JP2012179584A - Co2 absorber and method of manufacturing the same - Google Patents

Co2 absorber and method of manufacturing the same Download PDF

Info

Publication number
JP2012179584A
JP2012179584A JP2011046043A JP2011046043A JP2012179584A JP 2012179584 A JP2012179584 A JP 2012179584A JP 2011046043 A JP2011046043 A JP 2011046043A JP 2011046043 A JP2011046043 A JP 2011046043A JP 2012179584 A JP2012179584 A JP 2012179584A
Authority
JP
Japan
Prior art keywords
mea
amino group
absorbent
gel
crosslinked polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011046043A
Other languages
Japanese (ja)
Inventor
Daisuke Nagai
大介 永井
Fumio Hayashi
史夫 林
Mao Takakuwa
真生 高桑
Yasuhito Nakada
泰仁 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Nitto Boseki Co Ltd
Original Assignee
Gunma University NUC
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Nitto Boseki Co Ltd filed Critical Gunma University NUC
Priority to JP2011046043A priority Critical patent/JP2012179584A/en
Publication of JP2012179584A publication Critical patent/JP2012179584A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a COabsorber that has excellent handleability and is excellent in COabsorbability, and a method of manufacturing the COabsorber.SOLUTION: The COabsorber includes an amino group-containing cross-linked polymer swollen gel containing an amino group-containing cross-linked polymer and a polar solvent solution of alkanolamine shown by following general formula (1) (wherein Rand Rare each independently a hydrogen atom or 1-4C linear or branched alkyl which may be substituted by hydroxy or an amino group; X is 2-4C linear or branched alkylene which may contain an ether linkage).

Description

本発明は、CO吸収材及びその製造方法に関する。詳しくは、アミノ基含有架橋重合体とアルカノールアミン極性溶媒溶液を含むアミノ基含有膨潤ゲルを含むCO吸収材及びその製造方法に関する。 The present invention relates to a CO 2 absorbent and a method for producing the same. More specifically, the present invention relates to a CO 2 absorbent containing an amino group-containing swelling gel containing an amino group-containing crosslinked polymer and an alkanolamine polar solvent solution, and a method for producing the same.

CO削減は国家的な、また世界的な急務である。温室効果ガスであるCOの排出源は大規模集中型排出源(発電所、プラント)と小規模分散型排出源(家庭、商業施設、自動車など)に大別される。このうち、発電所等の大規模集中型排出源から排出されるCOについては、CO吸収液を用いたCOの回収・分離方法が提案されている。吸収液を用いて回収・分離されたCOの一部はCCS(Carbon dioxide Capture and Storage)技術による地中貯留、海洋隔離により大気への拡散を削減している。 CO 2 reduction is a national and global urgent task. The sources of CO 2 , which is a greenhouse gas, are broadly divided into large-scale concentrated emission sources (power plants, plants) and small-scale distributed emission sources (households, commercial facilities, automobiles, etc.). Among them, for the CO 2 emissions from a large centralized emission sources such as power plants, recovery and separation process of CO 2 using CO 2 absorbing solution has been proposed. Part of the CO 2 recovered and separated using the absorption liquid is reduced in the atmosphere by underground storage and ocean sequestration by CCS (Carbon Dioxide Capture and Storage) technology.

例えば、特許文献1には、濃度35重量%以上の高濃度のモノエタノールアミン水溶液とプラント等の燃焼排ガスを常圧下で接触させ、モノエタノールアミン水溶液にCOを吸収させるCO回収方法が記載されている。COを吸収したモノエタノールアミン水溶液が加熱されることで、COとモノエタノールアミン水溶液が分離される。 For example, Patent Document 1, the combustion exhaust gas such as density 35% or more by weight of high density monoethanolamine aqueous solution and plant is contacted at atmospheric pressure, CO 2 recovery method of absorbing CO 2 in monoethanolamine aqueous solution, wherein Has been. By monoethanolamine solution that has absorbed CO 2 is heated, CO 2 and monoethanolamine aqueous solution are separated.

特許文献2には、炭酸塩と第1級アミノ基を有するアミノ酸からなるCO吸収液を、多孔質膜又はポリアクリル酸やポリビニルアルコール等からなる含水ゲル膜に含浸させてなるCO分離液膜が記載されている。CO分離液膜は、COの促進輸送膜として用いられる。プラント等の排ガスを促進輸送膜に接触させ、促進輸送膜の排ガス接触面とは反対側を減圧すると、COが排ガス中に含まれる他の気体よりも速く促進輸送膜を透過し濃縮され、排ガスからCOが分離される。 Patent Document 2 discloses a CO 2 separation liquid obtained by impregnating a porous membrane or a hydrogel membrane made of polyacrylic acid, polyvinyl alcohol or the like with a CO 2 absorbing solution made of an amino acid having a carbonate and a primary amino group. A membrane is described. The CO 2 separation liquid membrane is used as a facilitated transport membrane for CO 2 . When exhaust gas from a plant or the like is brought into contact with the facilitated transport membrane and the pressure on the side opposite to the exhaust gas contact surface of the facilitated transport membrane is reduced, CO 2 permeates through the facilitated transport membrane and is concentrated faster than other gases contained in the exhaust gas, CO 2 is separated from the exhaust gas.

特開平5−184865号公報JP-A-5-184865 特開2000−229219号公報JP 2000-229219 A

しかしながら、特許文献1で用いられるモノエタノールアミン溶液をはじめとして、CO吸収液として主に用いられるアミン溶液は、その多くが揮発性であって悪臭がある。そのため、商業施設等の人が集まる小規模分散型排出源からのCO回収には不適であった。
また、吸収液はハンドリング性が悪いため、COを含むガスとCO吸収液を接触させる施設と、COをCO吸収液から分離させ回収する施設は、例えば、パイプで連結される等、近くに配置される必要があった。小規模分散型排出源ではCO吸収液からCOを分離・回収する施設を近傍に設けることは困難であるため、CO吸収液を用いた小規模分散型排出源由来のCO回収は困難であった。
However, many of the amine solutions mainly used as the CO 2 absorbent, including the monoethanolamine solution used in Patent Document 1, are volatile and have a bad odor. Therefore, it is not suitable for CO 2 capture from a small-scale distributed emission source where people such as commercial facilities gather.
Further, since the absorbing solution has poor handling properties, and facilities contacting the gas and the CO 2 absorbing solution containing CO 2, the facility to recover to separate the CO 2 from the CO 2 absorbing solution, for example, or the like which is connected by a pipe Needed to be placed nearby. Since it is difficult to provide a facility for separating and collecting CO 2 from a CO 2 absorbent in the vicinity of a small-scale distributed emission source, CO 2 recovery from a small-scale dispersed emission source using a CO 2 absorbent is not possible. It was difficult.

特許文献2に記載のCO分離液膜についても、促進輸送膜として利用する場合には、CO放出源と、CO促進輸送膜によって濃縮・分離されたCOを処理する施設とは近くに配置される必要があった。そのため、小規模分散型排出源ではその近傍に濃縮・分離されたCOを処理する施設に設けることは困難であり、CO分離液膜を小規模分散型排出源で利用することは困難であった。
また、特許文献2に記載のCO分離液膜において、CO吸収液を含浸させる多孔質膜又はポリアクリル酸やポリビニルアルコール等からなる含水ゲル膜には吸水性は求められていたが、CO吸収性が求められておらず、含水ゲル膜等のCO2吸収性が低かった。そのため、CO分離液膜を、CO促進輸送膜以外に、CO吸収材として利用することは想定されていなかった。
When the CO 2 separation liquid membrane described in Patent Document 2 is also used as a facilitated transport membrane, it is close to a CO 2 release source and a facility for processing CO 2 concentrated and separated by the CO 2 facilitated transport membrane. Had to be placed in. Therefore, it is difficult for a small-scale distributed emission source to be provided in a facility for processing the concentrated and separated CO 2 in the vicinity thereof, and it is difficult to use a CO 2 separation liquid membrane as a small-scale distributed emission source. there were.
Further, in the CO 2 separation liquid membrane described in Patent Document 2, water absorption is required for a porous membrane impregnated with a CO 2 absorbing solution or a hydrogel membrane made of polyacrylic acid, polyvinyl alcohol, or the like. 2 Absorption was not required, and CO 2 absorption such as a hydrogel membrane was low. Therefore, it has not been assumed that the CO 2 separation liquid membrane is used as a CO 2 absorbent other than the CO 2 facilitated transport membrane.

この実状に鑑み、本発明の課題は、ハンドリング性が高く、悪臭が抑制され、CO吸収性が良好であって、小規模分散型排出源由来のCO削減に利用可能であるCO吸収材及びその製造方法を提供することにある。 In view of this situation, an object of the present invention has high handling property, malodor is suppressed, a CO 2 absorbent is satisfactory, CO 2 absorption is available CO 2 reduction from small distributed emission sources It is in providing a material and its manufacturing method.

本発明者らは、前記した課題を解決するために鋭意検討した結果、驚くべきことに、アルカノールアミン極性溶媒溶液とアミノ基含有架橋重合体とを含むアミノ基含有膨潤ゲルが、ゲルが含有するのと同量のアルカノールアミン極性溶媒溶液と、水のみで膨潤させたアミノ基含有架橋重合体とを併せたよりも著しく多量のCOを吸収可能なことを見出した。そして、本発明者らは、アルカノールアミン極性溶媒溶液とアミノ基含有架橋重合体とを含むアミノ基含有膨潤ゲルが、CO吸収性が高く、ゲルに含有されるためアルカノールアミン極性溶媒溶液の揮発が抑えられて悪臭が抑制され、固体であるためハンドリング性が高いことから、優れたCO吸収材となることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have surprisingly found that an amino group-containing swelling gel containing an alkanolamine polar solvent solution and an amino group-containing crosslinked polymer contains the gel. It was found that a significantly larger amount of CO 2 can be absorbed than a combination of an alkanolamine polar solvent solution in the same amount as that of and an amino group-containing crosslinked polymer swollen only with water. The inventors of the present invention have found that the amino group-containing swelling gel containing the alkanolamine polar solvent solution and the amino group-containing crosslinked polymer has high CO 2 absorbability and is contained in the gel, so that the volatilization of the alkanolamine polar solvent solution is performed. Therefore, the present invention has been found to be an excellent CO 2 absorbent because it is solid and has high handling properties, and has been completed.

