JP2012180532A - Lubricant composition for internal engine - Google Patents

Lubricant composition for internal engine Download PDF

Info

Publication number
JP2012180532A
JP2012180532A JP2012140143A JP2012140143A JP2012180532A JP 2012180532 A JP2012180532 A JP 2012180532A JP 2012140143 A JP2012140143 A JP 2012140143A JP 2012140143 A JP2012140143 A JP 2012140143A JP 2012180532 A JP2012180532 A JP 2012180532A
Authority
JP
Japan
Prior art keywords
group
mass
acid
oil
base oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012140143A
Other languages
Japanese (ja)
Inventor
Takashi Sano
孝 佐野
Shozaburo Konishi
正三郎 小西
Shigeki Matsui
茂樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Japan Petroleum Energy Center JPEC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Energy Center JPEC, JX Nippon Oil and Energy Corp filed Critical Japan Petroleum Energy Center JPEC
Priority to JP2012140143A priority Critical patent/JP2012180532A/en
Publication of JP2012180532A publication Critical patent/JP2012180532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubricant composition for an internal engine, which is excellent in thermal and oxidative stability, and can achieve sufficiently long drainage intervals.SOLUTION: The lubricant composition for an internal engine contains a lubricant base oil satisfying at least one of the following conditions (a) and (b), and at least one selected from an ash-free antioxidant containing no sulfur as a constituting element, an ash-free antioxidant containing sulfur as a constituting element and an organomolybdenum compound: (a) lubricant base oil containing 95 mass% of a saturated content and having a proportion of a cyclic saturated content of 0.1 to 10 mass% in the saturated content; and (b) A lubricant base oil satisfying the condition represented by the following expression (1): 1.435≤n-0.002×kv100≤1.450, wherein ndenotes a refractive index at 20°C of the lubricant base oil; and kv100 denotes a kinematic viscosity (mm/s) at 100°C of the lubricant base oil.

Description

本発明は、内燃機関用潤滑油組成物に関し、詳しくは、ガソリンエンジン、メタノール含有燃料対応エンジン、ガスエンジン等の潤滑油として好適な内燃機関用潤滑油組成物に関する。   The present invention relates to a lubricating oil composition for an internal combustion engine, and more particularly to a lubricating oil composition for an internal combustion engine that is suitable as a lubricating oil for gasoline engines, methanol-containing fuel-compatible engines, gas engines, and the like.

自動車用エンジンなどの内燃機関に使用される潤滑油には、苛酷な条件下での長期の使用に耐え得るための熱・酸化安定性が求められている。   Lubricating oils used for internal combustion engines such as automobile engines are required to have thermal and oxidation stability that can withstand long-term use under severe conditions.

そこで、従来の内燃機関用潤滑油においては、熱・酸化安定性を確保するために、水素化分解鉱油等の高度精製基油又は合成油などの高性能基油を用い、当該基油にジチオリン酸亜鉛(ZDTP)、ジチオカルバミン酸モリブデン(MoDTC)等のパーオキサイド分解能を有する硫黄含有化合物、あるいはフェノール系又はアミン系酸化防止剤等の無灰酸化防止剤を配合することが一般的になされている(例えば、特許文献1〜4を参照。)。   Therefore, in a conventional lubricating oil for internal combustion engines, a highly refined base oil such as hydrocracked mineral oil or a high-performance base oil such as synthetic oil is used to ensure thermal and oxidation stability, and dithiophosphorus is used as the base oil. In general, a sulfur-containing compound having a peroxide resolution such as zinc oxide (ZDTP) or molybdenum dithiocarbamate (MoDTC), or an ashless antioxidant such as a phenol-based or amine-based antioxidant is generally used. (For example, see Patent Documents 1 to 4.)

特開平4−36391号公報JP-A-4-36391 特開昭63−223094号公報JP 63-223094 A 特開平8−302378号公報JP-A-8-302378 特開平9−003463号公報JP 9-003463 A

しかし、近時、内燃機関用潤滑油の使用条件の更なる苛酷化に加えて、資源有効利用、廃油の低減、潤滑油ユーザーのコスト削減等の観点からも、潤滑油のロングドレイン化に対する要求は一層高まっており、かかる要求に応えるためには上記従来の内燃機関用潤滑油といえども改善の余地がある。すなわち、本発明者らの検討によれば、従来の内燃機関用潤滑油に使用される潤滑油基油は、高性能基油と呼ばれるものであっても、それ自体の熱・酸化安定性が必ずしも十分とはいえない。また、酸化防止剤の配合量を増量することで熱・酸化安定性をある程度改善することは可能であるが、この手法による熱・酸化安定性の向上効果には自ずと限界がある。   However, in recent years, in addition to the harsher use conditions of internal combustion engine lubricants, demands for longer drains of lubricants are also required from the viewpoint of effective use of resources, reduction of waste oil, and cost reduction of lubricant users. In order to meet these demands, there is room for improvement even in the conventional lubricating oil for internal combustion engines. That is, according to the study by the present inventors, the lubricating base oil used in the conventional lubricating oil for internal combustion engines has its own thermal and oxidative stability even if it is called a high performance base oil. Not necessarily enough. In addition, it is possible to improve the heat / oxidation stability to some extent by increasing the blending amount of the antioxidant, but the effect of improving the heat / oxidation stability by this method is naturally limited.

本発明は、このような実情に鑑みてなされたものであり、熱・酸化安定性に優れ、十分なロングドレイン化を達成することが可能な内燃機関用潤滑油組成物を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a lubricating oil composition for an internal combustion engine that is excellent in thermal and oxidation stability and can achieve a sufficiently long drain. And

本発明は、上記課題を解決するために、飽和分を95質量%以上含有し、且つ該飽和分に占める環状飽和分の割合が0.1〜10質量%である潤滑油基油と、硫黄を構成元素として含まない無灰酸化防止剤と、硫黄を構成元素として含む無灰酸化防止剤及び有機モリブデン化合物から選ばれる少なくとも1種とを含有することを特徴とする内燃機関用潤滑油組成物を提供する。   In order to solve the above-mentioned problems, the present invention includes a lubricating base oil containing 95% by mass or more of a saturated component and a ratio of cyclic saturated component in the saturated component of 0.1 to 10% by mass, sulfur A lubricating oil composition for an internal combustion engine, comprising: an ashless antioxidant that does not contain as a constituent element; and at least one selected from an ashless antioxidant that contains sulfur as a constituent element and an organic molybdenum compound I will provide a.

本発明の内燃機関用潤滑油組成物に含まれる潤滑油基油は、飽和分の含有量及び当該飽和分に占める環状飽和分の割合がそれぞれ上記条件を満たすものであるため、それ自体が熱・酸化安定性及び揮発防止性に優れる。更に、当該潤滑油基油は、添加剤が配合された場合に、当該添加剤を安定に溶解保持しつつその機能をより高水準で発現させることができるものである。そして、このように優れた特性を有する潤滑油基油に、硫黄を構成元素として含まない無灰酸化防止剤(以下、場合により「(A)成分」という)と、硫黄を構成元素として含む無灰酸化防止剤及び有機モリブデン化合物から選ばれる少なくとも1種(以下、場合により「(B)成分」という)との双方を含有せしめることで、(A)、(B)成分の相乗作用による熱・酸化安定性の向上効果を最大限に発揮させることができるようになる。したがって、本発明の内燃機関用潤滑油組成物によって、十分なロングドレイン化を達成することが可能となる。   Since the lubricating base oil contained in the lubricating oil composition for internal combustion engines of the present invention satisfies the above conditions, the content of the saturated component and the ratio of the cyclic saturated component in the saturated component satisfy the above conditions, respectively.・ Excellent oxidation stability and volatilization prevention. Furthermore, the lubricating base oil, when an additive is blended, can exhibit its function at a higher level while stably dissolving and holding the additive. The lubricating base oil having such excellent characteristics includes an ashless antioxidant that does not contain sulfur as a constituent element (hereinafter sometimes referred to as “component (A)”), and a sulfur base ingredient that does not contain sulfur. By including both of the ash antioxidant and at least one selected from organic molybdenum compounds (hereinafter sometimes referred to as “component (B)”), the heat and heat generated by the synergistic action of components (A) and (B) The effect of improving the oxidation stability can be maximized. Therefore, it is possible to achieve a sufficiently long drain by the lubricating oil composition for an internal combustion engine of the present invention.

また、本発明の内燃機関用組成物に含まれる潤滑油基油は、飽和分の含有量及び当該飽和分に占める環状飽和分の割合がそれぞれ上記条件を満たすものであるため、それ自体が粘度−温度特性及び摩擦特性に優れている。更に、当該潤滑油基油は、上述のように添加剤の溶解性及び効き目の点で優れており、摩擦調整剤が配合された場合には摩擦低減効果を高水準で得ることができるものである。したがって、このように優れた潤滑油基油を含む本発明の内燃機関用潤滑油組成物によれば、摺動部における摩擦抵抗や撹拌抵抗などに起因するエネルギー損失を低減し、十分な省エネルギー化を図ることができる。   In addition, the lubricating base oil contained in the composition for internal combustion engines of the present invention satisfies the above conditions because the content of the saturated component and the ratio of the cyclic saturated component in the saturated component satisfy the above conditions, respectively. -Excellent temperature characteristics and friction characteristics. Furthermore, the lubricating base oil is excellent in terms of solubility and effectiveness of the additive as described above, and when a friction modifier is blended, the friction reducing effect can be obtained at a high level. is there. Therefore, according to the lubricating oil composition for an internal combustion engine of the present invention including such an excellent lubricating base oil, energy loss due to frictional resistance, stirring resistance, etc. in the sliding portion is reduced, and sufficient energy saving is achieved. Can be achieved.

更に、従来の潤滑油基油の場合は低温粘度特性の改善と揮発防止性の確保との両立が困難であったが、本発明にかかる潤滑油基油によれば低温粘度特性と揮発防止性との双方を高水準でバランスよく達成することができる。したがって、本発明の内燃機関用潤滑油組成物は、内燃機関のロングドレイン化及び省エネルギー化に加えて、低温時始動性の改善の点でも有用である。   Furthermore, in the case of the conventional lubricating base oil, it has been difficult to achieve both the improvement of the low-temperature viscosity characteristics and the prevention of volatilization. However, according to the lubricating base oil of the present invention, the low-temperature viscosity characteristics and volatilization prevention Both can be achieved at a high level and in a well-balanced manner. Therefore, the lubricating oil composition for an internal combustion engine of the present invention is useful in terms of improving startability at low temperatures in addition to the long drain and energy saving of the internal combustion engine.

また、本発明は、下記式(1)で表される条件を満たす潤滑油基油と、硫黄を構成元素として含まない無灰酸化防止剤と、硫黄を構成元素として含む無灰酸化防止剤及び有機モリブデン化合物から選ばれる少なくとも1種とを含有することを特徴とする内燃機関用潤滑油組成物を提供する。   The present invention also includes a lubricating base oil that satisfies the condition represented by the following formula (1), an ashless antioxidant that does not contain sulfur as a constituent element, an ashless antioxidant that contains sulfur as a constituent element, and Provided is a lubricating oil composition for an internal combustion engine comprising at least one selected from organic molybdenum compounds.

1.435≦n20−0.002×kv100≦1.450 (1)
[式中、n20は潤滑油基油の20℃における屈折率を示し、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
1.435 ≦ n 20 −0.002 × kv100 ≦ 1.450 (1)
[Wherein n 20 represents the refractive index of the lubricating base oil at 20 ° C., and kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]

上記式(1)で表される条件を満たす潤滑油基油も、熱・酸化安定性、更には粘度−温度特性(低温粘度特性を含む)、摩擦特性、及び揮発防止性に優れるものであり、また、添加剤が配合された場合には、当該添加剤を安定に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができるものである。したがって、上記式(1)で表される条件を満たす潤滑油基油と、硫黄を構成元素として含まない無灰酸化防止剤と、硫黄を構成元素として含む無灰酸化防止剤及び有機モリブデン化合物から選ばれる少なくとも1種とを含有する内燃機関用潤滑油組成物によっても、ロングドレイン化、省エネルギー化及び低温始動性の改善を達成することができるようになる。 The lubricating base oil that satisfies the condition represented by the above formula (1) is also excellent in thermal and oxidation stability, and in addition to viscosity-temperature characteristics (including low-temperature viscosity characteristics), friction characteristics, and volatilization prevention properties. In addition, when an additive is blended, the function of the additive can be expressed at a higher level while the additive is stably dissolved and held. Therefore, from the lubricating base oil satisfying the condition represented by the above formula (1), the ashless antioxidant not containing sulfur as a constituent element, the ashless antioxidant containing sulfur as a constituent element, and the organic molybdenum compound Even with the lubricating oil composition for an internal combustion engine containing at least one selected from the above, it is possible to achieve a long drain, energy saving, and an improvement in low-temperature startability.

本発明によれば、熱・酸化安定性あるいは更に粘度−温度特性、摩擦特性及び揮発防止性に優れた内燃機関用潤滑油組成物が実現される。そして、本発明の内燃機関用潤滑油組成物を内燃機関に適用することにより、ロングドレイン化及び省エネルギー化を達成することができるようになり、更には低温始動性を改善することができるようになる。   According to the present invention, a lubricating oil composition for an internal combustion engine that is excellent in thermal / oxidative stability or further in viscosity-temperature characteristics, friction characteristics, and volatilization prevention properties is realized. And, by applying the lubricating oil composition for an internal combustion engine of the present invention to the internal combustion engine, it becomes possible to achieve a long drain and energy saving, and further to improve the low temperature startability. Become.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明では、以下に示す条件(a)又は(b)の少なくとも一方を満たす潤滑油基油(以下、単に「本発明にかかる潤滑油基油」という。)が用いられる。なお、本発明にかかる潤滑油基油は、条件(a)又は(b)の少なくとも一方を満たすものであればよいが、条件(a)及び条件(b)の双方を満たすことがより好ましい。
(a)飽和分を95質量%以上含有し、且つ該飽和分に占める環状飽和分の割合が0.1〜10質量%であること。
(b)下記式(1)で表される条件を満たすこと。
1.435≦n20−0.002×kv100≦1.450 (1)
[式中、n20は潤滑油基油の20℃における屈折率を示し、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
In the present invention, a lubricating base oil that satisfies at least one of the following conditions (a) or (b) (hereinafter simply referred to as “the lubricating base oil according to the present invention”) is used. The lubricating base oil according to the present invention only needs to satisfy at least one of the conditions (a) and (b), but it is more preferable to satisfy both the conditions (a) and (b).
(A) The saturated content is 95% by mass or more, and the ratio of the cyclic saturated content in the saturated content is 0.1 to 10% by mass.
(B) The condition expressed by the following formula (1) is satisfied.
1.435 ≦ n 20 −0.002 × kv100 ≦ 1.450 (1)
[Wherein n 20 represents the refractive index of the lubricating base oil at 20 ° C., and kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]

本発明にかかる潤滑油基油は、上記条件(a)又は(b)の少なくとも一方を満たすものであれば特に制限されない。具体的には、原油を常圧蒸留及び/又は減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理のうちの1種を単独で又は2種以上を組み合わせて精製したパラフィン系鉱油、あるいはノルマルパラフィン系基油、イソパラフィン系基油などのうち、上記条件(a)又は(b)の少なくとも一方を満たすものが挙げられる。これらの潤滑油基油は、1種を単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。   The lubricating base oil according to the present invention is not particularly limited as long as it satisfies at least one of the above conditions (a) and (b). Specifically, a lubricating oil fraction obtained by atmospheric distillation and / or vacuum distillation of crude oil is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid Of the paraffinic mineral oil, or the normal paraffinic base oil, the isoparaffinic base oil, etc. purified by combining one or more of the purification treatments such as washing and clay treatment alone or in combination of the above conditions (a) or Those satisfying at least one of (b) are mentioned. These lubricating base oils may be used alone or in combination of two or more.

本発明にかかる潤滑油基油の好ましい例としては、以下に示す基油(1)〜(8)を原料とし、この原料油及び/又はこの原料油から回収された潤滑油留分を、所定の精製方法によって精製し、潤滑油留分を回収することによって得られる基油を挙げることができる。
(1)パラフィン基系原油及び/又は混合基系原油の常圧蒸留による留出油
(2)パラフィン基系原油及び/又は混合基系原油の常圧蒸留残渣油の減圧蒸留による留出油(WVGO)
(3)潤滑油脱ろう工程により得られるワックス(スラックワックス等)及び/又はガストゥリキッド(GTL)プロセス等により得られる合成ワックス(フィッシャートロプシュワックス、GTLワックス等)
(4)基油(1)〜(3)から選ばれる1種又は2種以上の混合油及び/又は当該混合油のマイルドハイドロクラッキング処理油
(5)基油(1)〜(4)から選ばれる2種以上の混合油
(6)基油(1)、(2)、(3)、(4)又は(5)の脱れき油(DAO)
(7)基油(6)のマイルドハイドロクラッキング処理油(MHC)
(8)基油(1)〜(7)から選ばれる2種以上の混合油。
As a preferable example of the lubricating base oil according to the present invention, the following base oils (1) to (8) are used as raw materials, and the raw oil and / or the lubricating oil fraction recovered from the raw oil is determined in advance. The base oil obtained by refine | purifying by the refining method of this, and collect | recovering lubricating oil fractions can be mentioned.
(1) Distilled oil by atmospheric distillation of paraffinic crude oil and / or mixed base crude oil (2) Distilled oil by vacuum distillation of atmospheric distillation residue of paraffinic crude oil and / or mixed base crude oil ( WVGO)
(3) Wax (such as slack wax) obtained by the lubricant dewaxing process and / or synthetic wax (Fischer-Tropsch wax, GTL wax, etc.) obtained by the gas-liquid (GTL) process, etc.
(4) One or two or more mixed oils selected from base oils (1) to (3) and / or mild hydrocracking treatment oils of the mixed oils (5) selected from base oils (1) to (4) 2 or more kinds of mixed oils (6) Base oil (1), (2), (3), (4) or (5) debris oil (DAO)
(7) Mild hydrocracking treatment oil (MHC) of base oil (6)
(8) Two or more mixed oils selected from base oils (1) to (7).

なお、上記所定の精製方法としては、水素化分解、水素化仕上げなどの水素化精製;フルフラール溶剤抽出などの溶剤精製;溶剤脱ろうや接触脱ろうなどの脱ろう;酸性白土や活性白土などによる白土精製;硫酸洗浄、苛性ソーダ洗浄などの薬品(酸又はアルカリ)洗浄などが好ましい。本発明では、これらの精製方法のうちの1種を単独で行ってもよく、2種以上を組み合わせて行ってもよい。また、2種以上の精製方法を組み合わせる場合、その順序は特に制限されず、適宜選定することができる。   The above-mentioned predetermined purification methods include hydrorefining such as hydrocracking and hydrofinishing; solvent refining such as furfural solvent extraction; dewaxing such as solvent dewaxing and catalytic dewaxing; acid clay and activated clay White clay purification; chemical (acid or alkali) cleaning such as sulfuric acid cleaning and caustic soda cleaning is preferable. In the present invention, one of these purification methods may be performed alone, or two or more may be combined. Moreover, when combining 2 or more types of purification methods, the order in particular is not restrict | limited, It can select suitably.

更に、本発明にかかる潤滑油基油としては、上記基油(1)〜(8)から選ばれる基油又は当該基油から回収された潤滑油留分について所定の処理を行うことにより得られる下記基油(9)又は(10)が特に好ましい。
(9)上記基油(1)〜(8)から選ばれる基油又は当該基油から回収された潤滑油留分を水素化分解し、その生成物又はその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または当該脱ろう処理をした後に蒸留することによって得られる水素化分解鉱油
(10)上記基油(1)〜(8)から選ばれる基油又は当該基油から回収された潤滑油留分を水素化異性化し、その生成物又はその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または、当該脱ろう処理をしたあとに蒸留することによって得られる水素化異性化鉱油。
Furthermore, the lubricating base oil according to the present invention is obtained by subjecting a base oil selected from the above base oils (1) to (8) or a lubricating oil fraction recovered from the base oil to a predetermined treatment. The following base oil (9) or (10) is particularly preferred.
(9) The base oil selected from the base oils (1) to (8) or the lubricating oil fraction recovered from the base oil is hydrocracked and recovered from the product or the product by distillation or the like. Hydrocracked mineral oil obtained by performing dewaxing treatment such as solvent dewaxing or catalytic dewaxing on the lubricating oil fraction, or distillation after the dewaxing treatment (10) The above base oils (1) to (8) ) Or a lubricating oil fraction recovered from the base oil is hydroisomerized, and the product or the lubricating oil fraction recovered from the product by distillation or the like is subjected to solvent dewaxing or catalytic dewaxing. Hydroisomerized mineral oil obtained by performing a dewaxing process such as or by distillation after the dewaxing process.

また、上記(9)又は(10)の潤滑油基油を得るに際して、好都合なステップで、必要に応じて溶剤精製処理及び/又は水素化仕上げ処理工程を更に設けてもよい。   Moreover, when obtaining the lubricating base oil of (9) or (10) above, a solvent refining treatment and / or a hydrofinishing treatment step may be further provided as necessary at a convenient step.

また、上記水素化分解・水素化異性化に使用される触媒は特に制限されないが、分解活性を有する複合酸化物(例えば、シリカアルミナ、アルミナボリア、シリカジルコニアなど)又は当該複合酸化物の1種類以上を組み合わせてバインダーで結着させたものを担体とし、水素化能を有する金属(例えば周期律表第VIa族の金属や第VIII族の金属などの1種類以上)を担持させた水素化分解触媒、あるいはゼオライト(例えばZSM−5、ゼオライトベータ、SAPO−11など)を含む担体に第VIII族の金属のうち少なくとも1種類以上を含む水素化能を有する金属を担持させた水素化異性化触媒が好ましく使用される。水素化分解触媒及び水素化異性化触媒は、積層又は混合などにより組み合わせて用いてもよい。   The catalyst used for the hydrocracking / hydroisomerization is not particularly limited, but a composite oxide having cracking activity (for example, silica alumina, alumina boria, silica zirconia, etc.) or one of the composite oxides. Hydrogenolysis with a combination of the above combined with a binder and supporting a metal having hydrogenation ability (for example, one or more metals such as Group VIa metal or Group VIII metal in the periodic table) Hydroisomerization catalyst in which a catalyst or a support containing zeolite (for example, ZSM-5, zeolite beta, SAPO-11, etc.) is loaded with a metal having a hydrogenation ability containing at least one of Group VIII metals Are preferably used. The hydrocracking catalyst and the hydroisomerization catalyst may be used in combination by stacking or mixing.

水素化分解・水素化異性化の際の反応条件は特に制限されないが、水素分圧0.1〜20MPa、平均反応温度150〜450℃、LHSV0.1〜3.0hr−1、水素/油比50〜20000scf/bとすることが好ましい。   The reaction conditions in the hydrocracking / hydroisomerization are not particularly limited, but the hydrogen partial pressure is 0.1 to 20 MPa, the average reaction temperature is 150 to 450 ° C., the LHSV is 0.1 to 3.0 hr-1, and the hydrogen / oil ratio. It is preferable to set it as 50-20000 scf / b.

本発明にかかる潤滑油基油の製造方法の好ましい例としては、以下に示す製造方法Aが挙げられる。   Preferable examples of the method for producing a lubricating base oil according to the present invention include production method A shown below.

すなわち、本発明にかかる製造方法Aは、
NH脱着温度依存性評価においてNHの全脱着量に対する300〜800℃でのNHの脱着量の分率が80%以下である担体に、周期律表第VIa族金属のうち少なくとも1種類と、第VIII族金属のうち少なくとも1種類とが担持された水素化分解触媒を準備する第1工程と、
水素化分解触媒の存在下、スラックワックスを50容量%以上含む原料油を、水素分圧0.1〜14MPa、平均反応温度230〜430℃、LHSV0.3〜3.0hr−1、水素油比50〜14000scf/bで水素化分解する第2工程と、
第2工程で得られた分解生成油を蒸留分離して潤滑油留分を得る第3工程と、
第3工程で得られた潤滑油留分を脱ろう処理する第4工程と
を備える。
That is, the manufacturing method A according to the present invention includes:
NH 3 to the carrier desorption of the fraction of the NH 3 is 80% or less at 300 to 800 ° C. relative to the total desorption of NH 3 in the desorption temperature dependence evaluation, at least one of the periodic table Group VIa metals And a first step of preparing a hydrocracking catalyst on which at least one of the Group VIII metals is supported,
In the presence of a hydrocracking catalyst, a feed oil containing 50% by volume or more of slack wax, hydrogen partial pressure 0.1-14 MPa, average reaction temperature 230-430 ° C., LHSV 0.3-3.0 hr −1 , hydrogen oil ratio A second step of hydrocracking at 50-14000 scf / b;
A third step of obtaining a lubricating oil fraction by distilling and separating the cracked product oil obtained in the second step;
And a fourth step of dewaxing the lubricating oil fraction obtained in the third step.

以下、上記製造方法Aについて詳述する。   Hereinafter, the production method A will be described in detail.

(原料油)
上記製造方法Aにおいては、スラックワックスを50容量%以上含有する原料油が用いられる。なお、本発明でいう「スラックワックスを50容量%以上含有する原料油」とは、スラックワックスのみからなる原料油と、スラックワックスと他の原料油との混合油であってスラックワックスを50容量%以上含有する原料油との双方が包含される。
(Raw oil)
In the production method A, a raw material oil containing 50% by volume or more of slack wax is used. The “raw oil containing 50% by volume or more of slack wax” as used in the present invention is a mixed oil of a raw oil consisting only of slack wax, slack wax and other raw material oil, and 50 volumes of slack wax. % And both raw material oils containing at least% are included.

スラックワックスは、パラフィン系潤滑油留分から潤滑油基油を製造する際、溶剤脱ろう工程で副生するワックス含有成分であり、本発明においては該ワックス含有成分をさらに脱油処理したものもスラックワックスに包含される。スラックワックスの主成分はn−パラフィン及び側鎖の少ない分岐パラフィン(イソパラフィン)であり、ナフテン分や芳香族分は少ない。原料油の調製に使用するスラックワックスの動粘度は、目的とする潤滑油基油の動粘度に応じて適宜選定することができるが、本発明にかかる潤滑油基油として低粘度基油を製造するには、100℃における動粘度が2〜25mm/s程度、好ましくは2.5〜20mm/s程度、より好ましくは3〜15mm/s程度の、比較的低粘度のスラックワックスが望ましい。また、スラックワックスのその他の性状も任意であるが、融点は、好ましくは35〜80℃、より好ましくは45〜70℃、さらに好ましくは50〜60℃である。また、スラックワックスの油分は、好ましくは50質量%以下、より好ましくは25質量%以下、さらに好ましくは10質量%以下であり、また、好ましくは0.5質量%以上、より好ましくは1質量%以上である。また、スラックワックスの硫黄分は、好ましくは1質量%以下、より好ましくは0.5質量%以下であり、また、好ましくは0.001質量%以上である。 Slack wax is a wax-containing component by-produced in the solvent dewaxing step when producing a lubricating base oil from a paraffinic lubricating oil fraction. In the present invention, the slack wax is obtained by further deoiling the wax-containing component. Included in wax. The main components of slack wax are n-paraffins and branched paraffins (isoparaffins) with few side chains, and are low in naphthenes and aromatics. The kinematic viscosity of the slack wax used for the preparation of the raw material oil can be appropriately selected according to the kinematic viscosity of the target lubricating base oil, but a low viscosity base oil is produced as the lubricating base oil according to the present invention. For this purpose, a relatively low viscosity slack wax having a kinematic viscosity at 100 ° C. of about 2 to 25 mm 2 / s, preferably about 2.5 to 20 mm 2 / s, more preferably about 3 to 15 mm 2 / s. desirable. Moreover, although the other property of slack wax is also arbitrary, melting | fusing point becomes like this. Preferably it is 35-80 degreeC, More preferably, it is 45-70 degreeC, More preferably, it is 50-60 degreeC. The oil content of the slack wax is preferably 50% by mass or less, more preferably 25% by mass or less, still more preferably 10% by mass or less, and preferably 0.5% by mass or more, more preferably 1% by mass. That's it. The sulfur content of the slack wax is preferably 1% by mass or less, more preferably 0.5% by mass or less, and preferably 0.001% by mass or more.

ここで、十分に脱油処理されたスラックワックス(以下、「スラックワックスA」という。)の油分は、好ましくは0.5〜10質量%、より好ましくは1〜8質量%である。また、スラックワックスAの硫黄分は、好ましくは0.001〜0.2質量%、より好ましくは0.01〜0.15質量%、さらに好ましくは0.05〜0.12質量%である。一方、脱油処理されないか、あるいは脱油処理が不十分であるスラックワックス(以下、「スラックワックスB」という。)の油分は、好ましくは10〜50質量%、より好ましくは15〜25質量%である。また、スラックワックスBの硫黄分は、好ましくは0.05〜1質量%、より好ましくは0.1〜0.5質量%、さらに好ましくは0.15〜0.25質量%である。   Here, the oil content of the fully deoiled slack wax (hereinafter referred to as “slack wax A”) is preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass. The sulfur content of the slack wax A is preferably 0.001 to 0.2% by mass, more preferably 0.01 to 0.15% by mass, and still more preferably 0.05 to 0.12% by mass. On the other hand, the oil content of slack wax (hereinafter referred to as “slack wax B”) that is not deoiled or insufficiently deoiled is preferably 10 to 50% by mass, more preferably 15 to 25% by mass. It is. The sulfur content of the slack wax B is preferably 0.05 to 1% by mass, more preferably 0.1 to 0.5% by mass, and still more preferably 0.15 to 0.25% by mass.

上記製造方法Aにおいては、上記スラックワックスAを原料として用いることで、上記条件(a)又は(b)の少なくとも一方を満たす本発明にかかる潤滑油基油を好適に得ることができる。また、上記製造方法Aによれば、油分や硫黄分が比較的高く、比較的粗悪で安価なスラックワックスBを原料として用いても、粘度指数が高く、低温特性及び熱・酸化安定性に優れた付加価値の高い潤滑油基油を得ることができる。   In the production method A, by using the slack wax A as a raw material, the lubricating base oil according to the present invention satisfying at least one of the conditions (a) and (b) can be suitably obtained. In addition, according to the above production method A, even if slack wax B having a relatively high oil content and sulfur content, and relatively poor and inexpensive is used as a raw material, the viscosity index is high, and low temperature characteristics and thermal / oxidative stability are excellent. In addition, a lubricating base oil with high added value can be obtained.

原料油がスラックワックスと他の原料油との混合油である場合、当該他の原料油としては、混合油全量に占めるスラックワックスの割合が50容量%以上であれば特に制限されないが、原油の重質常圧蒸留留出油及び/又は減圧蒸留留出油の混合油が好ましく用いられる。   When the raw material oil is a mixed oil of slack wax and other raw material oil, the other raw material oil is not particularly limited as long as the ratio of slack wax to the total amount of the mixed oil is 50% by volume or more. A heavy oil-distilled distillate and / or a mixed oil of vacuum-distilled distillate is preferably used.

また、原料油がスラックワックスと他の原料油との混合油である場合、高粘度指数の基油を製造するという観点から、混合油に占めるスラックワックスの割合は、70容量%以上がより好ましく、75容量%以上が更により好ましい。当該割合が50容量%未満では、得られる潤滑油基油において芳香族分、ナフテン分などの油分が増大し、潤滑油基油の粘度指数が低下する傾向にある。   Further, when the raw material oil is a mixed oil of slack wax and another raw material oil, the ratio of slack wax in the mixed oil is more preferably 70% by volume or more from the viewpoint of producing a base oil having a high viscosity index. 75% by volume or more is even more preferable. When the ratio is less than 50% by volume, the oil base such as aromatics and naphthenes in the obtained lubricating base oil tends to increase and the viscosity index of the lubricating base oil tends to decrease.

一方、スラックワックスと併用される原油の重質常圧蒸留留出油及び/又は減圧蒸留留出油は、製造される潤滑油基油の粘度指数を高く保つため、300〜570℃の蒸留温度範囲に60容量%以上の留出成分を有する留分であることが好ましい。   On the other hand, the heavy atmospheric distillation distillate and / or vacuum distillation distillate of crude oil used in combination with slack wax has a distillation temperature of 300 to 570 ° C. in order to keep the viscosity index of the lubricating base oil produced high. A fraction having a distillate component of 60% by volume or more in the range is preferable.

(水素化分解触媒)
上記製造方法Aでは、NH脱着温度依存性評価においてNHの全脱着量に対する300〜800℃でのNHの脱着量の分率が80%以下である担体に、周期律表第VIa族金属のうち少なくとも1種類と、第VIII族金属のうち少なくとも1種類とが担持された水素化分解触媒が用いられる。
(Hydrocracking catalyst)
In the manufacturing method A, the carrier desorption of the fraction of the NH 3 is 80% or less at 300 to 800 ° C. relative to the total desorption of NH 3 in the NH 3 desorption temperature dependence evaluation, periodic table Group VIa A hydrocracking catalyst in which at least one of the metals and at least one of the Group VIII metals is supported is used.

ここで、「NH脱着温度依存性評価」とは、文献(Sawa M., Niwa M., Murakami Y., Zeolites 1990,10,532、Karge H. G., Dondur V.,J.Phys.Chem. 1990,94,765など)に紹介されている方法であり、以下のようにして行われる。先ず、触媒担体を、窒素気流下400℃以上の温度で30分以上前処理し、吸着分子を除去した後に、100℃でNHを飽和するまで吸着させる。次いで、その触媒担体を100〜800℃まで10℃/分以下の昇温速度で昇温してNHを脱着させ、脱着により分離されたNHを所定温度ごとにモニターする。そして、NHの全脱着量(100〜800℃での脱着量)に対する、300℃〜800℃でのNHの脱着量の分率を求める。 Here, “NH 3 desorption temperature dependency evaluation” refers to literature (Sawa M., Niwa M., Murakami Y., Zeolites 1990, 10, 532, Karge HG, Dondur V., J. Phys. Chem., 1990, 94, 765, etc.) and is performed as follows. First, the catalyst carrier is pretreated at a temperature of 400 ° C. or higher for 30 minutes or more under a nitrogen stream to remove adsorbed molecules, and then adsorbs NH 3 at 100 ° C. until saturation. Then, the catalyst support to 100 to 800 ° C. 10 ° C. / min was heated by the following heating rate desorbed NH 3, to monitor the NH 3 separated at every predetermined temperature by desorption. Then, the fraction of the NH 3 desorption amount at 300 ° C. to 800 ° C. with respect to the total NH 3 desorption amount (desorption amount at 100 to 800 ° C.) is obtained.

