JP2012178479A - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
JP2012178479A
JP2012178479A JP2011041009A JP2011041009A JP2012178479A JP 2012178479 A JP2012178479 A JP 2012178479A JP 2011041009 A JP2011041009 A JP 2011041009A JP 2011041009 A JP2011041009 A JP 2011041009A JP 2012178479 A JP2012178479 A JP 2012178479A
Authority
JP
Japan
Prior art keywords
spiral coil
wireless power
power transmission
transmission system
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011041009A
Other languages
Japanese (ja)
Other versions
JP6024013B2 (en
Inventor
Toshio Ishizaki
俊雄 石崎
Ikuo Awai
郁雄 粟井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukoku University
Original Assignee
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukoku University filed Critical Ryukoku University
Priority to JP2011041009A priority Critical patent/JP6024013B2/en
Publication of JP2012178479A publication Critical patent/JP2012178479A/en
Application granted granted Critical
Publication of JP6024013B2 publication Critical patent/JP6024013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power transmission system in which expansion of a transmitting-side electronic apparatus in scale is suppressed, further, variance in power transmission according to a location of a receiving-side electronic apparatus is reduced and moreover, the receiving-side electronic apparatus is further small-sized.SOLUTION: A wireless power transmission system 1 comprises a transmitting-side electronic apparatus 2 including a transmitting-side resonator 21 having a transmitting-side spiral coil 21a and a receiving-side electronic apparatus 3 including a receiving-side resonator 31 having a receiving-side spiral coil 31a of which the spiral diameter is smaller than that of the transmitting-side spiral coil 21a. In the transmitting-side spiral coil 21a, the presence/absence of an electric lead wire 21aa and an inter-wire pitch (g) are different between a peripheral area N and an inner area M and around the receiving-side spiral coil 31a, an electric lead wire 31aa is wound more tightly than the transmitting-side spiral coil 21a. The transmitting-side resonator 21 and the receiving-side resonator 31 are resonated in a predetermined resonant frequency, thereby wirelessly transmitting power from the transmitting-side electronic apparatus 2 to the receiving-side electronic apparatus 3.

Description

本発明は、共振方式の無線電力伝送システムに関する。   The present invention relates to a resonance type wireless power transmission system.

従来より、送信側電子装置から受信側電子装置へ電力を無線(無接触)で伝送する無線電力伝送システムの研究開発が盛んに行われている。無線電力伝送システムは、機械的な接触を必要としないため、耐久性が高く、騒音が少ないなどの利点がある。このような無線電力伝送システムには、遠方まで伝播する電磁波を用いて行うものと、遠方に伝播せず近傍にしか存在しない電磁場(エバネセント界)による結合を用いて行うものと、がある。後者の電磁場による結合を用いて行うものは、電力を受信する受信側電子装置が存在すれば電力の送信側電子装置との結合に応じて、送信側電子装置が有する電力(エネルギー)が受信側電子装置に伝送されるものであって、主に、電磁誘導方式と共振方式が提唱されている。   Conventionally, research and development of a wireless power transmission system that wirelessly (contactlessly) transmits power from a transmission-side electronic device to a reception-side electronic device has been actively conducted. Since the wireless power transmission system does not require mechanical contact, it has advantages such as high durability and low noise. Such wireless power transmission systems include those that use electromagnetic waves that propagate far and those that use coupling by an electromagnetic field (evanescent field) that does not propagate far and exists only in the vicinity. In the latter case, if the receiving side electronic device that receives power is present, the power (energy) of the transmitting side electronic device is received on the receiving side according to the coupling with the transmitting side electronic device. An electromagnetic induction method and a resonance method are mainly proposed.

共振方式の無線電力伝送システムは、送信側電子装置に設けられた送信側共振器の共振周波数と受信側電子装置に設けられた受信側共振器の共振周波数を一致させ、共振している送信側共振器からの電磁場によって受信側共振器に共振を起こさせて電力を伝送するものである。この方式は、通常、電磁誘導方式に比べて伝送効率を高くすることができ、また、共振しない周辺の物体に影響がないようにできる。共振方式の無線電力伝送システムとして、例えば、特許文献1には、並列に結合したヘリカルコイルとコンデンサを送信側共振器及び受信側共振器としたものが記載されている。この特許文献1では、送信側共振器と受信側共振器の構造と大きさを同じにすることで、それらの共振周波数を一致させている。   A resonance-type wireless power transmission system is configured such that the resonance frequency of the transmission-side resonator provided in the transmission-side electronic device matches the resonance frequency of the reception-side resonator provided in the reception-side electronic device, thereby resonating. The power is transmitted by causing the receiving side resonator to resonate with the electromagnetic field from the resonator. In general, this method can increase the transmission efficiency compared with the electromagnetic induction method, and can prevent the surrounding objects that do not resonate from being affected. As a resonance-type wireless power transmission system, for example, Patent Document 1 describes a helical coil and a capacitor coupled in parallel as a transmission-side resonator and a reception-side resonator. In Patent Document 1, the structures and sizes of the transmission-side resonator and the reception-side resonator are made the same so that their resonance frequencies are matched.

また、特許文献2には、直径が大きいヘリカルコイルを送信側共振器とし、直径が小さいスパイラルコイルを受信側共振器としたものが記載されている。この特許文献2では、送信側共振器と受信側共振器の構造と大きさを異ならせ、かつ、それらの共振周波数を一致させるようにしている。そして、特許文献2では、受信側共振器をスパイラルコイルにして、それの占める体積を比較的小さくすることで、携帯可能な通信端末機やコンピュータなどの受信側電子装置を小型化している。   Patent Document 2 describes a helical coil having a large diameter as a transmitting side resonator and a spiral coil having a small diameter as a receiving side resonator. In Patent Document 2, the structures and sizes of the transmission-side resonator and the reception-side resonator are made different, and the resonance frequencies thereof are matched. In Patent Document 2, the reception-side electronic device such as a portable communication terminal or a computer is miniaturized by using a reception-side resonator as a spiral coil and relatively reducing the volume occupied by the reception-side resonator.

米国特許公開2009/0015075号公報US Patent Publication No. 2009/0015075 特開2010−279239号公報JP 2010-279239 A

ところで、固定設置される送信側電子装置と、携帯されて移動する受信側電子装置と、からなる無線電力伝送システムを考えた場合、受信側電子装置は、できるだけ小型化することが望まれる。加えて、送信側電子装置は、できるだけ広い範囲で十分な電力が受信側電子装置に伝送されるように、例えば電力を送信する面積を大きくしたり、場所による電力伝送のばらつきを少なくしたりするのが好ましい。   By the way, when considering a wireless power transmission system including a transmission-side electronic device that is fixedly installed and a reception-side electronic device that is carried and moved, it is desired that the reception-side electronic device be as small as possible. In addition, the transmission-side electronic device increases, for example, an area for transmitting power or reduces variations in power transmission depending on the location so that sufficient power is transmitted to the reception-side electronic device in the widest possible range. Is preferred.