従って、本発明は、CO吸収材及びその製造方法を提供するものであり、以下の[1]〜[6]からなるものである。
[1] CO吸収材であって、アミノ基含有架橋重合体と、下記一般式(1)

(式中、R、Rは独立に水素原子、又は、ヒドロキシ基又はアミノ基で置換されてもよい炭素数1〜4の直鎖又は分岐アルキル基を示し、Xは基中にエーテル結合を含んでいてもよい炭素数2〜4の直鎖又は分岐アルキレン基を示す。)
で示されるアルカノールアミンの極性溶媒溶液とを含むアミノ基含有架橋重合体膨潤ゲルを有することを特徴とする、CO吸収材。
[2] 前記アミノ基含有架橋重合体が、下記一般式(2)

(式中、Rは、水素原子又は炭素数1〜4のアルキル基を示す。)
で表される構成単位を含む架橋重合体である[1]に記載のCO吸収材。
[3] 前記アルカノールアミンがモノエタノールアミンである請求項[1]又は[2]に記載のCO吸収材。
[4] CO吸収材の製造方法であって、アミノ基含有架橋重合体と、下記一般式(1)

(式中、R、Rは独立に水素原子、又は、ヒドロキシ基又はアミノ基で置換されてもよい炭素数1〜4の直鎖又は分岐アルキル基を示し、Xは基中にエーテル結合を含んでいてもよい炭素数2〜4の直鎖又は分岐アルキレン基を示す。)で表されるアルカノールアミンの極性溶媒溶液とを混合し、該アミノ基含有架橋重合体を膨潤させて、アミノ基含有架橋重合体膨潤ゲルを製造することを特徴とする、CO吸収材の製造方法。
[5] 前記アミノ基含有架橋重合体が、下記一般式(2)

(式中、Rは、水素原子又は炭素数1〜4のアルキル基を示す。)
で表される構成単位を含む架橋重合体である[4]に記載の製造方法。
[6] 前記アルカノールアミンがモノエタノールアミンである[4]又は[5]に記載の製造方法。
Accordingly, the present invention is to provide a CO 2 absorbent and a manufacturing method thereof, is made of the following [1] to [6].
[1] A CO 2 absorbent, an amino group-containing crosslinked polymer, and the following general formula (1)

(Wherein R 1 and R 2 independently represent a hydrogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms which may be substituted with a hydroxy group or an amino group, and X represents an ether bond in the group. A linear or branched alkylene group having 2 to 4 carbon atoms which may contain
A CO 2 absorbent comprising an amino group-containing crosslinked polymer swollen gel containing a polar solvent solution of alkanolamine represented by the formula:
[2] The amino group-containing crosslinked polymer is represented by the following general formula (2).

(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
The CO 2 absorbent according to [1], which is a crosslinked polymer containing a structural unit represented by:
[3] The CO 2 absorbent according to [1] or [2], wherein the alkanolamine is monoethanolamine.
[4] A method for producing a CO 2 absorbent, comprising an amino group-containing crosslinked polymer and the following general formula (1)

(Wherein R 1 and R 2 independently represent a hydrogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms which may be substituted with a hydroxy group or an amino group, and X represents an ether bond in the group. A linear or branched alkylene group having 2 to 4 carbon atoms which may contain an alkanolamine represented by the following formula: A method for producing a CO 2 absorbent, comprising producing a group-containing crosslinked polymer swelling gel.
[5] The amino group-containing crosslinked polymer is represented by the following general formula (2).

(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
The production method according to [4], which is a cross-linked polymer containing a structural unit represented by:
[6] The production method according to [4] or [5], wherein the alkanolamine is monoethanolamine.

本発明によれば、ハンドリング性が高く、CO吸収性が良好なCO吸収材及びその製造方法が提供される。特に、本発明のCO吸収材は、ハンドリング性に優れているため、CO吸収液やCO促進輸送膜では回収困難であった、小規模分散型排出源由来のCOの回収に利用可能である。 According to the present invention, high handleability, CO 2 absorbent is good CO 2 absorbent and a manufacturing method thereof are provided. In particular, since the CO 2 absorbent of the present invention is excellent in handling properties, it is difficult to recover with a CO 2 absorbent or a CO 2 facilitated transport membrane, and is used for recovering CO 2 derived from a small-scale distributed emission source. Is possible.

CO吸収材(液)にCO2を吸収させるための装置を示した図である。CO 2 absorbing material (liquid) is a diagram showing a device for absorbing the CO 2. CO2を吸収させたCO吸収材(液)のCO2吸収量評価に用いる装置を示した図である。The CO 2 is a diagram illustrating an apparatus for use in CO 2 absorption amount evaluation of the CO 2 absorbing material imbibed (liquid).

本発明のCO吸収材は、特定のアルカノールアミン極性溶媒溶液と、特定の膨潤ゲルとを有する。以下、その実施形態について説明する。
膨潤ゲル
本発明において膨潤ゲルとは、液体を含有して膨潤した状態の重合体であり、実質的に水に不溶であって実質的に流動性を失った固体の状態にある。好ましくは、膨潤ゲルは、重合体と架橋剤との反応(以下、「架橋反応」ということもある)によって構成される架橋構造、好ましくは網目構造中に液体を取り込んで膨潤した状態の架橋重合体である。膨潤ゲルが液体を含有するその他の態様としては、例えば、ゲルがその表面に多孔構造をもつ場合に、その孔部から、液体が含浸している態様が考えられる。
The CO 2 absorbent of the present invention has a specific alkanolamine polar solvent solution and a specific swelling gel. The embodiment will be described below.
Swelled gel In the present invention, a swollen gel is a polymer in a swollen state containing a liquid, and is in a solid state that is substantially insoluble in water and substantially loses fluidity. Preferably, the swollen gel is a crosslinked structure constituted by a reaction between a polymer and a crosslinking agent (hereinafter sometimes referred to as “crosslinking reaction”), preferably a crosslinked structure in which a liquid is taken into a swollen state in a network structure. It is a coalescence. As another mode in which the swelling gel contains a liquid, for example, when the gel has a porous structure on its surface, a mode in which the liquid is impregnated from the pores is conceivable.

本発明のCO吸収材又はその製造方法においてアミノ基含有架橋重合体は、アミノ基を含む構成単位を有する重合体と架橋剤とを反応させて得られる架橋重合体であれば特に限定されず、例えば、ポリアルキレンアミン、ポリアルキレンイミン、ポリアミジン、ポリイミダゾール、ポリピリジン等のアミノ基を含む構成単位を有する重合体と架橋剤とを反応させて得られる架橋重合体が挙げられる。中でも、本発明のCO吸収材又はその製造方法においてアミノ基含有架橋重合体は、好ましくは、下記一般式(2)

(式中、Rは、水素原子又は炭素数1〜4のアルキル基を示す。)
で表される構成単位を有する重合体と架橋剤とを反応させて得られる架橋重合体である。なお、この架橋重合体においては、一般式(2)で表される構成単位の一部は架橋剤との反応の結果その構造が変化するが、他の一部の構成単位は、依然一般式(2)で表される構造を維持する。
In the CO 2 absorbent of the present invention or the production method thereof, the amino group-containing crosslinked polymer is not particularly limited as long as it is a crosslinked polymer obtained by reacting a polymer having a structural unit containing an amino group with a crosslinking agent. Examples thereof include a crosslinked polymer obtained by reacting a polymer having a structural unit containing an amino group, such as polyalkyleneamine, polyalkyleneimine, polyamidine, polyimidazole, and polypyridine, with a crosslinking agent. Among them, in the CO 2 absorbent of the present invention or the production method thereof, the amino group-containing crosslinked polymer is preferably the following general formula (2).

(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
It is a crosslinked polymer obtained by making the polymer which has the structural unit represented by, and a crosslinking agent react. In this cross-linked polymer, the structure of some of the structural units represented by the general formula (2) changes as a result of the reaction with the cross-linking agent. The structure represented by (2) is maintained.

上記一般式(2)で表される構成単位を形成する単量体の例としては、モノアリルアミン、N−メチルアリルアミン、N−エチルアリルアミン、N―プロピルアリルアミン、N−ブチルアリルアミン等が挙げられる。   Examples of the monomer that forms the structural unit represented by the general formula (2) include monoallylamine, N-methylallylamine, N-ethylallylamine, N-propylallylamine, N-butylallylamine, and the like.

上記一般式(2)で表される構成単位を含む重合体は、上記一般式(2)で表される構成単位を、重合体の総質量に対して、10質量%以上含むことが好ましく、30質量%以上含むことがより好ましい。さらには、CO吸収性の観点及び重合体の水溶性の観点からは、上記一般式(2)で表される構成単位を含む重合体は、上記一般式(2)で表される構成単位のみからなることが特に好ましい。上記一般式(2)で表される構成単位のみからなる重合体としては、例えば、ポリアリルアミン、ポリ(N−メチルアリルアミン)、ポリ(N−エチルアリルアミン)、ポリ(N−プロピルアリルアミン)、ポリ(N−ブチルアリルアミン)を挙げることができ、第1級アミノ基を有しCO吸収性が特に良好な点から、ポリアリルアミンが最も好ましい。 The polymer containing the structural unit represented by the general formula (2) preferably contains 10% by mass or more of the structural unit represented by the general formula (2) with respect to the total mass of the polymer. More preferably, the content is 30% by mass or more. Furthermore, from the viewpoint of CO 2 absorption and the water solubility of the polymer, the polymer containing the structural unit represented by the general formula (2) is a structural unit represented by the general formula (2). It is particularly preferable to consist of only. Examples of the polymer consisting only of the structural unit represented by the general formula (2) include polyallylamine, poly (N-methylallylamine), poly (N-ethylallylamine), poly (N-propylallylamine), poly (N-butylallylamine) can be mentioned, and polyallylamine is most preferable from the viewpoint of having a primary amino group and particularly good CO 2 absorption.

上記一般式(2)で表される構成単位を含む重合体は、上記一般式(2)で表される構成単位を形成する単量体と、この単量体と共重合可能な他の単量体との共重合体でもよい。上記一般式(2)で表される構成単位を形成する単量体と共重合可能な他の単量体の例としては、N,N−ジメチルアリルアミン、N,N−ジエチルアリルアミン、N,N−メチルエチルアリルアミン、N−メチルジアリルアミン、N−エチルジアリルアミン、N−プロピルジアリルアミン、N−(2−ヒドロキシエチル)ジアリルアミン、N−(2−ヒドロキシプロピル)ジアリルアミン、N−(3−ヒドロキシプロピル)ジアリルアミン、N,N−ジメチルジアリルアンモニウムクロリド、N,N−ジエチルジアリルアンモニウムクロリド、N,N−ジプロピルジアリルアンモニウムクロリド、N,N−ジブチルジアリルアンモニウムクロリド、ビニルピロリドン、ジメチルアミノエチルメタクリレート、β−メタクリロイルオキシエチルトリメチルアンモニウムクロリド、アクリルアミド、アクリロニトリル、ヒドロキシエチルアクリレート、酢酸ビニル、スチレン、アクリル酸、塩化ビニル、ビニルイソシアネート、メタクリロニトリル、メタクリル酸、メチルビニルケトン、メチルビニルエーテル、ビニルピリジン、アクロレイン、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル等が挙げられる。   The polymer containing the structural unit represented by the general formula (2) includes a monomer that forms the structural unit represented by the general formula (2) and another monomer copolymerizable with the monomer. It may be a copolymer with a monomer. Examples of other monomers copolymerizable with the monomer forming the structural unit represented by the general formula (2) include N, N-dimethylallylamine, N, N-diethylallylamine, N, N -Methylethylallylamine, N-methyldiallylamine, N-ethyldiallylamine, N-propyldiallylamine, N- (2-hydroxyethyl) diallylamine, N- (2-hydroxypropyl) diallylamine, N- (3-hydroxypropyl) diallylamine, N, N-dimethyldiallylammonium chloride, N, N-diethyldiallylammonium chloride, N, N-dipropyldiallylammonium chloride, N, N-dibutyldiallylammonium chloride, vinylpyrrolidone, dimethylaminoethyl methacrylate, β-methacryloyloxyethyl Trimethylammonium chloride, acrylamide, acrylonitrile, hydroxyethyl acrylate, vinyl acetate, styrene, acrylic acid, vinyl chloride, vinyl isocyanate, methacrylonitrile, methacrylic acid, methyl vinyl ketone, methyl vinyl ether, vinyl pyridine, acrolein, methyl acrylate, acrylic Examples include ethyl acid, propyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate and the like.

