JP2012178159A - Flaw inspection method and flaw inspection device - Google Patents

Flaw inspection method and flaw inspection device Download PDF

Info

Publication number
JP2012178159A
JP2012178159A JP2012059628A JP2012059628A JP2012178159A JP 2012178159 A JP2012178159 A JP 2012178159A JP 2012059628 A JP2012059628 A JP 2012059628A JP 2012059628 A JP2012059628 A JP 2012059628A JP 2012178159 A JP2012178159 A JP 2012178159A
Authority
JP
Japan
Prior art keywords
pixel
cell
absolute value
threshold
subtraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012059628A
Other languages
Japanese (ja)
Inventor
Eishun Kin
永俊 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012059628A priority Critical patent/JP2012178159A/en
Publication of JP2012178159A publication Critical patent/JP2012178159A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for automating setting of a cell area to be set by a recipe of a flaw inspection device.SOLUTION: For discrimination of a Cell Mat Area, a method of scanning an image using a difference between distribution features of Gray Levels of the Cell Mat Area and a non-Cell Mat Area to divide the Cell Mat Area and the non-Cell Mat Area from the result is adopted. Concretely, a threshold to be a standard for discriminating start and finish points of a Cell Mat is calculated in an Area where only a Memory Cell is present and the start and finish points are subsequently searched by adapting the threshold and connected respectively to form a Cell Area.

Description

本発明は半導体ウエハ,フォトマスク,磁気ディスク,液晶基板等の表面の異物,パターン欠陥を検出する欠陥検査装置及び欠陥検査方法に係り、特に検査領域を自動で決定する手段を備えた欠陥検査方法及び欠陥検査装置に関する。   The present invention relates to a defect inspection apparatus and a defect inspection method for detecting foreign matter on the surface of semiconductor wafers, photomasks, magnetic disks, liquid crystal substrates, etc., and a pattern inspection method, and in particular, a defect inspection method provided with means for automatically determining an inspection area. And a defect inspection apparatus.

半導体欠陥検査装置においてWafer(ウエハ,ウェハ)に発生した欠陥を検査するためには検査領域と検査条件などを設定したRecipe(レシピ)の作成が必要である。この場合、欠陥検査は自動で実行できるが、その自動検査を実行するためのRecipe作成は殆どが人間の手作業と判断が必要になるのが現在の技術レベルである。   In order to inspect defects generated in wafers (wafers) in a semiconductor defect inspection apparatus, it is necessary to create a recipe (recipe) in which an inspection area and inspection conditions are set. In this case, the defect inspection can be automatically performed, but it is the current technical level that most of the recipe creation for executing the automatic inspection needs to be judged by human manual work.

Recipe作成の中でも時間がかかって、検査装置になれていない人間に難しく感じられる作業がCell Matの設定である。欠陥検査装置で高感度で検査をするためには、Dieの中を周期性を持ったMemory Cell Mat AREAと非Memory Cell Mat Areaに分けてAreaごとに異なる検査方式と異なる検査感度を設定する必要がある。例えば、Memory Deviceの場合、DieはCell Area、Sens-Amp Area,SWD Area,Peri Areaなどに分類して、検査する時はCell Mat AreaはCell比較で、それ以外のAreaはDie比較で検査する方式が一般的に使われている。   Setting up Cell Mat is a time-consuming task that makes it difficult for people who are not familiar with inspection equipment. In order to perform high-sensitivity inspection with a defect inspection system, it is necessary to divide the die into periodic Memory Cell Mat AREA and non-Memory Cell Mat Area and set different inspection methods and different inspection sensitivities for each Area There is. For example, in the case of Memory Device, Die is classified into Cell Area, Sens-Amp Area, SWD Area, Peri Area, etc. When inspecting, Cell Mat Area is inspected by Cell comparison, and other Areas are inspected by Die comparison. The method is commonly used.

従来の技術ではこのような検査領域を分ける作業をCell Areaの構成単位であるCell Matと次のCell Matの距離を人間が手動で測って、そのCell Matの繰り返し特性を調べた後、人間の目で確認したCell Matの始端と終端をマウスでクリックしてそれを数分だけN倍にコピーする方法が使われていた。   In the conventional technique, humans manually measure the distance between the Cell Mat, which is the unit of the Cell Area, and the next Cell Mat, and repeat the characteristics of the Cell Mat. A method was used in which the start and end of the Cell Mat confirmed with the eye were clicked with the mouse and copied N times by a few minutes.

被検査対象物の画像の濃淡のヒストグラムを求め、ヒストグラムの分散の度合いにより、チップの外周エッジを判定する方法については例えば特許文献1に記載されたような方法が知られている。しかし、1つのチップ(Dieと言い換えても良い)の内部に設けられたCell Areaの識別は濃度の差が小さく、境界を判定する閾値の設定が難しいため、結局、人間が判定する方法に頼っていた。   For example, a method as described in Patent Document 1 is known as a method of obtaining a density histogram of an image of an object to be inspected and determining the outer peripheral edge of the chip based on the degree of dispersion of the histogram. However, the identification of the cell area provided inside one chip (which may be referred to as Die) has a small density difference and it is difficult to set a threshold value for determining the boundary. It was.