しかしながら、電力を送信する面積を大きくするために、特許文献1、2に記載のヘリカルコイルを用いて送信側共振器を構成したとすると、送信側共振器が厚くなって送信側電子装置全体の大型化を招来する。また、受信側電子装置については、特許文献1に記載のヘリカルコイルを用いて受信側共振器を構成したとすると、やはり受信側電子装置の大型化を招来し、携帯可能な程度の小型化は難しい。また、特許文献2に記載のスパイラルコイルを用いれば、受信側電子装置のかなりの程度の小型化は可能と考えられるが、更なる小型化へのニーズは高いと考えられる。   However, if the transmission-side resonator is configured using the helical coil described in Patent Documents 1 and 2 in order to increase the area for transmitting power, the transmission-side resonator becomes thick and the entire transmission-side electronic device is Invite larger size. In addition, regarding the reception-side electronic device, if the reception-side resonator is configured using the helical coil described in Patent Document 1, the reception-side electronic device is also increased in size, so that the reception-side electronic device is small enough to be portable. difficult. Further, if the spiral coil described in Patent Document 2 is used, it is considered that the receiving-side electronic device can be considerably reduced in size, but the need for further downsizing is considered high.

本発明は、係る事由に鑑みてなされたものであり、その目的は、送信側電子装置について電力を送信する面積を大きくしたときでも装置全体の大型化を抑制し、しかも、受信側電子装置の場所による電力伝送のばらつきが少なく、更に、受信側電子装置が携帯に好適なように、より小型化された無線電力伝送システムを提供することにある。   The present invention has been made in view of the above reasons, and its purpose is to suppress the enlargement of the entire apparatus even when the area for transmitting power is increased for the transmission-side electronic apparatus, and the reception-side electronic apparatus It is an object of the present invention to provide a wireless power transmission system that is smaller in size so that there is little variation in power transmission depending on the location and the receiving-side electronic device is suitable for carrying.

上記目的を達成するために、請求項1に記載の無線電力伝送システムは、電気導線が平面的でスパイラル状に巻かれて形成される送信側スパイラルコイルを有した送信側共振器を含む送信側電子装置と、電気導線が平面的でスパイラル状に巻かれて形成されるものであって、前記送信側スパイラルコイルよりもスパイラルの直径が小さい受信側スパイラルコイルを有した受信側共振器を含む受信側電子装置と、を備えてなり、前記送信側スパイラルコイルは、周辺領域とその周辺領域の内側に位置してスパイラルの中心を含む内方領域とで、前記電気導線の有無又は線間ピッチが異なっており、前記受信側スパイラルコイルは、前記送信側スパイラルコイルより前記電気導線が密に巻かれており、前記送信側共振器が所定の共振周波数で共振し、前記受信側共振器が前記送信側共振器の共振周波数で共振することによって、前記送信側電子装置から前記受信側電子装置に無線で電力を伝送することを特徴とする。   In order to achieve the above object, the wireless power transmission system according to claim 1 includes a transmission-side resonator having a transmission-side spiral coil formed by winding a conductive wire in a flat and spiral shape. A reception device including an electronic device and a reception-side resonator having a reception-side spiral coil having a spiral diameter smaller than that of the transmission-side spiral coil, which is formed by spirally winding an electric conductor in a planar shape. The transmission-side spiral coil includes a peripheral region and an inner region located inside the peripheral region and including the center of the spiral, and the presence or absence of the electric conductor or the pitch between the lines is The receiving side spiral coil is wound more densely around the electrical conductor than the transmitting side spiral coil, and the transmitting side resonator resonates at a predetermined resonance frequency. By the receiving side resonator resonates at a resonance frequency of the transmitting-side resonator, and wherein the transmitting power wirelessly to the receiving electronic apparatus from the transmitting-side electronic device.

請求項2に記載の無線電力伝送システムは、請求項1に記載の無線電力伝送システムにおいて、前記送信側スパイラルコイルは、前記周辺領域のみに前記電気導線が設けられていることを特徴とする。   A wireless power transmission system according to a second aspect is the wireless power transmission system according to the first aspect, wherein the transmission-side spiral coil is provided with the electrical conductor only in the peripheral region.

請求項3に記載の無線電力伝送システムは、請求項2に記載の無線電力伝送システムにおいて、前記送信側スパイラルコイルは、前記周辺領域の半径方向の長さは、前記内方領域の半径よりも小さくなっていることを特徴とする。   The wireless power transmission system according to claim 3 is the wireless power transmission system according to claim 2, wherein the transmission-side spiral coil has a radial length of the peripheral region that is larger than a radius of the inner region. It is characterized by being smaller.

請求項4に記載の無線電力伝送システムは、請求項3に記載の無線電力伝送システムにおいて、前記送信側スパイラルコイルは、前記周辺領域の半径方向の長さは、前記内方領域の半径の6分の1以下になっていることを特徴とする。   A wireless power transmission system according to a fourth aspect is the wireless power transmission system according to the third aspect, wherein the transmission-side spiral coil has a radial length of the peripheral region that is 6 times a radius of the inner region. It is characterized by being less than 1 / minute.

請求項5に記載の無線電力伝送システムは、請求項1に記載の無線電力伝送システムにおいて、前記送信側スパイラルコイルは、前記周辺領域と前記内方領域に連続して設けられており、前記周辺領域では前記電気導線が密に巻かれており、前記内方領域では前記電気導線が疎に巻かれていることを特徴とする。   The wireless power transmission system according to claim 5 is the wireless power transmission system according to claim 1, wherein the transmission-side spiral coil is continuously provided in the peripheral region and the inward region, In the region, the electric conductor is densely wound, and in the inner region, the electric conductor is sparsely wound.

請求項6に記載の無線電力伝送システムは、請求項5に記載の無線電力伝送システムにおいて、前記送信側スパイラルコイルは、前記周辺領域の半径方向の長さは、前記内方領域の半径の9分の1以下になっていることを特徴とする。   The wireless power transmission system according to claim 6 is the wireless power transmission system according to claim 5, wherein the transmission-side spiral coil has a radial length of the peripheral region that is 9 times a radius of the inner region. It is characterized by being less than 1 / minute.

請求項7に記載の無線電力伝送システムは、請求項1〜6のいずれか1項に記載の無線電力伝送システムにおいて、前記送信側スパイラルコイルは、1/2波長で共振する両端開放のものであることを特徴とする。   The wireless power transmission system according to claim 7 is the wireless power transmission system according to any one of claims 1 to 6, wherein the transmission-side spiral coil is open at both ends that resonates at ½ wavelength. It is characterized by being.

