JP2012178265A - Electrode for battery and secondary battery - Google Patents

Electrode for battery and secondary battery Download PDF

Info

Publication number
JP2012178265A
JP2012178265A JP2011040477A JP2011040477A JP2012178265A JP 2012178265 A JP2012178265 A JP 2012178265A JP 2011040477 A JP2011040477 A JP 2011040477A JP 2011040477 A JP2011040477 A JP 2011040477A JP 2012178265 A JP2012178265 A JP 2012178265A
Authority
JP
Japan
Prior art keywords
mixture
positive electrode
metal foil
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011040477A
Other languages
Japanese (ja)
Inventor
Motonari Kibune
素成 木舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2011040477A priority Critical patent/JP2012178265A/en
Publication of JP2012178265A publication Critical patent/JP2012178265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a battery capable of easily matching both end positions of a mixture layer formed on front and back surfaces of a collector of metal foil and such without introducing complication of a manufacturing process, and improving a rate of non-defective product of electrode manufacturing.SOLUTION: Electrodes for a battery 1 and 5 are provided with mixture layers 3 and 7 formed with a slurry form mixture coated on surfaces of collectors 2 and 6, on which a coating setting region A1 preset as an area to which a mixture is to be coated has higher surface tension than a non-coat setting region A2 preset as an area to which the mixture is not to be coated.

Description

本発明は、車載用電池等で使用する二次電池等の電池に用いる電極に係り、特に、リチウムイオン二次電池に最適な電池用の電極及び二次電池に関する。   The present invention relates to an electrode used for a battery such as a secondary battery used in a vehicle-mounted battery, and more particularly to an electrode for a battery and a secondary battery that are optimal for a lithium ion secondary battery.

地球温暖化等の環境問題の顕在化により、自動車からの二酸化炭素排出量の削減が求められており、電気エネルギーを動力とする電気自動車や、自動車の減速時に生じるエネルギーを回生し、動力の一部として利用するハイブリッド自動車の開発が急ピッチで進められている。特に、電極におけるリチウムイオンの吸蔵放出反応を利用したリチウムイオン二次電池は、自動車向けの二次電池として注目されている。リチウムイオン二次電池の特性、特に車載用リチウムイオン二次電池において重要となる入出力特性は、二次電池の充放電時にリチウムイオンを吸蔵放出する電極の性能に大きく依存する。   Due to the emergence of environmental problems such as global warming, there is a need to reduce carbon dioxide emissions from automobiles. Electric vehicles powered by electric energy and energy generated when the automobile decelerates are regenerated to restore power. Development of hybrid vehicles to be used as departments is proceeding at a rapid pace. In particular, a lithium ion secondary battery using a lithium ion occlusion / release reaction at an electrode is attracting attention as a secondary battery for automobiles. The characteristics of the lithium ion secondary battery, particularly the input / output characteristics that are important in the in-vehicle lithium ion secondary battery, depend greatly on the performance of the electrode that occludes and releases lithium ions when the secondary battery is charged and discharged.

高容量化を実現するために、たくさんのリチウムイオンを吸蔵放出する電極の形状として、集電体を構成する金属箔の表面に、活物質を含んだ合剤を形成することが知られている(特許文献1)。合剤は、水や溶剤中に、活物質、導電材、バインダ樹脂等を希釈分散させ、スラリー状にしたものを、金属箔の表面に塗布・乾燥することで形成することが一般的である。   In order to realize a high capacity, it is known to form a mixture containing an active material on the surface of a metal foil constituting a current collector as a shape of an electrode that absorbs and releases a large amount of lithium ions. (Patent Document 1). The mixture is generally formed by diluting and dispersing an active material, conductive material, binder resin, etc. in water or a solvent, and applying the slurry to the surface of the metal foil and drying. .

特開2010−15851号公報JP 2010-15851 A

ところで、スラリー状の合剤を金属箔の表面に塗布する場合に、表面上に一定幅で塗布して、金属箔の側端部に集電タブ用の未塗布の領域を形成することが行われている。そして、その際、金属箔の両面の塗布幅およびその両端の位置を一致させることが行われている。金属箔の両面の塗布幅およびその両端の位置が不一致であると、セパレータを介して、正極と負極の各電極を互いに重ねるときに、金属箔の両面に形成された合剤層の位置を合わせて重ねることが困難になり、正極と負極の各電極どうしの合剤層が重なり合う面積が小さくなり、電池容量の低下を引き起こすおそれがある。   By the way, when a slurry-like mixture is applied to the surface of the metal foil, it is applied at a certain width on the surface to form an uncoated region for the current collecting tab on the side edge of the metal foil. It has been broken. At that time, the application width of both surfaces of the metal foil and the positions of both ends thereof are matched. If the coating width on both sides of the metal foil and the positions of both ends thereof do not match, the positions of the mixture layers formed on both sides of the metal foil are aligned when the positive and negative electrodes are overlapped with each other through the separator. And the area where the mixture layers of the positive electrode and the negative electrode overlap each other is reduced, which may cause a reduction in battery capacity.