上記製造方法Aで用いられる触媒担体は、上記のNH脱着温度依存性評価においてNHの全脱着量に対する300〜800℃でのNHの脱着量の分率が80%以下のものであり、好ましくは70%以下、より好ましくは60%以下である。かかる担体を用いて水素化分解触媒を構成することで、分解活性を支配する酸性質が十分に抑制されるので、水素化分解により原料油中のスラックワックス等に由来する高分子量n−パラフィンの分解異性化によるイソパラフィンの生成を効率よく且つ確実に行うことができ、且つ、生成したイソパラフィン化合物の過度の分解を充分に抑制することができるようになる。その結果、適度に枝分かれした化学構造を有する粘度指数の高い分子を、適度な分子量範囲で十分量与えることができる。 The catalyst carrier used in the production method A are those desorption of the fraction of NH 3 at 300 to 800 ° C. relative to the total desorption of NH 3 in the NH 3 desorption temperature dependence evaluation of the following 80% , Preferably 70% or less, more preferably 60% or less. By constituting a hydrocracking catalyst using such a carrier, the acid properties that govern the cracking activity are sufficiently suppressed, so that the high molecular weight n-paraffin derived from slack wax or the like in the raw oil by hydrocracking. The production of isoparaffin by decomposition isomerization can be performed efficiently and reliably, and excessive decomposition of the produced isoparaffin compound can be sufficiently suppressed. As a result, a sufficient amount of molecules having a moderately branched chemical structure and a high viscosity index can be provided in an appropriate molecular weight range.

このような担体としては、アモルファス系であり且つ酸性質を有する二元酸化物が好ましく、例えば、文献(「金属酸化物とその触媒作用」、清水哲郎、講談社、1978年)などに例示されている二元酸化物が挙げられる。   As such a support, a binary oxide which is amorphous and has an acid property is preferable. For example, it is exemplified in the literature ("Metal oxide and its catalytic action", Tetsuro Shimizu, Kodansha, 1978). And binary oxides.

中でも、アモルファス系複合酸化物であってAl、B、Ba、Bi、Cd、Ga、La、Mg、Si、Ti、W、Y、ZnおよびZrから選ばれる元素の酸化物2種類の複合による酸性質二元酸化物を含有することが好ましい。これらの酸性質二元酸化物の各酸化物の比率などを調整することにより、前記のNH吸脱着評価において、本目的に適した酸性質の担体を得ることができる。なお、当該担体を構成する酸性質二元酸化物は上記のうちの1種類であっても2種類以上の混合物であってもよい。また、当該担体は、上記酸性質二元酸化物からなるものであってもよく、あるいは当該酸性質二元酸化物をバインダーで結着させた担体であってもよい。 Among them, an amorphous composite oxide which is an acid composed of two kinds of oxides of elements selected from Al, B, Ba, Bi, Cd, Ga, La, Mg, Si, Ti, W, Y, Zn and Zr. It is preferable to contain a property binary oxide. By adjusting the ratio of each oxide of these acid property binary oxides, a support having an acid property suitable for this purpose can be obtained in the NH 3 adsorption / desorption evaluation. In addition, the acid property binary oxide constituting the carrier may be one of the above or a mixture of two or more. Further, the carrier may be composed of the above-mentioned acid property binary oxide, or may be a carrier obtained by binding the acid property binary oxide with a binder.

さらに、当該担体は、アモルファス系シリカ・アルミナ、アモルファス系シリカ・ジルコニア、アモルファス系シリカ・マグネシア、アモルファス系シリカ・チタニア、アモルファス系シリカ・ボリア、アモルファス系アルミナ・ジルコニア、アモルファス系アルミナ・マグネシア、アモルファス系アルミナ・チタニア、アモルファス系アルミナ・ボリア、アモルファス系ジルコニア・マグネシア、アモルファス系ジルコニア・チタニア、アモルファス系ジルコニア・ボリア、アモルファス系マグネシア・チタニア、アモルファス系マグネシア・ボリアおよびアモルファス系チタニア・ボリアから選ばれる少なくとも1種類の酸性質二元酸化物を含有することが好ましい。当該担体を構成する酸性質二元酸化物は上記のうちの1種類であっても2種類以上の混合物であってもよい。また、当該担体は、上記酸性質二元酸化物からなるものであってもよく、あるいは当該酸性質二元酸化物をバインダーで結着させた担体であってもよい。かかるバインダーとしては、一般に触媒調製に使用されるものであれば特に制限はないが、シリカ、アルミナ、マグネシア、チタニア、ジルコニア、クレーから選ばれるかまたはそれらの混合物などが好ましい。   Further, the carrier is amorphous silica / alumina, amorphous silica / zirconia, amorphous silica / magnesia, amorphous silica / titania, amorphous silica / boria, amorphous alumina / zirconia, amorphous alumina / magnesia, amorphous At least one selected from alumina / titania, amorphous alumina / boria, amorphous zirconia / magnesia, amorphous zirconia / titania, amorphous zirconia / boria, amorphous magnesia / titania, amorphous magnesia / boria and amorphous titania / boria It is preferable to contain two kinds of acid nature binary oxides. The acidic binary oxide constituting the carrier may be one of the above or a mixture of two or more. Further, the carrier may be composed of the above-mentioned acid property binary oxide, or may be a carrier obtained by binding the acid property binary oxide with a binder. The binder is not particularly limited as long as it is generally used for catalyst preparation, but is preferably selected from silica, alumina, magnesia, titania, zirconia, clay, or a mixture thereof.

上記製造方法Aにおいては、上記の担体に、周期律表第VIa族の金属(モリブデン、クロム、タングステンなど)のうち少なくとも1種類と、第VIII族の金属(ニッケル、コバルト、パラジウム、白金など)のうち少なくとも1種類とが担持されて水素化分解触媒が構成される。これらの金属は、水素化能を担うものであり、酸性質担体によってパラフィン化合物が分解または枝分かれする反応を終結させ、適度な分子量と枝分かれ構造を有するイソパラフィンの生成に重要な役割を担っている。   In the production method A described above, the carrier is composed of at least one of group VIa metals (molybdenum, chromium, tungsten, etc.) of the periodic table and group VIII metal (nickel, cobalt, palladium, platinum, etc.). At least one of them is supported to form a hydrocracking catalyst. These metals are responsible for hydrogenation ability, terminate the reaction in which the paraffinic compound is decomposed or branched by the acidic carrier, and play an important role in producing isoparaffin having an appropriate molecular weight and branched structure.

水素化分解触媒における金属の担持量としては、第VIa族金属の担持量が金属1種類当たり5〜30質量%であり、第VIII族金属の担持量が金属1種類当たり0.2〜10質量%であることが好ましい。   As the amount of metal supported in the hydrocracking catalyst, the supported amount of Group VIa metal is 5 to 30% by mass per one type of metal, and the supported amount of Group VIII metal is 0.2 to 10% by mass per one type of metal. % Is preferred.

さらに、上記製造方法Aで用いられる水素化分解触媒においては、第VIa族金属の1種類以上の金属としてモリブデンを5〜30質量%の範囲で含み、また、第VIII族金属の1種類以上の金属としてニッケルを0.2〜10質量%の範囲で含むことがより好ましい。   Further, in the hydrocracking catalyst used in the production method A, molybdenum is contained in the range of 5 to 30% by mass as one or more metals of the Group VIa metal, and one or more of the Group VIII metals is contained. More preferably, the metal contains nickel in the range of 0.2 to 10% by mass.

上記の担体と第VIa族金属の1種類以上と第VIII属金属の1種類以上の金属とで構成される水素化分解触媒は、硫化した状態で水素化分解に用いることが好ましい。硫化処理は公知の方法により行うことができる。   The hydrocracking catalyst composed of the above support and one or more metals of Group VIa metal and one or more metals of Group VIII metal is preferably used for hydrocracking in a sulfurized state. The sulfurization treatment can be performed by a known method.

(水素化分解工程)
上記製造方法Aにおいては、上記の水素化分解触媒の存在下、スラックワックスを50容量%以上含む原料油を、水素分圧が0.1〜14MPa、好ましくは1〜14MPa、より好ましくは2〜7MPa;平均反応温度が230〜430℃、好ましくは330〜400℃、より好ましくは350〜390℃;LHSVが0.3〜3.0hr−1、好ましくは0.5〜2.0hr−1;水素油比が50〜14000scf/b、好ましくは100〜5000scf/bで水素化分解する。
(Hydrolysis process)
In the production method A, a raw material oil containing 50% by volume or more of slack wax in the presence of the hydrocracking catalyst has a hydrogen partial pressure of 0.1 to 14 MPa, preferably 1 to 14 MPa, more preferably 2 to 2. 7 MPa; average reaction temperature of 230 to 430 ° C., preferably 330 to 400 ° C., more preferably 350 to 390 ° C .; LHSV of 0.3 to 3.0 hr −1 , preferably 0.5 to 2.0 hr −1 ; Hydrogenolysis is performed at a hydrogen oil ratio of 50 to 14,000 scf / b, preferably 100 to 5000 scf / b.

かかる水素化分解工程においては、原料油中のスラックワックスに由来するn−パラフィンを分解する過程でイソパラフィンへの異性化を進行させることにより、流動点が低く、かつ粘度指数の高いイソパラフィン成分を生ぜしめるのであるが、同時に、原料油に含まれている高粘度指数化の阻害因子である芳香族化合物を単環芳香族化合物、ナフテン化合物及びパラフィン化合物に分解し、また、高粘度指数化の阻害因子である多環ナフテン化合物を単環ナフテン化合物やパラフィン化合物に分解することができる。なお、高粘度指数化の点からは、原料油中に高沸点で粘度指数の低い化合物が少ない方が好ましい。   In such a hydrocracking process, isomerization to isoparaffin progresses in the process of cracking n-paraffin derived from slack wax in the raw material oil, thereby producing an isoparaffin component having a low pour point and a high viscosity index. At the same time, it breaks down aromatic compounds, which are inhibitors of high viscosity index contained in the feedstock, into monocyclic aromatic compounds, naphthene compounds and paraffin compounds, and inhibits high viscosity index. The polycyclic naphthene compound as a factor can be decomposed into a monocyclic naphthene compound or a paraffin compound. From the viewpoint of increasing the viscosity index, it is preferable that the raw material oil contains fewer compounds having a high boiling point and a low viscosity index.

また、反応の進行度合いを評価する分解率を下記式:
(分解率(容量%))=100−(生成物中の沸点が360℃以上の留分の割合(容量%))
のように定義すると、分解率は3〜90容量%であることが好ましい。分解率が3容量%未満では、原料油中に含まれる流動点の高い高分子量n−パラフィンの分解異性化によるイソパラフィンの生成や、粘度指数の劣る芳香族分や多環ナフテン分の水素化分解が不十分となり、また、分解率が90容量%を超えると潤滑油留分の収率が低くなり、それぞれ好ましくない。
Further, the decomposition rate for evaluating the progress of the reaction is expressed by the following formula:
(Decomposition rate (volume%)) = 100− (ratio of the fraction having a boiling point of 360 ° C. or more in the product (volume%))
In this way, the decomposition rate is preferably 3 to 90% by volume. When the decomposition rate is less than 3% by volume, isoparaffins are generated by decomposition and isomerization of high-molecular-weight n-paraffins having a high pour point contained in the feedstock, and hydrocracking of aromatics and polycyclic naphthenes with poor viscosity index. When the decomposition rate exceeds 90% by volume, the yield of the lubricating oil fraction decreases, which is not preferable.

(蒸留分離工程)
次いで、上記の水素化分解工程により得られる分解生成油から潤滑油留分を蒸留分離する。この際、軽質分として燃料油留分も得られる場合がある。
(Distillation separation process)
Next, the lubricating oil fraction is distilled and separated from the cracked product oil obtained by the hydrocracking step. At this time, a fuel oil fraction may be obtained as a light component.

燃料油留分は脱硫、脱窒素が十分に行われ、また、芳香族の水素化も十分に行われた結果得られる留分である。このうち、ナフサ留分はイソパラフィン分が多く、灯油留分は煙点が高く、また、軽油留分はセタン価が高い等、燃料油としていずれも高品質である。   The fuel oil fraction is a fraction obtained as a result of sufficient desulfurization and denitrogenation, and sufficient aromatic hydrogenation. Among these, the naphtha fraction has a high isoparaffin content, the kerosene fraction has a high smoke point, and the light oil fraction has a high cetane number.

一方、潤滑油留分における水素化分解が不十分である場合には、その一部を再度水素化分解工程に供してもよい。また、所望の動粘度の潤滑油留分を得るため、潤滑油留分を更に減圧蒸留してもよい。なお、この減圧蒸留分離は次に示す脱ろう処理後に行ってもよい。   On the other hand, when hydrocracking in the lubricating oil fraction is insufficient, a part of it may be subjected to the hydrocracking process again. Further, in order to obtain a lubricating oil fraction having a desired kinematic viscosity, the lubricating oil fraction may be further distilled under reduced pressure. This vacuum distillation separation may be performed after the dewaxing treatment described below.

蒸発分離工程において、水素化分解工程で得られる分解生成油を減圧蒸留することにより、70Pale、SAE10、SAE20と呼ばれる潤滑油基油を好適に得ることができる。   In the evaporative separation step, a lubricant base oil called 70 Pale, SAE10, or SAE20 can be suitably obtained by distilling the cracked product oil obtained in the hydrocracking step under reduced pressure.

原料油としてより低粘度のスラックワックスを使用した系は、70PaleやSAE10留分を多く生成するのに適しており、原料油として上記範囲で高粘度のスラックワックスを使用した系はSAE20を多く生成するのに適している。しかし、高粘度のスラックワックスを用いても、分解反応の進行程度によっては70Pale、SAE10を相当量生成する条件を選ぶこともできる。   A system that uses slack wax with lower viscosity as the feedstock is suitable for producing a large amount of 70 Pale and 10 SAE fractions, and a system that uses slack wax with a high viscosity within the above range as feedstock produces a lot of SAE20. Suitable for doing. However, even if a high-viscosity slack wax is used, conditions for generating a considerable amount of 70 Pale and SAE 10 can be selected depending on the progress of the decomposition reaction.

(脱ろう工程)
上記の蒸留分離工程において、分解生成油から分留した潤滑油留分は流動点が高いので、所望の流動点を有する潤滑油基油を得るために脱ろうする。脱ろう処理は溶剤脱ろう法又は接触脱ろう法などの通常の方法で行うことができる。このうち、溶剤脱ろう法は一般にMEK、トルエンの混合溶剤が用いられるが、ベンゼン、アセトン、MIBK等の溶剤を用いてもよい。脱ろう油の流動点を−10℃以下にするために溶剤/油比1〜6倍、ろ過温度−5〜−45℃、好ましくは−10〜−40℃の条件で行うことが好ましい。なお、ここで除去されるろう分は、スラックワックスとして、水素化分解工程に再び供することができる。
(Dewaxing process)
In the above-described distillation separation step, since the lubricating oil fraction fractionated from the cracked product oil has a high pour point, it is dewaxed to obtain a lubricating base oil having a desired pour point. The dewaxing treatment can be performed by a usual method such as a solvent dewaxing method or a contact dewaxing method. Among these, the solvent dewaxing method generally uses a mixed solvent of MEK and toluene, but may use a solvent such as benzene, acetone, MIBK or the like. In order to make the pour point of the dewaxed oil not more than −10 ° C., the solvent / oil ratio is 1 to 6 times, and the filtration temperature is −5 to −45 ° C., preferably −10 to −40 ° C. The wax removed here can be used again as a slack wax in the hydrocracking step.

上記製造方法においては、脱ろう処理に溶剤精製処理及び/又は水素化精製処理を付加してもよい。これらの付加する処理は潤滑油基油の紫外線安定性や酸化安定性を向上させるために行うもので、通常の潤滑油精製工程で行われている方法で行うことができる。   In the said manufacturing method, you may add a solvent refinement | purification process and / or a hydrorefining process to a dewaxing process. These additional treatments are performed in order to improve the ultraviolet stability and oxidation stability of the lubricating base oil, and can be carried out by a method used in a normal lubricating oil refining process.

溶剤精製の際には、溶剤として一般にフルフラール、フェノール、N−メチルピロリドン等を使用し、潤滑油留分中に残存している少量の芳香族化合物、特に多環芳香族化合物を除去する。   In the solvent purification, furfural, phenol, N-methylpyrrolidone or the like is generally used as a solvent, and a small amount of aromatic compounds, particularly polycyclic aromatic compounds remaining in the lubricating oil fraction are removed.

また、水素化精製はオレフィン化合物や芳香族化合物を水素化するために行うもので、特に触媒を限定するものではないが、モリブデン等の第VIa族金属のうち少なくとも1種類と、コバルト、ニッケル等の第VIII族金属のうち、少なくとも1種類を担持したアルミナ触媒を用いて、反応圧力(水素分圧)7〜16MPa、平均反応温度300〜390℃、LHSV0.5〜4.0hr−1の条件下で行うことができる。 In addition, hydrorefining is performed to hydrogenate olefin compounds and aromatic compounds, and the catalyst is not particularly limited. However, at least one of Group VIa metals such as molybdenum, cobalt, nickel, etc. Using an alumina catalyst supporting at least one of the Group VIII metals, the reaction pressure (hydrogen partial pressure) is 7 to 16 MPa, the average reaction temperature is 300 to 390 ° C., and the LHSV is 0.5 to 4.0 hr −1 . Can be done below.

また、本発明にかかる潤滑油基油の製造方法の好ましい例としては、以下に示す製造方法Bが挙げられる。   Moreover, as a preferable example of the manufacturing method of the lubricating base oil according to the present invention, the following manufacturing method B can be mentioned.

すなわち、本発明にかかる製造方法Bは、
触媒の存在下、パラフィン系炭化水素を含有する原料油を水素化分解及び/又は水素化異性化する第5工程と、
第5工程で得られる生成物又はその生成物から蒸留等により回収される潤滑油留分を脱ろう処理する第6工程と、
を備える。
That is, the production method B according to the present invention is:
A fifth step of hydrocracking and / or hydroisomerizing a feedstock containing paraffinic hydrocarbons in the presence of a catalyst;
A sixth step of dewaxing the product obtained in the fifth step or the lubricating oil fraction recovered from the product by distillation or the like;
Is provided.

以下、上記製造方法Bについて詳述する。   Hereinafter, the production method B will be described in detail.

(原料油)
上記製造方法Bにおいては、パラフィン系炭化水素を含有する原料油が用いられる。なお、本発明でいう「パラフィン系炭化水素」とは、パラフィン分子の含有率が70質量%以上の炭化水素をいう。パラフィン系炭化水素の炭素数は特に制限されないが、通常、10〜100程度のものが用いられる。また、パラフィン系炭化水素の製法は特に制限されず、石油系及び合成系の各種パラフィン系炭化水素を用いることができるが、特に好ましいパラフィン系炭化水素としては、ガストゥリキッド(GTL)プロセス等により得られる合成ワックス(フィッシャートロプシュワックス(FTワックス)、GTLワックス等)が挙げられ、中でもFTワックスが好ましい。また、合成ワックスは、炭素数が好ましくは15〜80、より好ましくは20〜50のノルマルパラフィンを主成分として含むワックスが好適である。
(Raw oil)
In the production method B, a raw material oil containing paraffinic hydrocarbon is used. The “paraffinic hydrocarbon” referred to in the present invention means a hydrocarbon having a paraffin molecule content of 70% by mass or more. The carbon number of the paraffinic hydrocarbon is not particularly limited, but usually about 10 to 100 is used. The paraffinic hydrocarbon production method is not particularly limited, and various paraffinic hydrocarbons such as petroleum and synthetic can be used. Particularly preferable paraffinic hydrocarbons include a gas-liquid (GTL) process and the like. Synthetic waxes obtained (Fischer-Tropsch wax (FT wax), GTL wax, etc.) can be mentioned, among which FT wax is preferred. The synthetic wax is preferably a wax containing, as a main component, a normal paraffin having 15 to 80 carbon atoms, more preferably 20 to 50 carbon atoms.

原料油の調製に使用するパラフィン系炭化水素の動粘度は、目的とする潤滑油基油の動粘度に応じて適宜選定することができるが、本発明にかかる潤滑油基油として低粘度基油を製造するには、100℃における動粘度が2〜25mm/s程度、好ましくは2.5〜20mm/s程度、より好ましくは3〜15mm/s程度の、比較的低粘度のパラフィン系炭化水素が望ましい。また、パラフィン系炭化水素のその他の性状も任意であるが、パラフィン系炭化水素がFTワックス等の合成ワックスである場合、その融点は、好ましくは35〜80℃、より好ましくは50〜80℃、さらに好ましくは60〜80℃である。また、合成ワックスの油分は、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。また、合成ワックスの硫黄分は、好ましくは0.01質量%以下、より好ましくは0.001質量%以下、さらに好ましくは0。0001質量%以下である。 The kinematic viscosity of the paraffinic hydrocarbon used in the preparation of the raw material oil can be appropriately selected according to the kinematic viscosity of the target lubricating base oil, but the low viscosity base oil is used as the lubricating base oil according to the present invention. To produce a relatively low viscosity paraffin having a kinematic viscosity at 100 ° C. of about 2 to 25 mm 2 / s, preferably about 2.5 to 20 mm 2 / s, more preferably about 3 to 15 mm 2 / s. Series hydrocarbons are desirable. In addition, other properties of the paraffinic hydrocarbon are optional, but when the paraffinic hydrocarbon is a synthetic wax such as FT wax, the melting point is preferably 35 to 80 ° C, more preferably 50 to 80 ° C, More preferably, it is 60-80 degreeC. The oil content of the synthetic wax is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Further, the sulfur content of the synthetic wax is preferably 0.01% by mass or less, more preferably 0.001% by mass or less, and still more preferably 0.0001% by mass or less.

原料油が上記合成ワックスと他の原料油との混合油である場合、当該他の原料油としては、混合油全量に占める合成ワックスの割合が50容量%以上であれば特に制限されないが、原油の重質常圧蒸留留出油及び/又は減圧蒸留留出油の混合油が好ましく用いられる。   When the raw material oil is a mixed oil of the above synthetic wax and another raw material oil, the other raw material oil is not particularly limited as long as the ratio of the synthetic wax to the total amount of the mixed oil is 50% by volume or more. A heavy atmospheric distillation oil and / or a mixed oil of reduced pressure distillation oil is preferably used.

また、原料油が上記合成ワックスと他の原料油との混合油である場合、高粘度指数の基油を製造するという観点から、混合油に占める合成ワックスの割合は、70容量%以上がより好ましく、75容量%以上が更により好ましい。当該割合が70容量%未満では、得られる潤滑油基油において芳香族分、ナフテン分などの油分が増大し、潤滑油基油の粘度指数が低下する傾向にある。   Further, when the raw material oil is a mixed oil of the above synthetic wax and other raw material oils, the proportion of the synthetic wax in the mixed oil is more than 70% by volume from the viewpoint of producing a base oil having a high viscosity index. Preferably, 75% by volume or more is even more preferable. If the ratio is less than 70% by volume, the lubricating base oil to be obtained tends to increase the oil content such as aromatics and naphthenes and decrease the viscosity index of the lubricating base oil.

一方、合成ワックスと併用される原油の重質常圧蒸留留出油及び/又は減圧蒸留留出油は、製造される潤滑油基油の粘度指数を高く保つため、300〜570℃の蒸留温度範囲に60容量%以上の留出成分を有する留分であることが好ましい。   On the other hand, heavy crude pressure distillation distillate and / or vacuum distillation distillate of crude oil used in combination with synthetic wax is used at a distillation temperature of 300 to 570 ° C. in order to keep the viscosity index of the lubricating base oil to be produced high. A fraction having a distillate component of 60% by volume or more in the range is preferable.

(触媒)
製造方法Bで用いられる触媒は特に制限されないが、アルミノシリケートを含有する担体に、活性金属成分として周期律表第VI属b金属及び第VIII属金属から選ばれる1種以上が担持された触媒が好ましく用いられる。
(catalyst)
The catalyst used in production method B is not particularly limited, but a catalyst in which at least one selected from Group VI metal and Group VIII metal of the periodic table as an active metal component is supported on a support containing aluminosilicate. Preferably used.

アルミノシリケートとは、アルミニウム、珪素及び酸素の3元素で構成される金属酸化物をいう。また、本発明の効果を妨げない範囲で他の金属元素を共存させることもできる。この場合、他の金属元素の量はその酸化物としてアルミナ及びシリカの合計量の5質量%以下が好ましく、3質量%以下がより好ましい。共存可能な金属元素としては、例えばチタン、ランタン、マンガン等を挙げることができる。   Aluminosilicate refers to a metal oxide composed of three elements of aluminum, silicon, and oxygen. Further, other metal elements can be allowed to coexist within a range that does not hinder the effects of the present invention. In this case, the amount of the other metal element is preferably 5% by mass or less, and more preferably 3% by mass or less of the total amount of alumina and silica as the oxide. Examples of metal elements that can coexist include titanium, lanthanum, manganese, and the like.

アルミノシリケートの結晶性は、全アルミニウム原子中の4配位のアルミニウム原子の割合で見積もることができ、この割合は27Al固体NMRにより測定することができる。本発明で用いられるアルミノシリケートとしては、アルミニウム全量に対する4配位アルミニウムの割合が50質量%以上のものが好ましく、70質量%以上のものがより好ましく、80質量%以上のものがさらに好ましい。以下、アルミニウム全量に対する4配位アルミニウムの割合が50質量%以上のアルミノシリケートを「結晶性アルミノシリケート」という。 The crystallinity of aluminosilicate can be estimated by the proportion of tetracoordinate aluminum atoms in all aluminum atoms, and this proportion can be measured by 27 Al solid state NMR. As the aluminosilicate used in the present invention, the ratio of tetracoordinated aluminum to the total amount of aluminum is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. Hereinafter, an aluminosilicate in which the ratio of tetracoordinated aluminum to the total amount of aluminum is 50% by mass or more is referred to as “crystalline aluminosilicate”.

結晶性アルミノシリケートとしては、いわゆるゼオライトを使用することができる。好ましい例としては、Y型ゼオライト、超安定性Y型ゼオライト(USY型ゼオライト)、β型ゼオライト、モルデナイト、ZSM−5などが挙げられ、中でもUSYゼオライトが特に好ましい。本発明では結晶性アルミノシリケートの1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   As the crystalline aluminosilicate, so-called zeolite can be used. Preferable examples include Y-type zeolite, ultra-stable Y-type zeolite (USY-type zeolite), β-type zeolite, mordenite, ZSM-5, etc. Among them, USY zeolite is particularly preferable. In the present invention, one type of crystalline aluminosilicate may be used alone, or two or more types may be used in combination.

結晶性アルミノシリケートを含有する担体の調製方法としては、結晶性アルミノシリケート及びバインダーの混合物を成型し、その成型体を焼成する方法が挙げられる。使用するバインダーについては特に制限はないが、アルミナ、シリカ、シリカアルミナ、チタニア、マグネシアが好ましく、中でもアルミナが特に好ましい。バインダーの使用割合は特に制限されないが、通常、成型体全量基準で5〜99質量%が好ましく、20〜99質量%がより好ましい。結晶性アルミノシリケート及びバインダーを含有する成型体の焼成温度は、430〜470℃が好ましく、440〜460℃がより好ましく、445〜455℃がさらに好ましい。また、焼成時間は特に制限されないが、通常1分〜24時間、好ましくは10分から20時間、より好ましくは30分〜10時間である。焼成は空気雰囲気下で行ってもよいが、窒素雰囲気下などの無酸素雰囲気下で行うことが好ましい。   Examples of a method for preparing a carrier containing crystalline aluminosilicate include a method of molding a mixture of crystalline aluminosilicate and a binder and firing the molded body. The binder to be used is not particularly limited, but alumina, silica, silica alumina, titania and magnesia are preferable, and alumina is particularly preferable. The use ratio of the binder is not particularly limited, but is usually preferably 5 to 99% by mass and more preferably 20 to 99% by mass based on the total amount of the molded body. 430-470 degreeC is preferable, as for the baking temperature of the molded object containing a crystalline aluminosilicate and a binder, 440-460 degreeC is more preferable, and 445-455 degreeC is more preferable. The firing time is not particularly limited, but is usually 1 minute to 24 hours, preferably 10 minutes to 20 hours, more preferably 30 minutes to 10 hours. Firing may be performed in an air atmosphere, but is preferably performed in an oxygen-free atmosphere such as a nitrogen atmosphere.

また、上記担体に担持される第VI属b金属としてはクロム、モリブデン、タングステン等が、第VIII属金属としては、具体的には、コバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金等がそれぞれ挙げられる。これらの金属は、1種類を単独で用いてもよく、あるいは2種類以上を組み合わせて用いてもよい。2種類以上の金属を組み合わせる場合、白金、パラジウム等の貴金属同士を組み合わせてもよく、ニッケル、コバルト、タングステン、モリブデン等の卑金属同士を組み合わせてもよく、あるいは貴金属と卑金属とを組み合わせてもよい。   Examples of the Group VI b metal supported on the carrier include chromium, molybdenum, tungsten, and the like. Specific examples of the Group VIII metal include cobalt, nickel, rhodium, palladium, iridium, platinum, and the like. It is done. These metals may be used individually by 1 type, or may be used in combination of 2 or more types. When two or more kinds of metals are combined, noble metals such as platinum and palladium may be combined, base metals such as nickel, cobalt, tungsten and molybdenum may be combined, or a noble metal and a base metal may be combined.

また、金属の担体への担持は、金属を含む溶液への担体の含浸、イオン交換等の情報により行うことができる。金属の担持量は、適宜選択することができるが、触媒全量基準で、通常0.05〜2質量%であり、好ましくは0.1〜1質量%である。   Further, the loading of the metal on the carrier can be performed by information such as impregnation of the carrier into a solution containing the metal, ion exchange, and the like. The amount of the metal supported can be appropriately selected, but is usually 0.05 to 2% by mass, preferably 0.1 to 1% by mass based on the total amount of the catalyst.

(水素化分解/水素化異性化工程)
上記製造方法Bにおいては、上記触媒の存在下、パラフィン系炭化水素を含有する原料油を水素化分解/水素化異性化する。かかる水素化分解/水素化異性化工程は、固定床反応装置を用いて行うことができる。水素化分解/水素化異性化の条件としては、例えば温度は250〜400℃、水素圧は0.5〜10MPa、原料油の液空間速度(LHSV)は0.5〜10h−1がそれぞれ好ましい。
(Hydrolysis / Hydroisomerization process)
In the production method B, the feedstock oil containing paraffinic hydrocarbon is hydrocracked / hydroisomerized in the presence of the catalyst. Such hydrocracking / hydroisomerization step can be performed using a fixed bed reactor. As conditions for hydrocracking / hydroisomerization, for example, the temperature is preferably 250 to 400 ° C., the hydrogen pressure is preferably 0.5 to 10 MPa, and the liquid space velocity (LHSV) of the feedstock is preferably 0.5 to 10 h −1. .

(蒸留分離工程)
次いで、上記の水素化分解/水素化異性化工程により得られる分解生成油から潤滑油留分を蒸留分離する。なお、製造方法Bにおける蒸留分離工程は製造方法Aにおける蒸留分離工程と同様であるため、ここでは重複する説明を省略する。
(Distillation separation process)
Next, the lubricating oil fraction is distilled and separated from the cracked product oil obtained by the hydrocracking / hydroisomerization step. In addition, since the distillation separation process in the manufacturing method B is the same as the distillation separation process in the manufacturing method A, the overlapping description is abbreviate | omitted here.

(脱ろう工程)
次いで、上記の蒸留分離工程において分解生成油から分留した潤滑油留分をを脱ろうする。かかる脱ろう工程は、溶剤脱ろう又は接触脱ろう等の従来公知の脱ろうプロセスを用いて行うことができる。ここで、分解/異性化生成油中に存在する沸点370℃以下の物質が脱ろうに先立ち高沸点物質から分離されていない場合、分解/異性化生成油の用途に応じて、全水素化異性化物を脱ろうしてもよく、あるいは沸点370℃以上の留分を脱ろうしてもよい。
(Dewaxing process)
Next, the lubricating oil fraction fractionated from the cracked product oil in the distillation separation step is dewaxed. Such a dewaxing step can be performed using a conventionally known dewaxing process such as solvent dewaxing or catalytic dewaxing. Here, if the substance having a boiling point of 370 ° C. or less present in the cracked / isomerized product oil is not separated from the high boiling point substance prior to dewaxing, depending on the use of the cracked / isomerized product oil, The compound may be dewaxed or a fraction having a boiling point of 370 ° C. or higher may be dewaxed.

溶剤脱ろうにおいては、水素化異性化物を冷却ケトン及びアセトン、並びにMEK、MIBKなどのその他の溶剤と接触させ、さらに冷却して高流動点物質をワックス質固体として沈殿させ、その沈殿をラフィネートである溶剤含有潤滑油留分から分離する。さらに、ラフィネートをスクレープトサーフィス深冷器で冷却してワックス固形分を除去することができる。また、プロパン等の低分子量炭化水素類も脱ろうに使用可能であるが、この場合は分解/異性化生成油と低分子量炭化水素とを混合し、少なくともその一部を気化して分解/異性化生成油をさらに冷却してワックスを沈殿させる。ワックスは、ろ過、メンブランまたは遠心分離等によりラフィネートから分離する。その後、溶剤をラフィネートから除去し、ラフィネートを分留して、目的の潤滑油基油を得ることができる。   In solvent dewaxing, the hydroisomerized product is contacted with chilled ketone and acetone, and other solvents such as MEK, MIBK, and further cooled to precipitate the high pour point material as a waxy solid, which is precipitated with raffinate. Separate from a solvent-containing lubricating oil fraction. Further, the raffinate can be cooled with a scraped surface chiller to remove wax solids. Low molecular weight hydrocarbons such as propane can also be used for dewaxing. In this case, the cracked / isomerized product oil and the low molecular weight hydrocarbon are mixed and at least a part thereof is vaporized to decompose / isomerize. The product oil is further cooled to precipitate the wax. The wax is separated from the raffinate by filtration, membrane or centrifugation. Thereafter, the solvent is removed from the raffinate, and the raffinate is fractionally distilled to obtain the target lubricating base oil.

また、接触脱ろう(触媒脱ろう)の場合は、分解/異性化生成油を、適当な脱ろう触媒の存在下、流動点を下げるのに有効な条件で水素と反応させる。接触脱ろうでは、分解/異性化生成物中の高沸点物質の一部を低沸点物質へと転化させ、その低沸点物質をより重い基油留分から分離し、基油留分を分留し、2種以上の潤滑油基油を得る。低沸点物質の分離は、目的の潤滑油基油を得る前に、あるいは分留中に行うことができる。   In the case of catalytic dewaxing (catalyst dewaxing), the cracked / isomerized product oil is reacted with hydrogen in the presence of a suitable dewaxing catalyst under conditions effective to lower the pour point. In catalytic dewaxing, some of the high-boiling substances in the cracking / isomerization product are converted to low-boiling substances, the low-boiling substances are separated from the heavier base oil fraction, and the base oil fraction is fractionated. Two or more kinds of lubricating base oils are obtained. The low-boiling substances can be separated before obtaining the target lubricating base oil or during fractional distillation.