請求項8に記載の無線電力伝送システムは、請求項1〜7のいずれか1項に記載の無線電力伝送システムにおいて、前記受信側共振器は、前記受信側スパイラルコイルの電気導線の線間ピッチが前記送信側スパイラルコイルの電気導線の線間ピッチの2分の1以下になっていることを特徴とする。   The wireless power transmission system according to claim 8 is the wireless power transmission system according to any one of claims 1 to 7, wherein the reception-side resonator has a line pitch between electric conductors of the reception-side spiral coil. Is less than or equal to one-half of the pitch between the electrical conductors of the transmitting spiral coil.

請求項9に記載の無線電力伝送システムは、請求項1〜8のいずれか1項に記載の無線電力伝送システムにおいて、前記受信側共振器は、前記受信側スパイラルコイルの両端間にコンデンサが設けられていることを特徴とする。   The wireless power transmission system according to claim 9 is the wireless power transmission system according to any one of claims 1 to 8, wherein the reception-side resonator includes a capacitor between both ends of the reception-side spiral coil. It is characterized by being.

請求項10に記載の無線電力伝送システムは、請求項9に記載の無線電力伝送システムにおいて、前記受信側スパイラルコイルは、直径が、前記送信側スパイラルコイルの直径の7分の1以下になっていることを特徴とする。   The wireless power transmission system according to claim 10 is the wireless power transmission system according to claim 9, wherein the reception-side spiral coil has a diameter equal to or less than 1/7 of the diameter of the transmission-side spiral coil. It is characterized by being.

本発明によれば、無線電力伝送システムにおいて、送信側電子装置の送信側共振器及び受信側電子装置の受信側共振器にスパイラルコイルを用い、その送信側スパイラルコイルの周辺領域と内方領域とで電気導線の有無又は線間ピッチが異なっており、受信側スパイラルコイルの電気導線は送信側スパイラルコイルよりも密に巻かれているので、送信側電子装置について、電力を送信する面積を大きくしたときでも装置全体の大型化を抑制し、しかも、受信側電子装置の場所による電力伝送のばらつきを少なくし、更に、受信側電子装置を携帯に好適なように、より小型化することが可能になる。   According to the present invention, in a wireless power transmission system, a spiral coil is used for a transmission-side resonator of a transmission-side electronic device and a reception-side resonator of a reception-side electronic device, and a peripheral region and an inner region of the transmission-side spiral coil are used. Because the electrical conductor of the receiving side spiral coil is wound more densely than the transmitting side spiral coil, the area for transmitting power is increased for the transmitting side electronic device. Even when the size of the entire device is suppressed, variation in power transmission due to the location of the receiving-side electronic device is reduced, and the receiving-side electronic device can be further miniaturized to be suitable for carrying. Become.

本発明の実施形態に係る無線電力伝送システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the wireless power transmission system which concerns on embodiment of this invention. 同上の無線電力伝送システムの送信側スパイラルコイルの例を示す平面図である。It is a top view which shows the example of the transmission side spiral coil of a wireless power transmission system same as the above. 同上の無線電力伝送システムの送信側スパイラルコイルの別の例を示す平面図である。It is a top view which shows another example of the transmission side spiral coil of a wireless power transmission system same as the above. 参考としての送信側スパイラルコイルの別の例を示す平面図である。It is a top view which shows another example of the transmission side spiral coil as a reference. 同上の無線電力伝送システムの受信側共振器の例を示すものであって、(a)が平面図、(b)が拡大平面図である。The example of the receiving side resonator of a wireless power transmission system same as the above is shown, Comprising: (a) is a top view, (b) is an enlarged plan view. 同上の無線電力伝送システムのための実験構成を示す模式図である。It is a schematic diagram which shows the experimental structure for a wireless power transmission system same as the above. 同上の無線電力伝送システムの電力の伝送特性を示す図である。It is a figure which shows the transmission characteristic of the electric power of a wireless power transmission system same as the above.

以下、本発明を実施するための好ましい形態を図面を参照しながら説明する。本発明の実施形態に係る無線電力伝送システム1は、図1に模式的に示すように、送信側電子装置2と受信側電子装置3を備えており、電磁波を用いずに、電磁場(エバネセント界)による結合を用いて、送信側電子装置2から受信側電子装置3へ電力を無線で伝送するものである。この無線電力伝送システム1は、送信側電子装置2が、床や壁への埋め込みなどによって固定設置され、受信側電子装置3が、携帯されて移動しながらでも電力の伝送が行えるようなシステムに好適に応用される。   Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. As schematically shown in FIG. 1, a wireless power transmission system 1 according to an embodiment of the present invention includes a transmission-side electronic device 2 and a reception-side electronic device 3, and uses an electromagnetic field (evanescent field) without using electromagnetic waves. ) Is used to wirelessly transmit power from the transmission side electronic device 2 to the reception side electronic device 3. The wireless power transmission system 1 is suitable for a system in which the transmission-side electronic device 2 is fixedly installed by embedding in a floor or a wall, and the reception-side electronic device 3 can carry power while being carried around. Applied to.

送信側電子装置2は、図1に示すように、所定の周波数で共振する送信側共振器21を含むものであり、この送信側共振器21は、電気導線21aaが平面的でスパイラル状に巻かれて形成される送信側スパイラルコイル21aを有している。   As shown in FIG. 1, the transmission-side electronic device 2 includes a transmission-side resonator 21 that resonates at a predetermined frequency. The transmission-side resonator 21 has an electric conductor 21aa planarly wound in a spiral shape. A transmission-side spiral coil 21a is formed.

送信側スパイラルコイル21aは、図2及び図3に示すようなものであり、図4に示すような、スパイラルの中心からスパイラルの最外側までにわたって電気導線21aaの全ての線間ピッチgを一定に保って巻いてある、所謂、均等巻のスパイラルコイルではない。すなわち、送信側スパイラルコイル21aは、周辺領域N(図2及び図3中、破線で示す同心円同士の間の領域)とその周辺領域Nの内側に位置してスパイラルの中心を含む内方領域Mとで、電気導線21aaの有無又は線間ピッチgが異なっている。   The transmission-side spiral coil 21a is as shown in FIGS. 2 and 3, and as shown in FIG. 4, all the line pitches g of the electric conducting wires 21aa are constant from the center of the spiral to the outermost side of the spiral. It is not a so-called uniform winding spiral coil that is kept and wound. That is, the transmission-side spiral coil 21a includes the peripheral region N (the region between the concentric circles indicated by broken lines in FIGS. 2 and 3) and the inner region M that is located inside the peripheral region N and includes the center of the spiral. The presence / absence of the electrical conductor 21aa or the line pitch g is different.