特許第3219094号公報Japanese Patent No. 3219094

前述のように人間が手動でCell Matを設定すると大きく三つの問題が発生する。   As mentioned above, if a human manually sets Cell Mat, three major problems will occur.

一つ目としては人間がマウスでクリックして設定することで検査領域の精度が落ちてしまい、Cell Edgeなどの細かいArea設定ができなくなってしまう。つまり最近の半導体製品ではCell MatのEdgeでの欠陥発生抑止が歩留まり向上の重要な要素であるが、その精度が確保できなくなることによってCellのEdgeの検査が不可能になってしまう問題があった。   The first is that the accuracy of the inspection area drops when a human clicks the mouse to set it, and fine area settings such as Cell Edge cannot be made. In other words, in recent semiconductor products, defect generation suppression at the edge of the Cell Mat is an important factor for improving the yield, but there is a problem that the inspection of the edge of the Cell becomes impossible because the accuracy cannot be secured. .

二つ目としては検査領域を設定するためには時間がかなりかかってしまい、Recipe作成時間が大幅に増える。   Secondly, it takes a lot of time to set the inspection area, and the recipe creation time greatly increases.

三つ目としては手動で検査領域を設定するためには関連トレーニングを受けた技術者が必要となる。   Third, in order to manually set the inspection area, an engineer who has received related training is required.

本発明の目的は、上記課題を解決した欠陥検査装置及び欠陥検査方法を提供することにある。   The objective of this invention is providing the defect inspection apparatus and defect inspection method which solved the said subject.

前述のような課題を解決するためには人間の手動計算及び目で確認してマウスでクリックして指定する従来の方法では前述したようないろいろな問題が出てくる。その解決策として本発明では特定Cell Mat Areaで(Auto Threshold Search Area)スキャンを行って、そこからCell Matが始まるPixel(始点)とCell Matが終わるPixel(終点)を検出する基準になる閾値を求める。その後、同じAuto Threshold Search Areaを含めるWaferの中の特定1Dieのスキャンを行う。スキャンした結果はCell Pitch単位で比較を行ってAuto Threshold Search Areaで得た閾値を基準にしてCell Matの複数の始点と終点を取得する。   In order to solve the above-described problems, the above-described various problems appear in the conventional method in which human manual calculation and confirmation with the eyes and designation by clicking with the mouse are performed. As a solution to this, in the present invention, (Auto Threshold Search Area) scan is performed in a specific cell mat area, and a threshold value serving as a reference for detecting a pixel (start point) from which the cell mat starts and a pixel (end point) from which the cell mat ends is detected. Ask. After that, a specific 1 Die scan in the wafer including the same Auto Threshold Search Area is performed. The scanning results are compared in units of cell pitches, and a plurality of start points and end points of the cell mat are acquired based on the threshold value obtained in the auto threshold search area.

Cell Matの始点と終点の検出はX方向とY方向で行って複数個検出する。その後、検出した始点と終点のそれぞれを繋げてCell Mat Areaを決定する。   Cell Mat start and end points are detected in the X and Y directions to detect a plurality of cell mats. Thereafter, the cell mat area is determined by connecting the detected start point and end point.

本発明によって、欠陥検査装置のRecipeで設定するCell Areaの設定が自動化できるようになって、かつ、正確に設定することができる。   According to the present invention, the setting of the cell area set by the recipe of the defect inspection apparatus can be automated and can be set accurately.

即ち、Cell Mat Area設定の自動化によって検査領域設定に熟練していなかった人間がRecipeを作成する時も簡単に、早く検査領域設定を作成することができる。しかもGray Level特性分析によって検査領域を設定するのでCell MatのEdgeまで正確に設定することができ、Cell Mat Edgeの検査まで可能になることである。また、Recipe作成にかかる時間と手間も大幅に短縮することが期待できる。   In other words, even when a person who is not skilled in setting the inspection area creates the recipe by automating the cell mat area setting, the inspection area setting can be created easily and quickly. In addition, since the inspection area is set by the Gray Level characteristic analysis, it is possible to accurately set up to the edge of the cell mat, and it is possible to inspect the cell mat edge. In addition, it can be expected that the time and labor required to create the recipe will be greatly reduced.