本発明のCO吸収材又はその製造方法に用いるアミノ基含有架橋重合体の製造に利用できるアミノ基を含む構成単位を有する重合体として、上記一般式(2)で表される構成単位を含む重合体以外に、好ましくは、ポリエチレンイミン、ポリビニルアミン、ポリジアリルアミンが挙げられる。 The polymer having a structural unit containing an amino group that can be used for the production of the amino group-containing crosslinked polymer used in the CO 2 absorbent of the present invention or the production method thereof includes the structural unit represented by the general formula (2). In addition to the polymer, polyethyleneimine, polyvinylamine, and polydiallylamine are preferable.

本発明のCO吸収材又はその製造方法に用いるアミノ基含有架橋重合体の製造に利用できるアミノ基を含む構成単位を有する重合体中のアミノ基は、一部が酸性化合物との塩を形成していてもよい。ここで酸性化合物としては、例えば、塩酸、酢酸、硫酸、アミド硫酸等が挙げられる。 The amino group in the polymer having a structural unit containing an amino group that can be used for the production of the amino group-containing crosslinked polymer used in the CO 2 absorbent of the present invention or the method for producing the same partially forms a salt with an acidic compound. You may do it. Examples of the acidic compound include hydrochloric acid, acetic acid, sulfuric acid, amidosulfuric acid and the like.

本発明のCO吸収材又はその製造方法に用いるアミノ基含有架橋重合体の製造に利用できるアミノ基を含む構成単位を有する重合体の分子量は、架橋反応後、液体を含有して膨潤ゲルを生じる限り特に限定されない。例えば、アミノ基含有架橋重合に利用できる重合体の分子量としては、1,000〜1,000,000が挙げられる。この範囲の中でも、膨潤ゲル形成時に架橋重合体が有するアミノ基量と膨潤ゲル中の溶液とのバランスが良く、膨潤ゲルのCO吸収性が高いことから、アミノ基を含む構成単位を有する重合体の分子量は、好ましくは、5,000〜100,000であり、より好ましくは、10,000〜50,000である。
ここで、分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)法によるポリエチレングリコール換算の重量平均分子量を意味する。
The molecular weight of the polymer having a structural unit containing an amino group that can be used for the production of the amino group-containing cross-linked polymer used in the CO 2 absorbent of the present invention or the production method thereof is obtained by containing a liquid after the cross-linking reaction. There is no particular limitation as long as it occurs. For example, the molecular weight of a polymer that can be used for amino group-containing crosslinking polymerization includes 1,000 to 1,000,000. Within this range, the balance between the amount of amino groups of the crosslinked polymer during the formation of the swollen gel and the solution in the swollen gel is good and the swollen gel has high CO 2 absorbability. The molecular weight of the coalescence is preferably 5,000 to 100,000, more preferably 10,000 to 50,000.
Here, the molecular weight means a weight average molecular weight in terms of polyethylene glycol by a gel permeation chromatography (GPC) method.

本発明のCO吸収材又はその製造方法に用いるアミノ基含有架橋重合体の製造に利用できる架橋剤は、架橋反応を通じて、アミノ基を含む構成単位を有する重合体中の2つのアミノ基を他の原子を介して又は直接的に連結可能な化合物であれば特に制限はないが、上記一般式(2)で表される構成単位を含む重合体中のアミノ基と共有結合を生成可能な官能基を、少なくとも2個含有する化合物が好ましい。このような官能基としては、例えば、ハロゲン基、アルデヒド基、エポキシ基、カルボキシル基、酸無水物基、酸ハライド基、N−クロロホルミル基、クロロホルメート基、イミドエーテル基、アミジニル基、イソシアネート基、ビニル基等が挙げられる。また、ホルムアルデヒドは、アミノ基2個と反応してアミナールを形成できるため、架橋剤として好適に使用できる。 The cross-linking agent that can be used for the production of the amino group-containing cross-linked polymer used in the CO 2 absorbent of the present invention or the method for producing the same is obtained by replacing two amino groups in the polymer having a structural unit containing an amino group through a cross-linking reaction. The compound is not particularly limited as long as it is a compound that can be directly or directly linked to each other, but has a function capable of forming a covalent bond with an amino group in the polymer containing the structural unit represented by the general formula (2). Compounds containing at least two groups are preferred. Examples of such functional groups include halogen groups, aldehyde groups, epoxy groups, carboxyl groups, acid anhydride groups, acid halide groups, N-chloroformyl groups, chloroformate groups, imide ether groups, amidinyl groups, and isocyanates. Group, vinyl group and the like. Moreover, since formaldehyde can react with two amino groups to form aminal, it can be suitably used as a crosslinking agent.

本発明のCO吸収材又はその製造方法に用いるアミノ基含有架橋重合体の製造に利用できる架橋剤としては、例えば、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ブチレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、ブチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、メチレンビスアクリルアミド、メチレンビスメタクリルアミド、エチレンビスアクリルアミド、エピクロロヒドリン、トルエンジイソシアネート、エチレンビスメタクリルアミド、エチリデンビスアクリルアミド、ジビニルベンゼン、ビスフェノールAジメタクリレート、ビスフェノールAジアクリレート、1,4−ブタンジオールジグリシジルエーテル、1,2−エタンジオールジグリシジルエーテル、1,3−ジクロロプロパン、1,2−ジクロロエタン、1,3−ジブロモプロパン、1,2−ジブロモエタン、スクシニルジクロリド、ジメチルスクシネート、アクリロイルクロリド、ピロメリティックジアンヒドリドが挙げられる。これらの中でも、アミノ基を含む構成単位を有する重合体との架橋性に優れるため、エピクロロヒドリン、メチレンビスアクリルアミド、1,4−ブタンジオールジクリシジルエーテル、1,2−エタンジオールジグリシジルエーテル(エチレングリコールジグリシジルエーテル)、1,3−ジクロロプロパン、1,2−ジクロロエタン、1,3−ジブロモプロパン、1,2−ジブロモエタン、スクシニルジクロリド、ジメチルスクシネート、トルエンジイソシアネート、アクリロイルクロリド及びピロメリティックジアンヒドリドからなる群より選ばれる少なくとも1種が好ましく、エピクロロヒドリン又はメチレンビスアクリルアミドがより好ましい。 Examples of the crosslinking agent that can be used for the production of the amino group-containing crosslinked polymer used in the CO 2 absorbent of the present invention or the production method thereof include ethylene glycol diacrylate, propylene glycol diacrylate, butylene glycol diacrylate, and ethylene glycol dimethacrylate. , Propylene glycol dimethacrylate, butylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, methylene bisacrylamide, methylene bismethacrylamide, ethylene bisacrylamide, epichlorohydrin, toluene diisocyanate, ethylene bismethacrylamide, ethylidene bisacrylamide , Divinylbenzene, bisphenol A dimethacrylate, bisphenol A diac Relate, 1,4-butanediol diglycidyl ether, 1,2-ethanediol diglycidyl ether, 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl Examples include dichloride, dimethyl succinate, acryloyl chloride, and pyromellitic dianhydride. Among these, epichlorohydrin, methylenebisacrylamide, 1,4-butanediol diglycidyl ether, 1,2-ethanediol diglycidyl ether because of excellent crosslinkability with a polymer having a structural unit containing an amino group (Ethylene glycol diglycidyl ether), 1,3-dichloropropane, 1,2-dichloroethane, 1,3-dibromopropane, 1,2-dibromoethane, succinyl dichloride, dimethyl succinate, toluene diisocyanate, acryloyl chloride and pyro At least one selected from the group consisting of meritic dianhydride is preferable, and epichlorohydrin or methylenebisacrylamide is more preferable.

本発明のCO吸収材又はその製造方法に用いるアミノ基含有架橋重合体の製造に利用できる架橋剤は、アミノ基を含む構成単位を有する重合体中のアミノ基の総モル量に対して、1.5〜15モル%を用いることが好ましい。架橋剤の量が1.5モル%以上では、架橋反応によるゲル化を十分進行させることが容易であり、15モル%以下では、得られる膨潤ゲルが含有できる液体の量の著しい低下を抑制できる。さらには、膨潤ゲルが含有できる液体の量が著しく増加することから、架橋剤の量は、アミノ基を含む構成単位を有する重合体中のアミノ基の総モル量に対して、2〜4モル%であることがより好ましく、2.5〜3.5モル%であることがさらに好ましい。 The crosslinking agent that can be used for the production of the amino group-containing crosslinked polymer used in the CO 2 absorbent of the present invention or the production method thereof is based on the total molar amount of amino groups in the polymer having a structural unit containing an amino group. It is preferable to use 1.5 to 15 mol%. When the amount of the crosslinking agent is 1.5 mol% or more, it is easy to sufficiently proceed the gelation by the crosslinking reaction, and when it is 15 mol% or less, a significant decrease in the amount of liquid that can be contained in the obtained swelling gel can be suppressed. . Furthermore, since the amount of the liquid that can be contained in the swelling gel is remarkably increased, the amount of the crosslinking agent is 2 to 4 mol relative to the total molar amount of amino groups in the polymer having a structural unit containing amino groups. % Is more preferable, and 2.5 to 3.5 mol% is more preferable.

架橋反応は、均一なゲルの効率的な製造という観点から、溶媒の存在下で行われることが好ましい。溶媒としては、極性溶媒が挙げられる。架橋反応に用いられる極性溶媒としては、水、メタノール、エタノール、ジメチルホルムアミド、ジメチルスルホキシド、これらの混合溶媒等を挙げることができる。安全性及び使用が容易なこととから、溶媒としては水が好ましい。
溶媒の使用量は、上記一般式(2)で表される構成単位を含む重合体の総量1質量部に対して、0.1〜15質量部であることが好ましい。
水を含む溶媒の存在下で架橋反応を進行させるため、上記一般式(2)で表される構成単位を含む重合体は水溶性であることが好ましい。
The crosslinking reaction is preferably performed in the presence of a solvent from the viewpoint of efficient production of a uniform gel. Examples of the solvent include polar solvents. Examples of the polar solvent used for the crosslinking reaction include water, methanol, ethanol, dimethylformamide, dimethyl sulfoxide, and mixed solvents thereof. From the viewpoint of safety and easy use, water is preferable as the solvent.
It is preferable that the usage-amount of a solvent is 0.1-15 mass parts with respect to 1 mass part of total amounts of the polymer containing the structural unit represented by the said General formula (2).
In order to advance the crosslinking reaction in the presence of a solvent containing water, the polymer containing the structural unit represented by the general formula (2) is preferably water-soluble.

架橋反応の反応条件については特に限定されないが、COの削減に貢献するという観点からは、加熱及び加圧を行わずに室温常圧条件で架橋反応が進行することが好ましい。また、均一なゲルの効率的な製造という観点からは、この反応条件において、ゲル化開始時間が重合体と架橋剤を混合した後10〜60分であることが好ましい。そして、このような架橋反応が生じる重合体、架橋剤及び溶媒を前記した範囲から選択することが好ましい。なお、ゲル化の開始とは、溶液が固化することを意味する。
ここで、室温とは、10〜35℃の範囲の温度をいう。
また、常圧とは、1013±50hPaの範囲の圧力のことであり、自然界における大気圧の変動範囲とほぼ一致する。
The reaction conditions for the crosslinking reaction are not particularly limited, but from the viewpoint of contributing to the reduction of CO 2 , it is preferable that the crosslinking reaction proceeds under room temperature and normal pressure conditions without heating and pressurization. Moreover, from the viewpoint of efficient production of a uniform gel, it is preferable that the gelation start time is 10 to 60 minutes after mixing the polymer and the crosslinking agent under these reaction conditions. And it is preferable to select the polymer in which such a crosslinking reaction produces, a crosslinking agent, and a solvent from the above-mentioned range. The start of gelation means that the solution is solidified.
Here, room temperature refers to a temperature in the range of 10 to 35 ° C.
The normal pressure is a pressure in the range of 1013 ± 50 hPa, and almost coincides with the fluctuation range of atmospheric pressure in nature.