合剤層の両端を金属箔の両面において一致させる従来の方法は、スラリー状の合剤を金属箔の表面に塗布する機械のアライメント調整にて制御している。しかしながら、この従来方法では、スラリー状の合剤を金属箔上に塗布した後、その流動による塗布幅変動量までは制御できず、合剤層の端部の不一致が発生するおそれがある。すなわち、スラリー状の合剤は、粘度が高いので流動性は低いが、金属箔表面に厚く塗布するので、塗布後に流動して合剤層の輪郭がずれることがある。特に、スラリー状の合剤は、気温や湿度などの環境に応じて粘度が変化し、塗布後の流動も一定ではなく、制御性がよくない。   The conventional method of matching both ends of the mixture layer on both sides of the metal foil is controlled by adjusting the alignment of a machine that applies the slurry mixture onto the surface of the metal foil. However, in this conventional method, after applying the slurry-like mixture on the metal foil, it is impossible to control the fluctuation amount of the application width due to the flow, and there is a possibility that the end portions of the mixture layer are inconsistent. That is, the slurry-like mixture has high viscosity and low fluidity, but since it is applied thickly on the surface of the metal foil, it may flow after application and the outline of the mixture layer may shift. In particular, the slurry-like mixture changes in viscosity according to the environment such as temperature and humidity, the flow after application is not constant, and the controllability is not good.

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、製造工程の複雑で微細な機械アライメント調整をおこなうことなく、金属箔の両面に塗布形成した合剤層の両端位置を簡単に一致させ、電極製造良品率を向上させることができる電池用電極と、この電極を用いた二次電池を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is a mixture formed by coating on both surfaces of a metal foil without performing complicated and fine mechanical alignment adjustment of the manufacturing process. An object of the present invention is to provide a battery electrode capable of easily matching the positions of both ends of a layer and improving the yield of non-defective electrodes, and a secondary battery using this electrode.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、スラリー状の合剤が集電体の表面に塗布されて合剤層が形成された電池用電極であって、集電体の表面のうち、合剤が塗布される領域として予め設定されている塗布設定領域の方が、合剤が非塗布とされる領域として予め設定されている非塗布設定領域よりも、表面張力が大きいことを特徴としている。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems. To give an example, a battery electrode in which a slurry mixture is applied to the surface of a current collector to form a mixture layer is provided. Of the surface of the current collector, the application setting area that is preset as the area where the mixture is applied is more than the non-application setting area that is preset as the area where the mixture is not applied. It is characterized by a large surface tension.

本願発明によれば、金属箔等の集電体の両面に形成される合剤層の両端位置を簡単に一致させることができる。したがって、電極製造工程の良品率を向上させ、高い品質の電池用電極を提供することができる。また、この電極を用いて能力の高い二次電池を形成することができる。前記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, both end positions of the mixture layer formed on both surfaces of a current collector such as a metal foil can be easily matched. Therefore, the non-defective product rate in the electrode manufacturing process can be improved, and a high quality battery electrode can be provided. Moreover, a secondary battery with high capability can be formed using this electrode. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明に係る電池用電極を用いた円筒形のリチウムイオン二次電池の一部を破断した状態の分解斜視図。The disassembled perspective view of the state which fractured | ruptured a part of cylindrical lithium ion secondary battery using the battery electrode which concerns on this invention. 図1のリチウムイオン二次電池の電極を構成する金属箔の表面を示す図。The figure which shows the surface of the metal foil which comprises the electrode of the lithium ion secondary battery of FIG. 図2のリチウムイオン二次電池の電極を構成する金属箔の表面に合剤が塗布された状態を示す図。The figure which shows the state by which the mixture was apply | coated to the surface of the metal foil which comprises the electrode of the lithium ion secondary battery of FIG. 図3の合剤が塗布された金属箔を分割した状態を示す図。The figure which shows the state which divided | segmented the metal foil with which the mixture of FIG. 3 was apply | coated. 電極の断面を模式的に示す図。The figure which shows the cross section of an electrode typically.

以下、本発明に係る電池用電極を用いた円筒形のリチウムイオン二次電池の一実施形態を図面に基づき詳細に説明する。   Hereinafter, an embodiment of a cylindrical lithium ion secondary battery using a battery electrode according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る電池用電極を用いた円筒形のリチウムイオン二次電池の一部を破断した状態の分解斜視図である。本実施形態に係る電池用電極は、図1に示すように、リチウムイオン二次電池Dの正極1、及び負極5として使用されている。   FIG. 1 is an exploded perspective view of a state in which a part of a cylindrical lithium ion secondary battery using a battery electrode according to the present invention is broken. As shown in FIG. 1, the battery electrode according to the present embodiment is used as a positive electrode 1 and a negative electrode 5 of a lithium ion secondary battery D.

正極1は、集電体としてアルミニウム等の金属箔から構成される正極金属箔2と、この正極金属箔2の両面にスラリー状の正極合剤を塗布して形成された正極合剤層3とから構成される。正極金属箔2は、図の上方の長辺部に集電タブである正極タブ4,4…が複数、突出して設けられている。   The positive electrode 1 includes a positive electrode metal foil 2 made of a metal foil such as aluminum as a current collector, and a positive electrode mixture layer 3 formed by applying a slurry-like positive electrode mixture on both surfaces of the positive electrode metal foil 2. Consists of The positive electrode metal foil 2 has a plurality of positive electrode tabs 4, 4.