図2に示す送信側スパイラルコイル21aは、周辺領域Nと周辺領域Nの内側に位置する内方領域Mの2つの領域に分かれており、スパイラルの内方端からスパイラルの外方端に至る電気導線21aaが周辺領域Nのみに設けられている、すなわち、エッジワイズ巻のスパイラルコイル(edge−wise spiral coil)になっている。そして、電気導線21aaは、密に(短い線間ピッチgで)巻かれている。より詳しくは、エッジワイズ巻の送信側スパイラルコイル21aは、通常、周辺領域Nの半径方向の長さ(電気導線21aaの最内側から最外側までの半径方向の長さ)nが、内方領域Mの半径(スパイラルの中心から電気導線21aaの最内側までの半径方向の長さ)mよりも小さくなっている。図2に示すこの送信側スパイラルコイル21aは、長さnが長さmの6分の1以下になっているものである。   The transmission-side spiral coil 21a shown in FIG. 2 is divided into two regions, a peripheral region N and an inner region M located inside the peripheral region N, and the electric power from the inner end of the spiral to the outer end of the spiral. The conducting wire 21aa is provided only in the peripheral region N, that is, an edge-wise spiral coil (edge-wise spiral coil). The electric conducting wire 21aa is densely wound (with a short line pitch g). More specifically, the transmission-side spiral coil 21a of the edgewise winding generally has a radial length (a radial length from the innermost side to the outermost side of the electric conducting wire 21aa) n of the peripheral region N in the inner region. It is smaller than the radius of M (the length in the radial direction from the center of the spiral to the innermost side of the electric conductor 21aa) m. The transmission-side spiral coil 21a shown in FIG. 2 has a length n of 1/6 or less of the length m.

図3に示す送信側スパイラルコイル21aは、周辺領域Nと内方領域Mの2つの領域に分かれており、周辺領域Nから内方領域Mにも連続して設けられており、周辺領域Nでは電気導線21aaが密に巻かれており、内方領域Mでは電気導線21aaが疎に(周辺領域Nよりも大きな線間ピッチgで)均等巻で巻かれている、すなわち、エッジワイズ巻+均等巻のスパイラルコイルになっている。図3に示すこの送信側スパイラルコイル21aは、周辺領域Nの半径方向の長さnは、内方領域Mの半径方向の長さmの9分の1以下になっているものである。   The transmission-side spiral coil 21a shown in FIG. 3 is divided into two regions, a peripheral region N and an inner region M, and is continuously provided from the peripheral region N to the inner region M. In the peripheral region N, The electric conducting wire 21aa is densely wound, and in the inner region M, the electric conducting wire 21aa is sparsely wound (with a larger inter-line pitch g than the peripheral region N), ie, edgewise winding + equal It is a spiral coil of winding. In the transmission-side spiral coil 21a shown in FIG. 3, the length n in the radial direction of the peripheral region N is equal to or less than 1/9 of the length m in the radial direction of the inner region M.

送信側スパイラルコイル21aは、その共振方式、すなわち共振波長や両端の処理などは限定されるものではないが、図2及び図3に示すような1/2波長で共振する両端開放のものを用いれば、電力を送信する面積を大きくするのに有利であり、また、設置のし易さやエネルギー損失が少ないなどの点からも好ましい。   The transmission side spiral coil 21a is not limited in its resonance method, that is, the resonance wavelength and the processing at both ends, but those having both ends open as shown in FIGS. For example, it is advantageous in increasing the area for transmitting power, and is preferable from the viewpoint of ease of installation and low energy loss.

なお、送信側共振器21に電力の送信信号を送って、それを共振させるためには、図1に示すように、送信側スパイラルコイル21aと電磁場で結合した送信側結合ループ22を用いることができる。送信側結合ループ22には、送信信号生成回路23からの高周波数の電力の送信信号が入力される。送信側結合ループ22に入力された電力の送信信号は、インピーダンスが整合されて送信側共振器21に送られる。   In order to send a transmission signal of power to the transmission-side resonator 21 and cause it to resonate, as shown in FIG. 1, a transmission-side coupling loop 22 coupled to the transmission-side spiral coil 21a with an electromagnetic field is used. it can. A transmission signal with high frequency power from the transmission signal generation circuit 23 is input to the transmission side coupling loop 22. The transmission signal of power input to the transmission side coupling loop 22 is sent to the transmission side resonator 21 with the impedance matched.

次に、受信側電子装置3について説明する。受信側電子装置3は、送信側共振器21と同じ共振周波数で共振する受信側共振器31を含むものであり、この受信側共振器31は、送信側共振器21と同様、電気導線31aaが平面的でスパイラル状に巻かれて形成される受信側スパイラルコイル31aを有している。この受信側スパイラルコイル31aは、送信側スパイラルコイル21aよりもスパイラルの直径が小さい。   Next, the receiving-side electronic device 3 will be described. The reception-side electronic device 3 includes a reception-side resonator 31 that resonates at the same resonance frequency as that of the transmission-side resonator 21, and the reception-side resonator 31 has an electrical conductor 31 aa similar to the transmission-side resonator 21. The receiving-side spiral coil 31a is formed to be planar and wound in a spiral shape. The reception-side spiral coil 31a has a smaller spiral diameter than the transmission-side spiral coil 21a.

受信側スパイラルコイル31aは、直径を小さくするために、図5に示すように、電気導線31aaが送信側スパイラルコイル21aの電気導線21aaよりも密に巻かれており、従って、電気導線31aaの線間ピッチg’が電気導線21aaの線間ピッチgよりも小さい(例えば、2分の1以下)。受信側共振器31は、受信側スパイラルコイル31aの直径を更に小さくするために、受信側スパイラルコイル31aの両端間にコンデンサ31bが設けられているようにすることが好ましい。コンデンサ31bを付加すると、受信側共振器31の共振周波数f(Hz)は、受信側スパイラルコイル31aのインダクタンスLとコンデンサ31bのキャパシタンスCによって、f=1/(2π√(LC))の式に従うようになるため、インダクタンスLが小さく、すなわち、受信側スパイラルコイル31aの電気導線31aaが短くて済むからである。図5に示すこの受信側スパイラルコイル31aの直径は、コンデンサ31bを付加することによって、送信側スパイラルコイル21aの直径の7分の1以下になっているものである。   In order to reduce the diameter of the reception side spiral coil 31a, as shown in FIG. 5, the electric conducting wire 31aa is wound more densely than the electric conducting wire 21aa of the transmitting side spiral coil 21a. The inter-pitch g ′ is smaller than the inter-line pitch g of the electrical conductor 21aa (for example, half or less). The receiving resonator 31 is preferably provided with a capacitor 31b between both ends of the receiving spiral coil 31a in order to further reduce the diameter of the receiving spiral coil 31a. When the capacitor 31b is added, the resonance frequency f (Hz) of the reception-side resonator 31 follows the equation of f = 1 / (2π√ (LC)) by the inductance L of the reception-side spiral coil 31a and the capacitance C of the capacitor 31b. This is because the inductance L is small, that is, the electrical conductor 31aa of the reception-side spiral coil 31a can be short. The diameter of the reception side spiral coil 31a shown in FIG. 5 is equal to or less than one-seventh of the diameter of the transmission side spiral coil 21a by adding the capacitor 31b.