脱ろう触媒としては、分解/異性化生成油の流動点を低下させることが可能なものであれば特に制限されないが、分解/異性化生成油から高収率で目的の潤滑油基油を得ることができるものが好ましい。このような脱ろう触媒としては、形状選択的分子篩(モレキュラーシーブ)が好ましく、具体的には、フェリエライト、モルデナイト、ZSM−5、ZSM−11、ZSM−23、ZSM−35、ZSM−22(シータワン又はTONとも呼ばれる)、シリコアルミノホスフェート類(SAPO)などが挙げられる。これらのモレキュラーシーブは、触媒金属成分と組み合わせて使用することが好ましく、貴金属と組み合わせることがより好ましい。好ましい組合せとしては、例えば白金とH−モルデナイトとを複合化したものが挙げられる。   The dewaxing catalyst is not particularly limited as long as it can lower the pour point of the cracked / isomerized product oil, but the desired lubricating base oil is obtained from the cracked / isomerized product oil in a high yield. Those that can be used are preferred. As such a dewaxing catalyst, a shape selective molecular sieve (molecular sieve) is preferable. Specifically, ferrierite, mordenite, ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-22 ( And theta aluminophosphates (SAPO) and the like. These molecular sieves are preferably used in combination with a catalytic metal component, and more preferably in combination with a noble metal. A preferable combination includes, for example, a composite of platinum and H-mordenite.

脱ろう条件は特に制限されないが、温度は200〜500℃が好ましく、水素圧は10〜200バール(1MPa〜20MPa)がそれぞれ好ましい。また、フロースルー反応器の場合、H処理速度は0.1〜10kg/l/hrが好ましく、LHSVは0.1〜10−1が好ましく、0.2〜2.0h−1がより好ましい。また、脱ろうは、分解/異性化生成油に含まれる、通常40質量%以下、好ましくは30質量%以下の、初留点が350〜400℃である物質をこの初留点未満の沸点を有する物質へと転換するように行うことが好ましい。 The dewaxing conditions are not particularly limited, but the temperature is preferably 200 to 500 ° C., and the hydrogen pressure is preferably 10 to 200 bar (1 MPa to 20 MPa). In the case of a flow-through reactor, the H 2 treatment rate is preferably 0.1 to 10 kg / l / hr, and the LHSV is preferably 0.1 to 10 −1 and more preferably 0.2 to 2.0 h −1. . Dewaxing refers to a substance having an initial boiling point of 350 to 400 ° C., usually 40% by mass or less, preferably 30% by mass or less, contained in the cracked / isomerized product oil, having a boiling point lower than the initial boiling point. It is preferable to carry out the conversion to a substance having the same.

以上、本発明にかかる潤滑油基油の好ましい製造方法である製造方法A及び製造方法Bについて説明したが、本発明にかかる潤滑油基油の製造方法はこれらに限定されない。例えば、上記製造方法Aにおいて、スラックワックスの代わりにFTワックス、GTワックス等の合成ワックスを用いてもよい。また、上記製造方法Bにおいて、スラックワックス(好ましくはスラックワックスA、B)を含有する原料油を用いてもよい。さらに、製造方法A、Bのそれぞれにおいて、スラックワックス(好ましくはスラックワックスA、B)と、合成ワックス(好ましくはFTワックス、GTワックス)とを併用してもよい。   As mentioned above, although the manufacturing method A and the manufacturing method B which are the preferable manufacturing methods of the lubricant base oil concerning this invention were demonstrated, the manufacturing method of the lubricant base oil concerning this invention is not limited to these. For example, in the production method A, synthetic waxes such as FT wax and GT wax may be used instead of slack wax. In the production method B, a raw material oil containing slack wax (preferably slack wax A, B) may be used. Furthermore, in each of the production methods A and B, slack wax (preferably slack wax A and B) and synthetic wax (preferably FT wax and GT wax) may be used in combination.

なお、本発明にかかる潤滑油基油を製造する際に使用される原料油が、上記のスラックワックス及び/又は合成ワックスと、これらのワックス以外の原料油との混合油である場合、スラックワックス及び/又は合成ワックスの含有量は原料油全量基準で50質量%以上であることが好ましい。   In addition, when the raw material oil used when manufacturing the lubricating base oil according to the present invention is a mixed oil of the above-described slack wax and / or synthetic wax and a raw material oil other than these waxes, slack wax The content of the synthetic wax is preferably 50% by mass or more based on the total amount of the raw material oil.

また、上記条件(a)を満たす潤滑油基油を製造する場合、その原料油としては、スラックワックス及び/又は合成ワックスを含有する原料油であって、油分が10質量%以下である原料油が好ましく;スラックワックスA及び/又はスラックワックスBを含有する原料油であって、油分が10質量%以下である原料油がより好ましく;スラックワックスAを含有する原料油であって、油分が10質量%以下である原料油が特に好ましい。   Moreover, when manufacturing the lubricating base oil satisfying the above condition (a), the raw oil is a raw oil containing slack wax and / or synthetic wax, and the oil content is 10% by mass or less. A feedstock oil containing slack wax A and / or slack wax B, and more preferably a feedstock oil having an oil content of 10% by mass or less; a feedstock oil containing slack wax A and having an oil content of 10 A feed oil having a mass% or less is particularly preferred.

本発明にかかる潤滑油基油が上記条件(a)を満たすものである場合、当該潤滑油基油における飽和分の含有量は、潤滑油基油全量を基準として、前述の通り95質量%以上であり、好ましくは97質量%以上、より好ましくは98質量%以上であり、また、当該飽和分に占める環状飽和分の割合は、前述の通り0.1〜10質量%であり、好ましくは0.5〜5質量%、より好ましくは0.8〜3質量%である。飽和分の含有量及び当該飽和分に占める環状飽和分の割合がそれぞれ上記条件を満たすことにより、粘度−温度特性及び熱・酸化安定性を達成することができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、飽和分の含有量及び当該飽和分に占める環状飽和分の割合がそれぞれ上記条件を満たすことにより、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。   When the lubricating base oil according to the present invention satisfies the above condition (a), the saturated content in the lubricating base oil is 95% by mass or more as described above based on the total amount of the lubricating base oil. Preferably, it is 97% by mass or more, more preferably 98% by mass or more, and the ratio of the cyclic saturated component in the saturated component is 0.1-10% by mass as described above, preferably 0 0.5 to 5 mass%, more preferably 0.8 to 3 mass%. Viscosity-temperature characteristics and thermal / oxidative stability can be achieved by satisfying the above conditions for the content of the saturated component and the ratio of the cyclic saturated component in the saturated component, respectively. When the additive is blended, the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held in the lubricating base oil. Furthermore, when the content of the saturated component and the ratio of the cyclic saturated component in the saturated component satisfy the above conditions, the friction characteristics of the lubricating base oil itself can be improved, and as a result, the friction reducing effect is improved. As a result, energy saving can be improved.

なお、飽和分の含有量が95質量%未満であると、粘度−温度特性、熱・酸化安定性及び摩擦特性が不十分となる。また、飽和分に占める環状飽和分の割合が0.1質量%未満であると、潤滑油基油に添加剤が配合された場合に、当該添加剤の溶解性が不十分となり、潤滑油基油中に溶解保持される当該添加剤の有効量が低下するため、当該添加剤の機能を有効に得ることができなくなる。更に、飽和分に占める環状飽和分の割合が10質量%を超えると、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下してしまう。   If the saturated content is less than 95% by mass, the viscosity-temperature characteristics, thermal / oxidation stability, and friction characteristics are insufficient. Further, when the ratio of the cyclic saturated component to the saturated component is less than 0.1% by mass, when the additive is blended with the lubricating base oil, the solubility of the additive becomes insufficient, and the lubricating base Since the effective amount of the additive dissolved and retained in the oil is reduced, the function of the additive cannot be effectively obtained. Furthermore, when the ratio of the cyclic saturated component in the saturated component exceeds 10% by mass, the effectiveness of the additive is reduced when the additive is blended with the lubricating base oil.

本発明にかかる潤滑油基油が上記条件(a)を満たすものである場合、その飽和分に占める環状飽和分の割合が0.1〜10質量%であることは、飽和分に占める非環状飽和分が99.9〜90質量%であることと等価である。ここで、非環状飽和分には直鎖パラフィン分及び分枝パラフィン分の双方が包含される。本発明にかかる潤滑油基油に占める各パラフィン分の割合は特に制限されないが、分枝パラフィン分の割合は、潤滑油基油全量基準で、好ましくは90〜99.9質量%、より好ましくは95〜99.5質量%、更に好ましくは97〜99質量%である。潤滑油基油に占める分枝パラフィン分の割合が前記条件を満たすことにより、粘度−温度特性及び熱・酸化安定性をより向上させることができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を十分に安定的に溶解保持しつつ、当該添加剤の機能を一層高水準で発現させることができる。   When the lubricating base oil according to the present invention satisfies the above condition (a), the proportion of the cyclic saturated component in the saturated component is 0.1 to 10% by mass. This is equivalent to a saturation content of 99.9 to 90% by mass. Here, the non-cyclic saturated component includes both a linear paraffin component and a branched paraffin component. The proportion of each paraffin in the lubricating base oil according to the present invention is not particularly limited, but the proportion of branched paraffin is preferably 90 to 99.9% by mass, more preferably based on the total amount of the lubricating base oil. It is 95-99.5 mass%, More preferably, it is 97-99 mass%. When the ratio of the branched paraffin content in the lubricating base oil satisfies the above conditions, the viscosity-temperature characteristics and thermal / oxidative stability can be further improved, and an additive is added to the lubricating base oil. In this case, the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held.

なお、本発明でいう飽和分の含有量とは、ASTM D 2007−93に準拠して測定される値(単位:質量%)を意味する。   In addition, content of the saturated part said by this invention means the value (unit: mass%) measured based on ASTM D 2007-93.

また、本発明でいう飽和分に占める環状飽和分及び非環状飽和分の割合とは、それぞれASTM D 2786−91に準拠して測定されるナフテン分(測定対象:1環〜6環ナフテン、単位:質量%)及びアルカン分(単位:質量%)を意味する。   Moreover, the ratio of the cyclic saturated component and the non-cyclic saturated component in the saturated component referred to in the present invention is a naphthene component measured according to ASTM D 2786-91, respectively (measuring object: 1-ring to 6-ring naphthene, unit : Mass%) and alkane content (unit: mass%).

また、本発明でいう潤滑油基油中の直鎖パラフィン分とは、前記ASTM D 2007−93に記載された方法により分離・分取された飽和分について、以下の条件でガスクロマトグラフィ分析を行い、当該飽和分に占める直鎖パラフィン分を同定・定量したときの測定値を、潤滑油基油全量を基準として換算した値を意味する。なお、同定・定量の際には、標準試料として炭素数5〜50の直鎖パラフィンの混合試料が用いられ、飽和分に占める直鎖パラフィン分は、クロマトグラムの全ピーク面積値(希釈剤に由来するピークの面積値を除く)に対する各直鎖パラフィンに相当に相当するピーク面積値の合計の割合として求められる。
(ガスクロマトグラフィ条件)
カラム:液相無極性カラム(長さ25mm、内径0.3mmφ、液相膜厚さ0.1μm)
昇温条件:50℃〜400℃(昇温速度:10℃/min)
キャリアガス:ヘリウム(線速度:40cm/min)
スプリット比:90/1
試料注入量:0.5μL(二硫化炭素で20倍に希釈した試料の注入量)
In addition, the linear paraffin content in the lubricating base oil referred to in the present invention is the gas chromatographic analysis of the saturated content separated and separated by the method described in ASTM D 2007-93 under the following conditions. The value obtained by converting the measured value when the linear paraffin content in the saturated content is identified and quantified based on the total amount of the lubricating base oil is meant. In the identification and quantification, a mixed sample of straight-chain paraffin having 5 to 50 carbon atoms is used as a standard sample, and the straight-chain paraffin content in the saturated portion is the total peak area value of the chromatogram (in the diluent). It is determined as the ratio of the sum of peak area values corresponding to each linear paraffin to (excluding the peak area value derived from).
(Gas chromatography conditions)
Column: non-polar liquid phase column (length 25 mm, inner diameter 0.3 mmφ, liquid phase film thickness 0.1 μm)
Temperature rising condition: 50 ° C. to 400 ° C. (temperature rising rate: 10 ° C./min)
Carrier gas: helium (linear velocity: 40 cm / min)
Split ratio: 90/1
Sample injection amount: 0.5 μL (injection amount of sample diluted 20 times with carbon disulfide)

また、潤滑油基油中の分枝パラフィン分の割合とは、前記飽和分に占める非環状飽和分と前記飽和分に占める直鎖パラフィン分との差を、潤滑油基油全量を基準として換算した値を意味する。   The ratio of branched paraffin in the lubricating base oil is the difference between the non-cyclic saturated content in the saturated content and the linear paraffin content in the saturated content, converted based on the total amount of the lubricating base oil. Means the value.

なお、飽和分の分離方法、あるいは環状飽和分、非環状飽和分等の組成分析の際には、同様の結果が得られる類似の方法を使用することができる。例えば、上記の他、ASTM D 2425−93に記載の方法、ASTM D 2549−91に記載の方法、高速液体クロマトグラフィ(HPLC)による方法、あるいはこれらの方法を改良した方法等を挙げることができる。   In the case of a method for separating saturated components, or a compositional analysis of cyclic saturated components, non-cyclic saturated components, etc., a similar method can be used in which similar results can be obtained. For example, in addition to the above, a method described in ASTM D 2425-93, a method described in ASTM D 2549-91, a method using high performance liquid chromatography (HPLC), a method obtained by improving these methods, and the like can be given.

また、本発明にかかる潤滑油基油が上記条件(b)を満たすものである場合、n20−0.002×kv100は、前述の通り1.435〜1.450であり、好ましくは1.440〜1.449、より好ましくは1.442〜1.448、更に好ましくは1.444〜1.447である。n20−0.002×kv100を前記範囲内とすることにより、優れた粘度−温度特性及び熱・酸化安定性を達成することができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、n20−0.002×kv100を前記範囲内とすることにより、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。 Further, when the lubricating base oil according to the present invention satisfies the above condition (b), n 20 −0.002 × kv100 is 1.435 to 1.450 as described above, preferably 1. It is 440-1.449, More preferably, it is 1.442-1.448, More preferably, it is 1.444-1.447. By setting n 20 −0.002 × kv100 within the above range, excellent viscosity-temperature characteristics and thermal / oxidative stability can be achieved, and an additive is blended in the lubricating base oil. In this case, the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held in the lubricating base oil. Furthermore, by setting n 20 −0.002 × kv100 within the above range, the friction characteristics of the lubricating base oil itself can be improved, and as a result, an improvement in friction reduction effect and an improvement in energy saving can be achieved. can do.

なお、n20−0.002×kv100が前記上限値を超えると、粘度−温度特性、熱・酸化安定性及び摩擦特性が不十分となり、更には、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下してしまう。また、n20−0.002×kv100が前記下限値未満であると、潤滑油基油に添加剤が配合された場合に、当該添加剤の溶解性が不十分となり、潤滑油基油中に溶解保持される当該添加剤の有効量が低下するため、当該添加剤の機能を有効に得ることができなくなる。 When n 20 −0.002 × kv100 exceeds the upper limit, the viscosity-temperature characteristics, thermal / oxidation stability, and friction characteristics become insufficient, and further, an additive is blended in the lubricating base oil. In some cases, the effectiveness of the additive is reduced. Further, when n 20 −0.002 × kv100 is less than the lower limit, when an additive is blended in the lubricating base oil, the solubility of the additive becomes insufficient, and the lubricating base oil contains Since the effective amount of the additive that is dissolved and held is lowered, the function of the additive cannot be effectively obtained.

なお、本発明でいう20℃における屈折率(n20)とは、ASTM D1218−92に準拠して20℃において測定される屈折率を意味する。また、本発明でいう100℃における動粘度(kv100)とは、JIS K 2283−1993に準拠して100℃において測定される動粘度を意味する。 In addition, the refractive index (n20) in 20 degreeC said by this invention means the refractive index measured in 20 degreeC based on ASTMD1218-92. The kinematic viscosity (kv100) at 100 ° C. in the present invention means a kinematic viscosity measured at 100 ° C. in accordance with JIS K 2283-1993.

本発明にかかる潤滑油基油における芳香族分は、潤滑油基油が上記条件(a)又は(b)の少なくとも一方を満たすものである限り特に制限されないが、潤滑油基油全量を基準として、好ましくは5質量%以下、より好ましくは0.1〜3質量%、更に好ましくは0.3〜1質量%である。芳香族分の含有量が上記上限値を超えると、粘度−温度特性、熱・酸化安定性及び摩擦特性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、本発明にかかる潤滑油基油は芳香族分を含有しないものであってもよいが、芳香族分の含有量を0.1質量%以上とすることにより、添加剤の溶解性を更に高めることができる。   The aromatic content in the lubricating base oil according to the present invention is not particularly limited as long as the lubricating base oil satisfies at least one of the above conditions (a) or (b), but based on the total amount of the lubricating base oil. Preferably, it is 5 mass% or less, More preferably, it is 0.1-3 mass%, More preferably, it is 0.3-1 mass%. If the aromatic content exceeds the above upper limit, the viscosity-temperature characteristics, thermal / oxidative stability, friction characteristics, volatilization prevention characteristics and low-temperature viscosity characteristics tend to decrease. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. The lubricating base oil according to the present invention may not contain an aromatic component, but the solubility of the additive can be further improved by setting the aromatic content to 0.1% by mass or more. Can be increased.

なお、ここでいう芳香族分の含有量とは、ASTM D 2007−93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレン及びこれらのアルキル化物、更にはベンゼン環が四環以上縮合した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。   In addition, content of an aromatic content here means the value measured based on ASTM D 2007-93. In general, the aromatic component includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene and alkylated products thereof, as well as compounds in which four or more benzene rings are condensed, pyridines, quinolines, phenols and naphthols. Aromatic compounds having atoms are included.

また、本発明にかかる潤滑油基油の%Cは、潤滑油基油が上記条件(a)又は(b)の少なくとも一方を満たすものである限り特に制限されないが、好ましくは80以上、より好ましくは82〜99、更に好ましくは85〜98、特に好ましくは90〜97である。潤滑油基油の%Cが80未満の場合、粘度−温度特性、熱・酸化安定性及び摩擦特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、潤滑油基油の%Cが99を超えると、添加剤の溶解性が低下する傾向にある。 Further, the% C p of the lubricating base oil according to the present invention is not particularly limited as long as the lubricating base oil satisfies at least one of the above conditions (a) or (b), but is preferably 80 or more. Preferably it is 82-99, More preferably, it is 85-98, Most preferably, it is 90-97. If the% C p of the lubricating base oil is less than 80, the viscosity-temperature characteristics, thermal / oxidative stability, and friction characteristics tend to be reduced, and when the additive is added to the lubricating base oil The effectiveness of the additive tends to decrease. Further, when the% C p value of the lubricating base oil exceeds 99, the additive solubility will tend to be lower.

また、本発明にかかる潤滑油基油の%Cは、潤滑油基油が上記条件(a)又は(b)の少なくとも一方を満たすものである限り特に制限されないが、好ましくは15以下、より好ましくは1〜12、更に好ましくは3〜10である。潤滑油基油の%Cが15を超えると、粘度−温度特性、熱・酸化安定性及び摩擦特性が低下する傾向にある。また、%Cが1未満であると、添加剤の溶解性が低下する傾向にある。 Moreover,% C N of the lubricating base oil according to the present invention is a lubricating oil base oil is not limited particularly as long as it satisfies at least one of the conditions (a) or (b), preferably 15 or less, more Preferably it is 1-12, More preferably, it is 3-10. If the% C N value of the lubricating base oil exceeds 15, the viscosity - temperature characteristic, heat and oxidation stability and frictional properties will tend to be reduced. Moreover, when% CN is less than 1, the solubility of the additive tends to decrease.

また、本発明にかかる潤滑油基油の%Cは、潤滑油基油が上記条件(a)又は(b)の少なくとも一方を満たすものである限り特に制限されないが、好ましくは0.7以下、より好ましくは0.6以下、更に好ましくは0.1〜0.5である。潤滑油基油の%Cが0.7を超えると、粘度−温度特性、熱・酸化安定性及び摩擦特性が低下する傾向にある。また、本発明にかかる潤滑油基油の%Cは0であってもよいが、%Cを0.1以上とすることにより、添加剤の溶解性を更に高めることができる。 Moreover,% C A of the lubricating base oil according to the present invention is a lubricating oil base oil is not particularly limited so long as it satisfies at least one of the conditions (a) or (b), preferably 0.7 or less More preferably, it is 0.6 or less, and still more preferably 0.1 to 0.5. When% C A of the lubricating base oil exceeds 0.7, the viscosity - temperature characteristic, heat and oxidation stability and frictional properties will tend to be reduced. Moreover,% C A of the lubricating base oil according to the present invention may be 0% by 0.1 or more C A, it is possible to further increase the solubility of additives.

更に、本発明にかかる潤滑油基油における%Cと%Cとの比率は、潤滑油基油が上記条件(a)又は(b)の少なくとも一方を満たすものである限り特に制限されないが、%C/%Cが7以上であることが好ましく、7.5以上であることがより好ましく、8以上であることが更に好ましい。%C/%Cが7未満であると、粘度−温度特性、熱・酸化安定性及び摩擦特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、%C/%Cは、200以下であることが好ましく、100以下であることがより好ましく、50以下であることが更に好ましく、25以下であることが特に好ましい。%C/%Cを200以下とすることにより、添加剤の溶解性を更に高めることができる。 Furthermore, the ratio of the% C P and% C N of the lubricating base oil according to the present invention is a lubricating oil base oil is not particularly limited so long as it satisfies at least one of the conditions (a) or (b) % preferably C P /% C N is 7 or more, more preferably 7.5 or more, still more preferably 8 or more. When% C P /% CN is less than 7, viscosity-temperature characteristics, thermal / oxidative stability and friction characteristics tend to be reduced, and further when an additive is blended in the lubricating base oil. The effectiveness of the additive tends to decrease. Moreover,% C P /% C N is preferably 200 or less, more preferably 100 or less, more preferably 50 or less, particularly preferably 25 or less. By setting% C P /% CN to 200 or less, the solubility of the additive can be further increased.

なお、本発明でいう%C、%C及び%Cとは、それぞれASTM D 3238−85に準拠した方法(n−d−M環分析)により求められる、パラフィン炭素数の全炭素数に対する百分率、ナフテン炭素数の全炭素数に対する百分率、及び芳香族炭素数の全炭素数に対する百分率を意味する。つまり、上述した%C、%C及び%Cの好ましい範囲は上記方法により求められる値に基づくものであり、例えばナフテン分を含まない潤滑油基油であっても、上記方法により求められる%Cが0を超える値を示すことがある。 Incidentally, say% C P in the present invention,% C A N and% C A, obtained by a method in accordance with ASTM D 3238-85, respectively (n-d-M ring analysis), the total carbon number of the paraffin carbon number The percentage of the total number of naphthene carbons to the total number of carbons, and the percentage of the total number of aromatic carbons to the total number of carbons. That is, the preferred ranges of% C P ,% C N and% C A described above are based on the values obtained by the above method. For example, even a lubricating base oil containing no naphthene is obtained by the above method. is% C N may indicate a value greater than zero.

また、本発明にかかる潤滑油基油における硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる潤滑油基油中の硫黄分は通常100質量ppm以上となる。本発明にかかる潤滑油基油においては、熱・酸化安定性の更なる向上及び低硫黄化の点から、硫黄分の含有量が100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、10質量ppm以下であることが更に好ましく、5質量ppm以下であることが特に好ましい。   Further, the content of sulfur in the lubricating base oil according to the present invention depends on the content of sulfur in the raw material. For example, when a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like is used, a lubricating base oil that does not substantially contain sulfur can be obtained. In addition, when using raw materials containing sulfur such as slack wax obtained in the refining process of the lubricating base oil and microwax obtained in the refining process, the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it. In the lubricating base oil according to the present invention, the content of sulfur is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, from the viewpoint of further improvement in thermal and oxidation stability and low sulfur content. More preferably, it is more preferably 10 ppm by mass or less, and particularly preferably 5 ppm by mass or less.

また、コスト低減の点からは、原料としてスラックワックス等を使用することが好ましく、その場合、得られる潤滑油基油中の硫黄分は50質量ppm以下が好ましく、10質量ppm以下であることがより好ましい。なお、本発明でいう硫黄分とは、JIS K 2541−1996に準拠して測定される硫黄分を意味する。   Further, from the viewpoint of cost reduction, it is preferable to use slack wax or the like as a raw material. In that case, the sulfur content in the obtained lubricating base oil is preferably 50 ppm by mass or less, and preferably 10 ppm by mass or less. More preferred. In addition, the sulfur content as used in the field of this invention means the sulfur content measured based on JISK2541-1996.

また、本発明にかかる潤滑油基油における窒素分の含有量は、特に制限されないが、好ましくは5質量ppm以下、より好ましくは3質量ppm以下、更に好ましくは1質量ppm以下である。窒素分の含有量が5質量ppmを超えると、熱・酸化安定性が低下する傾向にある。なお、本発明でいう窒素分とは、JIS K 2609−1990に準拠して測定される窒素分を意味する。   The nitrogen content in the lubricating base oil according to the present invention is not particularly limited, but is preferably 5 ppm by mass or less, more preferably 3 ppm by mass or less, and further preferably 1 ppm by mass or less. If the nitrogen content exceeds 5 ppm by mass, the thermal and oxidation stability tends to decrease. In addition, the nitrogen content as used in the field of this invention means the nitrogen content measured based on JISK2609-1990.

また、本発明にかかる潤滑油基油の動粘度は、潤滑油基油が上記条件(a)又は(b)の少なくとも一方を満たすものであれば特に制限されないが、その100℃における動粘度は、好ましくは1.5〜20mm/s、より好ましくは2.0〜11mm/sである。潤滑油基油の100℃における動粘度が1.5mm/s未満の場合、蒸発損失の点で好ましくない。また、100℃における動粘度が20mm/sを超える潤滑油基油を得ようとする場合、その収率が低くなり、原料として重質ワックスを用いる場合であっても分解率を高めることが困難となるため好ましくない。 The kinematic viscosity of the lubricating base oil according to the present invention is not particularly limited as long as the lubricating base oil satisfies at least one of the above conditions (a) or (b). , Preferably 1.5 to 20 mm 2 / s, more preferably 2.0 to 11 mm 2 / s. When the kinematic viscosity at 100 ° C. of the lubricating base oil is less than 1.5 mm 2 / s, it is not preferable in terms of evaporation loss. In addition, when trying to obtain a lubricating base oil having a kinematic viscosity at 100 ° C. exceeding 20 mm 2 / s, the yield decreases, and the decomposition rate can be increased even when heavy wax is used as a raw material. Since it becomes difficult, it is not preferable.

本発明においては、100℃における動粘度が下記の範囲にある潤滑油基油を蒸留等により分取し、使用することが好ましい。
(I)100℃における動粘度が1.5mm/s以上3.5mm/s未満、より好ましくは2.0〜3.0mm/sの潤滑油基油
(II)100℃における動粘度が3.0mm/s以上4.5mm/s未満、より好ましくは3.5〜4.1mm/sの潤滑油基油
(III)100℃における動粘度が4.5〜20mm/s、より好ましくは4.8〜11mm/s、特に好ましくは5.5〜8.0mm/sの潤滑油基油。
In the present invention, it is preferable to use a lubricating base oil having a kinematic viscosity at 100 ° C. in the following range by distillation or the like.
(I) less than the kinematic viscosity at 100 ° C. is 1.5 mm 2 / s or more 3.5 mm 2 / s, more preferably kinematic viscosity at 2.0 to 3.0 mm 2 / s lubricating base oils (II) 100 ° C. There 3.0 mm 2 / s or more 4.5mm less than 2 / s, more preferably a kinematic viscosity at 3.5~4.1mm 2 / s lubricating base oil (III) 100 ℃ 4.5~20mm 2 / s, more preferably 4.8 to 11 mm 2 / s, particularly preferably 5.5 to 8.0 mm 2 / s.

また、本発明にかかる潤滑油基油の40℃における動粘度は、好ましくは6.0〜80mm/s、より好ましくは8.0〜50mm/sである。本発明においては、40℃における動粘度が下記の範囲にある潤滑油留分を蒸留等により分取し、使用することが好ましい。
(IV)40℃における動粘度が6.0mm/s以上12mm/s未満、より好ましくは8.0〜12mm/sの潤滑油基油
(V)40℃における動粘度が12mm/s以上28mm/s未満、より好ましくは13〜19mm/sの潤滑油基油
(VI)40℃における動粘度が28〜50mm/s、より好ましくは29〜45mm/s、特に好ましくは30〜40mm/sの潤滑油基油。
Moreover, the kinematic viscosity at 40 ° C. of the lubricating base oil according to the present invention is preferably 6.0 to 80 mm 2 / s, more preferably 8.0 to 50 mm 2 / s. In the present invention, it is preferred that a lubricating oil fraction having a kinematic viscosity at 40 ° C. in the following range is fractionated by distillation or the like and used.
(IV) less than the kinematic viscosity at 40 ° C. is 6.0 mm 2 / s or more 12 mm 2 / s, more preferably 8.0~12mm 2 / s lubricating base oil (V) kinematic viscosity at 40 ° C. is 12 mm 2 / More than s and less than 28 mm < 2 > / s, more preferably 13-19 mm < 2 > / s lubricating base oil (VI) The kinematic viscosity at 40 [deg.] C. is 28-50 mm < 2 > / s, more preferably 29-45 mm < 2 > / s, particularly preferred. Is a lubricating base oil of 30 to 40 mm 2 / s.

上記潤滑油基油(I)及び(IV)は、上記条件(a)又は(b)の少なくとも一方を満たすことで、粘度グレードが同じ従来の潤滑油基油と比較して、特に、低温粘度特性に優れ、粘性抵抗や撹拌抵抗を著しく低減することができる。また、粘度指数向上剤等のポリマーを配合することにより、−40℃におけるBF粘度を2000mPa・s以下とすることができる。なお、−40℃におけるBF粘度とは、JPI−5S−26−99に準拠して測定された粘度を意味する。   The lubricating base oils (I) and (IV) satisfy at least one of the above conditions (a) or (b), and in particular, have a low temperature viscosity as compared with conventional lubricating base oils having the same viscosity grade. It has excellent characteristics and can significantly reduce viscosity resistance and stirring resistance. Further, by blending a polymer such as a viscosity index improver, the BF viscosity at −40 ° C. can be made 2000 mPa · s or less. The BF viscosity at −40 ° C. means the viscosity measured according to JPI-5S-26-99.

また、上記潤滑油基油(II)及び(V)は、上記条件(a)又は(b)の少なくとも一方を満たすことで、粘度グレードが同じ従来の潤滑油基油と比較して、特に、低温粘度特性、揮発防止性及び潤滑性に優れる。例えば、潤滑油基油(II)及び(V)においては、−35℃におけるCCS粘度を3000mPa・s以下とすることができる。   In addition, the lubricating base oil (II) and (V) satisfy at least one of the above conditions (a) or (b), in particular, compared with the conventional lubricating base oil having the same viscosity grade, Excellent low-temperature viscosity characteristics, volatilization prevention and lubricity. For example, in the lubricating base oils (II) and (V), the CCS viscosity at −35 ° C. can be set to 3000 mPa · s or less.

また、上記潤滑油基油(III)及び(VI)は、上記条件(a)又は(b)の少なくとも一方を満たすことで、粘度グレードが同じ従来の潤滑油基油と比較して、低温粘度特性、揮発防止性、熱・酸化安定性及び潤滑性に優れる。   The lubricating base oils (III) and (VI) satisfy at least one of the above conditions (a) or (b), so that the low temperature viscosity is lower than that of conventional lubricating base oils having the same viscosity grade. Excellent properties, volatilization prevention, thermal / oxidation stability and lubricity.

本発明にかかる潤滑油基油の粘度指数は、潤滑油基油の粘度グレードにもよるが、例えば、上記潤滑油(I)及び(IV)の粘度指数は、好ましくは105〜130、より好ましくは110〜125、更に好ましくは120〜125である。また、上記潤滑油基油(II)及び(V)の粘度指数は、好ましくは125〜160、より好ましくは130〜150、更に好ましくは135〜150である。また、上記潤滑油基油(III)及び(VI)の粘度指数は、好ましくは135〜180、より好ましくは140〜160である。粘度指数が前記下限値未満であると、粘度−温度特性及び熱・酸化安定性、更には揮発防止性が低下する傾向にある。   The viscosity index of the lubricating base oil according to the present invention depends on the viscosity grade of the lubricating base oil. For example, the viscosity index of the lubricating oils (I) and (IV) is preferably 105 to 130, more preferably. Is 110 to 125, more preferably 120 to 125. The viscosity index of the lubricating base oils (II) and (V) is preferably 125 to 160, more preferably 130 to 150, and still more preferably 135 to 150. Further, the viscosity index of the lubricating base oils (III) and (VI) is preferably 135 to 180, more preferably 140 to 160. When the viscosity index is less than the lower limit, viscosity-temperature characteristics, thermal / oxidation stability, and further volatilization prevention properties tend to decrease.

なお、本発明でいう粘度指数とは、JIS K 2283−1993に準拠して測定された粘度指数を意味する。   In addition, the viscosity index as used in the field of this invention means the viscosity index measured based on JISK2283-1993.

また、本発明にかかる潤滑油基油の20℃における屈折率は、潤滑油基油の粘度グレードにもよるが、例えば、上記潤滑油基油(I)及び(IV)の20℃における屈折率は、好ましくは1.455以下、より好ましくは1.453以下、更に好ましくは1.451以下である。また、上記潤滑油基油(II)及び(V)の20℃における屈折率は、好ましくは1.460以下、より好ましくは1.457以下、更に好ましくは1.455以下である。また、上記潤滑油基油(III)及び(VI)の20℃における屈折率は、好ましくは1.465以下、より好ましくは1.463以下、更に好ましくは1.460以下である。屈折率が前記上限値を超えると、その潤滑油基油の粘度−温度特性及び熱・酸化安定性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、また、当該潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。   Further, the refractive index at 20 ° C. of the lubricating base oil according to the present invention depends on the viscosity grade of the lubricating base oil, and for example, the refractive index at 20 ° C. of the lubricating base oils (I) and (IV). Is preferably 1.455 or less, more preferably 1.453 or less, and still more preferably 1.451 or less. Moreover, the refractive index at 20 ° C. of the lubricating base oils (II) and (V) is preferably 1.460 or less, more preferably 1.457 or less, and still more preferably 1.455 or less. The refractive index of the lubricating base oils (III) and (VI) at 20 ° C. is preferably 1.465 or less, more preferably 1.463 or less, and still more preferably 1.460 or less. If the refractive index exceeds the above upper limit, the viscosity-temperature characteristics and thermal / oxidative stability of the lubricating base oil tend to be reduced, and further, the volatilization preventing properties and low-temperature viscosity characteristics tend to deteriorate. When an additive is blended with the additive, the effectiveness of the additive tends to decrease.