負極5は、集電体として銅等の金属薄膜から構成される負極金属箔6と、この負極金属箔6の両面にスラリー状の負極合剤を塗布して形成された負極合剤層7とから構成される。負極金属箔6は、図の下方の長辺部に負極タブ8,8…が複数、突出して設けられている。   The negative electrode 5 includes a negative electrode metal foil 6 composed of a metal thin film such as copper as a current collector, and a negative electrode mixture layer 7 formed by applying a slurry-like negative electrode mixture on both surfaces of the negative electrode metal foil 6. Consists of The negative electrode metal foil 6 is provided with a plurality of negative electrode tabs 8, 8...

これら正極1及び負極5を、多孔質で絶縁性を有するセパレータ10を介して樹脂製の軸芯11の周囲に捲回し、最外周のセパレータ10をテープ12で止めて、電極群15を構成する。この際、軸芯11に接する最内周はセパレータ10であり、最外周は負極金属箔6及び負極合剤層7を覆うセパレータ10である。管状の軸芯11の軸方向の両端には、正極集電部材16及び負極集電部材17が嵌め合いによって固定されている。   The positive electrode 1 and the negative electrode 5 are wound around a resin shaft 11 through a porous and insulating separator 10, and the outermost separator 10 is stopped with a tape 12 to constitute an electrode group 15. . At this time, the innermost periphery in contact with the shaft core 11 is the separator 10, and the outermost periphery is the separator 10 covering the negative electrode metal foil 6 and the negative electrode mixture layer 7. A positive electrode current collecting member 16 and a negative electrode current collecting member 17 are fixed to both ends of the tubular shaft core 11 in the axial direction by fitting.

正極集電部材16には、正極1の複数の正極タブ4,4…が、例えば、超音波溶接法により溶接されている。同様に負極集電部材17には負極5の負極タブ8,8…が、例えば、超音波溶接法により溶接されている。負極端子を兼ねる電池容器18の内部には、樹脂製の軸芯11を軸として捲回された電極群15に、正極集電部材16及び負極集電部材17が取り付けられて収納されている。電池容器18に電極群15を収容する際、電解液も電池容器18内に注入される。   A plurality of positive electrode tabs 4, 4... Of the positive electrode 1 are welded to the positive electrode current collecting member 16 by, for example, an ultrasonic welding method. Similarly, negative electrode tabs 8 of the negative electrode 5 are welded to the negative electrode current collecting member 17 by, for example, an ultrasonic welding method. Inside the battery container 18 also serving as the negative electrode terminal, a positive electrode current collecting member 16 and a negative electrode current collecting member 17 are housed by being attached to an electrode group 15 wound around a resin shaft 11. When the electrode group 15 is accommodated in the battery container 18, the electrolytic solution is also injected into the battery container 18.

また、正極集電部材16の上には、電池容器18の開口部を封口するように設けられた電導性を有する上蓋部があり、上蓋部は上蓋19と上蓋ケース20からなる。上蓋ケース20に正極集電部材16の正極リード16aの一方が溶接され、他方が正極集電部材16に溶接されることによって上蓋部と電極群15の正極1とが電気的に接続される。電池容器18と上蓋ケース20との間にはガスケット21が設けられ、このガスケット21により電池容器18の開口部を封口するとともに上蓋19及び上蓋ケース20と電気的に絶縁する。負極集電部材17は電池容器18の底部に溶接されることによって電気的に接続される。   Further, on the positive electrode current collecting member 16, there is an upper lid portion having conductivity provided so as to seal the opening of the battery container 18, and the upper lid portion includes an upper lid 19 and an upper lid case 20. One of the positive electrode leads 16a of the positive electrode current collecting member 16 is welded to the upper cover case 20, and the other is welded to the positive electrode current collecting member 16, whereby the upper cover part and the positive electrode 1 of the electrode group 15 are electrically connected. A gasket 21 is provided between the battery container 18 and the upper lid case 20, and the gasket 21 seals the opening of the battery container 18 and electrically insulates the upper lid 19 and the upper lid case 20. The negative electrode current collecting member 17 is electrically connected to the bottom of the battery container 18 by welding.

正極合剤層3を構成する正極合剤は、正極活物質と、正極導電材と、正極バインダ樹脂とを有する。前記正極活物質としては、リチウム酸化物が好ましい。具体的には、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、リチウム複合酸化物(コバルト、ニッケル、マンガンから選ばれる2種類以上を含むリチウム酸化物)等が挙げられる。   The positive electrode mixture constituting the positive electrode mixture layer 3 includes a positive electrode active material, a positive electrode conductive material, and a positive electrode binder resin. As the positive electrode active material, lithium oxide is preferable. Specific examples include lithium cobaltate, lithium manganate, lithium nickelate, lithium iron phosphate, lithium composite oxide (lithium oxide containing two or more selected from cobalt, nickel, and manganese).