なお、図5に示す受信側スパイラルコイル31aは、エッジワイズ巻に近いものとなっているが、受信側スパイラルコイル31aは、密に巻く以外は、巻き方が特に限定されるものではない。   The reception-side spiral coil 31a shown in FIG. 5 is close to edgewise winding, but the reception-side spiral coil 31a is not particularly limited in the manner of winding except for winding closely.

なお、共振した受信側共振器31から電力の送信信号を負荷回路33に伝送するためには、図1に示すように、受信側スパイラルコイル31aと電磁場で結合した受信側結合ループ32を用いることができる。電力の送信信号は、受信側スパイラルコイル31aから受信側結合ループ32を介してインピーダンスの整合がされて、負荷回路33に伝送される。負荷回路33は、携帯される通信端末機やコンピュータなどの受信側電子装置3の機能を発揮するため回路である。   In order to transmit a transmission signal of electric power from the resonating reception-side resonator 31 to the load circuit 33, as shown in FIG. 1, a reception-side coupling loop 32 that is coupled to the reception-side spiral coil 31a by an electromagnetic field is used. Can do. The power transmission signal is impedance-matched from the reception-side spiral coil 31 a via the reception-side coupling loop 32 and transmitted to the load circuit 33. The load circuit 33 is a circuit for exhibiting the function of the receiving-side electronic device 3 such as a portable communication terminal or a computer.

以上説明した構成の無線電力伝送システム1では、送信側共振器21が所定の周波数で共振し、その電磁場によって受信側共振器31が共振する。それによって、送信側共振器21から受信側共振器31に、すなわち、送信側電子装置2から受信側電子装置3に無線で電力が伝送される。   In the wireless power transmission system 1 configured as described above, the transmission-side resonator 21 resonates at a predetermined frequency, and the reception-side resonator 31 resonates due to the electromagnetic field. As a result, power is wirelessly transmitted from the transmission-side resonator 21 to the reception-side resonator 31, that is, from the transmission-side electronic device 2 to the reception-side electronic device 3.

送信側共振器21は、電気導線21aaが平面的でスパイラル状に巻かれて形成される送信側スパイラルコイル21aを用いているので、電力を送信する面積を大きくしたときでも、厚みは大きくはならないために装置全体の大型化を抑制することができる。また、受信側電子装置3は、受信側スパイラルコイル31aを小さくすることができるので、全体を携帯に好適なように、より小型化することができる。   Since the transmission-side resonator 21 uses the transmission-side spiral coil 21a in which the electric conducting wire 21aa is planarly wound in a spiral shape, the thickness does not increase even when the area for transmitting power is increased. Therefore, the enlargement of the whole apparatus can be suppressed. In addition, since the receiving-side electronic device 3 can reduce the receiving-side spiral coil 31a, the entire receiving-side electronic device 3 can be further reduced in size so as to be suitable for carrying.

また、送信側スパイラルコイル21aは、電気導線21aaが平面的でスパイラル状に巻かれて形成されたものであるので、スパイラルコイルを均等巻以外のものとすることが容易に可能である。そして、送信側スパイラルコイル21aは、図2及び図3に示すように、周辺領域Nと内方領域Mとで電気導線21aaの有無又は線間ピッチgが異なっているようにすることで、以下の実験例に示すように、移動する受信側電子装置3の場所による電力伝送のばらつきを少なくすることができる。   Further, since the transmission-side spiral coil 21a is formed by winding the conductive wire 21aa in a flat and spiral shape, it is possible to easily make the spiral coil other than the uniform winding. Then, as shown in FIGS. 2 and 3, the transmission-side spiral coil 21 a is configured such that the presence / absence of the electrical conductor 21 aa or the line pitch g is different between the peripheral region N and the inner region M. As shown in the experimental example, variation in power transmission depending on the location of the moving reception-side electronic device 3 can be reduced.

次に、無線電力伝送システム1の実験例を示す。この実験例は、実験が可能なように送信側スパイラルコイル21aの直径は比較的小さいもの(23.7cm)を用いている。また、この実験例は、送信側共振器21と受信側共振器31の共振周波数をともに約25MHzとして、図6に示すように、送信側結合ループ22の入力端子iに約25MHzの電力の送信信号を入力させて、受信側スパイラルコイル31aを(すなわち、受信側共振器31及び受信側結合ループ32を)送信側スパイラルコイル21aの中心軸Aから横方向(中心軸Aの垂直方向)(図6におけるX方向)にずらして送信側共振器21と受信側共振器31の結合係数(伝送される電力の割合)を受信側結合ループ32で測定したものである。   Next, an experimental example of the wireless power transmission system 1 is shown. In this experimental example, a transmission side spiral coil 21a having a relatively small diameter (23.7 cm) is used so that the experiment is possible. Further, in this experimental example, the resonance frequency of both the transmitting-side resonator 21 and the receiving-side resonator 31 is set to about 25 MHz, and as shown in FIG. 6, power of about 25 MHz is transmitted to the input terminal i of the transmitting-side coupling loop 22. By inputting a signal, the receiving side spiral coil 31a (that is, the receiving side resonator 31 and the receiving side coupling loop 32) is laterally moved from the central axis A of the transmitting side spiral coil 21a (in the vertical direction of the central axis A) (see FIG. 6, the coupling coefficient (ratio of transmitted power) between the transmitting-side resonator 21 and the receiving-side resonator 31 is measured by the receiving-side coupling loop 32.

送信側共振器21の送信側スパイラルコイル21aは、エッジワイズ巻(図2に示したもの)、エッジワイズ巻+均等巻(図3に示したもの)、均等巻き(図4に示したもの)の3種類を用いた。エッジワイズ巻のものは、線間ピッチgが0.4cm、巻数が4.1ターンとし、エッジワイズ巻+均等巻のものは、エッジワイズ巻の部分は線間ピッチgが0.4cm、巻数が2.7ターン、均等巻の部分は線間ピッチgが2.0cm、巻数が5.3ターンとし、均等巻のものは、線間ピッチgが1.0cm、巻数が11.4ターンとしている。   The transmission-side spiral coil 21a of the transmission-side resonator 21 has an edgewise winding (the one shown in FIG. 2), an edgewise winding + a uniform winding (the one shown in FIG. 3), and a uniform winding (the one shown in FIG. 4). The following three types were used. For the edgewise winding, the line pitch g is 0.4 cm and the number of turns is 4.1 turns, and for the edgewise winding + uniform winding, the edgewise winding part has a line pitch g of 0.4 cm and the number of turns. Is 2.7 turns, the part of the uniform winding has a line pitch g of 2.0 cm and the number of turns is 5.3 turns, and the part of the uniform winding has a line pitch g of 1.0 cm and the number of turns is 11.4 turns. Yes.