また、本発明にかかる潤滑油基油の流動点は、潤滑油基油の粘度グレードにもよるが、例えば、上記潤滑油基油(I)及び(IV)の流動点は、好ましくは−10℃以下、より好ましくは−12.5℃以下、更に好ましくは−15℃以下である。また、上記潤滑油基油(II)及び(V)の流動点は、好ましくは−10℃以下、より好ましくは−15℃以下、更に好ましくは−17.5℃以下である。また、上記潤滑油基油(III)及び(VI)の流動点は、好ましくは−10℃以下、より好ましくは−12.5℃以下、更に好ましくは−15℃以下である。流動点が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。なお、本発明でいう流動点とは、JIS K 2269−1987に準拠して測定された流動点を意味する。   Further, the pour point of the lubricating base oil according to the present invention depends on the viscosity grade of the lubricating base oil. For example, the pour point of the lubricating base oils (I) and (IV) is preferably −10. ° C or lower, more preferably -12.5 ° C or lower, still more preferably -15 ° C or lower. The pour points of the lubricating base oils (II) and (V) are preferably −10 ° C. or lower, more preferably −15 ° C. or lower, and still more preferably −17.5 ° C. or lower. The pour point of the lubricating base oils (III) and (VI) is preferably −10 ° C. or lower, more preferably −12.5 ° C. or lower, and still more preferably −15 ° C. or lower. When the pour point exceeds the upper limit, the low temperature fluidity of the entire lubricating oil using the lubricating base oil tends to decrease. In addition, the pour point as used in the field of this invention means the pour point measured based on JISK2269-1987.

また、本発明にかかる潤滑油基油の−35℃におけるCCS粘度は、潤滑油基油の粘度グレードにもよるが、例えば、上記潤滑油基油(I)及び(IV)の−35℃におけるCCS粘度は、好ましくは1000mPa・s以下である。また、上記潤滑油基油(II)及び(V)の−35℃におけるCCS粘度は、好ましくは3000mPa・s以下、より好ましくは2400mPa・s以下、更に好ましくは2000mPa・s以下である。また、上記潤滑油基油(III)及び(VI)の−35℃におけるCCS粘度は、好ましくは15000mPa・s以下、より好ましくは10000mPa・s以下である。−35℃におけるCCS粘度が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。なお、本発明でいう−35℃におけるCCS粘度とは、JIS K 2010−1993に準拠して測定された粘度を意味する。   Further, the CCS viscosity of the lubricating base oil according to the present invention at −35 ° C. depends on the viscosity grade of the lubricating base oil, but for example, the lubricating base oils (I) and (IV) at −35 ° C. The CCS viscosity is preferably 1000 mPa · s or less. Moreover, the CCS viscosity at −35 ° C. of the lubricating base oils (II) and (V) is preferably 3000 mPa · s or less, more preferably 2400 mPa · s or less, and still more preferably 2000 mPa · s or less. The CCS viscosity of the lubricating base oils (III) and (VI) at −35 ° C. is preferably 15000 mPa · s or less, more preferably 10000 mPa · s or less. When the CCS viscosity at −35 ° C. exceeds the upper limit, the low-temperature fluidity of the entire lubricating oil using the lubricating base oil tends to decrease. In addition, the CCS viscosity at −35 ° C. in the present invention means a viscosity measured according to JIS K 2010-1993.

また、本発明にかかる潤滑油基油の15℃における密度(ρ15)は、潤滑油基油の粘度グレードによるが、下記式(2)で表されるρの値以下であること、すなわちρ15≦ρであることが好ましい。
ρ=0.0025×kv100+0.816 (2)
[式中、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
Further, the density (ρ 15 ) of the lubricating base oil according to the present invention at 15 ° C. depends on the viscosity grade of the lubricating base oil, but is not more than the value of ρ represented by the following formula (2), that is, ρ It is preferable that 15 ≦ ρ.
ρ = 0.0025 × kv100 + 0.816 (2)
[Wherein, kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]

なお、ρ15>ρとなる場合、粘度−温度特性及び熱・酸化安定性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。 When ρ 15 > ρ, the viscosity-temperature characteristics and thermal / oxidation stability, volatilization prevention properties and low-temperature viscosity characteristics tend to decrease, and additives are added to the lubricating base oil. In some cases, the effectiveness of the additive tends to decrease.

例えば、上記潤滑油基油(I)及び(IV)のρ15は、好ましくは0.825以下、より好ましくは0.820以下である。また、上記潤滑油基油(II)及び(V)のρ15は、好ましくは0.835以下、より好ましくは0.830以下である。また、上記潤滑油基油(III)及び(VI)のρ15は、好ましくは0.840以下、より好ましくは0.835以下である。 For example, ρ 15 of the lubricating base oils (I) and (IV) is preferably 0.825 or less, more preferably 0.820 or less. Moreover, ρ 15 of the lubricating base oils (II) and (V) is preferably 0.835 or less, more preferably 0.830 or less. The ρ 15 of the lubricating base oils (III) and (VI) is preferably 0.840 or less, more preferably 0.835 or less.

なお、本発明でいう15℃における密度とは、JIS K 2249−1995に準拠して15℃において測定された密度を意味する。   In addition, the density in 15 degreeC said by this invention means the density measured in 15 degreeC based on JISK2249-1995.

また、本発明にかかる潤滑油基油のアニリン点(AP(℃))は、潤滑油基油の粘度グレードによるが、下記式(3)で表されるAの値以上であること、すなわちAP≧Aであることが好ましい。
A=4.3×kv100+100 (3)
[式中、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
Further, the aniline point (AP (° C.)) of the lubricating base oil according to the present invention depends on the viscosity grade of the lubricating base oil, but is not less than the value of A represented by the following formula (3). It is preferable that ≧ A.
A = 4.3 × kv100 + 100 (3)
[Wherein, kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]

なお、AP<Aとなる場合、粘度−温度特性及び熱・酸化安定性、更には揮発防止性及び低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。   When AP <A, viscosity-temperature characteristics and thermal / oxidative stability, volatilization prevention properties and low-temperature viscosity characteristics tend to decrease, and when additives are added to the lubricating base oil In addition, the effectiveness of the additive tends to decrease.

例えば、上記潤滑油基油(I)及び(IV)のAPは、好ましくは108℃以上、より好ましくは110℃以上である。また、上記潤滑油基油(II)及び(V)のAPは、好ましくは113℃以上、より好ましくは119℃以上である。また、上記潤滑油基油(III)及び(VI)のAPは、好ましくは125℃以上、より好ましくは128℃以上である。なお、本発明でいうアニリン点とは、JIS K 2256−1985に準拠して測定されたアニリン点を意味する。   For example, the AP of the lubricating base oils (I) and (IV) is preferably 108 ° C. or higher, more preferably 110 ° C. or higher. The AP of the lubricating base oils (II) and (V) is preferably 113 ° C. or higher, more preferably 119 ° C. or higher. The AP of the lubricating base oils (III) and (VI) is preferably 125 ° C. or higher, more preferably 128 ° C. or higher. In addition, the aniline point as used in the field of this invention means the aniline point measured based on JISK2256-1985.

また、本発明にかかる潤滑油基油のNOACK蒸発量は、特に制限されないが、例えば、上記潤滑油基油(I)及び(IV)のNOACK蒸発量は、好ましくは20質量%以上、より好ましくは25質量%以上、更に好ましくは30以上であり、また、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは40質量%以下である。また、上記潤滑油基油(II)及び(V)のNOACK蒸発量は、好ましくは6質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上であり、また、好ましくは20質量%以下、より好ましくは16質量%以下、更に好ましくは15質量%以下である。また、上記潤滑油基油(III)及び(VI)のNOACK蒸発量は、好ましくは0質量%以上、より好ましくは1質量%以上であり、また、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下である。NOACK蒸発量が前記下限値の場合、低温粘度特性の改善が困難となる傾向にある。また、NOACK蒸発量がそれぞれ前記上限値を超えると、潤滑油基油を内燃機関用潤滑油等に用いた場合に、潤滑油の蒸発損失量が多くなり、それに伴い触媒被毒が促進されるため好ましくない。なお、本発明でいうNOACK蒸発量とは、ASTM D 5800−95に準拠して測定された蒸発損失量を意味する。   Further, the NOACK evaporation amount of the lubricating base oil according to the present invention is not particularly limited. For example, the NOACK evaporation amount of the lubricating base oils (I) and (IV) is preferably 20% by mass or more, more preferably. Is 25% by mass or more, more preferably 30 or more, preferably 50% by mass or less, more preferably 45% by mass or less, and still more preferably 40% by mass or less. The NOACK evaporation amount of the lubricating base oils (II) and (V) is preferably 6% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, and preferably 20%. It is at most mass%, more preferably at most 16 mass%, still more preferably at most 15 mass%. The NOACK evaporation amount of the lubricating base oils (III) and (VI) is preferably 0% by mass or more, more preferably 1% by mass or more, and preferably 5% by mass or less, more preferably 4%. It is at most 3% by mass, more preferably at most 3% by mass. When the NOACK evaporation amount is the lower limit value, it tends to be difficult to improve the low temperature viscosity characteristics. Further, when the NOACK evaporation amount exceeds the upper limit value, when the lubricating base oil is used as the lubricating oil for an internal combustion engine, the evaporation loss amount of the lubricating oil increases, and accordingly, catalyst poisoning is promoted. Therefore, it is not preferable. In addition, the NOACK evaporation amount as used in the field of this invention means the evaporation loss amount measured based on ASTM D 5800-95.

また、本発明にかかる潤滑油基油の蒸留性状は、ガスクロマトグラフィ蒸留で、初留点(IBP)が290〜440℃、終点(FBP)が430〜580℃であることが好ましく、かかる蒸留範囲にある留分から選ばれる1種又は2種以上の留分を精留することにより、上述した好ましい粘度範囲を有する潤滑油基油(I)〜(III)及び(IV)〜(VI)を得ることができる。   Further, the distillation properties of the lubricating base oil according to the present invention are preferably gas chromatography distillation, wherein the initial boiling point (IBP) is 290 to 440 ° C. and the end point (FBP) is 430 to 580 ° C., and such a distillation range. The base oils (I) to (III) and (IV) to (VI) having the preferred viscosity ranges described above are obtained by rectifying one or more fractions selected from the fractions in be able to.

例えば、上記潤滑油基油(I)及び(IV)の蒸留性状に関し、その初留点(IBP)は、好ましくは260〜360℃、より好ましくは300〜350℃、更に好ましくは310〜350℃である。また、10%留出温度(T10)は、好ましくは320〜400℃、より好ましくは340〜390℃、更に好ましくは350〜380℃である。また、50%留出点(T50)は、好ましくは350〜430℃、より好ましくは360〜410℃、更に好ましくは370〜400℃である。また、90%留出点(T90)は、好ましくは380〜460℃、より好ましくは390〜450℃、更に好ましくは400〜440℃である。また、終点(FBP)は、好ましくは420〜520℃、より好ましくは430〜500℃、更に好ましくは440〜480℃である。また、T90−T10は、好ましくは50〜100℃、より好ましくは55〜85℃、更に好ましくは60〜70℃である。また、FBP−IBPは、好ましくは100〜250℃、より好ましくは110〜220℃、更に好ましくは120〜200℃である。また、T10−IBPは、好ましくは10〜80℃、より好ましくは15〜60℃、更に好ましくは20〜50℃である。また、FBP−T90は、好ましくは10〜80℃、より好ましくは15〜70℃、更に好ましくは20〜60℃である。   For example, regarding the distillation properties of the lubricating base oils (I) and (IV), the initial boiling point (IBP) is preferably 260 to 360 ° C, more preferably 300 to 350 ° C, and still more preferably 310 to 350 ° C. It is. Moreover, 10% distillation temperature (T10) becomes like this. Preferably it is 320-400 degreeC, More preferably, it is 340-390 degreeC, More preferably, it is 350-380 degreeC. The 50% distillation point (T50) is preferably 350 to 430 ° C, more preferably 360 to 410 ° C, and still more preferably 370 to 400 ° C. Moreover, 90% distillation point (T90) becomes like this. Preferably it is 380-460 degreeC, More preferably, it is 390-450 degreeC, More preferably, it is 400-440 degreeC. Moreover, an end point (FBP) becomes like this. Preferably it is 420-520 degreeC, More preferably, it is 430-500 degreeC, More preferably, it is 440-480 degreeC. Moreover, T90-T10 becomes like this. Preferably it is 50-100 degreeC, More preferably, it is 55-85 degreeC, More preferably, it is 60-70 degreeC. Moreover, FBP-IBP becomes like this. Preferably it is 100-250 degreeC, More preferably, it is 110-220 degreeC, More preferably, it is 120-200 degreeC. Moreover, T10-IBP becomes like this. Preferably it is 10-80 degreeC, More preferably, it is 15-60 degreeC, More preferably, it is 20-50 degreeC. Moreover, FBP-T90 becomes like this. Preferably it is 10-80 degreeC, More preferably, it is 15-70 degreeC, More preferably, it is 20-60 degreeC.

また、上記潤滑油基油(II)及び(V)の蒸留性状に関し、その初留点(IBP)は、好ましくは300〜380℃、より好ましくは320〜370℃、更に好ましくは330〜360℃である。また、10%留出温度(T10)は、好ましくは340〜420℃、より好ましくは350〜410℃、更に好ましくは360〜400℃である。また、50%留出点(T50)は、好ましくは380〜460℃、より好ましくは390〜450℃、更に好ましくは400〜460℃である。また、90%留出点(T90)は、好ましくは440〜500℃、より好ましくは450〜490℃、更に好ましくは460〜480℃である。また、終点(FBP)は、好ましくは460〜540℃、より好ましくは470〜530℃、更に好ましくは480〜520℃である。また、T90−T10は、好ましくは50〜100℃、より好ましくは60〜95℃、更に好ましくは80〜90℃である。また、FBP−IBPは、好ましくは100〜250℃、より好ましくは120〜180℃、更に好ましくは130〜160℃である。また、T10−IBPは、好ましくは10〜70℃、より好ましくは15〜60℃、更に好ましくは20〜50℃である。また、FBP−T90は、好ましくは10〜50℃、より好ましくは20〜40℃、更に好ましくは25〜35℃である。   Moreover, regarding the distillation properties of the lubricating base oils (II) and (V), the initial boiling point (IBP) is preferably 300 to 380 ° C, more preferably 320 to 370 ° C, still more preferably 330 to 360 ° C. It is. Moreover, 10% distillation temperature (T10) becomes like this. Preferably it is 340-420 degreeC, More preferably, it is 350-410 degreeC, More preferably, it is 360-400 degreeC. The 50% distillation point (T50) is preferably 380 to 460 ° C, more preferably 390 to 450 ° C, and still more preferably 400 to 460 ° C. Moreover, 90% distillation point (T90) becomes like this. Preferably it is 440-500 degreeC, More preferably, it is 450-490 degreeC, More preferably, it is 460-480 degreeC. Moreover, an end point (FBP) becomes like this. Preferably it is 460-540 degreeC, More preferably, it is 470-530 degreeC, More preferably, it is 480-520 degreeC. Moreover, T90-T10 becomes like this. Preferably it is 50-100 degreeC, More preferably, it is 60-95 degreeC, More preferably, it is 80-90 degreeC. Moreover, FBP-IBP becomes like this. Preferably it is 100-250 degreeC, More preferably, it is 120-180 degreeC, More preferably, it is 130-160 degreeC. Moreover, T10-IBP becomes like this. Preferably it is 10-70 degreeC, More preferably, it is 15-60 degreeC, More preferably, it is 20-50 degreeC. Moreover, FBP-T90 becomes like this. Preferably it is 10-50 degreeC, More preferably, it is 20-40 degreeC, More preferably, it is 25-35 degreeC.

また、上記潤滑油基油(III)及び(VI)の蒸留性状に関し、その初留点(IBP)は、好ましくは320〜480℃、より好ましくは350〜460℃、更に好ましくは380〜440℃である。また、10%留出温度(T10)は、好ましくは420〜500℃、より好ましくは430〜480℃、更に好ましくは440〜460℃である。また、50%留出点(T50)は、好ましくは440〜520℃、より好ましくは450〜510℃、更に好ましくは460〜490℃である。また、90%留出点(T90)は、好ましくは470〜550℃、より好ましくは480〜540℃、更に好ましくは490〜520℃である。また、終点(FBP)は、好ましくは500〜580℃、より好ましくは510〜570℃、更に好ましくは520〜560℃である。また、T90−T10は、好ましくは50〜120℃、より好ましくは55〜100℃、更に好ましくは55〜90℃である。また、FBP−IBPは、好ましくは100〜250℃、より好ましくは110〜220℃、更に好ましくは115〜200℃である。また、T10−IBPは、好ましくは10〜100℃、より好ましくは15〜90℃、更に好ましくは20〜50℃である。また、FBP−T90は、好ましくは10〜50℃、より好ましくは20〜40℃、更に好ましくは25〜35℃である。   Further, regarding the distillation properties of the lubricating base oils (III) and (VI), the initial boiling point (IBP) is preferably 320 to 480 ° C, more preferably 350 to 460 ° C, still more preferably 380 to 440 ° C. It is. Moreover, 10% distillation temperature (T10) becomes like this. Preferably it is 420-500 degreeC, More preferably, it is 430-480 degreeC, More preferably, it is 440-460 degreeC. The 50% distillation point (T50) is preferably 440 to 520 ° C, more preferably 450 to 510 ° C, and still more preferably 460 to 490 ° C. Moreover, 90% distillation point (T90) becomes like this. Preferably it is 470-550 degreeC, More preferably, it is 480-540 degreeC, More preferably, it is 490-520 degreeC. Moreover, an end point (FBP) becomes like this. Preferably it is 500-580 degreeC, More preferably, it is 510-570 degreeC, More preferably, it is 520-560 degreeC. Moreover, T90-T10 becomes like this. Preferably it is 50-120 degreeC, More preferably, it is 55-100 degreeC, More preferably, it is 55-90 degreeC. Moreover, FBP-IBP becomes like this. Preferably it is 100-250 degreeC, More preferably, it is 110-220 degreeC, More preferably, it is 115-200 degreeC. Moreover, T10-IBP becomes like this. Preferably it is 10-100 degreeC, More preferably, it is 15-90 degreeC, More preferably, it is 20-50 degreeC. Moreover, FBP-T90 becomes like this. Preferably it is 10-50 degreeC, More preferably, it is 20-40 degreeC, More preferably, it is 25-35 degreeC.

潤滑油基油(I)〜(VI)のそれぞれにおいて、IBP、T10、T50、T90、FBP、T90−T10、FBP−IBP、T10−IBP、FBP−T90を上記の好ましい範囲に設定することで、低温粘度の更なる改善と、蒸発損失の更なる低減とが可能となる。なお、T90−T10、FBP−IBP、T10−IBP及びFBP−T90のそれぞれについては、それらの蒸留範囲を狭くしすぎると、潤滑油基油の収率が悪化し、経済性の点で好ましくない。   In each of the lubricating base oils (I) to (VI), IBP, T10, T50, T90, FBP, T90-T10, FBP-IBP, T10-IBP, and FBP-T90 are set to the above preferable ranges. Further, it is possible to further improve the low temperature viscosity and further reduce the evaporation loss. In addition, about each of T90-T10, FBP-IBP, T10-IBP, and FBP-T90, when the distillation range is made too narrow, the yield of lubricating base oil is deteriorated, which is not preferable in terms of economy. .

なお、本発明でいう、IBP、T10、T50、T90及びFBPとは、それぞれASTM D 2887−97に準拠して測定される留出点を意味する。   In the present invention, IBP, T10, T50, T90 and FBP mean distillate points measured in accordance with ASTM D 2887-97, respectively.

また、本発明にかかる潤滑油基油における残存金属分は、製造プロセス上余儀なく混入する触媒や原料に含まれる金属分に由来するものであるが、かかる残存金属分は十分除去されることが好ましい。例えば、Al、Mo、Niの含有量は、それぞれ1質量ppm以下であることが好ましい。これらの金属分の含有量が上記上限値を超えると、潤滑油基油に配合される添加剤の機能が阻害される傾向にある。   Further, the residual metal content in the lubricating base oil according to the present invention is derived from the metal content contained in the catalyst and raw materials that are inevitably mixed in the manufacturing process, but it is preferable that the residual metal content be sufficiently removed. . For example, the contents of Al, Mo, and Ni are each preferably 1 mass ppm or less. If the content of these metals exceeds the above upper limit, the function of the additive blended with the lubricating base oil tends to be inhibited.

なお、本発明でいう残存金属分とは、JPI−5S−38−2003に準拠して測定される金属分を意味する。   In addition, the residual metal content as used in the field of this invention means the metal content measured based on JPI-5S-38-2003.

また、本発明にかかる潤滑油基油によれば、上記条件(a)又は(b)の少なくとも一方を満たすことにより、優れた熱・酸化安定性を達成することができるが、その動粘度に応じて以下に示すRBOT寿命を示すことが好ましい。例えば、上記潤滑油基油(I)及び(IV)のBROT寿命は、好ましくは290min以上、より好ましくは300min以上、更に好ましくは310min以上である。また、上記潤滑油基油(II)及び(V)のRBOT寿命は、好ましくは350min以上、より好ましくは360min以上、更に好ましくは370min以上である。また、上記潤滑油基油(III)及び(VI)のRBOT寿命は、好ましくは400min以上、より好ましくは410min以上、更に好ましくは420min以上である。RBOT寿命がそれぞれ前記下限値未満の場合、潤滑油基油の粘度−温度特性及び熱・酸化安定性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合には当該添加剤の効き目が低下する傾向にある。   Moreover, according to the lubricating base oil of the present invention, excellent thermal and oxidation stability can be achieved by satisfying at least one of the above conditions (a) or (b). Accordingly, it is preferable to show the RBOT life shown below. For example, the BROT life of the lubricating base oils (I) and (IV) is preferably 290 min or more, more preferably 300 min or more, and further preferably 310 min or more. The RBOT life of the lubricating base oils (II) and (V) is preferably 350 min or more, more preferably 360 min or more, and further preferably 370 min or more. The RBOT life of the lubricating base oils (III) and (VI) is preferably 400 min or more, more preferably 410 min or more, and further preferably 420 min or more. When the RBOT life is less than the lower limit, the viscosity-temperature characteristics and thermal / oxidative stability of the lubricating base oil tend to decrease. Further, when an additive is blended in the lubricating base oil, The effectiveness of the additive tends to decrease.

なお、本発明でいうRBOT寿命とは、潤滑油基油にフェノール系酸化防止剤(2,6−ジ−tert−ブチル−p−クレゾール;DBPC)を0.2質量%添加した組成物について、JIS K 2514−1996に準拠して測定されたRBOT値を意味する。   The RBOT life as used herein refers to a composition in which 0.2% by mass of a phenolic antioxidant (2,6-di-tert-butyl-p-cresol; DBPC) is added to a lubricating base oil. It means the RBOT value measured according to JIS K 2514-1996.

本発明の内燃機関用潤滑油組成物においては、上記本発明にかかる潤滑油基油を単独で用いてもよく、また、本発明にかかる潤滑油基油を他の基油の1種又は2種以上と併用してもよい。なお、本発明にかかる潤滑油基油と他の基油とを併用する場合、それらの混合基油中に占める本発明にかかる潤滑油基油の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。   In the lubricating oil composition for an internal combustion engine of the present invention, the lubricating base oil according to the present invention may be used alone, and the lubricating base oil according to the present invention is one or two of the other base oils. You may use together with a seed or more. When the lubricating base oil according to the present invention is used in combination with another base oil, the ratio of the lubricating base oil according to the present invention in the mixed base oil is preferably 30% by mass or more. More preferably, the content is 50% by mass or more, and further preferably 70% by mass or more.

本発明にかかる潤滑油基油と併用される他の基油としては、特に制限されないが、鉱油系基油としては、例えば100℃における動粘度が1〜100mm/sの溶剤精製鉱油、水素化分解鉱油、水素化精製鉱油、溶剤脱ろう基油などが挙げられる。 Although it does not restrict | limit especially as another base oil used together with the lubricating base oil concerning this invention, As a mineral oil type | system | group base oil, solvent refined mineral oil whose kinematic viscosity in 100 degreeC is 1-100 mm < 2 > / s, for example, hydrogen Examples include hydrocracked mineral oil, hydrorefined mineral oil, and solvent dewaxing base oil.

また、合成系基油としては、ポリα−オレフィン又はその水素化物、イソブテンオリゴマー又はその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン、ジエステル(ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート等)、ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテル等が挙げられ、中でも、ポリα−オレフィンが好ましい。ポリα−オレフィンとしては、典型的には、炭素数2〜32、好ましくは6〜16のα−オレフィンのオリゴマー又はコオリゴマー(1−オクテンオリゴマー、デセンオリゴマー、エチレン−プロピレンコオリゴマー等)及びそれらの水素化物が挙げられる。   Synthetic base oils include poly α-olefins or hydrides thereof, isobutene oligomers or hydrides thereof, isoparaffins, alkylbenzenes, alkylnaphthalenes, diesters (ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridec Decyl adipate, di-2-ethylhexyl sebacate, etc.), polyol ester (trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), polyoxyalkylene glycol, dialkyl Examples thereof include diphenyl ether and polyphenyl ether, and among them, poly α-olefin is preferable. As the poly α-olefin, typically, an oligomer or co-oligomer (1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, etc.) having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, and those. Of the hydrides.

ポリα−オレフィンの製法は特に制限されないが、例えば、三塩化アルミニウム又は三フッ化ホウ素と、水、アルコール(エタノール、プロパノール、ブタノール等)、カルボン酸またはエステルとの錯体を含むフリーデル・クラフツ触媒のような重合触媒の存在下、α−オレフィンを重合する方法が挙げられる。   The production method of the poly-α-olefin is not particularly limited. For example, Friedel-Crafts catalyst containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester. And a method of polymerizing α-olefin in the presence of a polymerization catalyst such as

また、本発明の内燃機関用潤滑油組成物は、(A)成分として、硫黄を構成元素として含まない無灰酸化防止剤を含有する。かかる(A)成分としては、硫黄を構成元素として含まないフェノール系又はアミン系の無灰酸化防止剤が好適である。   Moreover, the lubricating oil composition for internal combustion engines of this invention contains the ashless antioxidant which does not contain sulfur as a structural element as (A) component. As the component (A), a phenol-based or amine-based ashless antioxidant that does not contain sulfur as a constituent element is suitable.

硫黄を構成元素として含まないフェノール系無灰酸化防止剤としては、具体的には、例えば、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、4,4’−イソプロピリデンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−ノニルフェノール)、2,2’−イソブチリデンビス(4,6−ジメチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,6−ジ−tert−ブチル−4−メチルフェノール、2,6−ジ−tert−ブチル−4−エチルフェノール、2,4−ジメチル−6−tert−ブチルフェノール、2,6−ジ−tert−α−ジメチルアミノ−p−クレゾール、2,6−ジ−tert−ブチル−4(N,N’−ジメチルアミノメチルフェノール)、オクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、トリデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ペンタエリスリチル−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、オクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、オクチル−3−(3−メチル−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、及びこれらの混合物等が挙げられる。これらの中でも、ヒドロキシフェニル基置換脂肪酸と炭素数4〜12のアルコールとのエステルであるヒドロキシフェニル基置換エステル系酸化防止剤(オクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、オクチル−3−(3−メチル−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネート等)及びビスフェノール系酸化防止剤が好ましく、ヒドロキシフェニル基置換エステル系酸化防止剤がより好ましい。また、分子量が240以上のフェノール系化合物は、分解温度が高く、より高温条件においてもその効果が発揮されるため、好ましい。   Specific examples of the phenol-based ashless antioxidant that does not contain sulfur as a constituent element include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2 , 6-di-tert-butylphenol), 4,4'-bis (2-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 2,2 ' -Methylenebis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 4,4'-isopropylidenebis (2,6-di-tert-butylphenol) ), 2,2′-methylenebis (4-methyl-6-nonylphenol), 2,2′-isobutylidenebis (4,6-dimethylphenol) 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol 2,4-dimethyl-6-tert-butylphenol, 2,6-di-tert-α-dimethylamino-p-cresol, 2,6-di-tert-butyl-4 (N, N′-dimethylaminomethyl) Phenol), octyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tridecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythrityl Tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octyl-3- (3-methyl- 5-tert-butyl-4-hydroxyphenyl) propionate, and mixtures thereof. Among these, hydroxyphenyl group-substituted ester-based antioxidant (octyl-3- (3,5-di-tert-butyl-4-hydroxy), which is an ester of a hydroxyphenyl group-substituted fatty acid and an alcohol having 4 to 12 carbon atoms. Phenyl) propionate, octyl-3- (3-methyl-5-tert-butyl-4-hydroxyphenyl) propionate, etc.) and bisphenol antioxidants are preferred, and hydroxyphenyl group-substituted ester antioxidants are more preferred. A phenol compound having a molecular weight of 240 or more is preferable because it has a high decomposition temperature and exhibits its effect even under higher temperature conditions.

また、硫黄を構成元素として含まないアミン系無灰酸化防止剤としては、具体的には、フェニル−α−ナフチルアミン、アルキルフェニル−α−ナフチルアミン、アルキルジフェニルアミン、ジアルキルジフェニルアミン、N,N’−ジフェニル−p−フェニレンジアミン及びこれらの混合物が挙げられる。これらのアミン系無灰酸化防止剤が有するアルキル基としては、炭素数1〜20の直鎖又は分枝のアルキル基が好ましく、炭素数4〜12の直鎖又は分枝のアルキル基がより好ましい。   Specific examples of amine-based ashless antioxidants that do not contain sulfur as a constituent element include phenyl-α-naphthylamine, alkylphenyl-α-naphthylamine, alkyldiphenylamine, dialkyldiphenylamine, N, N′-diphenyl- p-Phenylenediamine and mixtures thereof are mentioned. As the alkyl group possessed by these amine-based ashless antioxidants, a linear or branched alkyl group having 1 to 20 carbon atoms is preferable, and a linear or branched alkyl group having 4 to 12 carbon atoms is more preferable. .

本発明における(A)成分の含有量は特に制限されないが、組成物全量基準で、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上、特に好ましくは1.0質量%以上であり、また、好ましくは5質量%以下、より好ましくは3質量%以下、特に好ましくは2質量%以下である。その含有量が0.01質量%未満の場合、潤滑油組成物の熱・酸化安定性が不十分となり、特に、長期間に渡って優れた清浄性を維持させることができなくなる傾向にある。一方、(A)成分の含有量が5質量%を超える場合、潤滑油組成物の貯蔵安定性が低下する傾向にある。   The content of the component (A) in the present invention is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.5% by mass or more based on the total amount of the composition. In particular, the content is 1.0% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. When the content is less than 0.01% by mass, the heat / oxidation stability of the lubricating oil composition becomes insufficient, and in particular, it tends to be impossible to maintain excellent cleanliness over a long period of time. On the other hand, when content of (A) component exceeds 5 mass%, it exists in the tendency for the storage stability of a lubricating oil composition to fall.

本発明においては、(A)成分として、組成物全量基準で、フェノール系無灰酸化防止剤0.4〜2質量%とアミン系無灰酸化防止剤0.4〜2質量%とを併用するか、あるいは、アミン系酸化防止剤0.5〜2質量%、より好ましくは0.6〜1.5質量%を単独で用いることが特に好ましく、これにより長期に渡り優れた清浄性を維持させることができる。   In the present invention, as component (A), 0.4 to 2% by mass of a phenol-based ashless antioxidant and 0.4 to 2% by mass of an amine-based ashless antioxidant are used in combination based on the total amount of the composition. Alternatively, it is particularly preferable to use 0.5 to 2% by mass, more preferably 0.6 to 1.5% by mass of an amine-based antioxidant alone, thereby maintaining excellent cleanliness over a long period of time. be able to.

また、本発明の内燃機関用潤滑油組成物は、(B)成分として、(B−1)硫黄を構成元素として含む無灰酸化防止剤及び(B−2)有機モリブデン化合物から選ばれる少なくとも1種を含有する。   The lubricating oil composition for an internal combustion engine of the present invention has at least one selected from (B-1) an ashless antioxidant containing sulfur as a constituent element and (B-2) an organic molybdenum compound as the component (B). Contains seeds.

(B−1)硫黄を構成元素として含有する無灰酸化防止剤としては、硫化油脂、ジヒドロカルビルポリスルフィド、ジチオカーバメート類、チアジアゾール類、及び硫黄を構成元素として含有するフェノール系無灰酸化防止剤などが好適である。   (B-1) Ashless antioxidants containing sulfur as a constituent element include sulfurized fats and oils, dihydrocarbyl polysulfides, dithiocarbamates, thiadiazoles, and phenol-based ashless antioxidants containing sulfur as a constituent element. Is preferred.

硫化油脂としては、例えば、硫化ラード、硫化なたね油、硫化ひまし油、硫化大豆油、硫化米ぬか油などの油;硫化オレイン酸などの二硫化脂肪酸;及び硫化オレイン酸メチルなどの硫化エステルを挙げることができる。   Examples of the sulfurized fats and oils include sulfurized lard, sulfurized rapeseed oil, sulfurized castor oil, sulfurized soybean oil, and sulfurized rice bran oil; disulfide fatty acids such as sulfurized oleic acid; and sulfurized esters such as methyl sulfide oleate. .

硫化オレフィンとしては、例えば下記一般式(4)で示される化合物を挙げることができる。
11 ― S ― R12 (4)
Examples of the sulfurized olefin include compounds represented by the following general formula (4).
R 11 -S x -R 12 (4)

一般式(4)において、R11は炭素数2〜15のアルケニル基を示し、R12は炭素数2〜15のアルキル基またはアルケニル基を示し、xは1〜8の整数を示す。]
上記一般式(4)で示される化合物は、炭素数2〜15のオレフィン又はその2〜4量体を硫黄、塩化硫黄等の硫化剤と反応させることによって得ることができる。オレフィンとしては、例えば、プロピレン、イソブテン、ジイソブテンなどが好ましく用いられる。
In the general formula (4), R 11 represents an alkenyl group having 2 to 15 carbon atoms, R 12 represents an alkyl group or alkenyl group having 2 to 15 carbon atoms, and x represents an integer of 1 to 8. ]
The compound represented by the general formula (4) can be obtained by reacting an olefin having 2 to 15 carbon atoms or a dimer or tetramer thereof with a sulfurizing agent such as sulfur or sulfur chloride. As the olefin, for example, propylene, isobutene, diisobutene and the like are preferably used.

