAMMALS / METABOLIC ROUTE OF AEROBIA FERMENTATION OF GLUCOSE IN THE ORGANISM OF MAMMALS.
JP6361943B2 (en) Pancreatic cancer diagnostic kit comprising an antibody that specifically binds to complement factor B protein and an antibody that specifically binds to sugar chain antigen 19-9 protein
KR20200017452A (en) Quantification of SLFN11 Protein for Optimal Cancer Therapy
CN110268263A (en) The neoformation marker of human skin aging
Zhang et al. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4
JP2015127711A (en) Initial breast cancer detection method
JP2012181094A (en) Initial breast cancer detection method
Li et al. Overexpression of Aldo-keto reductase family 1 B10 protein in ductal carcinoma in situ of the breast correlates with HER2 positivity
KR102617206B1 (en) Markers of pancreatic cancer and papillary mucinous tumors in the pancreatic duct
Igci et al. Septin 7 immunoexpression in papillary thyroid carcinoma: a preliminary study
JP2022527436A (en) Composite marker for diagnosis of age-related macular degeneration and its use
Ahrens et al. Evaluation of YB-1 levels in patients with endometriosis
KR20190133553A (en) Composition for treating or diagnosing of cervix cancer, and method for screening the therapeutic agent and diagnosis of cervical cancer using the same
KR102026252B1 (en) The biomarker for lung Squamous cell carcinoma and Diagnosis method for lung Squamous cell carcinoma using thereof
US20230341403A1 (en) Methods and kits for the diagnosis of lung cancer
JPWO2006129717A1 (en) Tumor marker for detecting pancreatic cancer and kit for detecting pancreatic cancer using the same
CN116622846A (en) Peripheral blood circRNA biomarker for diffuse large B cell lymphoma diagnosis and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111