受信側共振器31は、図5に示したものであり、受信側スパイラルコイル31aは、直径が3.1cm、線間ピッチg’が0.2cm、巻数が4.5ターンであり、コンデンサ31bのキャパシタンスが68pFである。なお、受信側スパイラルコイル31aのインダクタンスは、0.6μHとなっている。   The receiving-side resonator 31 is the same as that shown in FIG. 5, and the receiving-side spiral coil 31a has a diameter of 3.1 cm, a line pitch g ′ of 0.2 cm, a winding number of 4.5 turns, and a capacitor 31b. The capacitance is 68 pF. The inductance of the reception side spiral coil 31a is 0.6 μH.

図7(a)、(b)、(c)はそれぞれ、送信側スパイラルコイル21aと受信側スパイラルコイル31aの間の距離dを2cm、4cm、6cmとして測定した結果を示すものである。横軸が中心軸Aからの距離(ずれ)、縦軸が結合係数である。図中の曲線a、b、cはそれぞれ、エッジワイズ巻、エッジワイズ巻+均等巻、均等巻のスパイラルコイルを用いた結果を示している。   FIGS. 7A, 7B, and 7C show the results obtained by measuring the distance d between the transmission side spiral coil 21a and the reception side spiral coil 31a as 2 cm, 4 cm, and 6 cm, respectively. The horizontal axis is the distance (deviation) from the central axis A, and the vertical axis is the coupling coefficient. Curves a, b, and c in the figure show the results of using edgewise winding, edgewise winding + uniform winding, and uniform winding spiral coils, respectively.

図より、エッジワイズ巻(曲線a)とエッジワイズ巻+均等巻(曲線b)は、均等巻(曲線c)に比べて、中心軸Aからの距離に対する結合係数の変化が少なく、結合係数が安定していることが分かる。具体的には、距離dが2cm、4cm、6cmいずれの場合でも、中心軸Aからの距離が約6cm以上で、均等巻(曲線c)は結合係数が急激に下がっているが、エッジワイズ巻(曲線a)及びエッジワイズ巻+均等巻(曲線b)は、ほぼ一定を保っているか、又は、均等巻(曲線c)ほどは下がっていない。よって、エッジワイズ巻或いはエッジワイズ巻+均等巻の送信側スパイラルコイル21aを用いると、均等巻のスパイラルコイル21aを用いた場合に比べて、受信側スパイラルコイル31a、すなわち受信側電子装置3の場所による電力伝送のばらつきを少なくすることができる。なお、エッジワイズ巻(曲線a)とエッジワイズ巻+均等巻(曲線b)とを比較すると、特性の差が見られるため、この差をもってどちらかの選択を決定することも可能である。   From the figure, edgewise winding (curve a) and edgewise winding + uniform winding (curve b) have less change in the coupling coefficient with respect to the distance from the center axis A than the uniform winding (curve c), and the coupling coefficient is You can see that it is stable. Specifically, when the distance d is 2 cm, 4 cm, or 6 cm, the distance from the central axis A is about 6 cm or more, and the uniform winding (curve c) has a sharply reduced coupling coefficient, but the edgewise winding (Curve a) and edgewise winding + uniform winding (curve b) are almost constant or not as low as uniform winding (curve c). Accordingly, when the edge-wise winding or the edge-wise winding + uniform winding spiral coil 21a is used, the reception-side spiral coil 31a, that is, the location of the reception-side electronic device 3 is compared with the case where the uniform winding spiral coil 21a is used. It is possible to reduce the variation in power transmission due to. Note that, when the edgewise winding (curve a) is compared with the edgewise winding + uniform winding (curve b), a difference in characteristics can be seen. Therefore, it is possible to determine one of the selections based on this difference.

また、この実験例の送信側スパイラルコイル21aの直径は比較的小さいものであるが、この実験例の結果をスケーリング則により、送信側スパイラルコイル21aの直径を大きくして、電力を送信する面積が大きいものに適用することができる。   In addition, the diameter of the transmission side spiral coil 21a in this experimental example is relatively small. However, the result of this experimental example is increased by increasing the diameter of the transmission side spiral coil 21a according to the scaling law. Can be applied to large ones.

以上、本発明の実施形態に係る無線電力伝送システムについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、周辺領域Nと内方領域Mとで電気導線21aaの有無又は線間ピッチgが異なっているようにした送信側スパイラルコイル21aは、システムに応じた最適化も可能であり、エッジワイズ巻或いはエッジワイズ巻+均等巻の他に、例えば、周辺領域Nと内方領域Mの両方又は片方を、周辺に向かうにつれて徐々に密になるように巻いたり、或いは、場合によっては、周辺に向かうにつれて徐々に疎になるように巻いたりするなども可能である。   The wireless power transmission system according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible. For example, the transmission-side spiral coil 21a in which the presence or absence of the electrical conductor 21aa or the line pitch g is different between the peripheral region N and the inner region M can be optimized according to the system. Alternatively, in addition to the edgewise winding and the uniform winding, for example, both or one of the peripheral region N and the inner region M is wound so as to gradually become denser toward the periphery, or in some cases, toward the periphery. It is also possible to wind it so that it gradually becomes sparse.

また、上記の送信側結合ループ22は、図1に示す本実施形態では、送信側共振器21と距離をおいて異なる平面上に配置されているが、送信側結合ループ22のループの大きさを適切に選ぶことにより、送信側共振器21と送信側結合ループ22を同一平面上に配置しながらインピーダンスの整合を行うことも可能である。そうすることによって、送信側電子装置2の大型化を更に抑制することができる。同様に、上記の受信側結合ループ32は、図1に示す本実施形態では、受信側共振器31と距離をおいて異なる平面上に配置されているが、受信側結合ループ32のループの大きさを適切に選ぶことにより、受信側共振器31と受信側結合ループ32を同一平面上に配置しながらインピーダンスの整合を行うことも可能である。そうすることによって、受信側電子装置3を更に小型化することができる。   In the present embodiment shown in FIG. 1, the transmission side coupling loop 22 is arranged on a different plane at a distance from the transmission side resonator 21, but the size of the transmission side coupling loop 22 is large. By selecting appropriately, it is possible to perform impedance matching while arranging the transmission-side resonator 21 and the transmission-side coupling loop 22 on the same plane. By doing so, the enlargement of the transmission-side electronic device 2 can be further suppressed. Similarly, in the present embodiment shown in FIG. 1, the reception side coupling loop 32 is arranged on a different plane at a distance from the reception side resonator 31, but the size of the reception side coupling loop 32 is large. By appropriately selecting the length, it is possible to perform impedance matching while arranging the reception-side resonator 31 and the reception-side coupling loop 32 on the same plane. By doing so, the receiving-end electronic device 3 can be further reduced in size.