ジヒドロカルビルポリスルフィドは、下記一般式(5)で示される化合物である。
13 ― S ― R14 (5)
Dihydrocarbyl polysulfide is a compound represented by the following general formula (5).
R 13 -S y -R 14 (5)

一般式(5)において、R13及びR14は、それぞれ個別に、炭素数1〜20のアルキル基(シクロアルキル基も含む)、炭素数6〜20のアリール基、炭素数7〜20のアリールアルキル基を示し、それらは互いに同一であっても異なっていてもよく、yは2〜8の整数を示す。 In General Formula (5), R 13 and R 14 are each independently an alkyl group having 1 to 20 carbon atoms (including a cycloalkyl group), an aryl group having 6 to 20 carbon atoms, and an aryl having 7 to 20 carbon atoms. Represents an alkyl group, which may be the same or different from each other, and y represents an integer of 2 to 8;

上記R13及びR14の例としては、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ドデシル基、シクロヘキシル基、フェニル基、ナフチル基、トリル基、キシリル基、ベンジル基、及びフェネチル基などを挙げることができる。 Specific examples of R 13 and R 14 include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and various pentyl groups. Groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various dodecyl groups, cyclohexyl groups, phenyl groups, naphthyl groups, tolyl groups, xylyl groups, benzyl groups, and phenethyl groups. be able to.

ジヒドロカルビルポリスルフィドの例の好ましいものとしては、具体的には、ジベンジルポリスルフィド、ジ−tert−ノニルポリスルフィド、ジドデシルポリスルフィド、ジ−tert−ブチルポリスルフィド、ジオクチルポリスルフィド、ジフェニルポリスルフィド、及びジシクロヘキシルポリスルフィドなどが挙げられる。   Specific examples of preferred dihydrocarbyl polysulfides include dibenzyl polysulfide, di-tert-nonyl polysulfide, didodecyl polysulfide, di-tert-butyl polysulfide, dioctyl polysulfide, diphenyl polysulfide, and dicyclohexyl polysulfide. It is done.

ジチオカーバメート類としては、下記一般式(6)又は(7)で示される化合物が好ましい具体例として挙げられる。   Specific examples of dithiocarbamates include compounds represented by the following general formula (6) or (7).

Figure 2012180532
Figure 2012180532


Figure 2012180532
Figure 2012180532

一般式(6)及び(7)において、R15、R16、R17、R18、R19及びR20はそれぞれ個別に、炭素数1〜30、好ましくは1〜20の炭化水素基を示し、R21は水素原子又は炭素数1〜30の炭化水素基、好ましくは水素原子又は1〜20の炭化水素基を示し、eは0〜4の整数を、fは0〜6の整数を示す。 In the general formulas (6) and (7), R 15 , R 16 , R 17 , R 18 , R 19 and R 20 each independently represent a hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms. R 21 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, e represents an integer of 0 to 4, and f represents an integer of 0 to 6. .

上記炭素数1〜30の炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルキルシクロアルキル基、アルケニル基、アリール基、アルキルアリール基、及びアリールアルキル基を挙げることができる。   Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, an alkenyl group, an aryl group, an alkylaryl group, and an arylalkyl group.

チアジアゾール類としては、例えば、下記一般式(8)で示される1,3,4−チアジアゾール化合物、一般式(9)で示される1,2,4−チアジアゾール化合物及び一般式(10)で示される1,4,5−チアジアゾール化合物を挙げることができる。   Examples of the thiadiazoles include a 1,3,4-thiadiazole compound represented by the following general formula (8), a 1,2,4-thiadiazole compound represented by the general formula (9), and a general formula (10). Mention may be made of 1,4,5-thiadiazole compounds.

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

一般式(8)〜(10)において、R22、R23、R24、R25、R26及びR27は各々同一でも異なっていてもよく、それぞれ個別に、水素原子又は炭素数1〜30の炭化水素基を表し、g、h、i、j、k、及びlはそれぞれ個別に、0〜8の整数を表す。 In the general formulas (8) to (10), R 22 , R 23 , R 24 , R 25 , R 26 and R 27 may be the same or different, and each independently represents a hydrogen atom or 1 to 30 carbon atoms. And g, h, i, j, k, and l each independently represent an integer of 0 to 8.

上記炭素数1〜30の炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルキルシクロアルキル基、アルケニル基、アリール基、アルキルアリール基、及びアリールアルキル基を挙げることができる。   Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, an alkenyl group, an aryl group, an alkylaryl group, and an arylalkyl group.

また、硫黄を構成元素として含むフェノール系無灰酸化防止剤としては、4,4’−チオビス(2−メチル−6−tert−ブチルフェノール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3−メチル−4−ヒドロキシ−5−tert−ブチルベンジル)スルフィド、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、2,2’−チオ−ジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]などが挙げられる。   Examples of the phenol-based ashless antioxidant containing sulfur as a constituent element include 4,4′-thiobis (2-methyl-6-tert-butylphenol), 4,4′-thiobis (3-methyl-6-tert). -Butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3-methyl-4-hydroxy-5-tert-butylbenzyl) sulfide, bis (3,5-di-tert) -Butyl-4-hydroxybenzyl) sulfide, 2,2′-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and the like.

上記(B−1)成分の中でも、より優れた熱・酸化安定性が得られる点から、ジヒドロカルビルポリスルフィド、ジチオカーバメート類及びチアジアゾール類が好ましく用いられる。   Among the above components (B-1), dihydrocarbyl polysulfide, dithiocarbamates and thiadiazoles are preferably used from the viewpoint that more excellent thermal / oxidative stability can be obtained.

本発明における(B)成分として(B−1)硫黄を構成元素として含む無灰酸化防止剤を用いる場合、その含有量は特に制限されないが、組成物全量を基準として、硫黄元素換算で、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、更に好ましくは0.01質量%以上であり、また、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、特に好ましくは0.04質量%以下である。その含有量が前記下限値未満の場合、潤滑油組成物の熱・酸化安定性が不十分となり、特に、長期間に渡って優れた清浄性を維持させることができなくなる傾向にある。一方、前記上限値を超える場合、潤滑油組成物の高硫黄化による排ガス浄化装置への悪影響が大きくなる傾向にある。   When the ashless antioxidant containing (B-1) sulfur as a constituent element is used as the component (B) in the present invention, the content is not particularly limited, but preferably in terms of elemental sulfur based on the total amount of the composition. Is 0.001% by mass or more, more preferably 0.005% by mass or more, still more preferably 0.01% by mass or more, and preferably 0.2% by mass or less, more preferably 0.1% by mass or less. Especially preferably, it is 0.04 mass% or less. When the content is less than the lower limit, the thermal and oxidation stability of the lubricating oil composition becomes insufficient, and in particular, it tends to be impossible to maintain excellent cleanliness over a long period of time. On the other hand, when the above upper limit is exceeded, the adverse effect on the exhaust gas purification device due to the high sulfur content of the lubricating oil composition tends to increase.

また、(B)成分としての(B−2)有機モリブデン化合物には、(B−2−1)硫黄を構成元素として含む有機モリブデン化合物、及び(B−2−2)硫黄を構成元素として含まない有機モリブデン化合物の双方が包含される。   The (B-2) organic molybdenum compound as the component (B) includes (B-2-1) an organic molybdenum compound containing sulfur as a constituent element, and (B-2-2) sulfur as a constituent element. Both organomolybdenum compounds are included.

(B−2−1)硫黄を構成元素として含む有機モリブデン化合物としては、例えば、モリブデンジチオホスフェート、モリブデンジチオカーバメート等の有機モリブデン錯体が挙げられる。   (B-2-1) Examples of the organic molybdenum compound containing sulfur as a constituent element include organic molybdenum complexes such as molybdenum dithiophosphate and molybdenum dithiocarbamate.

モリブデンジチオホスフェートとしては、具体的には例えば、下記一般式(11)で表される化合物が挙げられる。   Specific examples of molybdenum dithiophosphate include compounds represented by the following general formula (11).

Figure 2012180532
Figure 2012180532

上記一般式(11)中、R28、R29、R30及びR31は、それぞれ同一でも異なっていてもよく、炭素数2〜30、好ましくは炭素数5〜18、より好ましくは炭素数5〜12のアルキル基、又は炭素数6〜18、好ましくは炭素数10〜15の(アルキル)アリール基等の炭化水素基を示す。またY、Y、Y及びYは、それぞれ硫黄原子または酸素原子を示す。 In the general formula (11), R 28, R 29, R 30 and R 31 may be different from each other in the same, having 2 to 30 carbon atoms, preferably 5 to 18 carbon atoms, more preferably 5 carbon atoms A hydrocarbon group such as an alkyl group having ˜12 or a (alkyl) aryl group having 6 to 18 carbon atoms, preferably 10 to 15 carbon atoms. Y 1 , Y 2 , Y 3 and Y 4 each represents a sulfur atom or an oxygen atom.

アルキル基として好ましい例としては、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が挙げられ、これらは1級アルキル基、2級アルキル基又は3級アルキル基でも良く、また直鎖状でも分枝状でもよい。   Preferred examples of the alkyl group include ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, A hexadecyl group, a heptadecyl group, an octadecyl group, etc. are mentioned, These may be a primary alkyl group, a secondary alkyl group, or a tertiary alkyl group, and may be linear or branched.

(アルキル)アリール基の好ましい例としては、フェニル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基、ドデシルフェニル基等が挙げられ、そのアルキル基は1級アルキル基、2級アルキル基又は3級アルキル基でも良く、また直鎖状でも分枝状でもよい。さらにこれら(アルキル)アリール基には、アリール基へのアルキル基の置換位置が異なる、全ての置換異性体が含まれる。   Preferred examples of (alkyl) aryl groups include phenyl, tolyl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, octylphenyl, nonylphenyl, decylphenyl, Examples thereof include a decylphenyl group and a dodecylphenyl group, and the alkyl group may be a primary alkyl group, a secondary alkyl group, or a tertiary alkyl group, and may be linear or branched. Further, these (alkyl) aryl groups include all substituted isomers in which the substitution position of the alkyl group to the aryl group is different.

好ましいモリブデンジチオホスフェートとしては、具体的には、硫化モリブデンジエチルジチオホスフェート、硫化モリブデンジプロピルジチオホスフェート、硫化モリブデンジブチルジチオホスフェート、硫化モリブデンジペンチルジチオホスフェート、硫化モリブデンジヘキシルジチオホスフェート、硫化モリブデンジオクチルジチオホスフェート、硫化モリブデンジデシルジチオホスフェート、硫化モリブデンジドデシルジチオホスフェート、硫化モリブデンジ(ブチルフェニル)ジチオホスフェート、硫化モリブデンジ(ノニルフェニル)ジチオホスフェート、硫化オキシモリブデンジエチルジチオホスフェート、硫化オキシモリブデンジプロピルジチオホスフェート、硫化オキシモリブデンジブチルジチオホスフェート、硫化オキシモリブデンジペンチルジチオホスフェート、硫化オキシモリブデンジヘキシルジチオホスフェート、硫化オキシモリブデンジオクチルジチオホスフェート、硫化オキシモリブデンジデシルジチオホスフェート、硫化オキシモリブデンジドデシルジチオホスフェート、硫化オキシモリブデンジ(ブチルフェニル)ジチオホスフェート、硫化オキシモリブデンジ(ノニルフェニル)ジチオホスフェート(アルキル基は直鎖状でも分枝状でも良く、また、アルキルフェニル基のアルキル基の結合位置は任意である)、及びこれらの混合物等が例示できる。なお、これらモリブデンジチオホスフェートとしては、1分子中に異なる炭素数及び/または構造の炭化水素基を有する化合物も、好ましく用いることができる。   Specific examples of preferred molybdenum dithiophosphates include molybdenum sulfide diethyldithiophosphate, molybdenum sulfide dipropyldithiophosphate, molybdenum dibutyldithiophosphate, molybdenum dipentyldithiophosphate, molybdenum dihexyldithiophosphate, molybdenum dioctyldithiophosphate, molybdenum disulfide. Decyl dithiophosphate, sulfurized molybdenum didodecyl dithiophosphate, molybdenum di (butylphenyl) dithiophosphate, molybdenum di (nonylphenyl) dithiophosphate, sulfurized oxymolybdenum diethyldithiophosphate, sulfurized oxymolybdenum dipropyldithiophosphate, sulfurized oxymolybdenum dibutyldithiophosphate, sulfurized Oki Molybdenum dipentyldithiophosphate, sulfurized oxymolybdenum dihexyldithiophosphate, sulfurized oxymolybdenum dioctyldithiophosphate, sulfurized oxymolybdenum didecyldithiophosphate, sulfurized oxymolybdenum didodecyldithiophosphate, sulfurized oxymolybdenum di (butylphenyl) dithiophosphate, sulfurized oxymolybdenum di (nonylphenyl) Examples include dithiophosphate (the alkyl group may be linear or branched, and the bonding position of the alkyl group of the alkylphenyl group is arbitrary), and mixtures thereof. As these molybdenum dithiophosphates, compounds having hydrocarbon groups having different carbon numbers and / or structures in one molecule can also be preferably used.

モリブデンジチオカーバメートとしては、具体的には例えば、下記一般式(12)で表される化合物を用いることができる。   As the molybdenum dithiocarbamate, specifically, for example, a compound represented by the following general formula (12) can be used.

Figure 2012180532
Figure 2012180532

上記一般式(12)中、R32、R33、R34及びR35は、それぞれ同一でも異なっていてもよく、炭素数2〜24、好ましくは炭素数4〜13のアルキル基、又は炭素数6〜24、好ましくは炭素数10〜15の(アルキル)アリール基等の炭化水素基を示す。またY、Y、Y及びYは、それぞれ硫黄原子または酸素原子を示す。 In the general formula (12), R 32, R 33, R 34 and R 35 may be the same as or different from each other, from 2 to 24 carbon atoms, preferably an alkyl group having 4 to 13 carbon atoms, or carbon atoms A hydrocarbon group such as an (alkyl) aryl group having 6 to 24, preferably 10 to 15 carbon atoms is shown. Y 5 , Y 6 , Y 7 and Y 8 each represent a sulfur atom or an oxygen atom.

アルキル基として好ましい例としては、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等が挙げられ、これらは1級アルキル基、2級アルキル基又は3級アルキル基でも良く、また直鎖状でも分枝状でもよい。   Preferred examples of the alkyl group include ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, A hexadecyl group, a heptadecyl group, an octadecyl group, etc. are mentioned, These may be a primary alkyl group, a secondary alkyl group, or a tertiary alkyl group, and may be linear or branched.

(アルキル)アリール基の好ましい例としては、フェニル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基、ドデシルフェニル基等が挙げられ、そのアルキル基は1級アルキル基、2級アルキル基又は3級アルキル基でも良く、また直鎖状でも分枝状でもよい。さらにこれら(アルキル)アリール基には、アリール基へのアルキル基の置換位置が異なる、全ての置換異性体が含まれる。また、上記構造以外のモリブデンジチオカーバメートとしては、WO98/26030あるいは、WO99/31113に開示されるようなチオ又はポリチオ−三核モリブデンにジチオカーバメート基が配位した構造を有するもの等が挙げられる。   Preferred examples of (alkyl) aryl groups include phenyl, tolyl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, octylphenyl, nonylphenyl, decylphenyl, Examples thereof include a decylphenyl group and a dodecylphenyl group, and the alkyl group may be a primary alkyl group, a secondary alkyl group, or a tertiary alkyl group, and may be linear or branched. Further, these (alkyl) aryl groups include all substituted isomers in which the substitution position of the alkyl group to the aryl group is different. Examples of molybdenum dithiocarbamate other than the above structure include those having a structure in which a dithiocarbamate group is coordinated to thio or polythio-trinuclear molybdenum as disclosed in WO98 / 26030 or WO99 / 31113.

好ましいモリブデンジチオカーバメートとしては、具体的には、硫化モリブデンジエチルジチオカーバメート、硫化モリブデンジプロピルジチオカーバメート、硫化モリブデンジブチルジチオカーバメート、硫化モリブデンジペンチルジチオカーバメート、硫化モリブデンジヘキシルジチオカーバメート、硫化モリブデンジオクチルジチオカーバメート、硫化モリブデンジデシルジチオカーバメート、硫化モリブデンジドデシルジチオカーバメート、硫化モリブデンジ(ブチルフェニル)ジチオカーバメート、硫化モリブデンジ(ノニルフェニル)ジチオカーバメート、硫化オキシモリブデンジエチルジチオカーバメート、硫化オキシモリブデンジプロピルジチオカーバメート、硫化オキシモリブデンジブチルジチオカーバメート、硫化オキシモリブデンジペンチルジチオカーバメート、硫化オキシモリブデンジヘキシルジチオカーバメート、硫化オキシモリブデンジオクチルジチオカーバメート、硫化オキシモリブデンジデシルジチオカーバメート、硫化オキシモリブデンジドデシルジチオカーバメート、硫化オキシモリブデンジ(ブチルフェニル)ジチオカーバメート、硫化オキシモリブデンジ(ノニルフェニル)ジチオカーバメート(アルキル基は直鎖状でも分枝状でも良く、また、アルキルフェニル基のアルキル基の結合位置は任意である)、及びこれらの混合物等が例示できる。なお、これらモリブデンジチオカーバメートとしては、1分子中に異なる炭素数及び/または構造の炭化水素基を有する化合物も、好ましく用いることができる。   Specific examples of preferred molybdenum dithiocarbamates include molybdenum sulfide diethyldithiocarbamate, molybdenum dipropyldithiocarbamate, molybdenum dibutyldithiocarbamate, molybdenum dipentyldithiocarbamate, molybdenum dihexyldithiocarbamate, molybdenum dihexyldithiocarbamate, molybdenum dioctyldithiocarbamate, and molybdenum disulfide. Decyl dithiocarbamate, sulfurized molybdenum didodecyl dithiocarbamate, molybdenum di (butylphenyl) dithiocarbamate, molybdenum di (nonylphenyl) dithiocarbamate, sulfurized oxymolybdenum diethyldithiocarbamate, sulfurized oxymolybdenum dipropyldithiocarbamate, sulfurized oxymolybdenum dibutyldithiocarbamate Oki Molybdenum dipentyldithiocarbamate, sulfurized oxymolybdenum dihexyldithiocarbamate, sulfurized oxymolybdenum dioctyldithiocarbamate, sulfurized oxymolybdenum didecyldithiocarbamate, sulfurized oxymolybdenum didodecyldithiocarbamate, sulfurized oxymolybdenum di (butylphenyl) dithiocarbamate, sulfurized oxymolybdenum di (nonylphenyl) Examples thereof include dithiocarbamate (the alkyl group may be linear or branched, and the bonding position of the alkyl group of the alkylphenyl group is arbitrary), and mixtures thereof. As these molybdenum dithiocarbamates, compounds having hydrocarbon groups having different carbon numbers and / or structures in one molecule can also be preferably used.

また、これら以外の硫黄を含有する有機モリブデン錯体としては、モリブデン化合物(例えば、二酸化モリブデン、三酸化モリブデン等の酸化モリブデン、オルトモリブデン酸、パラモリブデン酸、(ポリ)硫化モリブデン酸等のモリブデン酸、これらモリブデン酸の金属塩、アンモニウム塩等のモリブデン酸塩、二硫化モリブデン、三硫化モリブデン、五硫化モリブデン、ポリ硫化モリブデン等の硫化モリブデン、硫化モリブデン酸、硫化モリブデン酸の金属塩又はアミン塩、塩化モリブデン等のハロゲン化モリブデン等)と、硫黄含有有機化合物(例えば、アルキル(チオ)キサンテート、チアジアゾール、メルカプトチアジアゾール、チオカーボネート、テトラハイドロカルビルチウラムジスルフィド、ビス(ジ(チオ)ハイドロカルビルジチオホスホネート)ジスルフィド、有機(ポリ)サルファイド、硫化エステル等)あるいはその他の有機化合物との錯体等、あるいは、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアルケニルコハク酸イミドとの錯体等を挙げることができる。   Other organic molybdenum complexes containing sulfur include molybdenum compounds (for example, molybdenum dioxide, molybdenum oxide such as molybdenum trioxide, orthomolybdic acid, paramolybdic acid, molybdic acid such as (poly) sulfurized molybdenum acid, These metal salts of molybdate, molybdenum salts such as ammonium salts, molybdenum sulfides such as molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, and polysulfide molybdenum, molybdenum sulfides, metal salts or amine salts of molybdenum sulfides, chlorides Molybdenum halides such as molybdenum) and sulfur-containing organic compounds (eg, alkyl (thio) xanthate, thiadiazole, mercaptothiadiazole, thiocarbonate, tetrahydrocarbylthiuram disulfide, bis (di (thio) hydrocarb) (Ludithiophosphonate) disulfide, organic (poly) sulfide, sulfurized ester, etc.) or other organic compounds, etc., or complexes of sulfur-containing molybdenum compounds such as molybdenum sulfide and sulfurized molybdic acid with alkenyl succinimides, etc. Can be mentioned.

本発明における(B)成分として(B−2−1)硫黄を構成元素として含む有機モリブデン化合物を用いると、熱・酸化安定性の向上効果に加えて摩擦低減効果を得ることができるので好ましく、中でもモリブデンジチオカーバメートが特に好ましい。   When an organic molybdenum compound containing (B-2-1) sulfur as a constituent element is used as the component (B) in the present invention, it is preferable because a friction reducing effect can be obtained in addition to the effect of improving thermal and oxidation stability. Of these, molybdenum dithiocarbamate is particularly preferred.

また、(B−2−2)硫黄を構成元素として含まない有機モリブデン化合物としては、具体的には、モリブデン−アミン錯体、モリブデン−コハク酸イミド錯体、有機酸のモリブデン塩、アルコールのモリブデン塩などが挙げられ、中でも、モリブデン−アミン錯体、有機酸のモリブデン塩及びアルコールのモリブデン塩が好ましい。   (B-2-2) Specific examples of the organic molybdenum compound not containing sulfur as a constituent element include molybdenum-amine complexes, molybdenum-succinimide complexes, molybdenum salts of organic acids, molybdenum salts of alcohols, and the like. Among them, a molybdenum-amine complex, a molybdenum salt of an organic acid, and a molybdenum salt of an alcohol are preferable.

上記モリブデン−アミン錯体を構成するモリブデン化合物としては、三酸化モリブデン又はその水和物(MoO・nHO)、モリブデン酸(HMoO)、モリブデン酸アルカリ金属塩(MMoO4;Mはアルカリ金属を示す)、モリブデン酸アンモニウム((NH)2MoO又は(NH[Mo24]・4HO)、MoCl、MoOCl、MoOCl、MoOBr、MoCl等の硫黄を含まないモリブデン化合物が挙げられる。こららのモリブデン化合物の中でも、モリブデン−アミン錯体の収率の点から、6価のモリブデン化合物が好ましい。更に、入手性の点から、6価のモリブデン化合物の中でも、三酸化モリブデン又はその水和物、モリブデン酸、モリブデン酸アルカリ金属塩、及びモリブデン酸アンモニウムが好ましい。 Examples of the molybdenum compound constituting the molybdenum-amine complex include molybdenum trioxide or a hydrate thereof (MoO 3 · nH 2 O), molybdic acid (H 2 MoO 4 ), and an alkali metal molybdate (M 2 MoO 4 ; M Represents an alkali metal), ammonium molybdate ((NH 4 ) 2 MoO 4 or (NH 4 ) 6 [Mo 7 O 24 ] · 4H 2 O), MoCl 5 , MoOCl 4 , MoO 2 Cl 2 , MoO 2 Br 2 And molybdenum compounds containing no sulfur such as Mo 2 O 3 Cl 6 . Among these molybdenum compounds, hexavalent molybdenum compounds are preferable from the viewpoint of the yield of the molybdenum-amine complex. Further, from the viewpoint of availability, among the hexavalent molybdenum compounds, molybdenum trioxide or a hydrate thereof, molybdic acid, alkali metal molybdate, and ammonium molybdate are preferable.

また、モリブデン−アミン錯体を構成する窒素化合物としては、特に制限されないが、アンモニア、モノアミン、ジアミン、ポリアミンが挙げられる。より具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、ジトリデシルアミン、ジテトラデシルアミン、ジペンタデシルアミン、ジヘキサデシルアミン、ジヘプタデシルアミン、ジオクタデシルアミン、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、エチルプロピルアミン、エチルブチルアミン、及びプロピルブチルアミン等の炭素数1〜30のアルキル基(これらのアルキル基は直鎖状でも分枝状でもよい)を有するアルキルアミン;エテニルアミン、プロペニルアミン、ブテニルアミン、オクテニルアミン、及びオレイルアミン等の炭素数2〜30のアルケニル基(これらのアルケニル基は直鎖状でも分枝状でもよい)を有するアルケニルアミン;メタノールアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、ペンタノールアミン、ヘキサノールアミン、ヘプタノールアミン、オクタノールアミン、ノナノールアミン、メタノールエタノールアミン、メタノールプロパノールアミン、メタノールブタノールアミン、エタノールプロパノールアミン、エタノールブタノールアミン、及びプロパノールブタノールアミン等の炭素数1〜30のアルカノール基(これらのアルカノール基は直鎖状でも分枝状でもよい)を有するアルカノールアミン;メチレンジアミン、エチレンジアミン、プロピレンジアミン、及びブチレンジアミン等の炭素数1〜30のアルキレン基を有するアルキレンジアミン;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミン;ウンデシルジエチルアミン、ウンデシルジエタノールアミン、ドデシルジプロパノールアミン、オレイルジエタノールアミン、オレイルプロピレンジアミン、ステアリルテトラエチレンペンタミン等の上記モノアミン、ジアミン、ポリアミンに炭素数8〜20のアルキル基又はアルケニル基を有する化合物やN−ヒドロキシエチルオレイルイミダゾリン等の複素環化合物;これらの化合物のアルキレンオキシド付加物;及びこれらの混合物等が例示できる。これらの中でも、第1級アミン、第2級アミン及びアルカノールアミンが好ましい。   Moreover, the nitrogen compound constituting the molybdenum-amine complex is not particularly limited, and examples thereof include ammonia, monoamine, diamine, and polyamine. More specifically, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine , Hexadecylamine, heptadecylamine, octadecylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine Decylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, diheptadecylamine, dioctadecylamine, methyl ethyl Alkylamines having an alkyl group having 1 to 30 carbon atoms such as amine, methylpropylamine, methylbutylamine, ethylpropylamine, ethylbutylamine, and propylbutylamine (these alkyl groups may be linear or branched); Alkenyl amines having 2 to 30 carbon atoms such as ethenylamine, propenylamine, butenylamine, octenylamine, and oleylamine (these alkenyl groups may be linear or branched); methanolamine, ethanolamine, propanolamine , Butanolamine, pentanolamine, hexanolamine, heptanolamine, octanolamine, nonanolamine, methanol ethanolamine, methanol propanolamine, methanol butanol amine Alkanolamines having 1 to 30 carbon atoms such as ethanolpropanolamine, ethanolbutanolamine, and propanolbutanolamine (these alkanol groups may be linear or branched); methylenediamine, ethylenediamine, Alkylene diamines having 1-30 carbon atoms such as propylene diamine and butylene diamine; polyamines such as diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine; undecyl diethylamine, undecyl diethanolamine, dodecyl dipropanol Amine, oleyl diethanolamine, oleyl propylene diamine, stearyl tetraethylene pentamine, etc. Examples thereof include compounds having an alkyl group or alkenyl group having 8 to 20 carbon atoms in the amine and heterocyclic compounds such as N-hydroxyethyloleylimidazoline; alkylene oxide adducts of these compounds; and mixtures thereof. Of these, primary amines, secondary amines, and alkanolamines are preferred.

モリブデン−アミン錯体を構成するアミン化合物が有する炭化水素基の炭素数は、好ましくは4以上であり、より好ましくは4〜30であり、特に好ましくは8〜18である。アミン化合物の炭化水素基の炭素数が4未満であると、溶解性が悪化する傾向にある。また、アミン化合物の炭素数を30以下とすることにより、モリブデン−アミン錯体におけるモリブデン顔料を早退的に高めることができ、少量の配合で本発明の効果をより高めることができる。   Carbon number of the hydrocarbon group which the amine compound which comprises a molybdenum-amine complex has becomes like this. Preferably it is 4 or more, More preferably, it is 4-30, Most preferably, it is 8-18. When the number of carbon atoms of the hydrocarbon group of the amine compound is less than 4, the solubility tends to deteriorate. Moreover, by setting the number of carbon atoms in the amine compound to 30 or less, the molybdenum pigment in the molybdenum-amine complex can be rapidly increased, and the effects of the present invention can be further enhanced with a small amount of compounding.

また、モリブデン−コハク酸イミド錯体としては、上記モリブデン−アミン錯体の説明において例示されたような硫黄を含まないモリブデン化合物と、炭素数4以上のアルキル基又はアルケニル基を有するコハク酸イミドとの錯体が挙げられる。コハク酸イミドとしては、炭素数40〜400のアルキル基又はアルケニル基を分子中に少なくとも1個有するコハク酸イミド、あるいはその誘導体や、炭素数4〜39、好ましくは炭素数8〜18のアルキル基又はアルケニル基を有するコハク酸イミド等が挙げられる。コハク酸イミドにおけるアルキル基又はアルケニル基の炭素数が4未満であると溶解性が悪化する傾向にある。また、炭素数30を超え400以下のアルキル基又はアルケニル基を有するコハク酸イミドを使用することもできるが、当該アルキル基又はアルケニル基の炭素数を30以下とすることにより、モリブデン−コハク酸イミド錯体におけるモリブデン含有量を相対的に高めることができ、少量の配合で本発明の効果をより高めることができる。   The molybdenum-succinimide complex is a complex of a sulfur-free molybdenum compound as exemplified in the description of the molybdenum-amine complex and a succinimide having an alkyl group or alkenyl group having 4 or more carbon atoms. Is mentioned. As the succinimide, succinimide having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a derivative thereof, or an alkyl group having 4 to 39 carbon atoms, preferably 8 to 18 carbon atoms. Or the succinimide etc. which have an alkenyl group are mentioned. If the alkyl group or alkenyl group in the succinimide has less than 4 carbon atoms, the solubility tends to deteriorate. A succinimide having an alkyl group or an alkenyl group having more than 30 carbon atoms and not more than 400 carbon atoms can also be used. By setting the alkyl group or alkenyl group to 30 or less carbon atoms, molybdenum-succinimide is obtained. The molybdenum content in the complex can be relatively increased, and the effects of the present invention can be further enhanced with a small amount of compounding.

また、有機酸のモリブデン塩としては、上記モリブデン−アミン錯体の説明において例示されたモリブデン酸化物あるいはモリブデン水酸化物、モリブデン炭酸塩又はモリブデン塩化物等のモリブデン塩基と、有機酸との塩が挙げられる。有機酸としては、下記一般式(P−1)又は(P−2)で表されるリン化合物及びカルボン酸が好ましい。   Examples of the molybdenum salt of an organic acid include salts of molybdenum bases such as molybdenum oxide or molybdenum hydroxide, molybdenum carbonate or molybdenum chloride exemplified in the description of the molybdenum-amine complex with an organic acid. It is done. As an organic acid, the phosphorus compound and carboxylic acid which are represented with the following general formula (P-1) or (P-2) are preferable.

Figure 2012180532


[式(P−1)中、R57は炭素数1〜30の炭化水素基を示し、R58及びR59は同一でも異なっていてもよく、それぞれ水素原子又は炭素数1〜30の炭化水素基を示し、nは0又は1を示す。]
Figure 2012180532


[In Formula (P-1), R 57 represents a hydrocarbon group having 1 to 30 carbon atoms, and R 58 and R 59 may be the same or different, and each represents a hydrogen atom or a hydrocarbon having 1 to 30 carbon atoms. Represents a group, and n represents 0 or 1. ]

Figure 2012180532


[式(P−2)中、R60、R61及びR62は同一でも異なっていてもよく、それぞれ水素原子又は炭素数1〜30の炭化水素基を示し、nは0又は1を示す。]
Figure 2012180532


[In Formula (P-2), R 60 , R 61 and R 62 may be the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms, and n represents 0 or 1. ]

また、カルボン酸のモリブデン塩を構成するカルボン酸としては、一塩基酸又は多塩基酸のいずれであってもよい。   Moreover, as carboxylic acid which comprises the molybdenum salt of carboxylic acid, either a monobasic acid or a polybasic acid may be sufficient.

一塩基酸としては、炭素数が通常2〜30、好ましくは4〜24の脂肪酸が用いられ、その脂肪酸は直鎖のものでも分岐のものでもよく、また飽和のものでも不飽和のものでもよい。具体的には、例えば、酢酸、プロピオン酸、直鎖状又は分岐状のブタン酸、直鎖状又は分岐状のペンタン酸、直鎖状又は分岐状のヘキサン酸、直鎖状又は分岐状のヘプタン酸、直鎖状又は分岐状のオクタン酸、直鎖状又は分岐状のノナン酸、直鎖状又は分岐状のデカン酸、直鎖状又は分岐状のウンデカン酸、直鎖状又は分岐状のドデカン酸、直鎖状又は分岐状のトリデカン酸、直鎖状又は分岐状のテトラデカン酸、直鎖状又は分岐状のペンタデカン酸、直鎖状又は分岐状のヘキサデカン酸、直鎖状又は分岐状のヘプタデカン酸、直鎖状又は分岐状のオクタデカン酸、直鎖状又は分岐状のヒドロキシオクタデカン酸、直鎖状又は分岐状のノナデカン酸、直鎖状又は分岐状のイコサン酸、直鎖状又は分岐状のヘンイコサン酸、直鎖状又は分岐状のドコサン酸、直鎖状又は分岐状のトリコサン酸、直鎖状又は分岐状のテトラコサン酸等の飽和脂肪酸、アクリル酸、直鎖状又は分岐状のブテン酸、直鎖状又は分岐状のペンテン酸、直鎖状又は分岐状のヘキセン酸、直鎖状又は分岐状のヘプテン酸、直鎖状又は分岐状のオクテン酸、直鎖状又は分岐状のノネン酸、直鎖状又は分岐状のデセン酸、直鎖状又は分岐状のウンデセン酸、直鎖状又は分岐状のドデセン酸、直鎖状又は分岐状のトリデセン酸、直鎖状又は分岐状のテトラデセン酸、直鎖状又は分岐状のペンタデセン酸、直鎖状又は分岐状のヘキサデセン酸、直鎖状又は分岐状のヘプタデセン酸、直鎖状又は分岐状のオクタデセン酸、直鎖状又は分岐状のヒドロキシオクタデセン酸、直鎖状又は分岐状のノナデセン酸、直鎖状又は分岐状のイコセン酸、直鎖状又は分岐状のヘンイコセン酸、直鎖状又は分岐状のドコセン酸、直鎖状又は分岐状のトリコセン酸、直鎖状又は分岐状のテトラコセン酸等の不飽和脂肪酸、及びこれらの混合物等が挙げられる。   As the monobasic acid, a fatty acid having 2 to 30 carbon atoms, preferably 4 to 24 carbon atoms, is used. The fatty acid may be linear or branched, and may be saturated or unsaturated. . Specifically, for example, acetic acid, propionic acid, linear or branched butanoic acid, linear or branched pentanoic acid, linear or branched hexanoic acid, linear or branched heptane Acid, linear or branched octanoic acid, linear or branched nonanoic acid, linear or branched decanoic acid, linear or branched undecanoic acid, linear or branched dodecane Acid, linear or branched tridecanoic acid, linear or branched tetradecanoic acid, linear or branched pentadecanoic acid, linear or branched hexadecanoic acid, linear or branched heptadecane Acid, linear or branched octadecanoic acid, linear or branched hydroxyoctadecanoic acid, linear or branched nonadecanoic acid, linear or branched icosanoic acid, linear or branched Henicosanoic acid, linear or branched Saturated fatty acids such as cosanoic acid, linear or branched tricosanoic acid, linear or branched tetracosanoic acid, acrylic acid, linear or branched butenoic acid, linear or branched pentenoic acid, Linear or branched hexenoic acid, linear or branched heptenoic acid, linear or branched octenoic acid, linear or branched nonenoic acid, linear or branched decenoic acid, Linear or branched undecenoic acid, linear or branched dodecenoic acid, linear or branched tridecenoic acid, linear or branched tetradecenoic acid, linear or branched pentadecenoic acid, Linear or branched hexadecenoic acid, linear or branched heptadecenoic acid, linear or branched octadecenoic acid, linear or branched hydroxyoctadecenoic acid, linear or branched nonadecene Acid, linear or branched Unsaturated fatty acids such as cocenoic acid, linear or branched heicosenoic acid, linear or branched docosenoic acid, linear or branched tricosenoic acid, linear or branched tetracosenoic acid, and the like And the like.