アルカノールアミン極性溶媒溶液
本発明のCO吸収材は、上記一般式(1)で表されるアルカノールアミンの極性溶媒溶液を含む。
本発明のCO吸収材又はその製造方法において、上記一般式(1)で表されるアルカノールアミンは、CO吸収性を有することが好ましい。上記一般式(1)で表されるCO吸収性を有するアルカノールアミンとしては、例えば、モノエタノールアミン、N−イソプロピルエタノールアミン、ジグリコールアミン(X中にエーテル結合を含むものの一例)、2−アミノ−2−メチル−1−プロパノール(Xが分岐アルキレン基であるものの一例)、ジエタノールアミン、ジイソプロパノールアミン(Xが分岐アルキレン基であるものの一例)、ジエチルエタノールアミン、N,N−ジイソプロピルエタノールアミン、N,N−ジメチルプロパノールアミン、N,N−ジメチルイソプロパノールアミン(Xが分岐アルキレン基であるものの一例)、N−メチルジエタノールアミン、N−エチルジエタノールアミン、トリエタノールアミン、トリブタノールアミンが挙げられ、中でも、安価であって入手が容易なことから、モノエタノールアミンが好ましい。
Alkanolamine Polar Solvent Solution The CO 2 absorbent of the present invention contains an alkanolamine polar solvent solution represented by the above general formula (1).
In the CO 2 absorbent of the present invention or the method for producing the same, the alkanolamine represented by the general formula (1) preferably has CO 2 absorbability. Examples of the alkanolamine having CO 2 absorptivity represented by the general formula (1) include monoethanolamine, N-isopropylethanolamine, diglycolamine (an example in which X contains an ether bond), 2- Amino-2-methyl-1-propanol (an example where X is a branched alkylene group), diethanolamine, diisopropanolamine (an example where X is a branched alkylene group), diethylethanolamine, N, N-diisopropylethanolamine, N, N-dimethylpropanolamine, N, N-dimethylisopropanolamine (an example in which X is a branched alkylene group), N-methyldiethanolamine, N-ethyldiethanolamine, triethanolamine, and tributanolamine are mentioned. Monoethanolamine is preferable because it is inexpensive and easily available.

本発明のCO吸収材又はその製造方法において、上記一般式(1)で表されるアルカノールアミンの極性溶媒溶液に用いられる極性溶媒は、分子内において正電荷と負電荷の偏りが存在し極性を示す分子を含む比誘電率の高い溶媒であって、上記一般式(1)で表されるアルカノールアミンを溶解可能な溶媒であれば特に限定されず、プロトン性極性溶媒であっても非プロトン性極性溶媒であってもよく、これらの極性溶媒と少量の非極性溶媒との混合溶媒であってもよい。上記一般式(1)で表されるアルカノールアミンの極性溶媒溶液に用いられる極性溶媒としては、例えば、水、メタノール、エタノール、2−プロパノール、アセトン、アセトニトリル、エチレンカーボネート、エチレングリコール、グリセリン、ジメトキシエタン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、テトラヒドロフラン、及びこれらの混合溶媒等を挙げることができる。中でも、安全性及び使用が容易であり、かつ、COの溶解性が高く膨潤ゲルのCO吸収性が良好なことから、極性溶媒としては、水又は水を主に含む混合溶媒が好ましく、水がより好ましい。 The polar solvent used in the polar solvent solution of the alkanolamine represented by the general formula (1) in the CO 2 absorbent of the present invention or the method for producing the same has a bias of positive and negative charges in the molecule and is polar. The solvent is not particularly limited as long as it is a solvent having a high relative dielectric constant containing a molecule that can dissolve the alkanolamine represented by the general formula (1). May be a polar solvent, or a mixed solvent of these polar solvents and a small amount of nonpolar solvent. Examples of the polar solvent used in the polar solvent solution of the alkanolamine represented by the general formula (1) include water, methanol, ethanol, 2-propanol, acetone, acetonitrile, ethylene carbonate, ethylene glycol, glycerin, and dimethoxyethane. N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran, and a mixed solvent thereof. Among them, since the safety and use are easy, and the solubility of CO 2 is high and the CO 2 absorbability of the swollen gel is good, the polar solvent is preferably water or a mixed solvent mainly containing water, Water is more preferred.

本発明のCO吸収材において、アミノ基含有架橋重合体膨潤ゲルに含まれる上記一般式(1)で表されるアルカノールアミンの極性溶媒溶液のアルカノールアミン濃度は特に限定されないが、アルカノールアミン極性溶媒溶液を含むアミノ基含有架橋重合体膨潤ゲルのCO吸収性が高まることから、1質量%以上35質量%未満であることが好ましく、2質量%以上30質量%未満であることがより好ましく、3質量%以上25質量%未満であることがさらに好ましく、5質量%以上20質量%未満であることが特に好ましく、そのうちでも7質量%以上15質量%未満であることが、とりわけ好ましい。
本発明のCO吸収材において、アミノ基含有架橋重合体膨潤ゲルにアルカノールアミンと極性溶媒とが共に含まれることで、アミノ基含有架橋重合体膨潤ゲルにアルカノールアミンのみが含まれるよりも、アミノ基含有架橋重合体膨潤ゲルのCO吸収性が著しく高まる。さらに、アミノ基含有架橋重合体膨潤ゲルに含まれるアルカノールアミン極性溶媒溶液が高濃度ではなく、一定の濃度範囲である場合に、特にアミノ基含有架橋重合体膨潤ゲルのCO吸収性が高まる。
In the CO 2 absorbent of the present invention, the alkanolamine concentration in the polar solvent solution of the alkanolamine represented by the general formula (1) contained in the amino group-containing crosslinked polymer swelling gel is not particularly limited. Since the CO 2 absorbability of the amino group-containing crosslinked polymer swelling gel containing the solution is increased, it is preferably 1% by mass or more and less than 35% by mass, more preferably 2% by mass or more and less than 30% by mass, It is more preferably 3% by mass or more and less than 25% by mass, particularly preferably 5% by mass or more and less than 20% by mass, and particularly preferably 7% by mass or more and less than 15% by mass.
In the CO 2 absorbent of the present invention, the amino group-containing crosslinked polymer swelling gel contains both alkanolamine and a polar solvent, so that the amino group-containing crosslinked polymer swollen gel contains only alkanolamine. The CO 2 absorbability of the group-containing crosslinked polymer swelling gel is remarkably increased. Furthermore, when the alkanolamine polar solvent solution contained in the amino group-containing crosslinked polymer swollen gel is not at a high concentration but in a certain concentration range, the CO 2 absorbability of the amino group-containing crosslinked polymer swollen gel is particularly enhanced.

本発明のCO吸収材の製造方法において、アミノ基含有架橋重合体と混合されるアルカノールアミンの極性溶媒溶液のアルカノールアミン濃度は特に限定されないが、例えば、10〜90質量%が挙げられ、20〜80質量%が好ましく、30〜75質量%がより好ましく、40〜70質量%がさらに好ましい。
本発明のCO吸収材の製造方法において、アミノ基含有架橋重合体とアルカノールアミンはともにアミノ基を有するため、静電反発により、アミノ基含有架橋重合体膨潤ゲルは水を優先的に含有する。アミノ基含有架橋重合体膨潤ゲルが水を優先的に含有することで、アミノ基含有架橋重合体膨潤ゲルに含まれるアルカノールアミン極性溶媒溶液の濃度が高くなりすぎず、上述したCO吸収に適した濃度とすることが容易である。
In the method for producing a CO 2 absorbent according to the present invention, the alkanolamine concentration of the polar solvent solution of alkanolamine mixed with the amino group-containing crosslinked polymer is not particularly limited, and examples thereof include 10 to 90% by mass, 20 -80 mass% is preferable, 30-75 mass% is more preferable, and 40-70 mass% is further more preferable.
In the method for producing a CO 2 absorbent according to the present invention, since the amino group-containing crosslinked polymer and the alkanolamine both have amino groups, the amino group-containing crosslinked polymer swelling gel preferentially contains water due to electrostatic repulsion. . Since the amino group-containing crosslinked polymer swelling gel contains water preferentially, the concentration of the alkanolamine polar solvent solution contained in the amino group-containing crosslinked polymer swelling gel does not become too high, and is suitable for the above-described CO 2 absorption. It is easy to obtain a high concentration.

本発明のCO吸収材又はその製造方法において、アミノ基含有架橋重合体膨潤ゲルは、上述したアミノ基含有架橋重合体と上記一般式(1)で表されるアルカノールアミンの極性溶媒溶液とを含むものであり、アミノ基含有架橋重合体がアルカノールアミン極性溶媒溶液を含有して膨潤したものである。ここで、アルカノールアミン極性溶媒溶液は、好ましくは、アミノ基含有架橋重合体の架橋構造中に取り込まれているが、アミノ基含有架橋重合体の孔部に含浸されていてもよく、アミノ基含有架橋重合体の表面に付着していてもよい。
本発明のCO吸収材又はその製造方法において、アルカノールアミン極性溶媒溶液は、アミノ基含有架橋重合体膨潤ゲルに含有されるため、アルカノールアミン極性溶媒溶液の状態よりもアルカノールアミンの揮発が抑えられる。そのため、アミノ基含有架橋重合体膨潤ゲルの状態では、アルカノールアミンの悪臭が抑制される。
In the CO 2 absorbent of the present invention or the production method thereof, the amino group-containing crosslinked polymer swelling gel comprises the above-described amino group-containing crosslinked polymer and a polar solvent solution of the alkanolamine represented by the general formula (1). The amino group-containing crosslinked polymer contains an alkanolamine polar solvent solution and swells. Here, the alkanolamine polar solvent solution is preferably incorporated in the cross-linked structure of the amino group-containing cross-linked polymer, but may be impregnated in the pores of the amino group-containing cross-linked polymer. You may adhere to the surface of a crosslinked polymer.
In the CO 2 absorbent of the present invention or the method for producing the same, since the alkanolamine polar solvent solution is contained in the amino group-containing crosslinked polymer swelling gel, volatilization of the alkanolamine is suppressed more than the state of the alkanolamine polar solvent solution. . Therefore, malodor of alkanolamine is suppressed in the state of the amino group-containing crosslinked polymer swelling gel.