1 無線電力伝送システム
2 送信側電子装置
21 送信側共振器
21a 送信側スパイラルコイル
21aa 送信側スパイラルコイルの電気導線
3 受信側電子装置
31 受信側共振器
31a 受信側スパイラルコイル
31aa 受信側スパイラルコイルの電気導線
31b コンデンサ
M 送信側スパイラルコイルの内方領域
N 送信側スパイラルコイルの周辺領域
g 送信側スパイラルコイルの電気導線の線間ピッチ
g’ 受信側スパイラルコイルの電気導線の線間ピッチ
DESCRIPTION OF SYMBOLS 1 Wireless power transmission system 2 Transmission side electronic device 21 Transmission side resonator 21a Transmission side spiral coil 21aa Transmission side spiral coil electric conductor 3 Reception side electronic device 31 Reception side resonator 31a Reception side spiral coil 31aa Electricity of reception side spiral coil Conductive wire 31b Capacitor M Inner region of transmission side spiral coil N Peripheral region of transmission side spiral coil g Line pitch of electric wire of transmission side spiral coil g 'Pitch of electric wire of reception side spiral coil

Claims (10)

電気導線が平面的でスパイラル状に巻かれて形成される送信側スパイラルコイルを有した送信側共振器を含む送信側電子装置と、
電気導線が平面的でスパイラル状に巻かれて形成されるものであって、前記送信側スパイラルコイルよりもスパイラルの直径が小さい受信側スパイラルコイルを有した受信側共振器を含む受信側電子装置と、を備えてなり、
前記送信側スパイラルコイルは、周辺領域とその周辺領域の内側に位置してスパイラルの中心を含む内方領域とで、前記電気導線の有無又は線間ピッチが異なっており、
前記受信側スパイラルコイルは、前記送信側スパイラルコイルより前記電気導線が密に巻かれており、
前記送信側共振器が所定の共振周波数で共振し、前記受信側共振器が前記送信側共振器の共振周波数で共振することによって、前記送信側電子装置から前記受信側電子装置に無線で電力を伝送することを特徴とする無線電力伝送システム。
A transmitting-side electronic device including a transmitting-side resonator having a transmitting-side spiral coil formed by spirally winding an electrical conductor, and
A receiving-side electronic device including a receiving-side resonator having a receiving-side spiral coil having a spiral diameter smaller than that of the transmitting-side spiral coil, wherein the electric conducting wire is flat and wound in a spiral shape; With
The transmission-side spiral coil is different from the peripheral region and the inner region located inside the peripheral region and including the center of the spiral in the presence or absence of the electrical conductors or the pitch between the lines.
The reception side spiral coil has the electric conductor wound more densely than the transmission side spiral coil,
The transmission-side resonator resonates at a predetermined resonance frequency, and the reception-side resonator resonates at the resonance frequency of the transmission-side resonator, whereby power is wirelessly transmitted from the transmission-side electronic device to the reception-side electronic device. A wireless power transmission system characterized by transmitting.
請求項1に記載の無線電力伝送システムにおいて、
前記送信側スパイラルコイルは、前記周辺領域のみに前記電気導線が設けられていることを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 1,
The wireless power transmission system, wherein the transmission-side spiral coil is provided with the electrical conductor only in the peripheral region.
請求項2に記載の無線電力伝送システムにおいて、
前記送信側スパイラルコイルは、前記周辺領域の半径方向の長さは、前記内方領域の半径よりも小さくなっていることを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 2,
The wireless power transmission system according to claim 1, wherein the transmitting-side spiral coil has a radial length of the peripheral region smaller than a radius of the inner region.
請求項3に記載の無線電力伝送システムにおいて、
前記送信側スパイラルコイルは、前記周辺領域の半径方向の長さは、前記内方領域の半径の6分の1以下になっていることを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 3,
The wireless power transmission system according to claim 1, wherein a radial length of the peripheral region of the transmitting-side spiral coil is 1/6 or less of a radius of the inner region.
請求項1に記載の無線電力伝送システムにおいて、
前記送信側スパイラルコイルは、前記周辺領域と前記内方領域に連続して設けられており、前記周辺領域では前記電気導線が密に巻かれており、前記内方領域では前記電気導線が疎に巻かれていることを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 1,
The transmitting-side spiral coil is continuously provided in the peripheral region and the inner region, and the electric conductor is densely wound in the peripheral region, and the electric conductor is sparse in the inner region. A wireless power transmission system characterized by being wound.
請求項5に記載の無線電力伝送システムにおいて、
前記送信側スパイラルコイルは、前記周辺領域の半径方向の長さは、前記内方領域の半径の9分の1以下になっていることを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 5, wherein
The wireless power transmission system according to claim 1, wherein the transmitting-side spiral coil has a radial length of the peripheral region that is equal to or less than one-ninth of a radius of the inner region.
請求項1〜6のいずれか1項に記載の無線電力伝送システムにおいて、
前記送信側スパイラルコイルは、1/2波長で共振する両端開放のものであることを特徴とする無線電力伝送システム。
The wireless power transmission system according to any one of claims 1 to 6,
2. The wireless power transmission system according to claim 1, wherein the transmitting side spiral coil is open at both ends resonating at a half wavelength.
請求項1〜7のいずれか1項に記載の無線電力伝送システムにおいて、
前記受信側共振器は、前記受信側スパイラルコイルの電気導線の線間ピッチが前記送信側スパイラルコイルの電気導線の線間ピッチの2分の1以下になっていることを特徴とする無線電力伝送システム。
In the wireless power transmission system according to any one of claims 1 to 7,
The wireless power transmission characterized in that the receiving-side resonator has a line pitch of electric wires of the receiving spiral coil equal to or less than half of a line pitch of electric wires of the transmitting spiral coil. system.
請求項1〜8のいずれか1項に記載の無線電力伝送システムにおいて、
前記受信側共振器は、前記受信側スパイラルコイルの両端間にコンデンサが設けられていることを特徴とする無線電力伝送システム。
In the wireless power transmission system according to any one of claims 1 to 8,
The wireless power transmission system according to claim 1, wherein a capacitor is provided between both ends of the reception side spiral coil of the reception side resonator.
請求項9に記載の無線電力伝送システムにおいて、
前記受信側スパイラルコイルは、直径が、前記送信側スパイラルコイルの直径の7分の1以下になっていることを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 9, wherein
The wireless power transmission system according to claim 1, wherein the reception side spiral coil has a diameter of 1/7 or less of the diameter of the transmission side spiral coil.
JP2011041009A 2011-02-26 2011-02-26 Wireless power transmission system Active JP6024013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041009A JP6024013B2 (en) 2011-02-26 2011-02-26 Wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041009A JP6024013B2 (en) 2011-02-26 2011-02-26 Wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2012178479A true JP2012178479A (en) 2012-09-13
JP6024013B2 JP6024013B2 (en) 2016-11-09