また、前記正極導電材は、正極合剤中におけるリチウムイオンの吸蔵放出反応で生じた電子の正極への伝達を補助できる物質であれば特に限定されることなく用いることができる。正極導電材の例として、黒鉛やアセチレンブラック等が挙げられる。さらに、前記正極バインダ樹脂は、正極活物質と正極導電材と正極金属箔とを結着させることが可能であり、電解液との接触によって大幅に劣化しない樹脂であれば特に限定されない。正極バインダ樹脂の例としては、ポリフッ化ビニリデン(PVDF)やフッ素ゴム等が挙げられる。   The positive electrode conductive material can be used without particular limitation as long as it is a substance that can assist the transmission of electrons generated by the occlusion / release reaction of lithium ions in the positive electrode mixture to the positive electrode. Examples of the positive electrode conductive material include graphite and acetylene black. Further, the positive electrode binder resin is not particularly limited as long as it is capable of binding the positive electrode active material, the positive electrode conductive material, and the positive electrode metal foil, and does not deteriorate significantly by contact with the electrolytic solution. Examples of the positive electrode binder resin include polyvinylidene fluoride (PVDF) and fluororubber.

負極合剤層7を構成する負極合剤は、通常、負極活物質と、負極バインダ樹脂と、増粘剤とを有する。なお、負極合剤は、場合によりアセチレンブラック等の負極導電材を有していても良い。負極活物質の例としては、グラファイト、ソフトカーボン、ハードカーボン等の炭素材料が挙げられる。前記負極バインダ樹脂としては、正極と同様にPVDF等を用いることができ、あるいはスチレン−ブタジエン共重合体ゴム(SBR)等も適用可能である。   The negative electrode mixture constituting the negative electrode mixture layer 7 usually has a negative electrode active material, a negative electrode binder resin, and a thickener. The negative electrode mixture may optionally have a negative electrode conductive material such as acetylene black. Examples of the negative electrode active material include carbon materials such as graphite, soft carbon, and hard carbon. As the negative electrode binder resin, PVDF or the like can be used similarly to the positive electrode, or styrene-butadiene copolymer rubber (SBR) or the like is also applicable.

前述の正極合剤層3および負極合剤層7を正極金属箔2の表面及び負極金属箔6の表面に配置するには、合剤を構成する物質の分散溶液を調製しスラリー状にし、そのスラリーを正極金属箔2及び負極金属箔6の表面上に塗布し、乾燥する工程を要する。塗布方法の例としては、スリットダイ塗工法、ロール塗工法等を挙げることができる。また、分散溶液の溶媒としては、N−メチルピロリドン(NMP)や水等を用いることができる。さらに、乾燥方法としては、熱風循環、赤外加熱、それらの混合方法等を挙げることができる。   In order to dispose the positive electrode mixture layer 3 and the negative electrode mixture layer 7 on the surface of the positive electrode metal foil 2 and the surface of the negative electrode metal foil 6, a dispersion solution of substances constituting the mixture is prepared and made into a slurry. The process of apply | coating a slurry on the surface of the positive electrode metal foil 2 and the negative electrode metal foil 6, and drying is required. Examples of the coating method include a slit die coating method and a roll coating method. Moreover, N-methylpyrrolidone (NMP), water, etc. can be used as a solvent of a dispersion solution. Furthermore, examples of the drying method include hot air circulation, infrared heating, and a mixing method thereof.

図2は、図1のリチウムイオン二次電池の電極を構成する金属箔の表面を示す図、図3は、金属箔の表面に合剤が塗布された状態を示す図、図4は、図3の合剤が塗布された金属箔を分割した状態を示す図、図5は、電極の断面を模式的に示す図である。なお、以下の説明では、主として、正極1の場合を例に説明し、負極5については、図中のかっこ内に対応する符号を付することで詳細な説明を省略する。   2 is a view showing the surface of the metal foil constituting the electrode of the lithium ion secondary battery of FIG. 1, FIG. 3 is a view showing a state in which a mixture is applied to the surface of the metal foil, and FIG. FIG. 5 is a diagram schematically illustrating a cross section of an electrode. FIG. 5 is a diagram illustrating a state in which a metal foil to which a mixture of 3 is applied is divided. In the following description, the case of the positive electrode 1 will be mainly described as an example, and the negative electrode 5 will be described in detail by omitting the reference numerals in parentheses in the drawing.

正極1は、図3に示すように、正極金属箔2の表面にスラリー状の正極合剤を塗布することによって正極合剤層3が形成される。正極合剤層3は、図5に示すように、正極金属箔2の両面において、塗布幅及びその両端位置が一致するように塗布される。正極1は、正極合剤の乾燥後に、図4に示すように、正極金属箔2の中央部を長手方向に沿って切断線Sで切断し、余白部を正極タブ4,4…の形状に加工することで形成される。   As shown in FIG. 3, the positive electrode mixture layer 3 is formed by applying a slurry-like positive electrode mixture on the surface of the positive electrode metal foil 2. As shown in FIG. 5, the positive electrode mixture layer 3 is applied on both surfaces of the positive electrode metal foil 2 so that the application width and the both end positions thereof coincide. After the positive electrode mixture is dried, as shown in FIG. 4, the positive electrode 1 is cut at the central portion of the positive electrode metal foil 2 along the longitudinal direction along the cutting line S, and the blank portion is formed into the shape of the positive electrode tabs 4, 4. It is formed by processing.