Waferの中にあるChipの中からでMemory Cell Areaを選んでX方向スキャンとY方向スキャンを行ってCell Matのそれぞれの始点と終点を検出する全体構成図。The whole block diagram which detects each start point and end point of Cell Mat by selecting Memory Cell Area from Chip in Wafer, performing X direction scan and Y direction scan. Cell Matのそれぞれの始点と終点を検出するために必要な閾値を求めるためのMemory Cell AreaのTDI像の例とそのTDI像のGray LevelをY軸にしてスキャンのX位置をX軸にして書いたグラフ。An example of a TDI image in the Memory Cell Area for obtaining the thresholds necessary to detect the start and end points of each cell mat, and the TDI image's Gray Level as the Y axis and the scan X position as the X axis Graph. 図2のTDI像の1Line分と下のグラフをCell Pitch単位で行列化した。合計m個のCell Pitchはn個のPixelに構成されて、行列の中で同じ順番どうしにある値で集合を作った図。The 1-line portion of the TDI image in FIG. 2 and the lower graph were matrixed in units of cell pitch. A figure in which a total of m Cell Pitch is composed of n Pixels and a set is created with values in the same order in the matrix. 図3で作った集合の中で最大値のそれぞれを求めた図。The figure which calculated | required each of the maximum value in the set made in FIG. 図4で作った集合の中で最小値のそれぞれを求めた図。The figure which calculated | required each of the minimum value in the set made in FIG. 図4で求めた最大値と図5で求めた最小値を引いた値をCell_Thresholdに表した図。The figure which represented the value which pulled the maximum value calculated | required in FIG. 4, and the minimum value calculated | required in FIG. 5 in Cell_Threshold. 一つのDieで存在するDieのStart AreaとCellMatの始点と終点の実際のTDI像として表した図。The figure represented as an actual TDI image of the Die Start Area and CellMat start and end points existing in one Die.

本発明の全体構成を図1を用いて説明する。   The overall configuration of the present invention will be described with reference to FIG.

図1の1に示したのは半導体材料であるWaferである。このWaferにさまざまな半導体プロセスを流して最終的にはDie単位で切るとそれが一つの半導体チップになる。即ち、一般的に一つのチップといわれている基本単位が2に示したDieである。   1 shown in FIG. 1 is Wafer which is a semiconductor material. When various semiconductor processes are run through this wafer and finally cut in die units, it becomes a single semiconductor chip. That is, the basic unit generally referred to as one chip is Die shown in 2.

DRAMの場合、この一つのDieの中には数多くの素子(トランジスター)が作られてあって、一般的にはこの素子を集団で集めて配置させた最小単位の集団をCell Matと呼ぶ。図1の3に示したものがそのCell Matの一つである。図1に示したDieの中にはCell Matの25個が4集団あって、合計100個のCell Matが存在している。   In the case of DRAM, a large number of elements (transistors) are formed in one Die. Generally, a group of minimum units in which these elements are collected and arranged is called a cell mat. One of the Cell Mats is shown in FIG. In the Die shown in FIG. 1, there are four groups of 25 cell mats, and there are a total of 100 cell mats.

Cell Matを非Cell Matと正確に区別するためにはCell Areaの始点(図1の4,9〜18、及び図7の45)と終点(図1の5,19〜28及び図7の46)を区別する必要がある。   In order to accurately distinguish the Cell Mat from the non-Cell Mat, the start point (4, 9 to 18 in FIG. 1 and 45 in FIG. 7) and the end point (5, 19 to 28 in FIG. 1 and 46 in FIG. 7) ) Need to be distinguished.

図1の9〜18まではCell Matのそれぞれの始点を示して、19〜28まではCell Matのそれぞれの終点が示してある。このCell Matのそれぞれの始点と終点を7(Xスキャン)と8(YスキャンまたはXスキャン)のスキャン結果から検出する方法を以下に説明する。   In FIG. 1, 9 to 18 indicate the start points of the Cell Mat, and 19 to 28 indicate the end points of the Cell Mat. A method for detecting the start point and end point of each Cell Mat from the scan results of 7 (X scan) and 8 (Y scan or X scan) will be described below.

まず、それぞれの始点と終点を人間が決めるのではなく7と8のスキャンから得たデータ(Gray Level)から始点と終点を検出するため、始点と終点を検出するためのGray Levelの閾値が必要になる。この閾値を求めるAreaをAuto Threshold Search Areaと呼び、この指定だけを人間がMemory Cell Matを探して指定する。図1にはこのAuto Threshold Search Areaを6に示して、さらに6を拡大して図2の29に示した。   First, since the start point and end point are detected from the data (Gray Level) obtained from the scans 7 and 8 instead of being determined by humans, a gray level threshold is required to detect the start point and end point. become. An area for obtaining this threshold is called an Auto Threshold Search Area, and only this designation is performed by a person searching for a Memory Cell Mat. In FIG. 1, this Auto Threshold Search Area is shown as 6, and 6 is further enlarged and shown as 29 in FIG.

スキャンから得た29のImageはDigital Imageでそれぞれの画素がGray Levelという0から255までの値をそれぞれ持っている。図2ではまず、29のAuto Threshold Search Areaで32の一番下のLineからGray Levelを取ってX Pixel位置に対するGray LevelをCell Pitch単位で行列にして図3に示したように並べる。このデータを集めてグラフと式に示したのが図2の33のグラフと図3の式である。ただ、33に示したグラフと図3に示した式は一つのCell Pitchではn個のPixelを持つという前提の上で書いてある。また図3の式ではn個のPixelで構成されたCell Pitchがm個存在することで行列を並べたものである。   The 29 images obtained from the scan are digital images, and each pixel has a value from 0 to 255 called Gray Level. In FIG. 2, first, the gray level is taken from the bottom line of 32 in the 29 Auto Threshold Search Area, and the gray levels for the X pixel positions are arranged in a matrix in units of cell pitches and arranged as shown in FIG. This data is collected and shown in a graph and an equation as shown in the graph 33 in FIG. 2 and the equation in FIG. However, the graph shown in FIG. 33 and the formula shown in FIG. 3 are written on the assumption that one cell pitch has n pixels. In the equation of FIG. 3, the matrix is arranged because there are m cell pitches composed of n pixels.