本発明のCO吸収材又はその製造方法において、アミノ基含有架橋重合体膨潤ゲルは、上述したアミノ基含有架橋重合体と上記一般式(1)で表されるアルカノールアミンの極性溶媒溶液とを混合して、アミノ基含有架橋重合体にアルカノールアミン極性溶媒溶液を含有させ膨潤させることで製造される。例えば、アミノ基含有架橋重合体膨潤ゲルは、多量のアルカノールアミン極性溶媒溶液中に乾燥させたアミノ基含有架橋重合体を浸漬し、アミノ基含有架橋重合体にアルカノールアミン極性溶媒溶液を含有させ膨潤させることで製造される。 In the CO 2 absorbent of the present invention or the production method thereof, the amino group-containing crosslinked polymer swelling gel comprises the above-described amino group-containing crosslinked polymer and a polar solvent solution of the alkanolamine represented by the general formula (1). It is produced by mixing and swelling an amino group-containing crosslinked polymer containing an alkanolamine polar solvent solution. For example, an amino group-containing crosslinked polymer swelling gel is obtained by immersing a dried amino group-containing crosslinked polymer in a large amount of an alkanolamine polar solvent solution, and containing the alkanolamine polar solvent solution in the amino group-containing crosslinked polymer to swell. It is manufactured by letting.

本発明のCO吸収材又はその製造方法において、アミノ基含有架橋重合体膨潤ゲルの膨潤度は、下記式(a)により求められる。
膨潤度=(Wwet−Wdry)/Wdry (a)
ここで、Wwetは、膨潤ゲルを蒸留水で洗浄した後、表面の水をティッシュペーパーで除去し、次いで、液体中に浸漬して膨潤ゲルを膨潤させ、最後に表面の余分な液体をティッシュペーパーで除去した後に測定した膨潤ゲルの重量である。Wdryは、膨潤ゲルを重量が一定値となるまで60℃の真空オーブンで乾燥させ、次いで、乾燥器内で冷却した後に測定した膨潤ゲルの重量である。
本発明のCO吸収材又はその製造方法において、アミノ基含有架橋重合体膨潤ゲルがとる膨潤度としては、5〜250を挙げることができる。CO吸収性が高いことから、アミノ基含有架橋重合体膨潤ゲルの膨潤度は、20〜80であることが好ましく、CO吸収性が特に高いことから、25〜60であることがより好ましい。
In the CO 2 absorbent of the present invention or the method for producing the same, the degree of swelling of the amino group-containing crosslinked polymer swelling gel is determined by the following formula (a).
Swelling degree = (W wet −W dry ) / W dry (a)
Here, after washing the swollen gel with distilled water, W wet removes the surface water with tissue paper, and then immerses it in a liquid to swell the swollen gel. Finally, the excess liquid on the surface is removed from the tissue. It is the weight of the swollen gel measured after removal with paper. W dry is the weight of the swollen gel measured after drying the swollen gel in a vacuum oven at 60 ° C. until the weight reaches a constant value and then cooling in the dryer.
In the CO 2 absorbent of the present invention or the method for producing the same, the swelling degree of the amino group-containing crosslinked polymer swelling gel may be 5 to 250. Since the CO 2 absorbability is high, the swelling degree of the amino group-containing crosslinked polymer swollen gel is preferably 20 to 80, and since the CO 2 absorbability is particularly high, it is more preferably 25 to 60. .

本発明のCO吸収材は、CO吸収性を有する上述のアミノ基含有架橋重合体膨潤ゲルを含むものである。アミノ基含有架橋重合体膨潤ゲルは、固体であり、容易に運搬ができ、形状を加工できる程度の硬度を有するため、ハンドリング性が良好である。そのため、アミノ基含有架橋重合体膨潤ゲルを有する本発明のCO吸収材は、アルカノールアミン極性溶媒溶液等のCO吸収液よりもハンドリング性が高く、小規模分散型排出源由来のCO回収に利用できる。さらに、本発明のCO吸収材は、COを吸収させた後、加熱することで又は常温でCOを放出可能である。また、COを吸収させた後にCOを放出させた本発明のCO吸収材は、再びCOを吸収することが可能である。
本発明のCO吸収材は、例えば、家庭等の小規模分散型排出源で排出される排気ガスから、本発明のCO吸収材にCOを吸収させ、COを吸収したCO吸収材を植物工場等に運搬して集積し、CO吸収材から放出されるCOにより光合成生物の光合成を促進することで、大気中のCOを光合成生物の光合成により効率的に固定化し、COの削減に貢献できる。
The CO 2 absorbent of the present invention contains the above-mentioned amino group-containing crosslinked polymer swelling gel having CO 2 absorbability. The amino group-containing crosslinked polymer swollen gel is a solid, can be easily transported, and has a hardness that can be processed into a shape, so that the handling property is good. Therefore, the CO 2 absorbent of the present invention having an amino group-containing crosslinked polymer swollen gel has a higher handling property than a CO 2 absorbent such as an alkanolamine polar solvent solution, and collects CO 2 from a small-scale dispersed emission source. Available to: Furthermore, CO 2 absorbent material of the present invention, after absorption of CO 2, which can emit CO 2 at or at room temperature by heating. Moreover, CO 2 absorbent material of the present invention to release CO 2 after imbibed with CO 2 is capable of absorbing CO 2 again.
CO 2 absorbing material of the present invention, for example, from an exhaust gas discharged in small decentralized emission source such as a home, the CO 2 absorbent material of the present invention to absorb CO 2, CO 2 absorption has absorbed CO 2 the wood integrated hauling in plant factories, etc., to promote photosynthesis photosynthetic organisms by CO 2 released from the CO 2 absorbing material, and effectively immobilize CO 2 in the atmosphere through photosynthesis photosynthetic organisms, Contributes to CO 2 reduction.

以下、本発明の好適な実施例についてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although the preferable Example of this invention is described in detail, this invention is not limited to these Examples.

[実施例1]
(1)モノエタノールアミン水溶液を含有したポリアリルアミン膨潤ゲルの製造
ポリアリルアミン(以下、「PAA」ということもある)と架橋剤であるエピクロロヒドリン(以下、「ECH」ということもある)を架橋反応させて得られるゲルにモノエタノールアミン(以下、「MEA」ということもある)水溶液を含有させて、MEA水溶液含有PAA膨潤ゲルを製造した。
具体的には、PAA(日東紡績社製、商品名:PAA−25、重量平均分子量:25,000)の10.3%水溶液2ml(PAA中のアミノ基の総量3.6mmol相当分)に、ECH(東京化成工業株式会社製)(8.44ml、ECH0.108mmol相当分、PAA中のアミノ基の総モル量に対して3.0mol%相当分)を加え、40℃の条件で、20時間撹拌しながら架橋反応を進行させ、PAA膨潤ゲルを得た。
次いで、PAA膨潤ゲルを蒸留水に浸漬し、1日ごとに蒸留水を交換しながら10日間振とう洗浄を行い、未反応のPAAと架橋剤を除去した。
次いで、洗浄したPAA膨潤ゲルを凍結乾燥機(東京理科器株式会社製)で質量が一定となるまで乾燥させた。
[Example 1]
(1) Production of polyallylamine swelling gel containing monoethanolamine aqueous solution Polyallylamine (hereinafter sometimes referred to as “PAA”) and cross-linking agent epichlorohydrin (hereinafter also referred to as “ECH”) A gel obtained by crosslinking reaction was allowed to contain an aqueous solution of monoethanolamine (hereinafter sometimes referred to as “MEA”) to produce a MEA aqueous solution-containing PAA swelling gel.
Specifically, in 2 ml of a 10.3% aqueous solution of PAA (manufactured by Nitto Boseki Co., Ltd., trade name: PAA-25, weight average molecular weight: 25,000) (corresponding to the total amount of amino groups in PAA of 3.6 mmol), ECH (manufactured by Tokyo Chemical Industry Co., Ltd.) (8.44 ml, ECH equivalent to 0.108 mmol, equivalent to 3.0 mol% with respect to the total molar amount of amino groups in PAA) was added, and 20 hours at 40 ° C. The cross-linking reaction was allowed to proceed while stirring to obtain a PAA swelling gel.
Next, the PAA swelling gel was immersed in distilled water, washed with shaking for 10 days while exchanging distilled water every day, and unreacted PAA and a crosslinking agent were removed.
Next, the washed PAA swelling gel was dried with a freeze dryer (manufactured by Tokyo Science Instruments Co., Ltd.) until the mass became constant.

次いで、凍結乾燥させたPAA膨潤ゲル0.15g(含まれうるアミノ基の最大量2.63mmol)をMEA(東京化成工業株式会社製;純度>99%)水溶液(MEA/HO=25ml/25ml)に浸漬し、膨潤ゲルの重量が4.5gになるまでMEA水溶液をゲルに含有させ、MEA水溶液含有PAA膨潤ゲルを得た。なお、PAA膨潤ゲルに含まれうるアミノ基の最大量は、架橋密度が0であると仮定して、PAA膨潤ゲルの質量を、構成単位あたりアミノ基を1つ含んでいるPAAの構成単位分子量(57.09)で除すことで算出した。
ここで、得られたMEA水溶液含有PAA膨潤ゲルは、MEA0.446g(7.3mmol)を含有していた。従って、このCO吸収材を構成するMEA及び、架橋重合体に含まれうるアミノ基の合計量は、最大9.93mmolとなる。なお、MEA水溶液含有PAA膨潤ゲルが含有するMEA量は、先ず膨潤に用いたMEA水溶液中に残留するMEA量を一般的な中和滴定で求め、当初のMEA量から残留するMEA量を引くことで求めた。
得られたMEA水溶液含有PAA膨潤ゲルには、PAAハイドロゲルと外観上の差異はなかった。したがって、実施例1で得られたMEA水溶液含有PAA膨潤ゲルは、PAAハイドロゲルが水を含有するのと同様の態様でMEA水溶液を含有すると推定される。
また、得られたMEA水溶液含有PAA膨潤ゲルからは、揮発するMEA水溶液に由来する臭気が感じられなかった。
Subsequently, 0.15 g of the freeze-dried PAA swelling gel (maximum amount of amino groups that can be contained 2.63 mmol) was added to an aqueous MEA (manufactured by Tokyo Chemical Industry Co., Ltd .; purity> 99%) aqueous solution (MEA / H 2 O = 25 ml / 25 ml), and the MEA aqueous solution was contained in the gel until the weight of the swollen gel reached 4.5 g, to obtain a MEA aqueous solution-containing PAA swollen gel. The maximum amount of amino groups that can be contained in the PAA swollen gel is based on the assumption that the crosslink density is 0, and the mass of the PAA swollen gel is the molecular weight of the PAA containing one amino group per constituent unit. Calculated by dividing by (57.09).
Here, the obtained MEA aqueous solution-containing PAA swelling gel contained 0.446 g (7.3 mmol) of MEA. Therefore, the total amount of amino groups that can be contained in the MEA and the crosslinked polymer constituting this CO 2 absorbent is 9.93 mmol at the maximum. The amount of MEA contained in the MEA aqueous solution-containing PAA swelling gel is obtained by first obtaining the amount of MEA remaining in the MEA aqueous solution used for swelling by general neutralization titration, and subtracting the amount of MEA remaining from the initial MEA amount. I asked for it.
The obtained MEA aqueous solution-containing PAA swelling gel had no difference in appearance from the PAA hydrogel. Therefore, the MEA aqueous solution-containing PAA swelling gel obtained in Example 1 is presumed to contain the MEA aqueous solution in the same manner as the PAA hydrogel contains water.
Moreover, from the obtained MEA aqueous solution containing PAA swelling gel, the odor derived from the volatilizing MEA aqueous solution was not felt.

(2)MEA水溶液含有PAA膨潤ゲルのCO吸収量評価
前述した方法で製造されたMEA水溶液含有PAA膨潤ゲルにCOを吸収させ、次いで、COを吸収させたMEA水溶液含有PAA膨潤ゲルのCO吸収量を評価した。
(2) the MEA solution containing PAA swollen gel CO 2 absorption amount evaluation aqueous MEA solution containing PAA swollen gel produced by the above-described method of imbibed CO 2, then the aqueous MEA solution containing PAA swollen gel imbibed with CO 2 CO 2 absorption was evaluated.