正極金属箔2は、図2に示すように、その表面に、正極合剤が塗布される領域として予め設定されている塗布設定領域A1と、非塗布とされる領域として予め設定されている非塗布設定領域A2を有している。本実施の形態では、塗布設定領域A1は、正極金属箔2の幅方向両側に余白を残して幅方向中央に長手方向に沿って延在するように設定され、非塗布設定領域A2は、塗布設定領域A1の幅方向両側に沿って設定される。   As shown in FIG. 2, the positive electrode metal foil 2 has a coating setting area A <b> 1 that is set in advance as an area where the positive electrode mixture is applied and a non-application area that is set in advance as a non-application area. It has a coating setting area A2. In the present embodiment, the application setting area A1 is set so as to extend along the longitudinal direction at the center in the width direction, leaving margins on both sides in the width direction of the positive electrode metal foil 2, and the non-application setting area A2 It is set along both sides in the width direction of the setting area A1.

塗布設定領域A1と非塗布設定領域A2は、塗布設定領域A1の方が非塗布設定領域A2よりも、表面張力が大きい構成を有している。本実施の形態では、正極金属箔2の非塗布設定領域A2に、塗布設定領域A1よりも正極金属箔2の表面張力を小さくする表面処理が合剤塗布前に施されており、塗布設定領域A1に、非塗布設定領域A2よりも正極金属箔2の表面張力を大きくする表面処理が合剤塗布前に施されている。   The application setting area A1 and the non-application setting area A2 have a configuration in which the application setting area A1 has a larger surface tension than the non-application setting area A2. In the present embodiment, the non-application setting area A2 of the positive electrode metal foil 2 is subjected to a surface treatment for making the surface tension of the positive electrode metal foil 2 smaller than that of the application setting area A1, before the mixture application, and the application setting area A1 is subjected to a surface treatment that increases the surface tension of the positive electrode metal foil 2 more than the non-application setting area A2 before applying the mixture.

尚、表面張力を小さくする表面処理は、必ずしも、非塗布設定領域A2全域に亘って施す必要はなく、塗布設定領域A1との境界部分に沿って一定幅で延在するように施してもよい。   The surface treatment for reducing the surface tension is not necessarily performed over the entire non-application setting area A2, and may be performed so as to extend with a constant width along the boundary portion with the application setting area A1. .

表面張力の大きい塗布設定領域A1は濡れ性が高く、スラリー状の合剤が付着しやすく、反対に表面張力の小さい非塗布設定領域A2は濡れ性が低く、スラリー状の合剤が付着し難くなっている。このため、正極金属箔2の表面にスラリー状の正極合剤を塗布した場合に、表面張力の小さい非塗布設定領域A2にはみ出すことなく、所望の位置である塗布設定領域A1内に収まり、正極合剤層3の輪郭は、所定のエッジに沿ってはみ出しが防止される。   The application setting area A1 having a large surface tension has high wettability and the slurry-like mixture is likely to adhere thereto. On the contrary, the non-application setting area A2 having a small surface tension has low wettability and the slurry-like mixture is difficult to adhere. It has become. For this reason, when a slurry-like positive electrode mixture is applied to the surface of the positive electrode metal foil 2, the slurry does not protrude into the non-application setting area A2 having a small surface tension, but falls within the application setting area A1, which is a desired position. The outline of the mixture layer 3 is prevented from protruding along a predetermined edge.

従来の金属箔の表面にスラリー状の合剤を塗布する方法では、合剤の塗布幅は、塗布直後からそれが乾燥するまで、合剤の流動性によって変化する。その変化量は、合剤の粘度や金属箔の表面張力や乾燥条件等、因子が複雑に相関するため、制御することが難しい。したがって、合剤層の輪郭を精度良く形成することは困難であった。   In a conventional method of applying a slurry-like mixture on the surface of a metal foil, the application width of the mixture changes depending on the fluidity of the mixture from immediately after application until it is dried. The amount of change is difficult to control because factors such as the viscosity of the mixture, the surface tension of the metal foil, and the drying conditions are complexly correlated. Therefore, it has been difficult to accurately form the contour of the mixture layer.

これに対して、本実施の形態では、正極合剤の塗布前に予め、領域ごとに正極金属箔2の表面処理が行われており、塗布設定領域A1では、正極金属箔2の表面張力が大きいため、スラリー状の合剤は濡れ拡がり、表面張力が小さい非塗布設定領域A2との境界部分で堰き止められ、塗布設定領域A1に、はみ出すことはない。したがって、合剤を塗布設定領域A1にだけ塗布でき、非塗布設定領域A2に塗布されるのを防ぐことができる。   In contrast, in the present embodiment, the surface treatment of the positive electrode metal foil 2 is performed in advance for each region before the application of the positive electrode mixture, and the surface tension of the positive electrode metal foil 2 is increased in the application setting region A1. Since it is large, the slurry-like mixture spreads out and is dammed up at the boundary with the non-application setting area A2 having a small surface tension, and does not protrude into the application setting area A1. Therefore, the mixture can be applied only to the application setting area A1, and can be prevented from being applied to the non-application setting area A2.