34では一つのCell Pitchを構成するそれぞれのPixelの中でCell Pitchの最初に位置したPixelのGray Levelだけを集めてGL_Matrix_1にした。また、35ではその次のPixelのそれぞれを集めてGL_Matrix_2にした。そしてこの定義を36のようにn個番目まで行うとn Pixel目はGL_Matrix_nになる。   In 34, only the gray level of the pixel located at the beginning of the cell pitch is collected into each GL_Matrix_1 among the pixels constituting one cell pitch. In 35, each of the following Pixels was collected into GL_Matrix_2. When this definition is performed up to n-th as in 36, the n-th pixel becomes GL_Matrix_n.

次に図4と図5に示したようにGL_Matrix_1の中で最大のGray Levelと最小のGray Levelを求めてGL_Matrix_Max(1)とGL_Matrix_Min(1)にする。また同じくGL_Matrix_Max(2),GL_Matrix_Max(3),,,,,, GL_MATRIX_MAX(N)及びGL_Matrix_Min(2),GL_Matrix_Min(3),,,,,, GL_Matrix_Min(n)までを求める。   Next, as shown in FIGS. 4 and 5, the maximum Gray Level and the minimum Gray Level in GL_Matrix_1 are obtained and set as GL_Matrix_Max (1) and GL_Matrix_Min (1). Similarly, GL_Matrix_Max (2), GL_Matrix_Max (3) ,,,,, GL_MATRIX_MAX (N) and GL_Matrix_Min (2), GL_Matrix_Min (3), ,,,, GL_Matrix_Min (n) are obtained.

図6では図4と図5の式で求めたGL_Matrix_Max(1)からGL_Matrix_Min(1)を引いてCell_Threshold1にして同じくCell_Threshold2からCell_Thresholdnまでを求める。そして最後にn個のCell_Thresholdまでの中で最大値を計算してCell_Treshold_Line1に定義する。   In FIG. 6, GL_Matrix_Min (1) is subtracted from GL_Matrix_Max (1) obtained by the equations of FIGS. 4 and 5 to make Cell_Threshold1, and similarly Cell_Threshold2 to Cell_Thresholdn are obtained. Finally, the maximum value up to n Cell_Thresholds is calculated and defined as Cell_Treshold_Line1.

次に図2の32に示した一番下の1Lineの1Pixel上のLineのGray Levelを取ってさらに図3,図4,図5,図6を経て最終的にCell_Treshold_Line2を算出する。   Next, the gray level of the line on 1 Pixel of the bottom 1 Line shown in 32 of FIG. 2 is taken, and Cell_Treshold_Line 2 is finally calculated through FIGS. 3, 4, 5 and 6.

このように32番から30番までのY方向のP個のLineに対して同一計算を行うとCell_Treshold_Line1からCell_Treshold_LinePまでのCell_Tresholdを算出することが可能になる。このそれぞれのCell_Threshold_LineはCell Matの始点と終点を決めるそれぞれのLineの閾値として使われる。   If the same calculation is performed for P lines in the Y direction from No. 32 to No. 30, the Cell_Treshold from Cell_Treshold_Line1 to Cell_Treshold_LineP can be calculated. Each Cell_Threshold_Line is used as a threshold for each Line that determines the start and end points of the Cell Mat.

次に図1の6と図2の29に示したAuto Threshold Search Areaと同一のY方向の幅(P Pixel)を図1の7に示したように1Die分スキャンする。   Next, the same width (P Pixel) in the Y direction as the Auto Threshold Search Area shown in 6 of FIG. 1 and 29 of FIG. 2 is scanned by 1 Die as shown in 7 of FIG.

スキャンの目的は始点(9番から18番)と終点(19番から28番)を検出することにある。そのそれぞれの始点と終点を検出する方法を次に記述する。まず、X位置に対するGray levelデータをCell Pitch単位の行列にして1Die分取得する。取得した行列のデータからは図7の44のDie Start位置からCell Pitch単位にして引き算を行ってその計算結果の絶対値が該当LineのCell_Treshold_Lineに比べて大きいか小さいかを判定する。この判定での結果で始点と終点の候補を決定する。下記では具体的にその始点と終点の候補から本当の始点と終点を決める方法を説明する。   The purpose of scanning is to detect the start point (No. 9 to No. 18) and the end point (No. 19 to No. 28). A method for detecting the respective start and end points will be described below. First, Gray level data for the X position is obtained as a matrix in units of cell pitches and 1 Die is acquired. Subtraction is performed for each cell pitch from the Die Start position 44 in FIG. 7 from the acquired matrix data, and it is determined whether the absolute value of the calculation result is larger or smaller than the Cell_Treshold_Line of the corresponding line. The start point and end point candidates are determined based on the result of this determination. In the following, a method for determining the true start point and end point from the start point and end point candidates will be described.