また、一塩基酸としては、上記脂肪酸の他に、単環又は多環カルボン酸(水酸基を有していてもよい)を用いてもよく、その炭素数は、好ましくは4〜30、より好ましくは7〜30である。単環又は多環カルボン酸としては、炭素数1〜30、好ましくは炭素数1〜20の直鎖状又は分岐状のアルキル基を0〜3個、好ましくは1〜2個有する芳香族カルボン酸又はシクロアルキルカルボン酸等が挙げられ、より具体的には、(アルキル)ベンゼンカルボン酸、(アルキル)ナフタレンカルボン酸、(アルキル)シクロアルキルカルボン酸等が例示できる。単環又は多環カルボン酸の好ましい例としては、安息香酸、サリチル酸、アルキル安息香酸、アルキルサリチル酸、シクロヘキサンカルボン酸等が挙げられる。   Moreover, as a monobasic acid, in addition to the above fatty acid, a monocyclic or polycyclic carboxylic acid (which may have a hydroxyl group) may be used, and the carbon number thereof is preferably 4 to 30, and more preferably. Is 7-30. The monocyclic or polycyclic carboxylic acid is an aromatic carboxylic acid having 0 to 3, preferably 1 to 2 linear or branched alkyl groups having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms. Or cycloalkyl carboxylic acid etc. are mentioned, More specifically, (alkyl) benzene carboxylic acid, (alkyl) naphthalene carboxylic acid, (alkyl) cycloalkyl carboxylic acid, etc. can be illustrated. Preferable examples of the monocyclic or polycyclic carboxylic acid include benzoic acid, salicylic acid, alkylbenzoic acid, alkylsalicylic acid, and cyclohexanecarboxylic acid.

また、多塩基酸としては、二塩基酸、三塩基酸、四塩基酸等が挙げられる。多塩基酸は鎖状多塩基酸、環状多塩基酸のいずれであってもよい。また、鎖状多塩基酸の場合、直鎖状、分岐状のいずれであってもよく、また、飽和、不飽和のいずれであってもよい。鎖状多塩基酸としては、炭素数2〜16の鎖状二塩基酸が好ましく、具体的には例えば、エタン二酸、プロパン二酸、直鎖状又は分岐状のブタン二酸、直鎖状又は分岐状のペンタン二酸、直鎖状又は分岐状のヘキサン二酸、直鎖状又は分岐状のヘプタン二酸、直鎖状又は分岐状のオクタン二酸、直鎖状又は分岐状のノナン二酸、直鎖状又は分岐状のデカン二酸、直鎖状又は分岐状のウンデカン二酸、直鎖状又は分岐状のドデカン二酸、直鎖状又は分岐状のトリデカン二酸、直鎖状又は分岐状のテトラデカン二酸、直鎖状又は分岐状のヘプタデカン二酸、直鎖状又は分岐状のヘキサデカン二酸、直鎖状又は分岐状のヘキセン二酸、直鎖状又は分岐状のヘプテン二酸、直鎖状又は分岐状のオクテン二酸、直鎖状又は分岐状のノネン二酸、直鎖状又は分岐状のデセン二酸、直鎖状又は分岐状のウンデセン二酸、直鎖状又は分岐状のドデセン二酸、直鎖状又は分岐状のトリデセン二酸、直鎖状又は分岐状のテトラデセン二酸、直鎖状又は分岐状のヘプタデセン二酸、直鎖状又は分岐状のヘキサデセン二酸、アルケニルコハク酸及びこれらの混合物等が挙げられる。また、環状多塩基酸としては、1、2−シクロヘキサンジカルボン酸、4−シクロヘキセン−1,2−ジカルボン酸の脂環式ジカルボン酸、フタル酸等の芳香族ジカルボン酸、トリメリット酸等の芳香族トリカルボン酸、ピロメリット酸等の芳香族テトラカルボン酸等が挙げられる。   Examples of polybasic acids include dibasic acids, tribasic acids, and tetrabasic acids. The polybasic acid may be a chain polybasic acid or a cyclic polybasic acid. Further, in the case of a chain polybasic acid, it may be either linear or branched, and may be either saturated or unsaturated. As the chain polybasic acid, a chain dibasic acid having 2 to 16 carbon atoms is preferable. Specifically, for example, ethanedioic acid, propanedioic acid, linear or branched butanedioic acid, linear Or branched pentanedioic acid, linear or branched hexanedioic acid, linear or branched heptanedioic acid, linear or branched octanedioic acid, linear or branched nonane diacid Acid, linear or branched decanedioic acid, linear or branched undecanedioic acid, linear or branched dodecanedioic acid, linear or branched tridecanedioic acid, linear or Branched tetradecanedioic acid, linear or branched heptadecanedioic acid, linear or branched hexadecanedioic acid, linear or branched hexenedioic acid, linear or branched heptenedioic acid Linear or branched octene diacid, linear or branched nonene diacid, linear or branched Branched decenedioic acid, linear or branched undecenedioic acid, linear or branched dodecenedioic acid, linear or branched tridecenedioic acid, linear or branched tetradecenedioic acid And linear or branched heptadecene diacid, linear or branched hexadecene diacid, alkenyl succinic acid, and mixtures thereof. As the cyclic polybasic acid, 1,2-cyclohexanedicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid alicyclic dicarboxylic acid, phthalic acid or other aromatic dicarboxylic acid, trimellitic acid or other aromatic Examples thereof include aromatic tetracarboxylic acids such as tricarboxylic acid and pyromellitic acid.

また、上記アルコールのモリブデン塩としては、上記モリブデン−アミン錯体の説明において例示されたような硫黄を含まないモリブデン化合物と、アルコールとの塩が挙げられ、アルコールは1価アルコール、多価アルコール、多価アルコールの部分エステルもしくは部分エステル化合物、水酸基を有する窒素化合物(アルカノールアミン等)などのいずれであってもよい。なお、モリブデン酸は強酸であり、アルコールとの反応によりエステルを形成するが、当該モリブデン酸とアルコールとのエステルも本発明でいうアルコールのモリブデン塩に包含される。   Examples of the molybdenum salt of the alcohol include a salt of a molybdenum compound not containing sulfur as exemplified in the description of the molybdenum-amine complex with an alcohol. The alcohol may be a monohydric alcohol, a polyhydric alcohol, Any of a partial ester or partial ester compound of a monohydric alcohol, a nitrogen compound having a hydroxyl group (alkanolamine, etc.), etc. may be used. Molybdic acid is a strong acid and forms an ester by reaction with alcohol. The ester of molybdic acid and alcohol is also included in the molybdenum salt of alcohol in the present invention.

一価アルコールとしては、通常炭素数1〜24、好ましくは1〜12、より好ましくは1〜8のものが用いられ、このようなアルコールとしては直鎖のものでも分岐のものでもよく、また飽和のものであっても不飽和のものであってもよい。炭素数1〜24のアルコールとしては、具体的には例えば、メタノール、エタノール、直鎖状又は分岐状のプロパノール、直鎖状又は分岐状のブタノール、直鎖状又は分岐状のペンタノール、直鎖状又は分岐状のヘキサノール、直鎖状又は分岐状のヘプタノール、直鎖状又は分岐状のオクタノール、直鎖状又は分岐状のノナノール、直鎖状又は分岐状のデカノール、直鎖状又は分岐状のウンデカノール、直鎖状又は分岐状のドデカノール、直鎖状又は分岐状のトリデカノール、直鎖状又は分岐状のテトラデカノール、直鎖状又は分岐状のペンタデカノール、直鎖状又は分岐状のヘキサデカノール、直鎖状又は分岐状のヘプタデカノール、直鎖状又は分岐状のオクタデカノール、直鎖状又は分岐状のノナデカノール、直鎖状又は分岐状のイコサノール、直鎖状又は分岐状のヘンイコサノール、直鎖状又は分岐状のトリコサノール、直鎖状又は分岐状のテトラコサノール及びこれらの混合物等が挙げられる。   As the monohydric alcohol, those having 1 to 24 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms are usually used. Such alcohols may be linear or branched, and saturated. Or may be unsaturated. Specific examples of the alcohol having 1 to 24 carbon atoms include methanol, ethanol, linear or branched propanol, linear or branched butanol, linear or branched pentanol, and linear Linear or branched hexanol, linear or branched heptanol, linear or branched octanol, linear or branched nonanol, linear or branched decanol, linear or branched Undecanol, linear or branched dodecanol, linear or branched tridecanol, linear or branched tetradecanol, linear or branched pentadecanol, linear or branched hexadecane Decanol, linear or branched heptadecanol, linear or branched octadecanol, linear or branched nonadecanol, linear or branched icosa Lumpur, linear or branched Hen'ikosanoru, linear or branched Torikosanoru, such as linear or branched tetracosanol, and mixtures thereof.

また、多価アルコールとしては、通常2〜10価、好ましくは2〜6価のものが用いられる。2〜10の多価アルコールとしては、具体的には例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール(エチレングリコールの3〜15量体)、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール(プロピレングリコールの3〜15量体)、1,3−プロパンジオール、1,2−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−メチル−1,2−プロパンジオール、2−メチル−1,3−プロパンジオール、1,2−ペンタンジオール、1,3−ペンタンジオール、1,4−ペンタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール等の2価アルコール;グリセリン、ポリグリセリン(グリセリンの2〜8量体、例えばジグリセリン、トリグリセリン、テトラグリセリン等)、トリメチロールアルカン(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン等)及びこれらの2〜8量体、ペンタエリスリトール及びこれらの2〜4量体、1,2,4−ブタントリオール、1,3,5−ペンタントリオール、1,2,6−ヘキサントリオール、1,2,3,4−ブタンテトロール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトール等の多価アルコール;キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオース、マルトース、イソマルトース、トレハロース、スクロース等の糖類、及びこれらの混合物等が挙げられる。   Moreover, as a polyhydric alcohol, the thing of 2-10 valence is preferable, Preferably it is 2-6 valence. Specific examples of the 2 to 10 polyhydric alcohol include, for example, ethylene glycol, diethylene glycol, polyethylene glycol (3 to 15 mer of ethylene glycol), propylene glycol, dipropylene glycol, and polypropylene glycol (3 to 15 of propylene glycol). Monomer), 1,3-propanediol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,2-propanediol, 2-methyl-1,3 -Dihydric alcohols such as propanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, neopentylglycol; glycerin, polyglycerin (glycerin 2- Octamers such as diglycerin, triglyceride Phosphorus, tetraglycerin, etc.), trimethylolalkanes (trimethylolethane, trimethylolpropane, trimethylolbutane, etc.) and their 2- to 8-mer, pentaerythritol and their 2- to 4-mer, 1,2,4- Butanetriol, 1,3,5-pentanetriol, 1,2,6-hexanetriol, 1,2,3,4-butanetetrol, sorbitol, sorbitan, sorbitol glycerin condensate, adonitol, arabitol, xylitol, mannitol, etc. Polyhydric alcohols; sugars such as xylose, arabinose, ribose, rhamnose, glucose, fructose, galactose, mannose, sorbose, cellobiose, maltose, isomaltose, trehalose, sucrose, and mixtures thereof That.

また、多価アルコールの部分エステルとしては、上記多価アルコールの説明において例示された多価アルコールが有する水酸基の一部がヒドロカルビルエステル化された化合物等が挙げられ、中でもグリセリンモノオレート、グリセリンジオレート、ソルビタンモノオレート、ソルビタンジオレート、ペンタエリスリトールモノオレート、ポリエチレングリコールモノオレート、ポリグリセリンモノオレートが好ましい。   Examples of the partial ester of the polyhydric alcohol include compounds in which a part of the hydroxyl group of the polyhydric alcohol exemplified in the description of the polyhydric alcohol has been hydrocarbyl esterified, among which glycerin monooleate and glycerin dioleate. Sorbitan monooleate, sorbitandiolate, pentaerythritol monooleate, polyethylene glycol monooleate, and polyglycerin monooleate are preferred.

また、多価アルコールの部分エーテルとしては、上記多価アルコールの説明において例示された多価アルコールが有する水酸基の一部がヒドロカルビルエーテル化された化合物、多価アルコール同士の縮合によりエーテル結合が形成された化合物(ソルビタン縮合物等)などが挙げられ、中でも3−オクタデシルオキシ−1,2−プロパンジオール、3−オクタデセニルオキシ−1,2−プロパンジオール、ポリエチレングリコールアルキルエーテル等が好ましい。   Moreover, as the partial ether of the polyhydric alcohol, an ether bond is formed by condensation of polyhydric alcohols, a compound in which a part of the hydroxyl groups of the polyhydric alcohol exemplified in the description of the polyhydric alcohol is hydrocarbyl etherified. Compounds (such as sorbitan condensate) and the like, among which 3-octadecyloxy-1,2-propanediol, 3-octadecenyloxy-1,2-propanediol, polyethylene glycol alkyl ether and the like are preferable.

また、水酸基を有する窒素化合物としては、上記モリブデン−アミン錯体の説明において例示されたアルカノールアミン、並びに当該アルカノールのアミノ基がアミド化されたアルカノールアミド(ジエタノールアミド等)などが挙げられ、中でもステラリルジエタノールアミン、ポリエチレングリコールステアリルアミン、ポリエチレングリコールジオレイルアミン、ヒドロキシエチルラウリルアミン、オレイン酸ジエタノールアミド等が好ましい。   Examples of the nitrogen compound having a hydroxyl group include alkanolamines exemplified in the description of the molybdenum-amine complex, and alkanolamides (diethanolamide, etc.) in which the amino group of the alkanol is amidated. Diethanolamine, polyethylene glycol stearylamine, polyethylene glycol dioleylamine, hydroxyethyl laurylamine, oleic acid diethanolamide and the like are preferable.

本発明における(B)成分として(B−2−2)硫黄を構成元素として含まない有機モリブデン化合物を用いると、潤滑油組成物の高温清浄性や塩基価保持性を高めることができ、また、初期の摩擦低減効果を長時間維持できる点で好ましく、中でもモリブデン−アミン錯体が特に好ましい。   When an organic molybdenum compound not containing (B-2-2) sulfur as a constituent element is used as the component (B) in the present invention, the high-temperature cleanliness and base number retention of the lubricating oil composition can be improved, It is preferable in that the initial friction reducing effect can be maintained for a long time, and a molybdenum-amine complex is particularly preferable.

また、本発明においては、(B−2−1)硫黄を構成元素として含む有機モリブデン化合物と(B−2−2)硫黄を構成元素として含まない有機モリブデン化合物とを併用してもよい。   In the present invention, (B-2-1) an organic molybdenum compound containing sulfur as a constituent element and (B-2-2) an organic molybdenum compound not containing sulfur as a constituent element may be used in combination.

本発明における(B)成分として(B−2)有機モリブデン化合物を用いる場合、その含有量は特に制限されないが、組成物全量を基準として、モリブデン元素換算で、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、更に好ましくは0.01質量%以上であり、また、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、特に好ましくは0.04質量%以下である。その含有量が0.001質量%未満の場合、潤滑油組成物の熱・酸化安定性が不十分となり、特に、長期間に渡って優れた清浄性を維持させることができなくなる傾向にある。一方、(B−1)成分の含有量が0.2質量%を超える場合、含有量に見合う効果が得られず、また、潤滑油組成物の貯蔵安定性が低下する傾向にある。   When (B-2) an organomolybdenum compound is used as the component (B) in the present invention, the content thereof is not particularly limited, but is preferably 0.001% by mass or more in terms of molybdenum element based on the total amount of the composition. More preferably, it is 0.005 mass% or more, More preferably, it is 0.01 mass% or more, Preferably it is 0.2 mass% or less, More preferably, it is 0.1 mass% or less, Especially preferably, it is 0.04 mass % Or less. When the content is less than 0.001% by mass, the thermal and oxidation stability of the lubricating oil composition becomes insufficient, and in particular, it tends to be impossible to maintain excellent cleanliness over a long period of time. On the other hand, when content of (B-1) component exceeds 0.2 mass%, the effect corresponding to content is not acquired, and it exists in the tendency for the storage stability of a lubricating oil composition to fall.

本発明の内燃機関用潤滑油組成物は、上述の潤滑油基油及び(A)、(B)成分のみからなるものであってもよいが、その性能を更に向上させるために、必要に応じて以下に示す各種添加剤を更に含有してもよい。   The lubricating oil composition for an internal combustion engine of the present invention may be composed only of the above-described lubricating base oil and the components (A) and (B), but if necessary, in order to further improve its performance. Various additives shown below may be further contained.

本発明の内燃機関用潤滑油組成物は、耐摩耗性の更なる向上の点から、摩耗防止剤を更に含有することが好ましい。かかる極圧剤としては、リン系極圧剤、リン−硫黄系極圧剤などが好ましく用いられる。   The lubricating oil composition for an internal combustion engine of the present invention preferably further contains an antiwear agent from the viewpoint of further improving the wear resistance. As such extreme pressure agents, phosphorus extreme pressure agents, phosphorus-sulfur extreme pressure agents and the like are preferably used.

リン系極圧剤としては、リン酸、亜リン酸、リン酸エステル類(リン酸モノエステル類、リン酸ジエステル類及びリン酸トリエステル類を含む)、亜リン酸エステル類(亜リン酸モノエステル類、亜リン酸ジエステル類及び亜リン酸トリエステル類を含む)、及びこれらの塩(アミン塩又は金属塩)が挙げられる。リン酸エステル類及び亜リン酸エステル類としては、通常炭素数2〜30、好ましくは炭素数3〜20の炭化水素基を有するものが用いられる。   Phosphorus extreme pressure agents include phosphoric acid, phosphorous acid, phosphoric acid esters (including phosphoric acid monoesters, phosphoric acid diesters and phosphoric acid triesters), phosphorous acid esters (phosphorous acid monoesters) Esters, phosphite diesters and phosphite triesters), and salts thereof (amine salts or metal salts). As phosphoric acid esters and phosphorous acid esters, those having a hydrocarbon group usually having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms are used.

また、リン−硫黄系極圧剤としては、チオリン酸、チオ亜リン酸、チオリン酸エステル類(チオリン酸モノエステル類、チオリン酸ジエステル類、チオリン酸トリエステル類を含む)、チオ亜リン酸エステル類(チオ亜リン酸モノエステル類、チオ亜リン酸ジエステル類、チオ亜リン酸トリエステル類を含む)、及びこれらの塩、並びにジチオリン酸亜鉛等が挙げられる。チオリン酸エステル類及びチオ亜リン酸エステル類としては、通常炭素数2〜30、好ましくは炭素数3〜20の炭化水素基を有するものが用いられる。ま
上記の極圧剤の含有量は特に制限されないが、組成物全量基準で、好ましくは0.01〜5質量%、より好ましくは0.1〜3質量%である。
Phosphorus-sulfur extreme pressure agents include thiophosphoric acid, thiophosphorous acid, thiophosphoric acid esters (including thiophosphoric acid monoesters, thiophosphoric acid diesters, thiophosphoric acid triesters), and thiophosphorous acid esters. (Including thiophosphite monoesters, thiophosphite diesters, thiophosphite triesters), salts thereof, and zinc dithiophosphate. As the thiophosphates and thiophosphites, those having a hydrocarbon group usually having 2 to 30 carbon atoms, preferably 3 to 20 carbon atoms are used. The content of the extreme pressure agent is not particularly limited, but is preferably 0.01 to 5% by mass, more preferably 0.1 to 3% by mass based on the total amount of the composition.

本発明では、上記の極圧剤の中でもジチオリン酸亜鉛が特に好ましい。ジチオリン酸亜鉛としては、例えば下記一般式(13)で表される化合物を例示できる。   In the present invention, zinc dithiophosphate is particularly preferable among the above extreme pressure agents. Examples of zinc dithiophosphate include compounds represented by the following general formula (13).

Figure 2012180532
Figure 2012180532

上記一般式(13)中のR36、R37、R38及びR39は、それぞれ別個に炭素数1〜24の炭化水素基を示す。これら炭化水素基としては、炭素数1〜24の直鎖状又は分枝状のアルキル基、炭素数3〜24の直鎖状又は分枝状のアルケニル基、炭素数5〜13のシクロアルキル基又は直鎖状若しくは分枝状のアルキルシクロアルキル基、炭素数6〜18のアリール基又は直鎖状若しくは分枝状のアルキルアリール基、及び炭素数7〜19のアリールアルキル基等のいずれかであることが望ましい。また、アルキル基やアルケニル基は、第1級、第2級及び第3級のいずれであってもよい。 R 36 , R 37 , R 38 and R 39 in the general formula (13) each independently represent a hydrocarbon group having 1 to 24 carbon atoms. Examples of these hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, linear or branched alkenyl groups having 3 to 24 carbon atoms, and cycloalkyl groups having 5 to 13 carbon atoms. Or a linear or branched alkylcycloalkyl group, an aryl group having 6 to 18 carbon atoms, or a linear or branched alkylaryl group, an arylalkyl group having 7 to 19 carbon atoms, or the like. It is desirable to be. The alkyl group or alkenyl group may be any of primary, secondary, and tertiary.

36、R37、R38及びR39としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基及びテトラコシル基等のアルキル基、プロペニル基、イソプロペニル基、ブテニル基、ブタジエニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基及びオレイル基等のオクタデセニル基、ノナデセニル基、イコセニル基、ヘンイコセニル基、ドコセニル基、トリコセニル基及びテトラコセニル基等のアルケニル基、シクロペンチル基、シクロへキシル基及びシクロヘプチル基等のシクロアルキル基、メチルシクロペンチル基、ジメチルシクロペンチル基、エチルシクロペンチル基、プロピルシクロペンチル基、エチルメチルシクロペンチル基、トリメチルシクロペンチル基、ジエチルシクロペンチル基、エチルジメチルシクロペンチル基、プロピルメチルシクロペンチル基、プロピルエチルシクロペンチル基、ジ−プロピルシクロペンチル基、プロピルエチルメチルシクロペンチル基、メチルシクロへキシル基、ジメチルシクロへキシル基、エチルシクロへキシル基、プロピルシクロへキシル基、エチルメチルシクロへキシル基、トリメチルシクロへキシル基、ジエチルシクロヘキシル基、エチルジメチルシクロヘキシル基、プロピルメチルシクロヘキシル基、プロピルエチルシクロヘキシル基、ジ−プロピルシクロへキシル基、プロピルエチルメチルシクロヘキシル基、メチルシクロヘプチル基、ジメチルシクロヘプチル基、エチルシクロヘプチル基、プロピルシクロヘプチル基、エチルメチルシクロヘプチル基、トリメチルシクロヘプチル基、ジエチルシクロヘプチル基、エチルジメチルシクロヘプチル基、プロピルメチルシクロヘプチル基、プロピルエチルシクロヘプチル基、ジ−プロピルシクロヘプチル基及びプロピルエチルメチルシクロヘプチル基等のアルキルシクロアルキル基、フェニル基及びナフチル基等のアリール基、トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、エチルメチルフェニル基、トリメチルフェニル基、ブチルフェニル基、プロピルメチルフェニル基、ジエチルフェニル基、エチルジメチルフェニル基、テトラメチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基及びドデシルフェニル基等のアルキルアリール基、ベンジル基、メチルベンジル基、ジメチルベンジル基、フェネチル基、メチルフェネチル基及びジメチルフェネチル基等のアリールアルキル基等が例示できる。などを挙げることができる。なお、上記炭化水素基には、考えられる全ての直鎖状構造及び分枝状構造が含まれ、また、アルケニル基の二重結合の位置、アルキル基のシクロアルキル基への結合位置、アルキル基のアリール基への結合位置、及びアリール基のアルキル基への結合位置は任意である。 Specific examples of R 36 , R 37 , R 38 and R 39 include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, Undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, tetracosyl group, etc. Propenyl, butenyl, butadienyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl and oleyl Etc. Alkenyl groups such as decenyl group, nonadecenyl group, icocenyl group, heicosenyl group, dococenyl group, tricocenyl group and tetracocenyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group, methylcyclopentyl group, dimethylcyclopentyl group, Ethylcyclopentyl group, propylcyclopentyl group, ethylmethylcyclopentyl group, trimethylcyclopentyl group, diethylcyclopentyl group, ethyldimethylcyclopentyl group, propylmethylcyclopentyl group, propylethylcyclopentyl group, di-propylcyclopentyl group, propylethylmethylcyclopentyl group, methylcyclohexyl Xyl group, dimethyl cyclohexyl group, ethyl cyclohexyl group, propyl cyclohexyl group, ethyl methyl group Rohexyl group, trimethylcyclohexyl group, diethylcyclohexyl group, ethyldimethylcyclohexyl group, propylmethylcyclohexyl group, propylethylcyclohexyl group, di-propylcyclohexyl group, propylethylmethylcyclohexyl group, methylcycloheptyl group, dimethyl Cycloheptyl group, ethylcycloheptyl group, propylcycloheptyl group, ethylmethylcycloheptyl group, trimethylcycloheptyl group, diethylcycloheptyl group, ethyldimethylcycloheptyl group, propylmethylcycloheptyl group, propylethylcycloheptyl group, di- Alkylcycloalkyl groups such as propylcycloheptyl group and propylethylmethylcycloheptyl group; aryl groups such as phenyl group and naphthyl group; tolyl group; Group, ethylphenyl group, propylphenyl group, ethylmethylphenyl group, trimethylphenyl group, butylphenyl group, propylmethylphenyl group, diethylphenyl group, ethyldimethylphenyl group, tetramethylphenyl group, pentylphenyl group, hexylphenyl group Alkylaryl groups such as heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, undecylphenyl group and dodecylphenyl group, benzyl group, methylbenzyl group, dimethylbenzyl group, phenethyl group, methylphenethyl group and dimethyl group Examples thereof include arylalkyl groups such as phenethyl group. And so on. The hydrocarbon group includes all possible straight chain structures and branched structures, and also includes the position of the double bond of the alkenyl group, the position of bond of the alkyl group to the cycloalkyl group, and the alkyl group. The position of bonding of the aryl group to the aryl group and the position of bonding of the aryl group to the alkyl group are arbitrary.

上記ジチオリン酸亜鉛の好適な具体例としては、例えば、ジイソプロピルジチオリン酸亜鉛、ジイソブチルジチオリン酸亜鉛、ジ−sec−ブチルジチオリン酸亜鉛、ジ−sec−ペンチルジチオリン酸亜鉛、ジ−n−ヘキシルジチオリン酸亜鉛、ジ−sec−ヘキシルジチオリン酸亜鉛、ジ−オクチルジチオリン酸亜鉛、ジ−2−エチルヘキシルジチオリン酸亜鉛、ジ−n−デシルジチオリン酸亜鉛、ジ−n−ドデシルジチオリン酸亜鉛、ジイソトリデシルジチオリン酸亜鉛、及びこれらの任意の組合せに係る混合物等が挙げられる。   Preferred examples of the zinc dithiophosphate include, for example, zinc diisopropyldithiophosphate, zinc diisobutyldithiophosphate, zinc di-sec-butyldithiophosphate, zinc di-sec-pentyldithiophosphate, zinc di-n-hexyldithiophosphate. , Zinc di-sec-hexyldithiophosphate, zinc di-octyldithiophosphate, zinc di-2-ethylhexyldithiophosphate, zinc di-n-decyldithiophosphate, zinc di-n-dodecyldithiophosphate, zinc diisotridecyldithiophosphate , And mixtures of these arbitrary combinations.

上記ジチオリン酸亜鉛の製造方法は特に限定されず、任意の従来方法を採用して製造することができる。具体的には、例えば、上記式(13)中のR36、R37、R38及びR39に対応する炭化水素基を有するアルコール又はフェノールを五硫化ニリンと反応させてジチオリン酸とし、これを酸化亜鉛で中和させることにより合成できる。なお、使用する原料アルコール等によって、上記ジチオリン酸亜鉛の構造は異なる。 The manufacturing method of the said zinc dithiophosphate is not specifically limited, It can manufacture by employ | adopting arbitrary conventional methods. Specifically, for example, alcohol or phenol having a hydrocarbon group corresponding to R 36 , R 37 , R 38 and R 39 in the above formula (13) is reacted with niline pentasulfide to obtain dithiophosphoric acid, It can be synthesized by neutralizing with zinc oxide. In addition, the structure of the said zinc dithiophosphate changes with raw material alcohol etc. to be used.

また、上記ジチオリン酸亜鉛の含有量は、特に制限されないが、排ガス浄化装置の触媒被毒を抑制する点から、組成物全量を基準として、リン元素換算量で、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、更に好ましくは0.08質量%以下、特に好ましくは0.06質量%以下である。また、ジチオリン酸亜鉛の含有量は、耐摩耗性添加剤の作用効果を及ぼすリン酸金属塩の形成の点から、組成物全量を基準として、リン元素換算量で、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.04質量%以上である。ジチオリン酸亜鉛の含有量が前記下限値未満であると、その添加による耐摩耗性向上効果が不十分となる傾向にある。   Further, the content of the zinc dithiophosphate is not particularly limited, but from the viewpoint of suppressing catalyst poisoning of the exhaust gas purification apparatus, it is preferably 0.2% by mass or less in terms of phosphorus element based on the total amount of the composition. More preferably, it is 0.1 mass% or less, More preferably, it is 0.08 mass% or less, Most preferably, it is 0.06 mass% or less. Further, the content of zinc dithiophosphate is preferably 0.01% by mass in terms of phosphorus element, based on the total amount of the composition, from the viewpoint of the formation of a metal phosphate that exerts the effect of the antiwear additive. As mentioned above, More preferably, it is 0.02 mass% or more, More preferably, it is 0.04 mass% or more. When the content of zinc dithiophosphate is less than the lower limit, the effect of improving the wear resistance due to the addition tends to be insufficient.

また、本発明の内燃機関用潤滑油組成物は、清浄性及びスラッジ分散性の点から、無灰分散剤を更に含有することが好ましい。かかる無灰分散剤としては、ポリオレフィンから誘導されるアルケニルコハク酸イミド、アルキルコハク酸イミド及びそれらの誘導体が挙げられる。代表的なコハク酸イミドは、高分子量のアルケニル基もしくはアルキル基で置換されたコハク酸無水物と、1分子当り平均4〜10個(好ましくは5〜7個)の窒素原子を含むポリアルキレンポリアミンとの反応により得ることができる。高分子量のアルケニル基もしくはアルキル基は、数平均分子量が700〜5000のポリブテン(ポリイソブテン)であることが好ましく、数平均分子量が900〜3000のポリブテン(ポリイソブテン)であることがより好ましい。   The lubricating oil composition for internal combustion engines of the present invention preferably further contains an ashless dispersant from the viewpoint of cleanliness and sludge dispersibility. Such ashless dispersants include alkenyl succinimides, alkyl succinimides and their derivatives derived from polyolefins. A typical succinimide is a polyalkylene polyamine containing an average of 4 to 10 (preferably 5 to 7) nitrogen atoms per molecule, and a succinic anhydride substituted with a high molecular weight alkenyl or alkyl group. It can obtain by reaction with. The high molecular weight alkenyl group or alkyl group is preferably polybutene (polyisobutene) having a number average molecular weight of 700 to 5,000, and more preferably polybutene (polyisobutene) having a number average molecular weight of 900 to 3,000.

本発明の内燃機関用潤滑油組成物において好ましく用いられるポリブテニルコハク酸イミドとしては、例えば、下記一般式(14)又は(15)で表される化合物が挙げられる。   Examples of the polybutenyl succinimide preferably used in the lubricating oil composition for an internal combustion engine of the present invention include compounds represented by the following general formula (14) or (15).

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

一般式(14)又は(15)におけるPIBはポリブテニル基を示し、高純度イソブテンあるいは1−ブテンとイソブテンの混合物をフッ化ホウ素系触媒あるいは塩化アルミニウム系触媒で重合させて得られるポリブテンから得られるものであり、ポリブテン混合物中において末端にビニリデン構造を有するものが通常5〜100mol%含有される。また、スラッジ抑制効果に優れる点からnは2〜5の整数、好ましくは3〜4の整数であることが望ましい。   PIB in the general formula (14) or (15) represents a polybutenyl group, and is obtained from polybutene obtained by polymerizing a high purity isobutene or a mixture of 1-butene and isobutene with a boron fluoride catalyst or an aluminum chloride catalyst. In the polybutene mixture, those having a vinylidene structure at the terminal are usually contained in an amount of 5 to 100 mol%. Further, n is an integer of 2 to 5, preferably 3 to 4 from the viewpoint of excellent sludge suppression effect.

一般式(14)又は(15)で表されるコハク酸イミドの製造法としては特に制限はないが、例えば、上記ポリブテンを塩素化したもの、好ましくは上記高純度イソブテンをフッ化ホウ素系触媒で重合させた高反応性ポリブテン(ポリイソブテン)、より好ましくは塩素やフッ素が充分除去されたポリブテンを無水マレイン酸と100〜200℃で反応させて得られるポリブテニルコハク酸を、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のポリアミンと反応させることにより得ることができる。なお、ビスコハク酸イミドを製造する場合は、該ポリブテニルコハク酸をポリアミンの2倍量(モル比)反応させれば良く、モノコハク酸イミドを製造する場合は、該ポリブテニルコハク酸とポリアミンを等量(モル比)で反応させれば良い。これらの中では、スラッジ分散性に優れる点から、ポリブテニルビスコハク酸イミドであることが好ましい。   Although there is no restriction | limiting in particular as a manufacturing method of the succinimide represented by General formula (14) or (15), For example, what chlorinated the said polybutene, Preferably the said high purity isobutene is a boron fluoride type catalyst. Polybutenyl succinic acid obtained by reacting polymerized highly reactive polybutene (polyisobutene), more preferably polybutene from which chlorine and fluorine have been sufficiently removed, with maleic anhydride at 100 to 200 ° C. is converted into diethylenetriamine, triethylenetetramine. It can be obtained by reacting with a polyamine such as tetraethylenepentamine or pentaethylenehexamine. When producing bissuccinimide, the polybutenyl succinic acid may be reacted twice (molar ratio) with polyamine. When producing monosuccinimide, the polybutenyl succinic acid and polyamine are used. May be reacted in an equal amount (molar ratio). Among these, polybutenyl bissuccinimide is preferable from the viewpoint of excellent sludge dispersibility.