非塗布設定領域A2の表面張力を小さくする表面処理法としては、例えば、フッソ系、シリコーン系等の化合物を含む溶液を、正極金属箔2の表面上に薄く塗布して乾燥し、前記化合物で非塗布設定領域A2をコーティングする表面処理法が挙げられる。前記溶液の溶媒には、アルコール類であるIPA、メタノール、エタノール等を使用し、その塗布方法としては、ダイスリット塗工法等が挙げられる。これらの金属表面の表面張力を制御する工程は、合剤スラリー塗布工程の直前に行うことが望ましい。また、溶液のコーティングは、塗布設定領域A1をマスキングして、非塗布設定領域A2だけを露出させた状態で塗布することもできる。   As a surface treatment method for reducing the surface tension of the non-application setting region A2, for example, a solution containing a fluorine-based compound, a silicone-based compound, etc. is thinly applied on the surface of the positive electrode metal foil 2 and dried. A surface treatment method for coating the non-application setting area A2 can be mentioned. As the solvent of the solution, alcohols such as IPA, methanol, ethanol and the like are used, and examples of the coating method include a die slit coating method. The step of controlling the surface tension of the metal surface is desirably performed immediately before the mixture slurry application step. Further, the coating of the solution can be performed in a state where the application setting area A1 is masked and only the non-application setting area A2 is exposed.

塗布設定領域A1の表面張力を大きくする表面処理法としては、紫外線を照射するUV(紫外光)処理や、プラズマガスを吹き付けるプラズマ処理や、正極金属箔2の表面を脱脂する物理的な処理法が挙げられる。UV処理やプラズマ処理では、非塗布設定領域A2をマスキングして、塗布設定領域A1のみを露出させた状態で照射等の表面処理を行ってもよい。   As a surface treatment method for increasing the surface tension of the coating setting region A1, UV (ultraviolet light) treatment for irradiating ultraviolet rays, plasma treatment for blowing plasma gas, and physical treatment method for degreasing the surface of the positive electrode metal foil 2 Is mentioned. In the UV treatment or plasma treatment, the non-application setting area A2 may be masked, and surface treatment such as irradiation may be performed with only the application setting area A1 exposed.

上記した表面処理法は、流動性による位置精度の変動がないため、精度よく塗布設定領域に表面処理を施すことができ、また、処理作業自体が簡便に行える。このような処理をしたあとに、正極合剤を塗布すると、正極金属箔2の両面ともに、予め決められた塗布設定領域A1内にのみ正極合剤が流動し、非塗布設定領域A2では流動しないため、位置精度よく端部位置が一致する正極合剤層3を形成することができる。   Since the above-described surface treatment method does not change the position accuracy due to fluidity, the surface treatment can be accurately performed on the application setting region, and the processing operation itself can be easily performed. When the positive electrode mixture is applied after such processing, the positive electrode mixture flows only in the predetermined application setting area A1 on both surfaces of the positive electrode metal foil 2, and does not flow in the non-application setting area A2. Therefore, it is possible to form the positive electrode material mixture layer 3 whose end positions coincide with each other with high positional accuracy.

尚、上記した実施の形態では、塗布設定領域A1と非塗布設定領域A2の両方に表面処理を行う場合を例に説明したが、正極金属箔2の塗布設定領域A1にのみ、表面張力を大きくする表面処理を行ってもよい。電極を構成する正極金属箔2は、本来、表面張力が大きいものであるが、箔として形成される製造工程において機械油等が付着し、箔全体の表面張力が小さくなっており、スラリー状の正極合剤が付着し難い状態となっている。このように金属箔2の表面全体の表面張力が小さい状態では、塗布設定領域A1である金属箔中央部に表面張力を大きくする表面処理を施すことによって、金属箔中央部に正極合剤層3を形成しやすくすることができ、金属箔両端部に正極合剤層3を形成し難くすることができ、正極合剤層3の端部の輪郭を精度よく形成することができる。   In the above-described embodiment, the case where the surface treatment is performed on both the application setting area A1 and the non-application setting area A2 has been described as an example. However, the surface tension is increased only in the application setting area A1 of the positive electrode metal foil 2. A surface treatment may be performed. The positive electrode metal foil 2 that constitutes the electrode has a large surface tension, but mechanical oil or the like adheres in the manufacturing process formed as a foil, and the surface tension of the entire foil is reduced. The positive electrode mixture is difficult to adhere. Thus, in the state where the surface tension of the entire surface of the metal foil 2 is small, the positive electrode mixture layer 3 is applied to the central portion of the metal foil by applying a surface treatment for increasing the surface tension to the central portion of the metal foil that is the application setting region A1. The positive electrode mixture layer 3 can be made difficult to form at both ends of the metal foil, and the contour of the end portion of the positive electrode mixture layer 3 can be formed with high accuracy.

前記のごとく構成された本発明の電池用電極1,5は、電極1、5を構成する金属箔2、6の表面に合剤を塗布する前に、金属箔2、6の幅方向中央に設定される塗布設定領域A1の方が、金属箔2、6の幅方向端部に設定される非塗布設定領域A2よりも、表面張力が大きくなるように表面処理されているので、非塗布設定領域A2の濡れ性が低く、スラリー状の合剤が付着し難くなっており、合剤層3、7の位置精度を向上させることができる。   The battery electrodes 1 and 5 of the present invention configured as described above are applied to the center in the width direction of the metal foils 2 and 6 before the mixture is applied to the surfaces of the metal foils 2 and 6 constituting the electrodes 1 and 5. Since the set application setting area A1 is surface-treated so that the surface tension is larger than the non-application setting area A2 set at the end in the width direction of the metal foils 2 and 6, the non-application setting is performed. The wettability of the region A2 is low, and the slurry-like mixture is difficult to adhere, and the positional accuracy of the mixture layers 3 and 7 can be improved.