Family

ID=46980134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041009A Active JP6024013B2 (en) 2011-02-26 2011-02-26 Wireless power transmission system

Country Status (1)

Country Link
JP (1) JP6024013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112833A (en) * 2019-04-11 2019-08-09 未竟科技(北京)有限公司 A kind of wireless energy transfer system
CN110212650A (en) * 2019-04-26 2019-09-06 中国电力科学研究院有限公司 A kind of cabinet of isolated power supply Conduction Interference

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324532A (en) * 2006-06-05 2007-12-13 Meleagros Corp Electric power transmission method, method for selecting coil of electric power transmission device, and its usage
JP2009504115A (en) * 2005-07-27 2009-01-29 エルエス ケーブル リミテッド Wireless charger with improved charging efficiency variation
JP2009188131A (en) * 2008-02-05 2009-08-20 Nec Tokin Corp Non-contact power transmission device
JP2010073976A (en) * 2008-09-19 2010-04-02 Yazaki Corp Communication coil structure of wireless power transmission device
JP2010130878A (en) * 2008-12-01 2010-06-10 Toyota Industries Corp Contactless power transmission system
JP2010183812A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonance type non-contact charging system
JP2010533472A (en) * 2007-07-09 2010-10-21 クゥアルコム・インコーポレイテッド Wireless energy transfer using coupled antennas
WO2011125328A1 (en) * 2010-04-07 2011-10-13 パナソニック株式会社 Wireless power transmission system
JP2013504996A (en) * 2009-09-10 2013-02-07 クアルコム,インコーポレイテッド Variable wireless power transmission

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504115A (en) * 2005-07-27 2009-01-29 エルエス ケーブル リミテッド Wireless charger with improved charging efficiency variation
JP2007324532A (en) * 2006-06-05 2007-12-13 Meleagros Corp Electric power transmission method, method for selecting coil of electric power transmission device, and its usage
JP2010533472A (en) * 2007-07-09 2010-10-21 クゥアルコム・インコーポレイテッド Wireless energy transfer using coupled antennas
JP2009188131A (en) * 2008-02-05 2009-08-20 Nec Tokin Corp Non-contact power transmission device
JP2010073976A (en) * 2008-09-19 2010-04-02 Yazaki Corp Communication coil structure of wireless power transmission device
JP2010130878A (en) * 2008-12-01 2010-06-10 Toyota Industries Corp Contactless power transmission system
JP2010183812A (en) * 2009-02-09 2010-08-19 Toyota Industries Corp Resonance type non-contact charging system
JP2013504996A (en) * 2009-09-10 2013-02-07 クアルコム,インコーポレイテッド Variable wireless power transmission
WO2011125328A1 (en) * 2010-04-07 2011-10-13 パナソニック株式会社 Wireless power transmission system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
前川慎光: "ワイヤレス送電第二幕 「共鳴型」が本命か", EE TIMES JAPAN, JPN6010000391, 9 October 2009 (2009-10-09), JP, pages 20 - 33, ISSN: 0003392401 *
多和田新也: "Intel Developer Forum 2008 ジャスティン・ラトナーCTO基調講演レポート マシンインテリジェンスが人", [ONLINE], JPN6015052265, 23 August 2008 (2008-08-23), ISSN: 0003225901 *
小柳 拓也、居村 岳広、堀 洋一: "MHz 帯を用いた電気自動車向け磁界共鳴型非接触給電システムに関する研究", 電気学会産業応用部門大会講演論文集, vol. 第2010巻第2号, JPN7012001867, 24 August 2010 (2010-08-24), JP, pages 293 - 296, ISSN: 0003022089 *
津田啓夢: "[GSMA Mobile World Congress 2009] Snapdragonや無線充電技術をアピールするクアルコム", [ONLINE], JPN6015052267, 19 February 2009 (2009-02-19), ISSN: 0003392402 *
粟井郁雄、小森琢也、石田哲也、石崎俊雄: "共鳴型ワイヤレス電力伝送に用いる共振器の比較検討", 信学技報, vol. WPT2010-01, JPN7016002525, 23 April 2010 (2010-04-23), pages 1 - 7, ISSN: 0003392404 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112833A (en) * 2019-04-11 2019-08-09 未竟科技(北京)有限公司 A kind of wireless energy transfer system
CN110212650A (en) * 2019-04-26 2019-09-06 中国电力科学研究院有限公司 A kind of cabinet of isolated power supply Conduction Interference

Also Published As

Publication number Publication date
JP6024013B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
US8786135B2 (en) Wireless energy transfer with anisotropic metamaterials
KR102423618B1 (en) Wireless power transmitter
JP6138733B2 (en) Receiver antenna placement for wireless power
US20110133568A1 (en) Wireless Energy Transfer with Metamaterials
US9461505B2 (en) Wireless energy transfer with negative index material
US20110133565A1 (en) Wireless Energy Transfer with Negative Index Material
US20110095617A1 (en) Ferrite antennas for wireless power transfer
KR20120003953A (en) Parasitic devices for wireless power transfer
JP2014042240A (en) Antenna for wireless power application
JP6467919B2 (en) Power transmission device and power transmission method
US20110133566A1 (en) Wireless Energy Transfer with Negative Material
JP5667019B2 (en) Wireless power transmission apparatus and method
US20110133567A1 (en) Wireless Energy Transfer with Negative Index Material
US9887681B2 (en) Power transmission system, transmission apparatus, receiving apparatus, and power transmission method
JP2011045045A (en) Power transmitting/receiving antenna and power transmitter
KR20170013550A (en) Wireless power transmitter
JP6024013B2 (en) Wireless power transmission system
JP5952662B2 (en) Wireless power transmission device
KR101222137B1 (en) Directional wireless power transmission apparatus using magnetic resonance induction
KR102291717B1 (en) Wireless power transmitter and wireless power receiver
JP2014096872A (en) Coupled resonator type radio power transmission system, and power reception side resonator used for coupled resonator type radio power transmission system
JP2011205881A (en) System configured to exchange energy wirelessly, method of transmitting electromagnetic energy wirelessly via coupling of evanescent wave, and system configured to exchange electromagnetic energy wirelessly
JP6024015B2 (en) Wireless power transmission device
JP2016004990A (en) Resonator
CN108599396B (en) Ultra-thin wide-frequency medium-and-long-distance wireless power transmission coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6024013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250