まず、DieのStart PixelからCell Pitch間隔の行列単位で引き算を行ってその絶対値が閾値(Cell_Treshold_Line)を超えないPixelを探す。そしてそのPixelを含めた連続3PixelがCell_Thresholdを超えなかったらそのPixelを始点候補を現すS_Pixel_Candidateと定義する。そしてS_Pixel_Candidateが含まれたCell Pitchの次のCell Pitch比較結果のPixelの90%が閾値を超えていない比較結果になった場合に、このPixelをS_Pixelに定義する。そして続けてCell Pitch間の比較を1Dieの最後まで比較すると複数のS_Pixelを探し出すことができる。これは以下の(1)乃至(4)のように表現することができる。   First, a pixel whose absolute value does not exceed a threshold value (Cell_Treshold_Line) is searched by subtracting from the Die Start Pixel in matrix units of Cell Pitch intervals. If the consecutive 3 pixels including the pixel do not exceed Cell_Threshold, the pixel is defined as S_Pixel_Candidate that represents the start point candidate. Then, when 90% of the Pixel of the Cell Pitch comparison result next to the Cell Pitch including S_Pixel_Candidate is a comparison result that does not exceed the threshold, this Pixel is defined as S_Pixel. Then, if the comparison between the cell pitches is compared to the end of 1Die, a plurality of S_Pixels can be found. This can be expressed as (1) to (4) below.

(1)まず、DieのStart Pixelから、Cell MatのImage内のGray levelデータがCell Pitch単位で行列化されたもの同士をCell Pitch間隔で引き算を行う。そして、その引き算の差の絶対値が閾値(Cell_Treshold_Line)を超えないPixelを探す。
(2)そしてそのPixelを含めた連続3PixelがCell_Thresholdを超えなかったらそのPixelを始点候補を現すS_Pixel_Candidateと定義する。
(3)そして、S_Pixel_Candidateを得た引き算以降の引き算を行ったImageのPixelの90%が閾値(Cell_Treshold_Line)を超えていない場合に、このS_Pixel_CandidateをS_Pixelと定義する。
(4)そして続けてGray levelデータがCell Pitch単位で行列化されたもの同士のCell Pitch間隔での引き算、及び引き算の差の絶対値と閾値との比較を1Dieの最後まで比較すると複数のS_Pixelを探し出すことができる。
(1) First, from the Die Start Pixel, the gray level data in the Cell Mat Image that are matrixed in Cell Pitch units are subtracted at Cell Pitch intervals. Then, a pixel whose absolute value of the subtraction difference does not exceed the threshold value (Cell_Treshold_Line) is searched.
(2) If the consecutive 3 pixels including the pixel do not exceed Cell_Threshold, the pixel is defined as S_Pixel_Candidate that represents the start point candidate.
(3) Then, when 90% of the Pixel of the image subjected to the subtraction after the subtraction for obtaining S_Pixel_Candidate does not exceed the threshold (Cell_Treshold_Line), this S_Pixel_Candidate is defined as S_Pixel.
(4) Subsequently, when subtracting the gray level data in the cell pitch unit and subtracting at the cell pitch interval and comparing the absolute value of the subtraction difference with the threshold to the end of 1 Die, multiple S_Pixels Can find out.

S_Pixelを探し出す計算と同時にCell Matの最後を現すE_Pixelを探し出す計算も行う。即ち、Dieの44番のStart PixelからCell Pitch間の比較を続けて行っていくと閾値を超えるPixelを探しだすことができる。そしてそのPixelを含めて連続3PixelがCell_Thresholdを超えたらそのPixelを終点候補を現すE_Pixel_Candidateと定義する。その後、E_Pixel_Candidateが含まれたCell Pitchの次のCell Pitchの比較結果のPixelの90%が閾値を超えたらE_Pixelに定義して1Dieの最後までのCell Pitch比較で複数のE_Pixelを探し出す。これは以下の(5)乃至(8)のように表現することができる。   At the same time as the calculation to find S_Pixel, the calculation to find E_Pixel that shows the end of Cell Mat is also performed. That is, if the comparison between Cell Pitch from Die's 44th Start Pixel is continued, it is possible to find a Pixel exceeding the threshold. If the consecutive 3 pixels including the pixel exceed the Cell_Threshold, the pixel is defined as E_Pixel_Candidate that represents the end point candidate. After that, when 90% of the comparison result pixel of the next cell pitch including the E_Pixel_Candidate exceeds the threshold, it is defined as E_Pixel, and a plurality of E_Pixels are searched by the cell pitch comparison up to the end of 1Die. This can be expressed as the following (5) to (8).