具体的には、先ず、(1)で作成したMEA水溶液含有PAA膨潤ゲルを図1に示す装置の丸底フラスコ内に加え、次いで、フローメーターを用いてCO流量を0.15ml/minに調節し、吸湿器を通して飽和蒸気圧にしたCOを25℃の条件で20時間かけてMEA水溶液含有PAA膨潤ゲルに吸収させた。 Specifically, first, the MEA aqueous solution-containing PAA swelling gel prepared in (1) was added to the round bottom flask of the apparatus shown in FIG. 1, and then the CO 2 flow rate was adjusted to 0.15 ml / min using a flow meter. CO 2 adjusted to a saturated vapor pressure through a moisture absorber was absorbed into the PAA swollen gel containing an aqueous MEA solution at 25 ° C. for 20 hours.

次に、図2に示す装置を用いて、COを吸収させたMEA水溶液含有PAA膨潤ゲルのCO吸収量を測定した。具体的には、図2において、COを吸収させたMEA水溶液含有PAA膨潤ゲルをナスフラスコ内に加え、次いで、COを吸収させたMEA水溶液含有PAA膨潤ゲルを120℃に加熱してCOを放出させ、目盛り付きの円筒中の水位が下がった量を見積もることによりCO吸収量(体積ml)を決定し、この吸収量をモル数に変換して評価した。なお、図2中に示す酸性溶液としては1mol/l塩酸水溶液を用いた。なお、MEA水溶液含有PAA膨潤ゲルは120℃に加熱した後でも、ゲルの形状を維持しており、MEA水溶液の漏出は起こらなかった。
(1)で作成したMEA水溶液含有PAA膨潤ゲルのCO吸収量を表1に示す。
Next, using the apparatus shown in FIG. 2, it was measured CO 2 absorption amount of aqueous MEA solution containing PAA swollen gel imbibed with CO 2. Specifically, in FIG. 2, it added aqueous MEA solution containing PAA swollen gel imbibed with CO 2 in the eggplant flask, followed by heating the aqueous MEA solution containing PAA swollen gel imbibed with CO 2 to 120 ° C. CO 2 was released, and the amount of CO 2 absorption (volume ml) was determined by estimating the amount of water level in the graduated cylinder, and this absorption amount was converted to the number of moles for evaluation. In addition, 1 mol / l hydrochloric acid aqueous solution was used as an acidic solution shown in FIG. The MEA aqueous solution-containing PAA swelling gel maintained the gel shape even after heating to 120 ° C., and the MEA aqueous solution did not leak.
Table 1 shows the CO 2 absorption of the MEA aqueous solution-containing PAA swelling gel prepared in (1).

[実施例2]
凍結乾燥させたPAA膨潤ゲル0.15g(含まれうるアミノ基の最大量2.63mmol)を、MEA水溶液(MEA/HO=25ml/25ml)に代えて、MEA水溶液(MEA/HO=33.4ml/16.6ml)に浸漬し、膨潤ゲルの重量が4.5gになるまでこのMEA水溶液をゲルに含有させ、MEA水溶液含有PAA膨潤ゲルを得た他は、実施例1と同様にMEA水溶液含有PAA膨潤ゲルのCO吸収量を評価した。なお、実施例2で得られたMEA水溶液含有PAA膨潤ゲルは、MEA0.794g(13.0mmol)を含有していた。従って、このCO吸収材を構成するMEA及び、架橋重合体に含まれうるアミノ基の合計量は、最大15.63mmolとなる。
実施例2で得られたMEA水溶液含有PAA膨潤ゲルのCO吸収量を表1に示す。
[Example 2]
The lyophilized PAA swelling gel 0.15 g (maximum amount of amino group 2.63 mmol which can be contained) was replaced with an MEA aqueous solution (MEA / H 2 O = 25 ml / 25 ml), and an MEA aqueous solution (MEA / H 2 O = 33.4 ml / 16.6 ml), this MEA aqueous solution was contained in the gel until the weight of the swollen gel became 4.5 g, and the MEA aqueous solution-containing PAA swollen gel was obtained. The CO 2 absorption of the MEA aqueous solution-containing PAA swelling gel was evaluated. The MEA aqueous solution-containing PAA swelling gel obtained in Example 2 contained 0.794 g (13.0 mmol) of MEA. Therefore, the total amount of amino groups that can be contained in the MEA and the crosslinked polymer constituting this CO 2 absorbent is 15.63 mmol at the maximum.
Table 1 shows the amount of CO 2 absorbed by the MEA aqueous solution-containing PAA swelling gel obtained in Example 2.

[実施例3]
凍結乾燥させたPAA膨潤ゲル0.15g(含まれうるアミノ基の最大量2.63mmol)を、MEA水溶液(MEA/HO=25ml/25ml)に代えて、MEA水溶液(MEA/HO=40ml/10ml)に浸漬し、膨潤ゲルの重量が4.5gになるまでこのMEA水溶液をゲルに吸収させ、MEA水溶液含有PAA膨潤ゲルを得た他は、実施例1と同様にMEA水溶液含有PAA膨潤ゲルのCO吸収量を評価した。なお、実施例3で得られたMEA水溶液含有PAA膨潤ゲルは、MEA1.411g(23.1mmol)を含有していた。従って、このCO吸収材を構成するMEA及び、架橋重合体に含まれるアミノ基の合計量は、最大25.73mmolとなる。
実施例3で得られたMEA水溶液含有PAA膨潤ゲルのCO吸収量を表1に示す
[Example 3]
The lyophilized PAA swelling gel 0.15 g (maximum amount of amino group 2.63 mmol which can be contained) was replaced with an MEA aqueous solution (MEA / H 2 O = 25 ml / 25 ml), and an MEA aqueous solution (MEA / H 2 O = 40 ml / 10 ml), the MEA aqueous solution was absorbed into the gel until the weight of the swollen gel reached 4.5 g, and an MEA aqueous solution-containing PAA swollen gel was obtained, as in Example 1, except that the MEA aqueous solution contained The amount of CO 2 absorbed by the PAA swelling gel was evaluated. Note that the MEA aqueous solution-containing PAA swelling gel obtained in Example 3 contained 1.411 g (23.1 mmol) of MEA. Therefore, the total amount of the amino groups contained in the MEA and the crosslinked polymer constituting this CO 2 absorbent is 25.73 mmol at the maximum.
Table 1 shows the CO 2 absorption of the MEA aqueous solution-containing PAA swelling gel obtained in Example 3.

[比較例1]
凍結乾燥させたPAA膨潤ゲル0.15g(含まれうるアミノ基の最大量2.63mmol)を、MEA水溶液(MEA/HO=25ml/25ml)に代えて、MEA50mlに浸漬し、膨潤ゲルの重量が4.5gになるまでMEAをゲルに含有させ、MEA含有PAA膨潤ゲルを得た他は、実施例1と同様にMEA含有PAA膨潤ゲルのCO吸収量を評価した。なお、比較例1で得られたMEA含有PAA膨潤ゲルは、MEA4.35g(71.2mmol)を含有していた。従って、このCO吸収材を構成するMEA及び、架橋重合体に含まれうるアミノ基の最大量は、73.83mmolとなる。
なお、得られたMEA含有PAA膨潤ゲルには、PAAハイドロゲルと外観上の差異はなかった。したがって、比較例1で得られたMEA含有PAA膨潤ゲルは、PAAハイドロゲルが水を含有するのと同様の態様でMEAを含有すると推定される。
比較例1で得られたMEA含有PAA膨潤ゲルのCO吸収量を表1に示す。
[Comparative Example 1]
The lyophilized PAA swelling gel 0.15 g (maximum amount of amino group 2.63 mmol that can be contained) was immersed in 50 ml of MEA instead of MEA aqueous solution (MEA / H 2 O = 25 ml / 25 ml), The amount of CO 2 absorbed by the MEA-containing PAA swollen gel was evaluated in the same manner as in Example 1 except that MEA was included in the gel until the weight became 4.5 g, and the MEA-containing PAA swollen gel was obtained. The MEA-containing PAA swelling gel obtained in Comparative Example 1 contained 4.35 g (71.2 mmol) of MEA. Therefore, the maximum amount of amino groups that can be contained in the MEA and the crosslinked polymer constituting this CO 2 absorbent is 73.83 mmol.
The obtained MEA-containing PAA swelling gel had no difference in appearance from the PAA hydrogel. Therefore, the MEA-containing PAA swelling gel obtained in Comparative Example 1 is presumed to contain MEA in the same manner as the PAA hydrogel contains water.
Table 1 shows the amount of CO 2 absorbed by the MEA-containing PAA swelling gel obtained in Comparative Example 1.

[比較例2]
凍結乾燥させたPAA膨潤ゲル0.15g(含まれうるアミノ基の最大量2.63mmol)を、MEA水溶液(MEA/HO=25ml/25ml)に代えて、蒸留水50mlに浸漬し、膨潤ゲルの重量が4.5gになるまで蒸留水をゲルに含有させてPAAハイドロゲルを得た他は、実施例1のMEA水溶液含有PAA膨潤ゲルと同様に、得られたPAAハイドロゲルのCO吸収量を評価した。なお、このCO吸収材を構成する架橋重合体に含まれうるアミノ基の最大量は、2.63mmolであった。
比較例2で得られたPAAハイドロゲルのCO吸収量を表1に示す。
[Comparative Example 2]
The lyophilized PAA swelling gel 0.15 g (maximum amount of amino group 2.63 mmol that can be contained) was replaced with MEA aqueous solution (MEA / H 2 O = 25 ml / 25 ml) and immersed in 50 ml of distilled water to swell another obtaining the PAA hydrogel distilled water until the weight of the gel is 4.5g be contained in the gel, as well as the aqueous MEA solution containing PAA swollen gel of example 1, resulting PAA hydrogel CO 2 The amount absorbed was evaluated. The maximum amount of amino groups that can be contained in the crosslinked polymer constituting this CO 2 absorbent was 2.63 mmol.
Table 1 shows the amount of CO 2 absorbed by the PAA hydrogel obtained in Comparative Example 2.

[比較例3]
MEA水溶液含有PAA膨潤ゲルを使用せず、MEA水溶液(MEA0.446g及びHO3.904g)のみを用いた他は、実施例1と同様に、MEA水溶液のCO吸収量を評価した。なお、このCO吸収材を構成するMEA水溶液に含まれうるアミノ基の最大量は、7.30mmolであった。
比較例3のMEA水溶液のCO吸収量を表1に示す。
[Comparative Example 3]
The CO 2 absorption amount of the MEA aqueous solution was evaluated in the same manner as in Example 1 except that the MEA aqueous solution-containing PAA swelling gel was not used and only the MEA aqueous solution (MEA 0.446 g and H 2 O 3.904 g) was used. In addition, the maximum amount of amino groups that can be contained in the MEA aqueous solution constituting the CO 2 absorbent was 7.30 mmol.
Table 1 shows the CO 2 absorption of the MEA aqueous solution of Comparative Example 3.