なお、上記製造法において用いられるポリブテンには、製造過程の触媒に起因する微量のフッ素分や塩素分が残留し得るので、吸着法や十分な水洗等の適切な方法によりフッ素分や塩素分が十分除去されたポリブテンを用いることが好ましい。フッ素や塩素の含有量としては、好ましくは50質量ppm以下、より好ましくは10質量ppm以下、更に好ましくは5質量ppm以下、特に好ましくは1質量ppm以下である。   The polybutene used in the above production method may contain a trace amount of fluorine and chlorine due to the catalyst in the production process. Therefore, the fluorine and chlorine content can be reduced by an appropriate method such as an adsorption method or sufficient water washing. It is preferable to use polybutene that has been sufficiently removed. The content of fluorine or chlorine is preferably 50 mass ppm or less, more preferably 10 mass ppm or less, still more preferably 5 mass ppm or less, and particularly preferably 1 mass ppm or less.

また、ポリブテンと無水マレインとの反応によりポリブテニルコハク酸無水物を得る工程では、従来、塩素を用いる塩素化法が適用されることが多い。しかし、この方法では、コハク酸イミド最終製品中に多量の塩素(例えば約2000〜3000ppm)が残留する結果となる。一方、塩素を用いない方法、例えば上記高反応性ポリブテンを用いた場合及び/又は熱反応法では、最終製品中に残る塩素を極めて低いレベル(例えば0〜30ppm)に抑えることができる。従って、潤滑油組成物中の塩素含有量を0〜30重量ppmの範囲の量に抑えるためには、上記塩素化法を用いず、上記高反応性ポリブテンを用いる方法及び/又は熱反応法によって得られたポリブテニルコハク酸無水物を用いることが好ましい。   In the step of obtaining polybutenyl succinic anhydride by reaction of polybutene and maleic anhydride, a chlorination method using chlorine is often applied conventionally. However, this method results in a large amount of chlorine (eg, about 2000 to 3000 ppm) remaining in the succinimide final product. On the other hand, in a method that does not use chlorine, for example, when the above highly reactive polybutene is used and / or in a thermal reaction method, chlorine remaining in the final product can be suppressed to an extremely low level (for example, 0 to 30 ppm). Therefore, in order to suppress the chlorine content in the lubricating oil composition to an amount in the range of 0 to 30 ppm by weight, the method using the highly reactive polybutene and / or the thermal reaction method is used without using the chlorination method. It is preferable to use the obtained polybutenyl succinic anhydride.

また、ポリブテニルコハク酸イミドの誘導体としては、上記一般式(14)又は(15)で表される化合物に、ホウ酸等のホウ素化合物や、アルコール、アルデヒド、ケトン、アルキルフェノール、環状カーボネート、有機酸等の含酸素有機化合物を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和又はアミド化した、いわゆる変性コハク酸イミドとして用いることができる。特に、ホウ酸等のホウ素化合物との反応で得られるホウ素含有アルケニル(もしくはアルキル)コハク酸イミドは、熱・酸化安定性の面で有利である。   Moreover, as a derivative | guide_body of polybutenyl succinimide, in addition to the compound represented by the said General formula (14) or (15), boron compounds, such as a boric acid, alcohol, an aldehyde, a ketone, alkylphenol, cyclic carbonate, organic It can be used as a so-called modified succinimide in which an oxygen-containing organic compound such as an acid is allowed to act to neutralize or amidate part or all of the remaining amino group and / or imino group. In particular, a boron-containing alkenyl (or alkyl) succinimide obtained by a reaction with a boron compound such as boric acid is advantageous in terms of thermal and oxidation stability.

一般式(14)又は(15)で表される化合物に作用させるホウ素化合物としては、ホウ酸、ホウ酸塩、ホウ酸エステル類等が挙げられる。ホウ酸としては、具体的には例えばオルトホウ酸、メタホウ酸及びテトラホウ酸等が挙げられる。ホウ酸塩としては、ホウ酸のアルカリ金属塩、アルカリ土類金属塩又はアンモニウム塩等が挙げられ、より具体的には、例えばメタホウ酸リチウム、四ホウ酸リチウム、五ホウ酸リチウム、過ホウ酸リチウム等のホウ酸リチウム;メタホウ酸ナトリウム、二ホウ酸ナトリウム、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウム等のホウ酸ナトリウム;メタホウ酸カリウム、四ホウ酸カリウム、五ホウ酸カリウム、六ホウ酸カリウム、八ホウ酸カリウム等のホウ酸カリウム;メタホウ酸カルシウム、二ホウ酸カルシウム、四ホウ酸三カルシウム、四ホウ酸五カルシウム、六ホウ酸カルシウム等のホウ酸カルシウム;メタホウ酸マグネシウム、二ホウ酸マグネシウム、四ホウ酸三マグネシウム、四ホウ酸五マグネシウム、六ホウ酸マグネシウム等のホウ酸マグネシウム;及びメタホウ酸アンモニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウム、八ホウ酸アンモニウム等のホウ酸アンモニウム等が挙げられる。また、ホウ酸エステルとしては、ホウ酸と好ましくは炭素数1〜6のアルキルアルコールとのエステル等が挙げられ、より具体的には例えば、ホウ酸モノメチル、ホウ酸ジメチル、ホウ酸トリメチル、ホウ酸モノエチル、ホウ酸ジエチル、ホウ酸トリエチル、ホウ酸モノプロピル、ホウ酸ジプロピル、ホウ酸トリプロピル、ホウ酸モノブチル、ホウ酸ジブチル、ホウ酸トリブチル等が挙げられる。上記ホウ素化合物を作用させたコハク酸イミド誘導体は、耐熱性、酸化安定性に優れることから好ましく用いられる。   Examples of the boron compound that acts on the compound represented by the general formula (14) or (15) include boric acid, borates, and borate esters. Specific examples of boric acid include orthoboric acid, metaboric acid, and tetraboric acid. Examples of borates include alkali metal salts, alkaline earth metal salts or ammonium salts of boric acid, and more specifically, for example, lithium metaborate, lithium tetraborate, lithium pentaborate, perborate. Lithium borate such as lithium; sodium borate such as sodium metaborate, sodium diborate, sodium tetraborate, sodium pentaborate, sodium hexaborate, sodium octaborate; potassium metaborate, potassium tetraborate, Potassium borates such as potassium pentaborate, potassium hexaborate and potassium octaborate; calcium borates such as calcium metaborate, calcium diborate, tricalcium tetraborate, pentacalcium tetraborate and calcium hexaborate ; Magnesium metaborate, magnesium diborate, trimagnesium tetraborate, pentaborate Neshiumu, magnesium borate and magnesium hexaborate acid; and ammonium metaborate, ammonium tetraborate, ammonium pentaborate and ammonium borate such as ammonium eight borate. Examples of the boric acid ester include esters of boric acid and preferably an alkyl alcohol having 1 to 6 carbon atoms. More specifically, examples thereof include monomethyl borate, dimethyl borate, trimethyl borate, and boric acid. Examples include monoethyl, diethyl borate, triethyl borate, monopropyl borate, dipropyl borate, tripropyl borate, monobutyl borate, dibutyl borate, tributyl borate and the like. The succinimide derivative in which the boron compound is allowed to act is preferably used since it is excellent in heat resistance and oxidation stability.

また、一般式(14)又は(15)で表される化合物に作用させる含酸素有機化合物としては、具体的には、例えば、ギ酸、酢酸、グリコール酸、プロピオン酸、乳酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、ノナデカン酸、エイコサン酸等の炭素数1〜30のモノカルボン酸や、シュウ酸、フタル酸、トリメリット酸、ピロメリット酸等の炭素数2〜30のポリカルボン酸若しくはこれらの無水物、又はエステル化合物、炭素数2〜6のアルキレンオキサイド、ヒドロキシ(ポリ)オキシアルキレンカーボネート等が挙げられる。このような含酸素有機化合物を作用させることで、例えば、一般式(14)又は(15)で表される化合物におけるアミノ基又はイミノ基の一部又は全部が次の一般式(16)で示す構造になると推定される。   Specific examples of the oxygen-containing organic compound that acts on the compound represented by the general formula (14) or (15) include formic acid, acetic acid, glycolic acid, propionic acid, lactic acid, butyric acid, valeric acid, Carbon such as caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecyl acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, nonadecanoic acid, eicosanoic acid C1-C30 monocarboxylic acid, oxalic acid, phthalic acid, trimellitic acid, pyromellitic acid, etc., C2-C30 polycarboxylic acid or their anhydrides, ester compounds, C2-C6 Examples include alkylene oxide and hydroxy (poly) oxyalkylene carbonate. By allowing such an oxygen-containing organic compound to act, for example, part or all of the amino group or imino group in the compound represented by the general formula (14) or (15) is represented by the following general formula (16). Presumed to be a structure.

Figure 2012180532
Figure 2012180532

上記一般式(16)中のR40は水素原子、炭素数1〜24のアルキル基、炭素数1〜24のアルケニル基、炭素数1〜24アルコキシ基、又は−O−(R41O)Hで表されるヒドロキシ(ポリ)オキシアルキレン基を示し、R41は炭素数1〜4のアルキレン基、mは1〜5の整数を示す。これらの中ではアミノ基又はイミノ基の全てにこれら含酸素有機化合物を作用させたものを主成分とするポリブテニルビスコハク酸イミドがスラッジ分散性に優れるため好ましく用いられる。そのような化合物は、例えば(11)式の化合物1モルに対し(n−1)モルの含酸素有機化合物を作用させることで得られる。このような含酸素有機化合物を作用させたコハク酸イミド誘導体は、スラッジ分散性に優れ、特にヒドロキシ(ポリ)オキシアルキレンカーボネートを作用させたものが好ましい。 R 40 in the general formula (16) is a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 1 to 24 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, or —O— (R 41 O) m. A hydroxy (poly) oxyalkylene group represented by H, wherein R 41 represents an alkylene group having 1 to 4 carbon atoms, and m represents an integer of 1 to 5; Among these, polybutenyl bissuccinimides mainly composed of those in which these oxygen-containing organic compounds are allowed to act on all amino groups or imino groups are preferably used since they are excellent in sludge dispersibility. Such a compound can be obtained, for example, by allowing (n-1) mol of an oxygen-containing organic compound to act on 1 mol of the compound of the formula (11). A succinimide derivative having such an oxygen-containing organic compound acted thereon is excellent in sludge dispersibility, and in particular, one having hydroxy (poly) oxyalkylene carbonate acted thereon is preferable.

本発明で用いられる無灰分散剤としてのポリブテニルコハク酸イミド及び/又はその誘導体の重量平均分子量は、好ましくは5000以上、より好ましくは6500以上、更に好ましくは7000以上、特に好ましくは8000以上である。重量平均分子量が5000未満では、非極性基のポリブテニル基の分子量が小さくスラッジの分散性に劣り、また、酸化劣化の活性点となる恐れのある極性基のアミン部分が相対的に多くなって酸化安定性に劣るため、本願発明のような長寿命化効果は得られないと考えられる。一方、低温粘度特性の悪化を防止する観点から、ポリブテニルコハク酸イミド及び/又はその誘導体の重量平均分子量は、20000以下であることが好ましく、15000以下であることが特に好ましい。なお、ここでいう重量平均分子量とは、ウォーターズ製の150−CALC/GPC装置に東ソー製のGMHHR−M(7.8mmID×30cm)のカラムを2本直列に使用し、溶媒としてはテトラヒドロフラン、温度23℃、流速1mL/分、試料濃度1質量%、試料注入量75μL、検出器示差屈折率計(RI)で測定したポリスチレン換算の重量平均分子量を意味する。   The weight average molecular weight of polybutenyl succinimide and / or a derivative thereof as an ashless dispersant used in the present invention is preferably 5000 or more, more preferably 6500 or more, still more preferably 7000 or more, and particularly preferably 8000 or more. is there. When the weight average molecular weight is less than 5,000, the molecular weight of the non-polar polybutenyl group is small and the sludge dispersibility is poor, and the amine portion of the polar group which may become an active site for oxidative degradation is relatively increased and oxidized. Since it is inferior in stability, it is considered that the effect of extending the life as in the present invention cannot be obtained. On the other hand, the weight average molecular weight of polybutenyl succinimide and / or a derivative thereof is preferably 20000 or less and particularly preferably 15000 or less from the viewpoint of preventing deterioration of low temperature viscosity characteristics. Here, the weight average molecular weight means that two columns of Tosoh GMHHR-M (7.8 mm ID × 30 cm) are used in series on a Waters 150-CALC / GPC apparatus, and the solvent is tetrahydrofuran, temperature. 23 ° C., flow rate of 1 mL / min, sample concentration of 1% by mass, sample injection amount of 75 μL, and weight average molecular weight in terms of polystyrene measured with a detector differential refractometer (RI).

なお、本発明では、無灰分散剤として、上記のコハク酸イミド及び/又はその誘導体の他、アルキル又はアルケニルポリアミン、アルキル又はアルケニルベンジルアミン、アルキル又はアルケニルコハク酸エステル、マンニッヒ塩基及びこれらの誘導体等を使用することができる。   In the present invention, as the ashless dispersant, in addition to the succinimide and / or derivative thereof, alkyl or alkenyl polyamine, alkyl or alkenyl benzylamine, alkyl or alkenyl succinate, Mannich base and derivatives thereof are used. Can be used.

本発明の内燃機関用潤滑油組成物における無灰分散剤の含有量は、組成物全量を基準として、窒素元素換算で、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上であり、また、好ましくは0.3質量%以下、より好ましくは0.2質量%以下、更に好ましくは0.15質量%以下である。無灰分散剤の含有量が上記下限値に満たない場合は、十分な清浄性効果が発揮できず、一方、その含有量が上記上限値を超える場合は、低温粘度特性の悪化及び抗乳化性が悪化するためそれぞれ好ましくない。なお、重量平均分子量が6500以上のコハク酸イミド系無灰分散剤を使用する場合、十分なスラッジ分散性を発揮し、低温粘度特性に優れる点で、その含有量は、組成物全量を基準として、窒素元素換算で、0.005〜0.05質量%とすることが好ましく、0.01〜0.04質量%とすることがより好ましい。   The content of the ashless dispersant in the lubricating oil composition for an internal combustion engine of the present invention is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, in terms of nitrogen element, based on the total amount of the composition. More preferably, it is 0.05 mass% or more, Preferably it is 0.3 mass% or less, More preferably, it is 0.2 mass% or less, More preferably, it is 0.15 mass% or less. When the content of the ashless dispersant is less than the above lower limit value, a sufficient cleansing effect cannot be exhibited, while when the content exceeds the above upper limit value, the low temperature viscosity characteristics are deteriorated and the demulsibility is decreased. Since it deteriorates, it is not preferable respectively. In addition, when using a succinimide-based ashless dispersant having a weight average molecular weight of 6500 or more, the content is based on the total amount of the composition in terms of exhibiting sufficient sludge dispersibility and excellent low-temperature viscosity characteristics. It is preferable to set it as 0.005-0.05 mass% in conversion of nitrogen element, and it is more preferable to set it as 0.01-0.04 mass%.

また、高分子量の無灰分散剤を用いる場合、その含有量は、組成物全量を基準として、窒素元素換算で、好ましくは0.005質量%以上、より好ましくは0.01質量%以上であり、また、好ましくは0.1質量%以下、より好ましくは0.05質量%以下である。高分子量の無灰分散剤の含有量が上記下限値に満たない場合は、十分な清浄性効果が発揮できず、一方、その含有量が上記上限値を超える場合は、低温粘度特性の悪化及び抗乳化性が悪化するためそれぞれ好ましくない。   Further, when using a high molecular weight ashless dispersant, the content is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, in terms of nitrogen element, based on the total amount of the composition, Moreover, Preferably it is 0.1 mass% or less, More preferably, it is 0.05 mass% or less. When the content of the high molecular weight ashless dispersant is less than the above lower limit value, a sufficient cleansing effect cannot be exerted. On the other hand, when the content exceeds the above upper limit value, the low temperature viscosity characteristics are deteriorated and the resistance Since the emulsifying properties deteriorate, each is not preferable.

また、ホウ素化合物で変性された無灰分散剤を用いる場合、その含有量は、組成物全量を基準として、ホウ素元素換算で、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.02質量%以上であり、また、好ましくは0.2質量%以下、より好ましくは0.1質量%以下である。ホウ素化合物で変性された無灰分散剤の含有量が上記下限値に満たない場合は、十分な清浄性効果が発揮できず、一方、その含有量が上記上限値を超える場合は、低温粘度特性の悪化及び抗乳化性が悪化するためそれぞれ好ましくない。   Further, when using an ashless dispersant modified with a boron compound, the content is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, in terms of boron element, based on the total amount of the composition. More preferably, it is 0.02 mass% or more, preferably 0.2 mass% or less, more preferably 0.1 mass% or less. When the content of the ashless dispersant modified with a boron compound is less than the above lower limit value, a sufficient cleansing effect cannot be exhibited, while when the content exceeds the above upper limit value, Since deterioration and demulsibility deteriorate, it is not preferable respectively.

また、本発明の内燃機関用潤滑油組成物は、その摩擦特性を更に改善できる点から、無灰摩擦調整剤を含有することが好ましい。無灰摩擦調整剤としては、潤滑油用の摩擦調整剤として通常用いられる任意の化合物が使用可能であり、例えば、炭素数6〜30のアルキル基又はアルケニル基、特に炭素数6〜30の直鎖アルキル基又は直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、ヒドラジド(オレイルヒドラジド等)、セミカルバジド、ウレア、ウレイド、ビウレット等の無灰摩擦調整剤等が挙げられる。   Moreover, it is preferable that the lubricating oil composition for internal combustion engines of this invention contains an ashless friction modifier from the point which can further improve the friction characteristic. As the ashless friction modifier, any compound usually used as a friction modifier for lubricating oils can be used. For example, an alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a straight chain having 6 to 30 carbon atoms. Amine compound, fatty acid ester, fatty acid amide, fatty acid, fatty alcohol, aliphatic ether, hydrazide (eg oleyl hydrazide), semicarbazide, urea, ureido, biuret having at least one chain alkyl group or straight chain alkenyl group in the molecule And ashless friction modifiers.

本発明の内燃機関用潤滑油組成物における摩擦調整剤の含有量は、組成物全量を基準として、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。摩擦調整剤の含有量が前記下限値未満であると、その添加による摩擦低減効果が不十分となる傾向にあり、また、前記上限値を超えると、耐摩耗性添加剤などの効果が阻害されやすく、あるいは添加剤の溶解性が悪化する傾向にある。   The content of the friction modifier in the lubricating oil composition for an internal combustion engine of the present invention is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.00% by mass based on the total amount of the composition. It is 3% by mass or more, preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less. If the content of the friction modifier is less than the lower limit, the effect of reducing friction due to the addition tends to be insufficient, and if the content exceeds the upper limit, the effects of the wear resistance additive and the like are hindered. It tends to be easy or the solubility of the additive tends to deteriorate.

また、本発明の内燃機関用潤滑油組成物は、清浄性の点から、金属系清浄剤を更に含有することが好ましい。かかる金属系清浄剤としては、アルカリ土類金属スルホネート、アルカリ土類金属フェネート及びアルカリ土類金属サリシレートから選ばれる少なくとも1種のアルカリ土類金属系清浄剤を用いることが好ましい。   Moreover, it is preferable that the lubricating oil composition for internal combustion engines of this invention further contains a metal type detergent from the point of detergency. It is preferable to use at least one alkaline earth metal detergent selected from alkaline earth metal sulfonates, alkaline earth metal phenates, and alkaline earth metal salicylates as the metal detergent.

アルカリ土類金属スルホネートとしては、分子量300〜1,500、好ましくは400〜700のアルキル芳香族化合物をスルホン化することによって得られるアルキル芳香族スルホン酸のアルカリ土類金属塩、特にマグネシウム塩及び/又はカルシウム塩であり、カルシウム塩が好ましく用いられる。上記アルキル芳香族スルホン酸としては、具体的にはいわゆる石油スルホン酸や合成スルホン酸等が挙げられる。ここでいう石油スルホン酸としては、一般に鉱油の潤滑油留分のアルキル芳香族化合物をスルホン化したものやホワイトオイル製造時に副生する、いわゆるマホガニー酸等が用いられる。また合成スルホン酸としては、例えば洗剤の原料となるアルキルベンゼン製造プラントから副生したり、ポリオレフィンをベンゼンにアルキル化することにより得られる、直鎖状や分枝状のアルキル基を有するアルキルベンゼンをスルホン化したもの、あるいはジノニルナフタレン等のアルキルナフタレンをスルホン化したもの等が用いられる。またこれらアルキル芳香族化合物をスルホン化する際のスルホン化剤としては特に制限はないが、通常、発煙硫酸や無水硫酸が用いられる。   Alkaline earth metal sulfonates include alkaline earth metal salts of alkyl aromatic sulfonic acids obtained by sulfonated alkyl aromatic compounds having a molecular weight of 300 to 1,500, preferably 400 to 700, particularly magnesium salts and / or Or it is a calcium salt and a calcium salt is used preferably. Specific examples of the alkyl aromatic sulfonic acid include so-called petroleum sulfonic acid and synthetic sulfonic acid. As the petroleum sulfonic acid here, generally used are those obtained by sulfonating an alkyl aromatic compound in a lubricating oil fraction of mineral oil, or so-called mahoganic acid that is by-produced when white oil is produced. As synthetic sulfonic acids, for example, sulfonated alkylbenzenes having linear or branched alkyl groups, which are obtained as a by-product from an alkylbenzene production plant, which is a raw material for detergents, or are obtained by alkylating polyolefins to benzene. Or sulfonated alkylnaphthalene such as dinonylnaphthalene is used. The sulfonating agent for sulfonating these alkyl aromatic compounds is not particularly limited, but usually fuming sulfuric acid or anhydrous sulfuric acid is used.

アルカリ土類金属フェネートとしては、アルキルフェノール、アルキルフェノールサルファイド、アルキルフェノールのマンニッヒ反応物のアルカリ土類金属塩、特にマグネシウム塩及び/又はカルシウム塩が挙げられ、例えば下記の一般式(17)〜(19)で表される化合物を挙げることができる。   Alkaline earth metal phenates include alkylphenols, alkylphenol sulfides, alkaline earth metal salts of Mannich reactants of alkylphenols, particularly magnesium salts and / or calcium salts. For example, in the following general formulas (17) to (19): Mention may be made of the compounds represented.

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

上記一般式(17)〜(19)中、R41、R42、R43、R44、R45及びR46は同一でも異なっていてもよく、それぞれ炭素数4〜30、好ましくは6〜18の直鎖又は分枝のアルキル基を示し、M、M及びMはそれぞれアルカリ土類金属、好ましくはカルシウム及び/又はマグネシウムを示し、xは1又は2を示す。上式中、R41、R42、R43、R44、R45及びR46としては、具体的には、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基等が挙げられ、これらは直鎖でも分枝でもよい。これらはまた1級アルキル基、2級アルキル基又は3級アルキル基でもよい。 In the general formulas (17) to (19), R 41 , R 42 , R 43 , R 44 , R 45 and R 46 may be the same or different and each have 4 to 30 carbon atoms, preferably 6 to 18 carbon atoms. Wherein M 1 , M 2 and M 3 each represent an alkaline earth metal, preferably calcium and / or magnesium, and x represents 1 or 2. In the above formula, R 41 , R 42 , R 43 , R 44 , R 45 and R 46 are specifically butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, Undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group , Octacosyl group, nonacosyl group, triacontyl group and the like, which may be linear or branched. These may also be primary alkyl groups, secondary alkyl groups or tertiary alkyl groups.

アルカリ土類金属サリシレートとしては、アリキルサリチル酸のアルカリ土類金属塩、特にマグネシウム塩及び/又はカルシウム塩が挙げられ、例えば下記の一般式(20)で表されるものを挙げることができる。   Examples of the alkaline earth metal salicylate include alkaline earth metal salts of allyl salicylic acid, particularly magnesium salts and / or calcium salts, and examples include those represented by the following general formula (20).

Figure 2012180532
Figure 2012180532

上記一般式(20)中、R47は炭素数1〜30、好ましくは6〜18の直鎖又は分枝のアルキル基を示し、nは1〜4の整数、好ましくは1又は2を示し、Mはアルカリ土類金属、好ましくはカルシウム及び/又はマグネシウムを示す。R47としては、具体的には、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基等が挙げられ、これらは直鎖でも分枝でもよい。これらはまた1級アルキル基、2級アルキル基又は3級アルキル基でもよい。 In the general formula (20), R 47 represents a linear or branched alkyl group having 1 to 30, preferably 6 to 18 carbon atoms, n represents an integer of 1 to 4, preferably 1 or 2, M 4 represents an alkaline earth metal, preferably calcium and / or magnesium. Specific examples of R 47 include butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl Group, octadecyl group, nonadecyl group, icosyl group, heicosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group, etc. It may be a branch. These may also be primary alkyl groups, secondary alkyl groups or tertiary alkyl groups.

また、アルカリ土類金属スルホネート、アルカリ土類金属フェネート及びアルカリ土類金属サリシレートとしては、上記のアルキル芳香族スルホン酸、アルキルフェノール、アルキルフェノールサルファイド、アルキルフェノールのマンニッヒ反応物、アリキルサリチル酸等を直接、マグネシウム及び/又はカルシウムのアルカリ土類金属の酸化物や水酸化物等のアルカリ土類金属塩基と反応させたり、又は一度ナトリウム塩やカリウム塩等のアルカリ金属塩としてからアルカリ土類金属塩と置換させること等により得られる中性(正塩)アルカリ土類金属スルホネート、中性(正塩)アルカリ土類金属フェネート及び中性(正塩)アルカリ土類金属サリシレートだけでなく、中性アルカリ土類金属スルホネート、中性アルカリ土類金属フェネート及び中性アルカリ土類金属サリシレートと過剰のアルカリ土類金属塩やアルカリ土類金属塩基を水の存在下で加熱することにより得られる塩基性アルカリ土類金属スルホネート、塩基性アルカリ土類金属フェネート及び塩基性アルカリ土類金属サリシレートや、中性アルカリ土類金属スルホネート、中性アルカリ土類金属フェネート及び中性アルカリ土類金属サリシレートの存在下で、アルカリ土類金属の水酸化物と炭酸ガス又はホウ酸とを反応させることにより得られる過塩基性(超塩基性)アルカリ土類金属スルホネート、過塩基性(超塩基性)アルカリ土類金属フェネート及び過塩基性(超塩基性)アルカリ土類金属サリシレートも含まれる。   Further, as the alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate, the above alkyl aromatic sulfonic acid, alkylphenol, alkylphenol sulfide, Mannich reaction product of alkylphenol, allylic salicylic acid, etc. are directly used as magnesium and Reacting with alkaline earth metal bases such as calcium alkaline earth metal oxides and hydroxides, or once replacing alkali metal salts such as sodium salts and potassium salts with alkaline earth metal salts Neutral (normal salt) alkaline earth metal sulfonate, neutral (normal salt) alkaline earth metal phenate and neutral (normal salt) alkaline earth metal salicylate as well as neutral alkaline earth metal sulfonate obtained by , Neutral alkaline earth metal fer Basic alkaline earth metal sulfonate, basic alkaline earth metal obtained by heating a salt and neutral alkaline earth metal salicylate and excess alkaline earth metal salt or alkaline earth metal base in the presence of water Alkaline earth metal hydroxide and carbon dioxide in the presence of phenate and basic alkaline earth metal salicylate, neutral alkaline earth metal sulfonate, neutral alkaline earth metal phenate and neutral alkaline earth metal salicylate Or overbased (superbasic) alkaline earth metal sulfonates, overbased (superbasic) alkaline earth metal phenates and overbased (superbasic) alkaline earths obtained by reacting with boric acid Metal salicylates are also included.

本発明においては、上記の中性アルカリ土類金属塩、塩基性アルカリ土類金属塩、過塩基性(超塩基性)アルカリ土類金属塩及びこれらの混合物等を用いることができる。これらの中でも、長期間に渡る清浄性を維持する観点から、過塩基性カルシウムスルホネートと過塩基性カルシウムフェネートとを組み合わせたもの、あるいは過塩基性カルシウムサリシレートを使用することが好ましく、過塩基性カルシウムサリシレートを使用することが特に好ましい。金属系清浄剤は、通常、軽質潤滑油基油等で希釈された状態で市販されており、また入手可能であるが、一般的に、その金属含有量が1.0〜20質量%、好ましくは2.0〜16質量%のものを用いるのが望ましい。本発明で用いるアルカリ土類金属系清浄剤の全塩基価は任意であるが、通常、全塩基価が500mgKOH/g以下、好ましくは150〜450mgKOH/gのものを用いるのが望ましい。なおここでいう全塩基価は、JISK2501(1992)の「石油製品及び潤滑油−中和価試験方法」の7.に準拠して測定される過塩素酸法による全塩基価を意味している。   In the present invention, the above-mentioned neutral alkaline earth metal salts, basic alkaline earth metal salts, overbased (superbasic) alkaline earth metal salts, and mixtures thereof can be used. Among these, from the viewpoint of maintaining cleanliness over a long period of time, it is preferable to use a combination of overbased calcium sulfonate and overbased calcium phenate, or overbased calcium salicylate. It is particularly preferred to use calcium salicylate. Metal-based detergents are usually commercially available in a state diluted with a light lubricating base oil or the like, and are available, but generally the metal content is 1.0 to 20% by mass, preferably Is preferably 2.0 to 16% by mass. Although the total base number of the alkaline earth metal detergent used in the present invention is arbitrary, it is usually desirable to use a total base number of 500 mgKOH / g or less, preferably 150 to 450 mgKOH / g. The total base number referred to here is JISK2501 (1992) "Petroleum products and lubricants-Neutralization number test method". It means the total base number by the perchloric acid method measured according to the above.

本発明の内燃機関用潤滑油組成物における金属系清浄剤の含有量は任意であるが、組成物全量基準で、0.1〜10質量%、好ましくは0.5〜8質量%、より好ましくは1〜5質量%含有するのが望ましい。この含有量が10質量%を超える場合は、その含有量に見合うだけの効果が得られないため好ましくない。   The content of the metallic detergent in the lubricating oil composition for an internal combustion engine of the present invention is arbitrary, but is 0.1 to 10% by mass, preferably 0.5 to 8% by mass, more preferably based on the total amount of the composition. It is desirable to contain 1-5 mass%. When this content exceeds 10 mass%, since the effect only corresponding to the content is not acquired, it is unpreferable.

また、本発明の内燃機関用潤滑油組成物は、粘度−温度特性を更に改善できる点から、粘度指数向上剤を含有することが好ましい。かかる粘度指数向上剤としては、非分散型又は分散型ポリメタクリレート類、分散型エチレン−α−オレフィン共重合体又はその水素化物、ポリイソブチレン又はその水素化物、スチレン−ジエン水素化共重合体、スチレン−無水マレイン酸エステル共重合体及びポリアルキルスチレン等が挙げられ、中でも重量平均分子量が10,000〜1,000,000、好ましくは100,000〜900,000、より好ましくは150,000〜500,000、さらに好ましくは180,000〜400,000の非分散型粘度指数向上剤及び/または分散型粘度指数向上剤が好ましく用いられる。   Moreover, it is preferable that the lubricating oil composition for internal combustion engines of this invention contains a viscosity index improver from the point which can further improve a viscosity-temperature characteristic. Such viscosity index improvers include non-dispersed or dispersed polymethacrylates, dispersed ethylene-α-olefin copolymers or hydrides thereof, polyisobutylene or hydrides thereof, styrene-diene hydrogenated copolymers, styrene. -Maleic anhydride ester copolymers and polyalkylstyrenes are mentioned, among which the weight average molecular weight is 10,000 to 1,000,000, preferably 100,000 to 900,000, more preferably 150,000 to 500. , 000, more preferably 180,000 to 400,000 non-dispersed viscosity index improvers and / or dispersed viscosity index improvers are preferably used.

非分散型粘度指数向上剤としては、具体的には、下記一般式(21)、(22)及び(23)で表される化合物の中から選ばれるモノマー(以下、「モノマー(M−1)」という)の単独重合体又はモノマー(M−1)の2種以上の共重合体あるいはその水素化物等が例示できる。一方、分散型粘度指数向上剤としては、具体的には、一般式(24)及び(25)で表される化合物の中から選ばれるモノマー(以下、「モノマー(M−2)」という)の2種以上の共重合体又はその水素化物に酸素含有基を導入したものや、一般式(21)〜(23)で表される化合物の中から選ばれるモノマー(M−1)の1種又は2種以上と一般式(24)及び(25)で表される化合物の中から選ばれるモノマー(M−2)の1種又は2種以上との共重合体、あるいはその水素化物等が例示できる。   Specifically, as the non-dispersion type viscosity index improver, a monomer selected from compounds represented by the following general formulas (21), (22) and (23) (hereinafter referred to as “monomer (M-1)”) And a copolymer of two or more monomers (M-1) or a hydride thereof. On the other hand, as the dispersion type viscosity index improver, specifically, a monomer selected from the compounds represented by the general formulas (24) and (25) (hereinafter referred to as “monomer (M-2)”). One of the monomers (M-1) selected from the compounds represented by the general formulas (21) to (23) or those obtained by introducing an oxygen-containing group into two or more types of copolymers or hydrides thereof Examples thereof include copolymers of two or more types and one or more types of monomers (M-2) selected from the compounds represented by the general formulas (24) and (25), or hydrides thereof. .

Figure 2012180532
Figure 2012180532

上記一般式(21)中、R48は水素原子又はメチル基を示し、R49は水素原子又は炭素数1〜18のアルキル基を示す。R49で表される炭素数1〜18のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、及びオクタデシル基等(これらアルキル基は直鎖状でも分枝状でもよい)等が例示できる。 In the general formula (21), R 48 represents a hydrogen atom or a methyl group, R 49 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms. Specific examples of the alkyl group having 1 to 18 carbon atoms represented by R 49 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group. Examples thereof include a group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, and an octadecyl group (these alkyl groups may be linear or branched).