(5)Dieの44番のStart PixelからGray levelデータがCell Pitch単位で行列化されたもの同士のCell Pitch間隔での引き算を続けて行っていくと、閾値を超えるPixelを探しだすことができる。
(6)そしてそのPixelを含めて連続3PixelがCell_Thresholdを超えたらそのPixelを終点候補を現すE_Pixel_Candidateと定義する。
(7)その後、E_Pixel_Candidateを得た引き算以降の引き算を行ったImageのPixelの90%が閾値を超えたらE_Pixelに定義する。
(8)そして続けてGray levelデータがCell Pitch単位で行列化されたもの同士のCell Pitch間隔での引き算、及び引き算の差の絶対値と閾値との比較を1Dieの最後まで比較すると複数のE_Pixelを探し出すことができる。
(5) Pixels exceeding the threshold can be found by continuously subtracting the gray level data from Cell No. 44 from Die's No. 44 start pixel at Cell Pitch intervals. .
(6) Then, if the consecutive 3 pixels including the pixel exceed the Cell_Threshold, the pixel is defined as E_Pixel_Candidate that represents the end point candidate.
(7) After that, when 90% of the Pixel of the image subjected to the subtraction after the subtraction for obtaining E_Pixel_Candidate exceeds the threshold, it is defined as E_Pixel.
(8) Subsequent subtraction at the cell pitch interval between the gray level data matrixed in units of cell pitches, and comparing the absolute value of the subtraction difference with the threshold to the end of 1 Die, multiple E_Pixels Can find out.

ただ、S_Pixelが検出される前にE_Pixelが先に検出されるとS_Pixel検出ループに戻って閾値(Cell_Treshold_Line)を超えない連続3Pixelの条件に合ったS_Pixelが含まれたCell Pitchの次のCell Pitch比較結果のPixelの90%が閾値を超えない条件を10%ずつさげてS_Pixelを検出する。   However, if E_Pixel is detected first before S_Pixel is detected, it returns to the S_Pixel detection loop and the next cell pitch comparison of Cell Pitch that contains S_Pixel that meets the condition of continuous 3 Pixels that does not exceed the threshold (Cell_Treshold_Line) S_Pixel is detected by reducing the condition that 90% of the resulting Pixel does not exceed the threshold by 10%.

つまり、S_Pixelが検出される前にE_Pixelが先に検出される場合もあるから、その場合は、前述したS_Pixel検出ループに戻り、90%とした条件を80%として、S_Pixelを検出する。それでも、S_Pixelが検出されないのであれば、80%とした条件を70%としてS_Pixelを検出する。S_Pixelが検出できるまで10%毎の条件の引き下げは行われるということである。   In other words, since E_Pixel may be detected first before S_Pixel is detected, in this case, the S_Pixel is detected by returning to the S_Pixel detection loop described above and setting the condition of 90% as 80%. Still, if S_Pixel is not detected, S_Pixel is detected by setting the condition of 80% as 70%. The condition is reduced every 10% until S_Pixel can be detected.

また同じくS_Pixelの次にE_Pixelが検出されなくて続けてS_Pixelが現れた場合はE_Pixel検出ループに戻って閾値(Cell_Treshold_Line1)を超える連続3Pixelの条件に合ったE_Pixelが含まれたCell Pitchの次のCell Pitch比較結果のPixelの90%が閾値を超えるべき条件を10%ずつさげてE_Pixelを検出する。   Similarly, when S_Pixel appears after E_Pixel is not detected after S_Pixel, it returns to the E_Pixel detection loop and the next cell of Cell Pitch that contains E_Pixel that meets the condition of continuous 3 Pixels exceeding the threshold (Cell_Treshold_Line1) The E_Pixel is detected by reducing the condition that 90% of the Pitch comparison result Pixel should exceed the threshold by 10%.

つまり、S_Pixelの次にE_Pixelが検出されずに、続けてS_Pixelが現れる場合もあるから、その場合は、前述したE_Pixel検出ループに戻り、90%とした条件を80%として、E_Pixelを検出する。それでも、E_Pixelが検出されないのであれば、80%とした条件を70%としてE_Pixelを検出する。E_Pixelが検出できるまで10%毎の条件の引き下げは行われるということである。   That is, there is a case where S_Pixel appears after S_Pixel is not detected, and in this case, the E_Pixel is detected by setting the condition of 90% as 80% by returning to the E_Pixel detection loop described above. If E_Pixel is still not detected, E_Pixel is detected by setting the condition of 80% as 70%. The condition is reduced every 10% until E_Pixel can be detected.

ここまでの方法でそれぞれのLineでそれぞれのCell_Treshold_Lineを適用してX方向のそれぞれの始点とそれぞれの終点を探すことができた。即ち、図1の7のスキャンからもしP個Line分の計算をした場合はP個Lineごとに10個の始点(S_Pixel_1〜S_Pixel_10)と10個の終点(E_Pixel_1〜E_Pixel_10)が検出できる。   By using the above method, each Cell_Treshold_Line can be applied to each Line to find each start point and each end point in the X direction. That is, if P lines are calculated from the scan 7 in FIG. 1, 10 start points (S_Pixel_1 to S_Pixel_10) and 10 end points (E_Pixel_1 to E_Pixel_10) can be detected for each P lines.