[比較例4]
MEA水溶液含有PAA膨潤ゲルに代えて、MEA水溶液含有ポリビニルアルコール(以下、「PVA」ということもある)膨潤ゲルを用いた他は、実施例1と同様に、MEA水溶液含有PVA膨潤ゲルのCO吸収量を評価した。
比較例4のMEA水溶液含有PVA膨潤ゲルのCO吸収量を表1に示す。
[Comparative Example 4]
In place of the MEA aqueous solution-containing PAA swelling gel, an MEA aqueous solution-containing polyvinyl alcohol (hereinafter also referred to as “PVA”) swelling gel was used in the same manner as in Example 1, except that the CO 2 of the MEA aqueous solution-containing PVA swelling gel was used. The amount absorbed was evaluated.
Table 1 shows the amount of CO 2 absorbed by the PVA swelling gel containing the MEA aqueous solution of Comparative Example 4.

MEA水溶液含有PVA膨潤ゲルは、具体的には、PVA(東京化成工業株式会社製、重合度:n=1750±50)の10%ジメチルスルホキシド/N,N−ジメチルホルムアミド(1/1)溶液20ml(PVA中の水酸基の総量45mmol相当分)と架橋剤であるヘキサメチレンジイソシアナート(0.22ml、1.35 mmol相当分、PVA中の水酸基の総モル量に対して3.0mol%相当分)のとを25℃の条件で20時間かけて架橋反応させ、得られたPVA膨潤ゲルを実施例1と同様に洗浄・凍結乾燥した後、凍結乾燥させたPVA膨潤ゲル0.15gをMEA水溶液(MEA/HO=25ml/25ml)に浸漬し、MEA水溶液をゲルに吸収させて製造した。
得られたMEA水溶液含有PVA膨潤ゲルは、その重量が0.8175gであり、MEA0.6675g(10.9mmol)を含有していた。従って、このCO吸収材を構成するMEA水溶液、及びPVA膨潤ゲルに含まれうるアミノ基の合計量は、最大10.9mmolとなる。
Specifically, the MEA aqueous solution-containing PVA swelling gel is a 20% 10% dimethyl sulfoxide / N, N-dimethylformamide (1/1) solution of PVA (manufactured by Tokyo Chemical Industry Co., Ltd., polymerization degree: n = 1750 ± 50). (Corresponding to a total amount of 45 mmol of hydroxyl groups in PVA) and hexamethylene diisocyanate as a cross-linking agent (corresponding to 0.22 ml, 1.35 mmol, equivalent to 3.0 mol% with respect to the total molar amount of hydroxyl groups in PVA) ) Was subjected to a crosslinking reaction at 25 ° C. for 20 hours, and the obtained PVA swollen gel was washed and freeze-dried in the same manner as in Example 1, and then 0.15 g of the freeze-dried PVA swollen gel was added to the MEA aqueous solution. It was immersed in (MEA / H 2 O = 25 ml / 25 ml) and manufactured by allowing the gel to absorb the MEA aqueous solution.
The obtained MEA aqueous solution-containing PVA swelling gel had a weight of 0.8175 g and contained 0.6675 g (10.9 mmol) of MEA. Therefore, the total amount of amino groups that can be contained in the MEA aqueous solution and the PVA swelling gel constituting this CO 2 absorbent is 10.9 mmol at the maximum.

この結果より、PVA膨潤ゲルはMEA水溶液からMEAを選択的に含有することが確認された。一方、PAA膨潤ゲルがMEAよりも水を含有しやすいのは、PAA及びMEAは共に水中でプラスに荷電しており、その静電反発によりPAA膨潤ゲルがMEAを含有することが困難であったためと考えられる。   From this result, it was confirmed that the PVA swelling gel selectively contains MEA from the MEA aqueous solution. On the other hand, PAA swollen gel is more likely to contain water than MEA because PAA and MEA are both positively charged in water, and it is difficult for PAA swollen gel to contain MEA due to electrostatic repulsion. it is conceivable that.

一方、静電反発にかかわらず、PAA膨潤ゲルがMEAを含有できるのは、PAAとMEAとが共に有するアルキレン基間の疎水性相互作用、及びPAA中のプラスに帯電していないアミノ基と、MEA中のヒドロキシ基又はプラスに帯電していないアミノ基との水素結合が存在するためだと推定される。   On the other hand, regardless of electrostatic repulsion, the PAA swelling gel can contain MEA because of hydrophobic interaction between alkylene groups that both PAA and MEA have, and positively uncharged amino groups in PAA, This is presumed to be due to the presence of hydrogen bonds with hydroxy groups or positively charged amino groups in MEA.

表1に示される実施例1から3及び比較例2の比較では、MEA水溶液中のMEA濃度が一定値以上であれば、MEA濃度が低い場合にCO吸収量が上昇する傾向が見られた。この傾向から、膨潤ゲル中においては、MEA水溶液中のアミノ基の密度が下がることで、膨潤ゲル又はMEA水溶液中のアミノ基とCOとの反応性が向上することが推定される。また、膨潤ゲル中の水の量が増えることにより、水への溶解吸収量も多くなったものと推定される。 In the comparison between Examples 1 to 3 and Comparative Example 2 shown in Table 1, if the MEA concentration in the MEA aqueous solution was equal to or higher than a certain value, the CO 2 absorption amount tended to increase when the MEA concentration was low. . From this tendency, it is presumed that in the swollen gel, the reactivity of the amino group and CO 2 in the swollen gel or MEA aqueous solution is improved by the decrease in the density of amino groups in the MEA aqueous solution. In addition, it is presumed that the amount of water dissolved and absorbed increases as the amount of water in the swollen gel increases.

表1に示されるように、実施例と比較例2及び3との比較より、MEA水溶液含有PAA膨潤ゲルのCO吸収量は、比較例2で示されるPAAハイドロゲルのCO吸収量と、比較例3で示される膨潤ゲルが含有するのと同量のMEA水溶液のCO吸収量とを足し合わせたものよりも著しく高いことが確認された。
実施例と比較例1との比較より、PAA膨潤ゲルがMEA水溶液を含有する方が、MEAを含有するよりも、CO吸収量が著しく上昇することが確認された。
さらに、特に実施例1においては、CO吸収材(液)中に含まれ得るアミノ基の最大量(mmol)よりも、CO吸収量(mmol)が高いことが確認された。つまり、MEA水溶液を含有したPAA膨潤ゲル中において、アミノ基とCOが単純に1対1の反応をするわけではないことが確認された。
これらの結果より、PAA膨潤ゲル中にMEA水溶液を含有させることにより、CO吸収に関して、相乗効果があることが確認された。
As shown in Table 1, from comparison between Comparative Example 2 and 3 and Example, CO 2 absorption amount of aqueous MEA solution containing PAA swollen gel has a CO 2 absorption amount of PAA hydrogel represented by Comparative Example 2, It was confirmed that it was significantly higher than the sum of the amount of CO 2 absorbed by the same amount of MEA aqueous solution contained in the swollen gel shown in Comparative Example 3.
From a comparison between Examples and Comparative Example 1, it was confirmed that the amount of CO 2 absorption markedly increased when the PAA swelling gel contained an aqueous MEA solution than when it contained MEA.
Further, particularly in Example 1, it was confirmed that the CO 2 absorption amount (mmol) was higher than the maximum amount (mmol) of amino groups that could be contained in the CO 2 absorbent (liquid). That is, it was confirmed that the amino group and CO 2 do not simply have a one-to-one reaction in the PAA swelling gel containing the MEA aqueous solution.
From these results, it was confirmed that the inclusion of the MEA aqueous solution in the PAA swelling gel has a synergistic effect on CO 2 absorption.

表1に示されるように、実施例と比較例4の比較より、MEA含有PVA膨潤ゲルのCO吸収量はMEA含有PAA膨潤ゲルよりも著しく小さい。前述のように、CO吸収においては、MEA濃度低下によるMEAの反応性向上と、PAA膨潤ゲル中の水への溶解吸収が重要な因子であると推定されるところ、PVAゲルは疎水性相互作用によりMEA水溶液からMEAを選択的に含有するため、MEA含有膨潤ゲルのCO吸収量はMEA含有PAAゲルよりもが低くなったと推定される。この結果は、水中での静電反発によりMEAを含有しにくいと推定されるPAA膨潤ゲルは、PVA膨潤ゲルよりも、CO高吸収材料に適していることを示している。 As shown in Table 1, the amount of CO 2 absorbed by the MEA-containing PVA swollen gel is significantly smaller than that of the MEA-containing PAA swollen gel, as compared with Examples and Comparative Example 4. As described above, in CO 2 absorption, it is presumed that improvement in MEA reactivity due to a decrease in MEA concentration and absorption in water in the PAA swelling gel are important factors. Since MEA is selectively contained from the MEA aqueous solution by the action, it is presumed that the CO 2 absorption amount of the MEA-containing swollen gel is lower than that of the MEA-containing PAA gel. This result shows that the PAA swollen gel, which is presumed to contain less MEA due to electrostatic repulsion in water, is more suitable for a CO 2 highly absorbent material than the PVA swollen gel.

本発明のCO吸収材は、ハンドリング性が高く、CO吸収性が良好である。そのため、特に家庭等の小規模分散型排出源で排出されるCOの回収に好適である。例えば、小規模分散型排出源由来のCOを本発明のCOの吸収材に吸収させて回収し、野菜や藻類等を含む光合成生物の大規模栽培(培養)施設等でCO2吸収材からCOを放出することで、小規模分散型排出源由来のCOを光合成生物の光合成により固定化してCOを削減することが期待される。また、COを吸収させた本発明のCO吸収材を、野菜や果実等のCA貯蔵(Controlled Atmosphere Storage)に利用することが期待される。この様に本発明は、高い産業上の利用可能性を有する。 The CO 2 absorbent of the present invention has high handling properties and good CO 2 absorption. Therefore, it is particularly suitable for collecting CO 2 emitted from a small-scale distributed emission source such as a home. For example, the CO 2 from the small-scale distributed emission sources is absorbed in the absorber of CO 2 in the present invention is recovered, large-scale cultivation of photosynthetic organisms, including vegetables and algae (culture) CO 2 absorbent material in facilities from by releasing CO 2, it is expected to be immobilized to reduce CO 2 through photosynthesis small distributed emission sources from the CO 2 photosynthetic organisms. Further, it is expected that the CO 2 absorbent of the present invention that has absorbed CO 2 is used for CA storage (Controlled Atmosphere Storage) of vegetables and fruits. Thus, the present invention has high industrial applicability.