そして、表面処理は、合剤の塗布と比較して簡易な方法で施工できる。このため、金属箔2、6の一方面に塗布された合剤層3、7と、他方面に塗布された合剤層3、7との位置合わせ精度を向上させ、また、正極と負極との位置精度を向上させ、この電極を用いた電池や二次電池の能力を向上させることができる。   And surface treatment can be performed by a simple method compared with application of a mixture. For this reason, the alignment accuracy of the mixture layers 3 and 7 applied to one surface of the metal foils 2 and 6 and the mixture layers 3 and 7 applied to the other surface is improved, and the positive electrode and the negative electrode The position accuracy of the battery can be improved, and the capacity of a battery or secondary battery using this electrode can be improved.

このように、合剤スラリー塗布前に、金属箔の表面において、塗布設定領域では金属箔の表面張力が大きくなるような表面処理を行い、一方、合剤非塗布領域では表面張力が小さくなるような表面処理を行うことで、スラリー状の合剤を、簡単に位置精度よく金属箔上に配置でき、合剤層を形成できる。   In this way, before the mixture slurry is applied, the surface of the metal foil is subjected to a surface treatment that increases the surface tension of the metal foil in the application setting region, while the surface tension is reduced in the region where the mixture is not applied. By performing an appropriate surface treatment, the slurry-like mixture can be easily placed on the metal foil with high positional accuracy, and a mixture layer can be formed.

本発明によれば、金属箔の表面に合剤層を形成する製造工程において、複雑で微細な機械アライメント調整をおこなうことなく、合剤層の両端位置を簡単に一致させ、電極製造良品率を向上させることができる。   According to the present invention, in the manufacturing process of forming the mixture layer on the surface of the metal foil, the positions of both ends of the mixture layer can be easily matched without performing complicated and fine mechanical alignment adjustment, and the yield rate of electrode manufacturing can be improved. Can be improved.

以上、本発明の実施形態について詳述したが、本発明は、上述の実施形態の構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態では、リチウムイオン二次電池の電極の例を示したが、リチウム電池等の一次電池の電極や、ニッケル水素二次電池の電極にも使用できる。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the structure of the above-mentioned embodiment, A various design change can be performed in the range which does not deviate from the meaning of this invention. Is. For example, in the above-described embodiment, an example of an electrode of a lithium ion secondary battery has been shown, but it can also be used for an electrode of a primary battery such as a lithium battery or an electrode of a nickel hydride secondary battery.

また、リチウム電池に限られるものでなく、他の一次電池や二次電池の電極として使用できることは勿論である。   Moreover, it is not restricted to a lithium battery, Of course, it can be used as an electrode of another primary battery or a secondary battery.

1 正極(電極)
2 正極金属箔(集電体)
3 正極合剤層
4 正極タブ
5 負極(電極)
6 負極金属箔(集電体)
7 負極合剤層
8 負極タブ
10 セパレータ
11 軸芯
12 テープ
15 電極群
16 正極集電部材
17 負極集電部材
18 電池容器
19 上蓋
20 上蓋ケース
21 ガスケット
A1 塗布設定領域
A2 非塗布領域
D リチウムイオン二次電池
1 Positive electrode (electrode)
2 Positive metal foil (current collector)
3 Positive mix layer 4 Positive electrode tab 5 Negative electrode (electrode)
6 Negative metal foil (current collector)
7 Negative electrode mixture layer 8 Negative electrode tab 10 Separator 11 Axle core 12 Tape 15 Electrode group 16 Positive electrode current collecting member 17 Negative electrode current collecting member 18 Battery container 19 Upper lid 20 Upper lid case 21 Gasket A1 Application setting area A2 Non-application area D Lithium ion 2 Secondary battery

Claims (6)

スラリー状の合剤が集電体の表面に塗布されて合剤層が形成された電池用電極であって、
前記集電体の表面のうち、前記合剤が塗布される領域として予め設定されている塗布設定領域の方が、前記合剤が非塗布とされる領域として予め設定されている非塗布設定領域よりも、表面張力が大きいことを特徴とする電池用電極。
A battery electrode in which a slurry mixture is applied to the surface of a current collector to form a mixture layer,
Of the surface of the current collector, the non-application setting area in which the application setting area preset as the area where the mixture is applied is preset as the area where the mixture is not applied. A battery electrode having a surface tension greater than that of the battery.
前記非塗布設定領域には、前記塗布設定領域よりも表面張力を小さくする表面処理が施されていることを特徴とする請求項1に記載の電池用電極。   2. The battery electrode according to claim 1, wherein the non-application setting region is subjected to a surface treatment for making the surface tension smaller than that of the application setting region. 前記塗布設定領域には、前記非塗布設定領域よりも表面張力を大きくする表面処理が施されていることを特徴とする請求項1又は2に記載の電池用電極。   3. The battery electrode according to claim 1, wherein the coating setting region is subjected to a surface treatment that has a surface tension larger than that of the non-coating setting region. 前記表面張力を小さくする表面処理は、前記非塗布設定領域にフッソ系、シリコーン系等の化合物を含む溶液を塗布して乾燥させ、前記化合物で前記非塗布設定領域をコーティングする表面処理であることを特徴とする請求項2に記載の電池用電極。   The surface treatment for reducing the surface tension is a surface treatment in which a solution containing a fluorine-based compound, a silicone-based compound, or the like is applied to the non-application setting region and dried, and the non-application setting region is coated with the compound. The battery electrode according to claim 2. 前記表面張力を大きくする表面処理は、前記塗布設定領域に紫外線を照射するUV処理、又はプラズマガスを吹き付けるプラズマ処理を行う表面処理であることを特徴とする請求項3に記載の電池用電極。   The battery electrode according to claim 3, wherein the surface treatment for increasing the surface tension is a surface treatment for performing a UV treatment for irradiating the coating setting region with ultraviolet rays or a plasma treatment for spraying a plasma gas. 請求項1から請求項5のいずれか一項に記載の電池用電極を、正極用又は負極用の少なくとも一方の電極として使用した二次電池。   A secondary battery using the battery electrode according to any one of claims 1 to 5 as at least one electrode for a positive electrode or a negative electrode.
JP2011040477A 2011-02-25 2011-02-25 Electrode for battery and secondary battery Pending JP2012178265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040477A JP2012178265A (en) 2011-02-25 2011-02-25 Electrode for battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040477A JP2012178265A (en) 2011-02-25 2011-02-25 Electrode for battery and secondary battery