次は求められたP個Lineから得たS_Pixel_1がPixelの位置が最も一致するX位置を最終的にS_Pixel_1に決定する。また他の始点と終点についても同じく最も一致するX位置を最終的にS_PixelとE_Pixelに定義する。   Next, S_Pixel_1 obtained from the obtained P lines finally determines S_Pixel_1 as the X position where the position of the Pixel is the best match. Similarly, the X position that most closely matches the other start points and end points is finally defined as S_Pixel and E_Pixel.

次にはY方向でのCell Matの始点と終点を算出するため8に示したように部分的なXスキャン、またはYスキャンを行う。ここでスキャンから得たImageを90度回してX方向の始点と終点を決めた方法と同じ方法でY方向の始点と終点を算出する。   Next, in order to calculate the start and end points of the Cell Mat in the Y direction, a partial X scan or Y scan is performed as shown in FIG. Here, the start point and end point in the Y direction are calculated by the same method as the method in which the image obtained from the scan is rotated 90 degrees to determine the start point and end point in the X direction.

最終的に算出されたXY方向の始点と終点を繋げてS_PixelとE_Pixelの間をCell Matに定義する。   The cell mat is defined between S_Pixel and E_Pixel by connecting the start and end points in the XY direction finally calculated.

このような方法により、Cell Matの始点と終点を定め、Cellの種類により異なる検査方法,検査条件を適用することにより、より正確な欠陥検査を実行できる欠陥検査装置が実現できる。   By such a method, a defect inspection apparatus capable of performing more accurate defect inspection can be realized by determining the start point and end point of the Cell Mat and applying different inspection methods and inspection conditions depending on the type of Cell.

1…Wafer、2…Die、3…Cell Mat、4…Cell Matの始点、5…Cell Matの終点、6…Auto Threshold Search Area、7…Xスキャン、8…Yスキャン、9〜18…Cell Matの始点、19〜28…Cell Matの終点、29…Auto Threshold Search AreaのTDI Image、30…PLine目のスキャン、31…一つのCell Pitch、32…1Line目のスキャン、33…1Line目のスキャン結果のGray Levelのグラフ、34…m個のCell Pitch(n個のPixelに構成)を構成する最初のPixelのそれぞれを集めた集合をGL_Matrix_1の式にあらわした図、35…m個のCell Pitch(n個のPixelに構成)を構成する2番目のPixelのそれぞれを集めた集合をGL_Matrix_2の式にあらわした図、36…m個のCell Pitch(n個のPixelに構成)を構成するn個目のPixelのそれぞれを集めた集合をGL_Matrix_nの式にあらわした図、37…Auto Threshold Search Area、38…1Die分スキャン時のP番目のLineのXスキャン、39…1Die分スキャン時の下から2番目のLineのXスキャン、40…1Die分スキャン時の一番下のLineのXスキャン、41〜43…1Die分スキャン時のY方向のスキャン、44…TDI像で表した一つのDieのStart Pixel、45…TDI像で表したCell Matの始点、46…TDI像で表したCell Matの終点。   1 ... Wafer, 2 ... Die, 3 ... Cell Mat, 4 ... Start point of Cell Mat, 5 ... End point of Cell Mat, 6 ... Auto Threshold Search Area, 7 ... X scan, 8 ... Y scan, 9-18 ... Cell Mat Start point, 19 to 28 ... Cell Mat end point, 29 ... Auto Threshold Search Area TDI Image, 30 ... PLine scan, 31 ... One Cell Pitch, 32 ... 1Line scan, 33 ... 1Line scan result Gray level graph, 34 ... m Cell Pitch (constituted in n Pixels), a collection of each set of first Pixels, expressed as GL_Matrix_1, 35 ... m Cell Pitch ( Figure showing GL_Matrix_2's set of collections of each of the second pixels that make up n pixels), 36th nth piece that makes up m cell pitches (composed of n pixels) Fig. 37: Auto Threshold Search Area, 38 ... X scan of the Pth line during 1Die scan, 39 ... X scan of the second line from the bottom during 1Die scan, 40 ... X scan of the bottom line during 1Die scan, 41 to 43: Scan in the Y direction when scanning for 1 Die, 44: One Die Start Pixel represented by TDI image, 45 ... Cell Mat start point represented by TDI image, 46 ... Cell Mat represented by TDI image end point.

Claims (10)