Claims (6)

CO吸収材であって、アミノ基含有架橋重合体と、下記一般式(1)

(式中、R、Rは独立に水素原子、又は、ヒドロキシ基又はアミノ基で置換されてもよい炭素数1〜4の直鎖又は分岐アルキル基を示し、Xは基中にエーテル結合を含んでいてもよい炭素数2〜4の直鎖又は分岐アルキレン基を示す。)
で示されるアルカノールアミンの極性溶媒溶液を含むアミノ基含有架橋重合体膨潤ゲルを有することを特徴とする、CO吸収材。
A CO 2 absorbent, an amino group-containing crosslinked polymer, and the following general formula (1)

(Wherein R 1 and R 2 independently represent a hydrogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms which may be substituted with a hydroxy group or an amino group, and X represents an ether bond in the group. A linear or branched alkylene group having 2 to 4 carbon atoms which may contain
A CO 2 absorbent having an amino group-containing crosslinked polymer swelling gel containing a polar solvent solution of alkanolamine represented by
前記アミノ基含有架橋重合体が、下記一般式(2)

(式中、Rは、水素原子又は炭素数1〜4のアルキル基を示す。)
で表される構成単位を含む架橋重合体である請求項1に記載のCO吸収材。
The amino group-containing crosslinked polymer is represented by the following general formula (2)

(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
The CO 2 absorbent according to claim 1, which is a crosslinked polymer containing a structural unit represented by:
前記アルカノールアミンがモノエタノールアミンである請求項1又は2に記載のCO吸収材。 The CO 2 absorbent according to claim 1 or 2, wherein the alkanolamine is monoethanolamine. CO吸収材の製造方法であって、アミノ基含有架橋重合体と、下記一般式(1)

(式中、R、Rは独立に水素原子、又は、ヒドロキシ基又はアミノ基で置換されてもよい炭素数1〜4の直鎖又は分岐アルキル基を示し、Xは基中にエーテル結合を含んでいてもよい炭素数2〜4の直鎖又は分岐アルキレン基を示す。)で表されるアルカノールアミンの極性溶媒溶液とを混合し、該アミノ基含有架橋重合体を膨潤させて、アミノ基含有架橋重合体膨潤ゲルを製造することを特徴とする、CO吸収材の製造方法。
A method for producing a CO 2 absorbent, comprising an amino group-containing crosslinked polymer and the following general formula (1):

(Wherein R 1 and R 2 independently represent a hydrogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms which may be substituted with a hydroxy group or an amino group, and X represents an ether bond in the group. A linear or branched alkylene group having 2 to 4 carbon atoms which may contain an alkanolamine represented by the following formula: A method for producing a CO 2 absorbent, comprising producing a group-containing crosslinked polymer swelling gel.
前記アミノ基含有架橋重合体が、下記一般式(2)

(式中、Rは、水素原子又は炭素数1〜4のアルキル基を示す。)
で表される構成単位を含む架橋重合体である請求項4に記載の製造方法。
The amino group-containing crosslinked polymer is represented by the following general formula (2)

(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
The manufacturing method of Claim 4 which is a crosslinked polymer containing the structural unit represented by these.
前記アルカノールアミンがモノエタノールアミンである請求項4又は5に記載の製造方法。   The production method according to claim 4 or 5, wherein the alkanolamine is monoethanolamine.
JP2011046043A 2011-03-03 2011-03-03 Co2 absorber and method of manufacturing the same Pending JP2012179584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046043A JP2012179584A (en) 2011-03-03 2011-03-03 Co2 absorber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046043A JP2012179584A (en) 2011-03-03 2011-03-03 Co2 absorber and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012179584A true JP2012179584A (en) 2012-09-20

Family

ID=47011291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046043A Pending JP2012179584A (en) 2011-03-03 2011-03-03 Co2 absorber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012179584A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789377A3 (en) * 2013-04-12 2015-01-21 Delphi Technologies, Inc. Carbon dioxide absorbent fluid for a carbon dioxide sequestering system on a vehicle.
KR101559563B1 (en) 2013-10-30 2015-10-26 광주과학기술원 Carbon dioxide absorbent solution comprising guanidine derivatives and method for regenerating the same
JP2016179418A (en) * 2015-03-23 2016-10-13 株式会社東芝 Method for treating carbon dioxide adsorbent
JP2017507011A (en) * 2013-12-02 2017-03-16 ユニバーシティ オブ サザン カリフォルニア Renewable adsorbent of modified amines on nanostructured supports
JPWO2016024633A1 (en) * 2014-08-15 2017-06-29 国立大学法人九州大学 Gas absorption material, use thereof for gas absorption, gas absorber and gas absorption method, and acid gas absorption device, acid gas recovery device, water vapor absorption device, water vapor recovery device, heat exchanger and heat recovery device
WO2018179531A1 (en) * 2017-03-31 2018-10-04 住友化学株式会社 Gel including condensation product of organic silicon compound
JP2018158302A (en) * 2017-03-23 2018-10-11 株式会社東芝 Carbon dioxide absorbing material and carbon dioxide separation recovery system
EP3545055A4 (en) * 2016-11-25 2020-07-01 Commonwealth Scientific and Industrial Research Organisation "a particulate material and a method for removing one or more contaminants from hydrocarbon gas"
JP2021035676A (en) * 2011-08-19 2021-03-04 国立大学法人九州大学 Carbon dioxide separation film
WO2022183244A1 (en) * 2021-03-05 2022-09-09 Commonwealth Scientific And Industrial Research Organisation Functionalised hydrogels
CN116004203A (en) * 2021-10-22 2023-04-25 中国石油化工股份有限公司 CO (carbon monoxide) 2 Responsive gel system and CO 2 Leakage prevention method in driving and burying process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112122A (en) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol Carbon dioxide separating gelatinous membrane and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112122A (en) * 1993-10-19 1995-05-02 Agency Of Ind Science & Technol Carbon dioxide separating gelatinous membrane and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014046533; NAGAI Daisuke, et al.: 'Synthesis of Hydrogels from Polyallylamine with Carbon Dioxide as Gellant:Development of Reversible' Macromolecular Rapid Communications Vol.32, No.4, 20110216, pp.404-410 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035676A (en) * 2011-08-19 2021-03-04 国立大学法人九州大学 Carbon dioxide separation film
JP7108322B2 (en) 2011-08-19 2022-07-28 国立大学法人九州大学 carbon dioxide separation membrane
EP2789377A3 (en) * 2013-04-12 2015-01-21 Delphi Technologies, Inc. Carbon dioxide absorbent fluid for a carbon dioxide sequestering system on a vehicle.
KR101559563B1 (en) 2013-10-30 2015-10-26 광주과학기술원 Carbon dioxide absorbent solution comprising guanidine derivatives and method for regenerating the same
JP2017507011A (en) * 2013-12-02 2017-03-16 ユニバーシティ オブ サザン カリフォルニア Renewable adsorbent of modified amines on nanostructured supports
US10987652B2 (en) 2014-08-15 2021-04-27 Kyushu University, National University Corporation Gas absorption material, use of same for gas absorption, gas absorption body, gas absorption method, acidic gas absorption device, acidic gas recovery device, water vapor absorption device, water vapor recovery device, heat exchanger, and heat recovery device
EP3181223A4 (en) * 2014-08-15 2018-04-18 Kyushu University, National University Corporation Gas absorption material, use of same for gas absorption, gas absorption body, gas absorption method, acidic gas absorption device, acidic gas recovery device, water vapor absorption device, water vapor recovery device, heat exchanger, and heat recovery device
JP7244122B2 (en) 2014-08-15 2023-03-22 国立大学法人九州大学 Gas absorption material, its use for gas absorption, gas absorber and gas absorption method, and acid gas absorption device, acid gas recovery device, water vapor absorption device, water vapor recovery device, heat exchanger and heat recovery device
JP2021121435A (en) * 2014-08-15 2021-08-26 国立大学法人九州大学 Gas absorption material, use of the same for gas absorption, gas absorption body and gas absorption method, and acidic gas absorption device, acidic gas recovery device, water vapor absorption device, water vapor recovery device, heat exchanger and heat recovery device
JPWO2016024633A1 (en) * 2014-08-15 2017-06-29 国立大学法人九州大学 Gas absorption material, use thereof for gas absorption, gas absorber and gas absorption method, and acid gas absorption device, acid gas recovery device, water vapor absorption device, water vapor recovery device, heat exchanger and heat recovery device
US10544252B2 (en) 2015-03-23 2020-01-28 Kabushiki Kaisha Toshiba Method for treatment of carbon dioxide absorbing agent
JP2016179418A (en) * 2015-03-23 2016-10-13 株式会社東芝 Method for treating carbon dioxide adsorbent
EP3545055A4 (en) * 2016-11-25 2020-07-01 Commonwealth Scientific and Industrial Research Organisation "a particulate material and a method for removing one or more contaminants from hydrocarbon gas"
US11325102B2 (en) 2016-11-25 2022-05-10 Commonwealth Scientific And Industrial Research Organisation Particulate material and a method for removing one or more contaminants from hydrocarbon gas
US10722838B2 (en) 2017-03-23 2020-07-28 Kabushiki Kaisha Toshiba Carbon dioxide absorbent and carbon dioxide separation and recovery system
JP2018158302A (en) * 2017-03-23 2018-10-11 株式会社東芝 Carbon dioxide absorbing material and carbon dioxide separation recovery system
US10765993B2 (en) 2017-03-31 2020-09-08 Sumitomo Chemical Company, Limited Gel including condensation product of organic silicon compound
WO2018179531A1 (en) * 2017-03-31 2018-10-04 住友化学株式会社 Gel including condensation product of organic silicon compound
CN110461948A (en) * 2017-03-31 2019-11-15 住友化学株式会社 The gel of condensation product comprising organo-silicon compound
JP6471271B1 (en) * 2017-03-31 2019-02-13 住友化学株式会社 Gel containing condensate of organosilicon compound
CN110461948B (en) * 2017-03-31 2021-11-23 住友化学株式会社 Gels comprising condensation products of organosilicon compounds
WO2022183244A1 (en) * 2021-03-05 2022-09-09 Commonwealth Scientific And Industrial Research Organisation Functionalised hydrogels
CN116004203A (en) * 2021-10-22 2023-04-25 中国石油化工股份有限公司 CO (carbon monoxide) 2 Responsive gel system and CO 2 Leakage prevention method in driving and burying process

Similar Documents

Publication Publication Date Title
JP2012179584A (en) Co2 absorber and method of manufacturing the same
US10471394B2 (en) Electron beam induced modification of membranes by polymers
CN106076283B (en) A kind of nano-cellulose/poly-dopamine hydrogel adsorbent and the preparation method and application thereof
JP2008543546A5 (en)
KR20170127416A (en) Regenerated adsorbent of modified amine on solid carrier
JP2013027806A (en) Carbon dioxide separation membrane, support for carbon dioxide separation membrane, and method of manufacturing them
JP2011504140A (en) Air collector with functional ion exchange membrane to capture ambient CO2
US20230134668A1 (en) Monolayer, composite, gas separation material, filter, gas separation device and method for manufacturing composite
CN100537021C (en) Method for preparing ammonifiers adosorbant
Hong et al. Progress in polyvinyl alcohol membranes with facilitated transport properties for carbon capture
CN111389215A (en) Preparation method and application of hyperbranched polyamide modified activated carbon
CN105268417A (en) Preparation method of composite membrane with functions of adsorbing and separating heavy metal ions
CN105330787A (en) Hydrogel used for adsorbing heavy metal and preparing method and application thereof
CN115052637B (en) Deodorant agent
JP4176932B2 (en) Moisture absorption and desorption material
US20230038851A1 (en) Ammonium-functionalized polysulfone copolymers for moisture-swing co2 capture
JP5652786B2 (en) Method for promoting photosynthesis of photosynthetic organisms
KR101863289B1 (en) Manufacturing method of PEI particle crosslinked with glutaraldehyde for adsorbing carbon dioxide, and PEI particle crosslinked with glutaraldehyde manufactured thereby
CN113797897A (en) For capturing CO2Preparation method of modified chitosan carbon-based aerogel
Wu et al. Preparation of a surface molecularly imprinted fiber for bisphenol a recognition
JP7395903B2 (en) Deodorants
CN116020424B (en) Aldehyde removing material with cross-linked polyvinyl alcohol as carrier and preparation method thereof
JPH09267017A (en) Accelerated transportation membrane
WO2023135126A1 (en) Gas-separation membranes
JP2024079971A (en) Carbon dioxide separation composition and carbon dioxide separation material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303