Figure 2012180532
Figure 2012180532

上記一般式(22)中、R50は水素原子又はメチル基を示し、R51は水素原子又は炭素数1〜12の炭化水素基を示す。R51で表される炭素数1〜12の炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等のアルキル基(これらアルキル基は直鎖状でも分枝状でもよい);シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数5〜7のシクロアルキル基;メチルシクロペンチル基、ジメチルシクロペンチル基、メチルエチルシクロペンチル基、ジエチルシクロペンチル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、メチルエチルシクロヘキシル基、ジエチルシクロヘキシル基、メチルシクロヘプチル基、ジメチルシクロヘプチル基、メチルエチルシクロヘプチル基、ジエチルシクロヘプチル基等の炭素数6〜11のアルキルシクロアルキル基(これらアルキル基のシクロアルキル基への置換位置は任意である);
ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等のアルケニル基(これらアルケニル基は直鎖状でも分枝状でもよく、二重結合の位置も任意である);
フェニル基、ナフチル基等のアリール基:トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基等の炭素数7〜12のアルキルアリール基(これらアルキル基は直鎖状でも分枝状でもよく、またアリール基への置換位置も任意である);ベンシル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルヘキシル基等の炭素数7〜12のアリールアルキル基(これらアルキル基は直鎖状でも分枝状でもよい);等が例示できる。
In the general formula (22), R 50 represents a hydrogen atom or a methyl group, and R 51 represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. Specific examples of the hydrocarbon group having 1 to 12 carbon atoms represented by R 51 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, Alkyl groups such as decyl group, undecyl group, dodecyl group (these alkyl groups may be linear or branched); cycloalkyl groups having 5 to 7 carbon atoms such as cyclopentyl group, cyclohexyl group and cycloheptyl group; methyl Cyclopentyl group, dimethylcyclopentyl group, methylethylcyclopentyl group, diethylcyclopentyl group, methylcyclohexyl group, dimethylcyclohexyl group, methylethylcyclohexyl group, diethylcyclohexyl group, methylcycloheptyl group, dimethylcycloheptyl group, methylethylcycloheptyl group, diethyl Cycloheptyl group, etc. An alkylcycloalkyl group having 6 to 11 carbon atoms (the substitution position of these alkyl groups with the cycloalkyl group is arbitrary);
Alkenyl groups such as butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, etc. (These alkenyl groups may be linear or branched, and position of double bond Is also optional);
Aryl group such as phenyl group, naphthyl group: alkylaryl group having 7 to 12 carbon atoms such as tolyl group, xylyl group, ethylphenyl group, propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group (these alkyl groups) May be linear or branched, and the position of substitution on the aryl group is also arbitrary); carbon number of benzyl, phenylethyl, phenylpropyl, phenylbutyl, phenylpentyl, phenylhexyl, etc. 7-12 arylalkyl groups (these alkyl groups may be linear or branched); and the like.

Figure 2012180532
Figure 2012180532

上記一般式(23)中、X及びXは、それぞれ個別に、水素原子、炭素数1〜18のアルコキシ基(−OR52:R52は炭素数1〜18のアルキル基)又は炭素数1〜18のモノアルキルアミノ基(−NHR53:R53は炭素数1〜18のアルキル基)を示す。 In the general formula (23), X 1 and X 2 are each independently a hydrogen atom, an alkoxy group having 1 to 18 carbon atoms (—OR 52 : R 52 is an alkyl group having 1 to 18 carbon atoms) or a carbon number. 1-18 monoalkylamino group (-NHR 53: R 53 is an alkyl group having 1 to 18 carbon atoms).

Figure 2012180532
Figure 2012180532

上記一般式(23)中、R54は水素原子又はメチル基を示し、R55は炭素数1〜18のアルキレン基を示し、Yは窒素原子を1〜2個、酸素原子を0〜2個含有するアミン残基又は複素環残基を示し、mは0又は1である。R55で表される炭素数1〜18のアルキレン基としては、具体的には、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、及びオクタデシレン基等(これらアルキレン基は直鎖状でも分枝状でもよい)等が例示できる。また、Yで表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、アニリノ基、トルイジノ基、キシリジノ基、アセチルアミノ基、ベンゾイルアミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジニル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、及びピラジノ基等が例示できる。 In the general formula (23), R 54 represents a hydrogen atom or a methyl group, R 55 represents an alkylene group having 1 to 18 carbon atoms, Y 1 represents 1 to 2 nitrogen atoms, and 0 to 2 oxygen atoms. 1 represents an amine residue or heterocyclic residue, and m is 0 or 1. Specific examples of the alkylene group represented by R 55 having 1 to 18 carbon atoms include ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, Examples include an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, and an octadecylene group (these alkylene groups may be linear or branched). Specific examples of the group represented by Y 1 include dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, anilino group, toluidino group, xylidino group, acetylamino group, benzoylamino group, Examples thereof include a morpholino group, a pyrrolyl group, a pyrrolino group, a pyridyl group, a methylpyridyl group, a pyrrolidinyl group, a piperidinyl group, a quinonyl group, a pyrrolidonyl group, a pyrrolidono group, an imidazolino group, and a pyrazino group.

Figure 2012180532
Figure 2012180532

上記一般式(25)中、R56は水素原子又はメチル基を示し、Yは窒素原子を1〜2個、酸素原子を0〜2個含有するアミン残基又は複素環残基を示す。Yで表される基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、アニリノ基、トルイジノ基、キシリジノ基、アセチルアミノ基、ベンゾイルアミノ基、モルホリノ基、ピロリル基、ピロリノ基、ピリジル基、メチルピリジル基、ピロリジニル基、ピペリジニル基、キノニル基、ピロリドニル基、ピロリドノ基、イミダゾリノ基、及びピラジノ基等が例示できる。 In the above general formula (25), R 56 represents a hydrogen atom or a methyl group, and Y 2 represents an amine residue or a heterocyclic residue containing 1 to 2 nitrogen atoms and 0 to 2 oxygen atoms. Specific examples of the group represented by Y 2 include a dimethylamino group, a diethylamino group, a dipropylamino group, a dibutylamino group, an anilino group, a toluidino group, a xylidino group, an acetylamino group, a benzoylamino group, and a morpholino group. Pyrrolyl group, pyrrolino group, pyridyl group, methylpyridyl group, pyrrolidinyl group, piperidinyl group, quinonyl group, pyrrolidonyl group, pyrrolidono group, imidazolino group, pyrazino group and the like.

モノマー(M−1)の好ましい例としては、具体的には、炭素数1〜18のアルキルアクリレート、炭素数1〜18のアルキルメタクリレート、炭素数2〜20のオレフィン、スチレン、メチルスチレン、無水マレイン酸エステル、無水マレイン酸アミド及びこれらの混合物等が例示できる。   Preferable examples of the monomer (M-1) are specifically alkyl acrylates having 1 to 18 carbon atoms, alkyl methacrylates having 1 to 18 carbon atoms, olefins having 2 to 20 carbon atoms, styrene, methylstyrene, and anhydrous maleic acid. Examples thereof include acid esters, maleic anhydride amides and mixtures thereof.

モノマー(M−2)の好ましい例としては、具体的には、ジメチルアミノメチルメタクリレート、ジエチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2−メチル−5−ビニルピリジン、モルホリノメチルメタクリレート、モルホリノエチルメタクリレート、N−ビニルピロリドン及びこれらの混合物等が例示できる。   Preferable examples of the monomer (M-2) are specifically dimethylaminomethyl methacrylate, diethylaminomethyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 2-methyl-5-vinylpyridine, morpholinomethyl methacrylate, morpholinoethyl. Examples thereof include methacrylate, N-vinyl pyrrolidone and a mixture thereof.

なお、上記(M−1)化合物の中から選ばれる1種又は2種以上のモノマーと(M−2)化合物の中から選ばれる1種又は2種以上のモノマーとの共重合体の共重合モル比は、一般に、モノマー(M−1):モノマー(M−2)=80:20〜95:5程度である。またその製法も任意であるが、通常、ベンゾイルパーオキシド等の重合開始剤の存在下でモノマー(M−1)とモノマー(M−2)をラジカル溶液重合させることにより容易に共重合体が得られる。   Copolymerization of a copolymer of one or more monomers selected from the (M-1) compound and one or more monomers selected from the (M-2) compound. The molar ratio is generally about monomer (M-1): monomer (M-2) = 80: 20 to 95: 5. The production method is arbitrary, but usually a copolymer is easily obtained by radical solution polymerization of monomer (M-1) and monomer (M-2) in the presence of a polymerization initiator such as benzoyl peroxide. It is done.

上述した粘度指数向上剤の中でも、低温流動性により優れる点から、ポリメタクリレート系粘度指数向上剤が好ましい。   Among the above-described viscosity index improvers, polymethacrylate viscosity index improvers are preferable because they are superior in low-temperature fluidity.

本発明の内燃機関用潤滑油組成物における粘度指数向上剤の配合量は、組成物全量基準で、好ましくは0.1〜15質量%、より好ましくは0.5〜5質量%である。粘度指数向上剤の含有量が0.1質量%未満の場合、その添加による粘度−温度特性の改善効果が不十分となる傾向にあり、また、15質量%を超える場合、初期の極圧性を長期間維持しにくくなる傾向にある。   The blending amount of the viscosity index improver in the lubricating oil composition for internal combustion engines of the present invention is preferably 0.1 to 15% by mass, more preferably 0.5 to 5% by mass, based on the total amount of the composition. When the content of the viscosity index improver is less than 0.1% by mass, the effect of improving the viscosity-temperature characteristics due to the addition tends to be insufficient, and when it exceeds 15% by mass, the initial extreme pressure property is reduced. It tends to be difficult to maintain for a long time.

本発明の内燃機関用潤滑油組成物においては、その性能をさらに向上させる目的で、必要に応じて、上記添加剤の他にさらに、腐食防止剤、防錆剤、抗乳化剤、金属不活性化剤、流動点降下剤、ゴム膨潤剤、消泡剤、着色剤等の各種添加剤を単独で又は数種類組み合わせて配合しても良い。   In the lubricating oil composition for an internal combustion engine of the present invention, for the purpose of further improving its performance, in addition to the above additives, a corrosion inhibitor, a rust inhibitor, a demulsifier, and a metal deactivation are added as necessary. You may mix | blend various additives, such as an agent, a pour point depressant, a rubber swelling agent, an antifoamer, and a coloring agent, individually or in combination.

腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、及びイミダゾール系化合物等が挙げられる。   Examples of the corrosion inhibitor include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.

防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、及び多価アルコールエステル等が挙げられる。   Examples of the rust inhibitor include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.

抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、及びポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。   Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.

金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾール又はその誘導体、1,3,4−チアジアゾールポリスルフィド、1,3,4−チアジアゾリル−2,5−ビスジアルキルジチオカーバメート、2−(アルキルジチオ)ベンゾイミダゾール、及びβ−(o−カルボキシベンジルチオ)プロピオンニトリル等が挙げられる。   Examples of metal deactivators include imidazoline, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis. Examples include dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, and β- (o-carboxybenzylthio) propiononitrile.

流動点降下剤としては、潤滑油基油の性状に応じて公知の流動点降下剤を任意に選択することができるが、重量平均分子量が50,000を超え150,000以下、好ましくは、80,000〜120,000のポリメタクリレートが好ましい。   As the pour point depressant, a known pour point depressant can be arbitrarily selected according to the properties of the lubricating base oil, but the weight average molecular weight is more than 50,000 and not more than 150,000, preferably 80 1 to 120,000 polymethacrylates are preferred.

消泡剤としては、潤滑油用の消泡剤として通常用いられる任意の化合物が使用可能であり、例えば、ジメチルシリコーン、フルオロシリコーン等のシリコーン類が挙げられる。これらの中から任意に選ばれた1種類あるいは2種類以上の化合物を任意の量で配合することができる。   As the antifoaming agent, any compound usually used as an antifoaming agent for lubricating oil can be used, and examples thereof include silicones such as dimethyl silicone and fluorosilicone. One or two or more compounds arbitrarily selected from these can be blended in any amount.

着色剤としては、通常用いられる任意の化合物が使用可能であり、また任意の量を配合することができるが、通常その配合量は、組成物全量基準で0.001〜1.0質量%である。   As the colorant, any compound that is usually used can be used, and any amount can be blended. Usually, the blending amount is 0.001 to 1.0% by mass based on the total amount of the composition. is there.

これらの添加剤を本発明の潤滑油組成物に含有させる場合、その含有量は組成物全量基準で、腐食防止剤、防錆剤、抗乳化剤ではそれぞれ0.005〜5質量%、金属不活性化剤では0.005〜1質量%、流動点降下剤では、0.05〜1質量%、消泡剤では0.0005〜1質量%、着色剤では0.001〜1.0質量%の範囲で通常選ばれる。   When these additives are contained in the lubricating oil composition of the present invention, the content is based on the total amount of the composition, 0.005 to 5% by mass for the corrosion inhibitor, the rust inhibitor, and the demulsifier, respectively, and the metal inertness. 0.005 to 1% by mass for the agent, 0.05 to 1% by mass for the pour point depressant, 0.0005 to 1% by mass for the antifoaming agent, and 0.001 to 1.0% by mass for the colorant. Usually selected by range.

本発明の内燃機関用潤滑油組成物は、上述の通り硫黄を構成元素として含む添加剤を含有し得るが、潤滑油組成物の全硫黄含有量(潤滑油基油及び添加剤に起因する硫黄分の合計量)は、添加剤の溶解性、並びに高温酸化条件における硫黄酸化物の生成に起因する塩基価の消耗を抑制する点から、好ましくは0.05〜0.3質量%であり、より好ましくは0.08〜0.25質量%、さらに好ましくは0.1〜0.2質量%、特に好ましくは0.12〜0.18質量%である。   The lubricating oil composition for an internal combustion engine of the present invention can contain an additive containing sulfur as a constituent element as described above, but the total sulfur content of the lubricating oil composition (sulfur resulting from the lubricating base oil and additives) The total amount of min) is preferably 0.05 to 0.3% by mass from the viewpoint of suppressing the solubility of the additive and the consumption of the base number due to the generation of sulfur oxides under high-temperature oxidation conditions. More preferably, it is 0.08-0.25 mass%, More preferably, it is 0.1-0.2 mass%, Most preferably, it is 0.12-0.18 mass%.

また、本発明の内燃機関用潤滑油組成物の100℃における動粘度は、通常、4〜24mm/sであるが、焼付きや磨耗を抑制する油膜厚さを保持する点、並びに撹拌抵抗の増加を抑制する点から、好ましくは5〜18mm/s、より好ましくは6〜15mm/s、さらに好ましくは7〜12mm/sである。 Further, the kinematic viscosity at 100 ° C. of the lubricating oil composition for an internal combustion engine of the present invention is usually 4 to 24 mm 2 / s, but the oil film thickness that suppresses seizure and wear is maintained, and stirring resistance From the point which suppresses the increase in this, Preferably it is 5-18 mm < 2 > / s, More preferably, it is 6-15 mm < 2 > / s, More preferably, it is 7-12 mm < 2 > / s.

上記の構成を有する本発明の内燃機関用潤滑油組成物は、熱・酸化安定性あるいは更に粘度−温度特性、摩擦特性及び揮発防止性に優れるものであり、二輪車、四輪車、発電用、舶用等のガソリンエンジン、ディーゼルエンジン、含酸素化合物含有燃料対応エンジン、ガスエンジン等の内燃機関用潤滑油として用いた場合に、ロングドレイン化及び省エネルギー化を十分に実現することができる。   The lubricating oil composition for an internal combustion engine of the present invention having the above-described configuration is excellent in thermal / oxidation stability or further in viscosity-temperature characteristics, friction characteristics and volatilization prevention, and is used for two-wheeled vehicles, four-wheeled vehicles, power generation, When used as a lubricating oil for an internal combustion engine such as a marine gasoline engine, a diesel engine, an oxygen-containing compound-containing engine, a gas engine, etc., long drain and energy saving can be sufficiently realized.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[潤滑油基油の製造]
(基油1)
溶剤精製基油を精製する工程において減圧蒸留で分離した留分を、フルフラールで溶剤抽出した後で水素化処理し、次いで、メチルエチルケトン−トルエン混合溶剤で溶剤脱ろうした。かかる溶剤脱ろうの際に除去されたワックス分(以下、「WAX1」という)を、潤滑油基油の原料として用いた。WAX1の性状を表1に示す。
[Manufacture of lubricating base oil]
(Base oil 1)
The fraction separated by distillation under reduced pressure in the step of refining the solvent refined base oil was subjected to hydrogenation after solvent extraction with furfural, and then dewaxed with a methyl ethyl ketone-toluene mixed solvent. The wax removed during the solvent dewaxing (hereinafter referred to as “WAX1”) was used as a raw material for the lubricating base oil. Table 1 shows the properties of WAX1.

Figure 2012180532
Figure 2012180532

次に、水素化分解触媒の存在下、水素分圧5MPa、平均反応温度350℃、LHSV1hr−1の条件下で、WAX1の水素化分解を行った。水素化分解触媒としては、アモルファス系シリカ・アルミナ担体(シリカ:アルミナ=20:80(質量比))にニッケル3質量%及びモリブデン15質量%が担持された触媒を硫化した状態で用いた。 Next, hydrocracking of WAX1 was performed under the conditions of a hydrogen partial pressure of 5 MPa, an average reaction temperature of 350 ° C., and LHSV1hr −1 in the presence of a hydrocracking catalyst. As the hydrocracking catalyst, a catalyst in which 3% by mass of nickel and 15% by mass of molybdenum were supported on an amorphous silica / alumina carrier (silica: alumina = 20: 80 (mass ratio)) was used in a sulfurized state.

次に、上記の水素化分解で得られた分解生成物を減圧蒸留することにより潤滑油留分26容量%を得た。この潤滑油留分について、メチルエチルケトン−トルエン混合溶剤を用いて、溶剤/油比4倍、ろ過温度−25℃の条件で溶剤脱ろうを行い、目的の潤滑油基油(以下、「基油1」という。)を得た。基油1の各種性状及び性能評価試験結果を表2に示す。   Next, 26% by volume of the lubricating oil fraction was obtained by distillation under reduced pressure of the decomposition product obtained by the above hydrocracking. For this lubricating oil fraction, solvent dewaxing was carried out using a methyl ethyl ketone-toluene mixed solvent under the conditions of a solvent / oil ratio of 4 times and a filtration temperature of -25 ° C. to obtain a target lubricating base oil (hereinafter referred to as “base oil 1”). "). Various properties and performance evaluation test results of the base oil 1 are shown in Table 2.

(基油2)
USY型ゼオライト800gとアルミナバインダー200gとを混合混練し、直径1/16インチ(約1.6mm)、高さ6mmの円柱状に成型した。得られた成型体を450℃で3時間焼成して担体を得た。この担体に、白金換算値で担体の0.8質量%となる量のジクロロテトラアミン白金(II)の水溶液を含浸し、120℃で3時間乾燥させ、400℃で1時間焼成することにより、目的の触媒を得た。
(Base oil 2)
800 g of USY zeolite and 200 g of an alumina binder were mixed and kneaded and molded into a cylindrical shape having a diameter of 1/16 inch (about 1.6 mm) and a height of 6 mm. The obtained molded body was fired at 450 ° C. for 3 hours to obtain a carrier. By impregnating this carrier with an aqueous solution of dichlorotetraamineplatinum (II) in an amount of 0.8% by mass in terms of platinum, drying at 120 ° C. for 3 hours, and baking at 400 ° C. for 1 hour, The desired catalyst was obtained.

次に、得られた触媒200mlを固定証の流通式反応器に充填し、この反応器を用いて、パラフィン系炭化水素を含む原料油の水素化分解/水素化異性化を行った。本工程では、原料油として、パラフィン含量が95質量%であり、20から80までの炭素数分布を有するFTワックス(以下、「WAX2」という。)を用いた。WAX2の性状を表1に示す。また、水素化分解の条件は、水素圧3MPa、反応温度350℃、LHSV2.0h−1とし、原料に対し沸点380℃以下の留分(分解生成物)が30質量%(分解率30%)となる分解/異性化生成油を得た。 Next, 200 ml of the obtained catalyst was charged into a fixed-type flow reactor, and hydrocracking / hydroisomerization of a feedstock oil containing paraffinic hydrocarbons was performed using this reactor. In this step, FT wax (hereinafter referred to as “WAX2”) having a paraffin content of 95% by mass and having a carbon number distribution of 20 to 80 was used as the raw material oil. Table 1 shows the properties of WAX2. The hydrocracking conditions were a hydrogen pressure of 3 MPa, a reaction temperature of 350 ° C., LHSV 2.0 h −1, and a fraction (decomposition product) having a boiling point of 380 ° C. or lower with respect to the raw material was 30% by mass (decomposition rate 30%). A cracking / isomerization product oil was obtained.

次に、上記の水素化分解/水素化異性化工程で得られた分解/異性化生成油を減圧蒸留することにより、潤滑油留分を得た。この潤滑油留分について、メチルエチルケトン−トルエン混合溶剤を用いて、溶剤/油比4倍、ろ過温度−25℃の条件で溶剤脱ろうを行い、目的の潤滑油基油(以下、「基油2」という。)を得た。基油2の各種性状及び性能評価試験結果を表2に示す。   Next, a lubricating oil fraction was obtained by distillation under reduced pressure of the cracked / isomerized product oil obtained in the hydrocracking / hydroisomerization step. For this lubricating oil fraction, solvent dewaxing was performed using a methyl ethyl ketone-toluene mixed solvent at a solvent / oil ratio of 4 times and a filtration temperature of -25 ° C. to obtain a target lubricating base oil (hereinafter referred to as “Base Oil 2”). "). Various properties and performance evaluation test results of the base oil 2 are shown in Table 2.

Figure 2012180532
Figure 2012180532

[実施例1〜6、比較例1〜7]
実施例1〜5においては、基油1、並びに以下に示す基油及び添加剤を用いて、表3に示す組成を有する潤滑油組成物を調製した。また、実施例6においては、基油2、並びに以下に示す基油及び添加剤を用いて、表4に示す組成を有する潤滑油組成物を調製した。また、比較例1〜7においては、以下に示す基油及び添加剤を用いて、表5、6に示す組成を有する潤滑油組成物を調製した。得られた潤滑油組成物の硫黄含有量、リン含有量、100℃における動粘度、塩基価及び酸価を表3〜6に示す。
(基油)
基油3:パラフィン系水素化分解基油(飽和分:94.8質量%、飽和分に占める環状飽和分の割合:46.8質量%、硫黄分:0.001質量%未満、100℃における動粘度:4.1mm/s、粘度指数:121、20℃における屈折率:1.4640、n20−0.002×kv100:1.456)
基油4:パラフィン系溶剤精製基油(飽和分:77質量%、硫黄分:0.12質量%、100℃における動粘度:4.0mm/s、粘度指数:102)
(硫黄を構成元素として含まない無灰酸化防止剤)
A1:アルキルジフェニルアミン
A2:オクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート
(硫黄を構成元素として含む無灰酸化防止剤及び有機モリブデン化合物)
B1:無灰ジチオカーバメート(硫黄含有量:29.4質量%)
B2:モリブデンのジトリデシルアミン錯体(モリブデン含有量:10.0質量%)
(摩耗防止剤)
C1:ジアルキルジチオリン酸亜鉛(リン含有量:7.4質量%、アルキル基:第1級オクチル基)
C2:ジアルキルジチオリン酸亜鉛(リン含有量:7.2質量%、アルキル基:第2級ブチル基又は第2級ヘキシル基の混合物)
(無灰分散剤)
D1:ポリブテニルコハク酸イミド(ビスタイプ、重量平均分子量:8,500、窒素含有量:0.65質量%)
(無灰摩擦調整剤)
E1:グリセリン脂肪酸エステル(商品名:MO50、花王社製)
(その他の添加剤)
F1:金属系清浄剤、粘度指数向上剤、流動点降下剤及び消泡剤を含むパッケージ。
[Examples 1-6, Comparative Examples 1-7]
In Examples 1 to 5, lubricating oil compositions having the compositions shown in Table 3 were prepared using the base oil 1 and the following base oils and additives. In Example 6, a lubricating oil composition having the composition shown in Table 4 was prepared using the base oil 2 and the following base oil and additives. Moreover, in Comparative Examples 1-7, the lubricating oil composition which has a composition shown to Table 5, 6 was prepared using the base oil and additive shown below. The sulfur content, phosphorus content, kinematic viscosity at 100 ° C., base number and acid number of the obtained lubricating oil composition are shown in Tables 3-6.
(Base oil)
Base oil 3: Paraffinic hydrocracked base oil (saturated component: 94.8% by mass, ratio of cyclic saturated component in saturated component: 46.8% by mass, sulfur component: less than 0.001% by mass, at 100 ° C. (Kinematic viscosity: 4.1 mm 2 / s, viscosity index: 121, refractive index at 20 ° C .: 1.4640, n 20 −0.002 × kv100: 1.456)
Base oil 4: paraffinic solvent refined base oil (saturated content: 77% by mass, sulfur content: 0.12% by mass, kinematic viscosity at 100 ° C .: 4.0 mm 2 / s, viscosity index: 102)
(Ashless antioxidant that does not contain sulfur as a constituent element)
A1: Alkyldiphenylamine A2: Octyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (ashless antioxidant containing sulfur as a constituent element and organic molybdenum compound)
B1: Ashless dithiocarbamate (sulfur content: 29.4% by mass)
B2: Ditridecylamine complex of molybdenum (molybdenum content: 10.0% by mass)
(Antiwear agent)
C1: zinc dialkyldithiophosphate (phosphorus content: 7.4% by mass, alkyl group: primary octyl group)
C2: zinc dialkyldithiophosphate (phosphorus content: 7.2 mass%, alkyl group: secondary butyl group or secondary hexyl group mixture)
(Ashless dispersant)
D1: Polybutenyl succinimide (bis type, weight average molecular weight: 8,500, nitrogen content: 0.65 mass%)
(Ashless friction modifier)
E1: Glycerin fatty acid ester (trade name: MO50, manufactured by Kao Corporation)
(Other additives)
F1: A package containing a metallic detergent, a viscosity index improver, a pour point depressant and an antifoaming agent.

[熱・酸化安定性評価試験]
実施例1〜6及び比較例1〜7の潤滑油組成物について、JIS K 2514の4.項の方法(ISOT)に準拠して熱・酸化安定性試験(試験温度:165.5℃)を行い、24時間後及び72時間後の塩基価保持率を求めた。得られた結果を表3〜6に示す。
[Heat and oxidation stability evaluation test]
Regarding the lubricating oil compositions of Examples 1 to 6 and Comparative Examples 1 to 7, JIS K 2514, 4. The thermal / oxidation stability test (test temperature: 165.5 ° C.) was performed in accordance with the method (ISOT) in the item, and the base number retention rate after 24 hours and 72 hours was obtained. The obtained results are shown in Tables 3-6.

[摩擦特性評価試験:SRV(微小往復動摩擦)試験]
実施例1〜6及び比較例1〜7の潤滑油組成物について、以下のようにしてSRV試験を実施し、摩擦特性を評価した。先ず、オプチモール社製SRV試験機用の試験片(鋼球(直径18mm)/ディスク、SUJ−2)を用意し、その表面粗さをRa0.2μm以下に仕上げた。この試験片をオプチモール社製SRV試験機に装着し、殻潤滑油組成物を試験片の摺動面に滴下し、温度80℃、荷重30N、振幅3mm、周波数50Hzの条件下で試験を行い、試験開始後15分経過時から30分経過時までの平均摩擦係数を測定した。得られた結果を表3〜6に示す。
[Friction characteristic evaluation test: SRV (micro reciprocating friction) test]
About the lubricating oil composition of Examples 1-6 and Comparative Examples 1-7, the SRV test was implemented as follows and the friction characteristic was evaluated. First, test pieces (steel balls (diameter 18 mm) / disk, SUJ-2) for SRV testing machine manufactured by Optimol were prepared, and the surface roughness was finished to Ra 0.2 μm or less. This test piece is mounted on an SRV testing machine manufactured by Optimol Co., Ltd., and the shell lubricant composition is dropped on the sliding surface of the test piece, and the test is performed under the conditions of a temperature of 80 ° C., a load of 30 N, an amplitude of 3 mm, and a frequency of 50 Hz. The average friction coefficient was measured from the time 15 minutes passed until the time 30 minutes passed after the start of the test. The obtained results are shown in Tables 3-6.

また、上記の熱・酸化安定性評価試験における24時間後の実施例1〜6及び比較例1〜7の潤滑油組成物(以下、「使用油」という)を用い、上記と同様のSRV試験を実施した。得られた結果を表3〜6に示す。   In addition, the SRV test similar to the above using the lubricating oil compositions of Examples 1 to 6 and Comparative Examples 1 to 7 (hereinafter referred to as “used oil”) after 24 hours in the thermal and oxidation stability evaluation test. Carried out. The obtained results are shown in Tables 3-6.

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

Figure 2012180532
Figure 2012180532

表3、4に示したように、実施例1〜6の内燃機関用潤滑油組成物は、酸化安定性試験における24時間後の塩基価低下率小さく、また、72時間後も残存塩基価が十分にあることから、酸化安定性に優れていることがわかる。また、実施例1〜6の内燃機関用潤滑油組成物は、初期摩擦係数が小さく、酸化安定性試験における24時間後のものであっても摩擦係数が0.1を下回ることから、低摩擦維持性に優れていることがわかる。   As shown in Tables 3 and 4, the lubricating oil compositions for internal combustion engines of Examples 1 to 6 had a small decrease in base number after 24 hours in the oxidation stability test, and the remaining base number after 72 hours. Since it is sufficient, it can be seen that the oxidation stability is excellent. In addition, the lubricating oil compositions for internal combustion engines of Examples 1 to 6 have a low initial friction coefficient, and the friction coefficient is less than 0.1 even after 24 hours in the oxidation stability test. It turns out that it is excellent in maintainability.

一方、比較例1〜7の内燃機関用潤滑油組成物は、塩基価保持率が劣るとともに、酸化安定性試験における24時間後のものについては摩擦係数が0.1を上回ることから、低摩擦維持性に劣ることがわかる。   On the other hand, the lubricating oil compositions for internal combustion engines of Comparative Examples 1 to 7 have a low base friction because the base number retention rate is inferior and the coefficient of friction exceeds 0.1 for 24 hours after the oxidation stability test. It turns out that it is inferior to maintainability.

更に、実施例1、6と比較例5、7との対比、比較例1と比較例3、4との対比から、実施例1、6の内燃機関用潤滑油組成物は、(A)、(B)成分の添加による塩基価保持率、酸化安定性及び低摩擦維持性の向上効果が顕著となっていることがわかる。
Furthermore, from the comparison between Examples 1 and 6 and Comparative Examples 5 and 7 and the comparison between Comparative Example 1 and Comparative Examples 3 and 4, the lubricating oil compositions for internal combustion engines of Examples 1 and 6 are (A), It can be seen that the effect of improving the base number retention rate, oxidation stability, and low friction retention by adding the component (B) is remarkable.

Claims (2)

飽和分を95質量%以上含有し、且つ該飽和分に占める環状飽和分の割合が0.1〜10質量%である潤滑油基油と、
硫黄を構成元素として含まない無灰酸化防止剤と、
硫黄を構成元素として含む無灰酸化防止剤と
を含有することを特徴とする内燃機関用潤滑油組成物。
A lubricating base oil containing 95% by mass or more of a saturated component and a ratio of cyclic saturated component in the saturated component being 0.1 to 10% by mass;
An ashless antioxidant that does not contain sulfur as a constituent element;
A lubricating oil composition for internal combustion engines, comprising an ashless antioxidant containing sulfur as a constituent element.
前記潤滑油基油は、下記式(1)で表される条件を満たすことを特徴とする、請求項1に記載の内燃機関用潤滑油組成物。
1.435≦n20−0.002×kv100≦1.450 (1)
[式中、n20は潤滑油基油の20℃における屈折率を示し、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
The lubricating oil composition for an internal combustion engine according to claim 1, wherein the lubricating base oil satisfies a condition represented by the following formula (1).
1.435 ≦ n 20 −0.002 × kv100 ≦ 1.450 (1)
[Wherein n 20 represents the refractive index of the lubricating base oil at 20 ° C., and kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]
JP2012140143A 2005-02-02 2012-06-21 Lubricant composition for internal engine Pending JP2012180532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140143A JP2012180532A (en) 2005-02-02 2012-06-21 Lubricant composition for internal engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005026808 2005-02-02
JP2005026808 2005-02-02
JP2012140143A JP2012180532A (en) 2005-02-02 2012-06-21 Lubricant composition for internal engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006003039A Division JP5114006B2 (en) 2005-02-02 2006-01-10 Lubricating oil composition for internal combustion engines

Publications (1)

Publication Number Publication Date
JP2012180532A true JP2012180532A (en) 2012-09-20

Family

ID=47011973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140143A Pending JP2012180532A (en) 2005-02-02 2012-06-21 Lubricant composition for internal engine

Country Status (1)

Country Link
JP (1) JP2012180532A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776959A2 (en) * 1995-11-28 1997-06-04 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
JP2002275488A (en) * 2001-03-15 2002-09-25 Nippon Oil Corp Lubricating oil composition for internal combustion engine
JP2003155492A (en) * 2001-11-22 2003-05-30 Nippon Oil Corp Lubricating oil composition for internal combustion engine
JP2004521976A (en) * 2001-02-13 2004-07-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Base oil composition
JP2004522848A (en) * 2001-03-05 2004-07-29 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Automatic transmission fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776959A2 (en) * 1995-11-28 1997-06-04 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
JP2004521976A (en) * 2001-02-13 2004-07-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Base oil composition
JP2004521977A (en) * 2001-02-13 2004-07-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Lubricant composition
JP2004522848A (en) * 2001-03-05 2004-07-29 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Automatic transmission fluid
JP2002275488A (en) * 2001-03-15 2002-09-25 Nippon Oil Corp Lubricating oil composition for internal combustion engine
JP2003155492A (en) * 2001-11-22 2003-05-30 Nippon Oil Corp Lubricating oil composition for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5114006B2 (en) Lubricating oil composition for internal combustion engines
JP5525120B2 (en) Lubricating oil composition for internal combustion engines
JP4945179B2 (en) Lubricating oil composition for internal combustion engines
JP5806794B2 (en) Lubricating oil composition for internal combustion engines
EP1845151B1 (en) Lubricant base oil, lubricant composition for internal combustion engine and lubricant composition for driving force transmitting device
US8105990B2 (en) Lube base oil, lubricating oil composition for internal combustion engine, and lubricating oil composition for drive transmission device
EP2009084B1 (en) Lube base oil, process for production thereof, and lubricating oil composition
US8394745B2 (en) Lube base oil, process for production thereof, and lubricating oil composition
JP5800931B2 (en) Lubricating oil composition
US8026199B2 (en) Lubricating oil composition
JP4965228B2 (en) Lubricating oil composition
JP5094030B2 (en) Low ash engine oil composition
JP2008120908A (en) Lubricating oil composition
JP5041885B2 (en) Internal combustion engine friction loss reduction method
JP4945178B2 (en) Lubricating oil composition for internal combustion engines
JP5512643B2 (en) Lubricating oil composition for internal combustion engines
JP2014196519A (en) Lubricant composition for internal-combustion engine
JP2012180532A (en) Lubricant composition for internal engine
JP4945180B2 (en) Lubricating oil composition for wet clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141120

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150109