Publications (1)

Publication Number Publication Date
JP2012178265A true JP2012178265A (en) 2012-09-13

Family

ID=46979988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040477A Pending JP2012178265A (en) 2011-02-25 2011-02-25 Electrode for battery and secondary battery

Country Status (1)

Country Link
JP (1) JP2012178265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122847A1 (en) * 2013-02-08 2014-08-14 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery, method for manufacturing positive electrode sheet of non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
JP2016076422A (en) * 2014-10-08 2016-05-12 トヨタ自動車株式会社 Hybrid ion battery system
CN113678281A (en) * 2020-01-06 2021-11-19 株式会社Lg新能源 Metal thin film for electrode current collector including rubberized region and method of manufacturing electrode using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164222A (en) * 1998-11-26 2000-06-16 Hitachi Cable Ltd Copper material for lithium ion battery anode current collecting member and manufacture of anode current collecting member for lithium ion battery
JP2002164041A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP2008258010A (en) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd Manufacturing device for secondary battery electrode plate and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164222A (en) * 1998-11-26 2000-06-16 Hitachi Cable Ltd Copper material for lithium ion battery anode current collecting member and manufacture of anode current collecting member for lithium ion battery
JP2002164041A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP2008258010A (en) * 2007-04-05 2008-10-23 Matsushita Electric Ind Co Ltd Manufacturing device for secondary battery electrode plate and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122847A1 (en) * 2013-02-08 2014-08-14 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery, method for manufacturing positive electrode sheet of non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
JP2014154363A (en) * 2013-02-08 2014-08-25 Toyota Motor Corp Nonaqueous electrolyte secondary battery, manufacturing method of positive electrode plate of nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery
CN104981935A (en) * 2013-02-08 2015-10-14 丰田自动车株式会社 Non-aqueous electrolyte secondary battery, method for manufacturing positive electrode sheet of non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
JP2016076422A (en) * 2014-10-08 2016-05-12 トヨタ自動車株式会社 Hybrid ion battery system
CN113678281A (en) * 2020-01-06 2021-11-19 株式会社Lg新能源 Metal thin film for electrode current collector including rubberized region and method of manufacturing electrode using the same
US20220131122A1 (en) * 2020-01-06 2022-04-28 Lg Energy Solution, Ltd. Metal thin film for electrode current collector, comprising taping regions, and method for manufacturing electrode using same

Similar Documents

Publication Publication Date Title
JP5272494B2 (en) Bipolar secondary battery
KR101389596B1 (en) Process for producing electrode for battery
WO2014162437A1 (en) Lithium-ion secondary cell and method for manufacturing same
JP5801113B2 (en) Method for manufacturing battery electrode
WO2011074098A1 (en) Lithium secondary battery
WO2014097586A1 (en) Cylindrical secondary battery and method for manufacturing same
WO2007032365A1 (en) Battery-use electrode
JP7281944B2 (en) Positive electrode for lithium ion secondary battery, positive electrode sheet for lithium ion secondary battery, and manufacturing method thereof
JP6080044B2 (en) Nonaqueous secondary battery plate manufacturing method
WO2011061818A1 (en) Manufacturing method of battery electrodes
JP2007280687A (en) Electrode for battery
JP2009252498A (en) Electrode for battery
JP5288223B2 (en) Method for manufacturing battery electrode
JPWO2019044265A1 (en) Sealed battery and its manufacturing method
JP2012138194A (en) Lithium ion secondary battery
JP7394051B2 (en) Battery and its manufacturing method
JP2011187343A (en) Method for manufacturing electrode for battery
JP2012178265A (en) Electrode for battery and secondary battery
JP5534370B2 (en) Method for manufacturing battery electrode
JP5348488B2 (en) Method for manufacturing battery electrode
JP2010205429A (en) Nonaqueous electrolyte secondary battery and electrode for the same
JP2012004066A (en) Secondary battery, secondary battery electrode and method of manufacturing the same
JP5084098B2 (en) Electrode and battery using the same
JP2013140733A (en) Secondary battery
JP6489360B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107