欠陥検査装置において、
複数の素子を集めて配置することで形成された集団の画像を得て、前記画像のグレイレベルを所定の間隔に区切り、区切られたグレイレベル同士について前記所定の間隔毎に引き算を行い、前記引き算の結果の絶対値と閾値とを比較することで前記集団の始点、及び終点のうち少なくとも1つの位置を得る処理部を有することを特徴とする欠陥検査装置。
In defect inspection equipment,
Obtaining an image of a group formed by collecting and arranging a plurality of elements, dividing the gray level of the image into predetermined intervals, performing subtraction for each predetermined interval between the divided gray levels, A defect inspection apparatus comprising a processing unit that obtains at least one position of a start point and an end point of the group by comparing an absolute value of a subtraction result with a threshold value.
請求項1に記載の欠陥検査装置において、
前記処理部は、
前記絶対値が前記閾値以下であり、
さらに、前記絶対値を得られた画素以降の所定の画素が前記閾値以下であった場合は、前記絶対値を有する画素を前記始点の候補とすることを特徴とする欠陥検査装置。
The defect inspection apparatus according to claim 1,
The processor is
The absolute value is less than or equal to the threshold;
Furthermore, when a predetermined pixel after the pixel for which the absolute value is obtained is equal to or less than the threshold value, the pixel having the absolute value is set as the candidate for the starting point.
請求項2に記載の欠陥検査装置において、
前記処理部は、
前記絶対値を得た引き算より後の引き算を行った画素のグレイレベルが前記閾値の所定の割合以下であれば前記始点の候補を前記始点と認識することを特徴とする検査装置。
The defect inspection apparatus according to claim 2,
The processor is
An inspection apparatus that recognizes the candidate for the start point as the start point if the gray level of a pixel that has been subtracted after subtraction for obtaining the absolute value is equal to or less than a predetermined ratio of the threshold value.
請求項1に記載の欠陥検査装置において、
前記処理部は、
前記絶対値が前記閾値より大きく、
さらに、前記絶対値を得られた画素以降の所定の画素が前記閾値より大きかった場合は、前記絶対値を有する画素を前記終点の候補とすることを特徴とする欠陥検査装置。
The defect inspection apparatus according to claim 1,
The processor is
The absolute value is greater than the threshold;
Further, when a predetermined pixel after the pixel from which the absolute value is obtained is larger than the threshold value, the pixel having the absolute value is set as a candidate for the end point.
請求項4に記載の欠陥検査装置において、
前記処理部は、
前記絶対値を得た引き算より後の引き算を行った画素のグレイレベルが前記閾値の所定の割合より大きければ前記終点の候補を前記終点と認識することを特徴とする検査装置。
The defect inspection apparatus according to claim 4,
The processor is
An inspection apparatus that recognizes the end point candidate as the end point if the gray level of a pixel that has undergone subtraction after subtraction for obtaining the absolute value is greater than a predetermined ratio of the threshold value.
欠陥検査の検査条件設定方法において、
複数の素子を集めて配置することで形成された集団の画像を得て、
前記画像のグレイレベルを所定の間隔に区切り、
区切られたグレイレベル同士について前記所定の間隔毎に引き算を行い、
前記引き算の結果の絶対値と閾値とを比較することで前記集団の始点、及び終点のうち少なくとも1つの位置を得ることを特徴とする検査条件設定方法。
In the inspection condition setting method for defect inspection,
Obtain an image of the group formed by collecting and arranging multiple elements,
The gray level of the image is divided into predetermined intervals,
Subtraction is performed at the predetermined intervals between the separated gray levels,
An inspection condition setting method characterized by obtaining at least one position of a start point and an end point of the group by comparing an absolute value of a result of the subtraction and a threshold value.
請求項6に記載の検査条件設定方法において、
前記絶対値が前記閾値以下であり、
さらに、前記絶対値を得られた画素以降の所定の画素が前記閾値以下であった場合は、前記絶対値を有する画素を前記始点の候補とすることを特徴とする検査条件設定方法。
In the inspection condition setting method according to claim 6,
The absolute value is less than or equal to the threshold;
Furthermore, when a predetermined pixel after the pixel from which the absolute value is obtained is equal to or less than the threshold value, a pixel having the absolute value is set as a candidate for the start point.
請求項7に記載の検査条件設定方法であって、
前記絶対値を得た引き算より後の引き算を行った画素のグレイレベルが前記閾値の所定の割合以下であれば前記始点の候補を前記始点と認識することを特徴とする検査条件設定方法。
The inspection condition setting method according to claim 7,
An inspection condition setting method, wherein a start point candidate is recognized as the start point if a gray level of a pixel after subtraction after obtaining the absolute value is not more than a predetermined ratio of the threshold value.
請求項6に記載の検査条件設定方法において、
前記絶対値が前記閾値より大きく、
さらに、前記絶対値を得られた画素以降の所定の画素が前記閾値より大きかった場合は、前記絶対値を有する画素を前記終点の候補とすることを特徴とする検査条件設定方法。
In the inspection condition setting method according to claim 6,
The absolute value is greater than the threshold;
Furthermore, when a predetermined pixel after the pixel from which the absolute value is obtained is larger than the threshold value, a pixel having the absolute value is set as the end point candidate.
請求項9に記載の欠陥検査装置において、
前記絶対値を得た引き算より後の引き算を行った画素のグレイレベルが前記閾値の所定の割合より大きければ前記終点の候補を前記終点と認識することを特徴とする検査条件設定方法。
The defect inspection apparatus according to claim 9,
An inspection condition setting method, wherein the end point candidate is recognized as the end point if the gray level of the pixel after subtraction after obtaining the absolute value is larger than a predetermined ratio of the threshold value.
JP2012059628A 2012-03-16 2012-03-16 Flaw inspection method and flaw inspection device Pending JP2012178159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059628A JP2012178159A (en) 2012-03-16 2012-03-16 Flaw inspection method and flaw inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059628A JP2012178159A (en) 2012-03-16 2012-03-16 Flaw inspection method and flaw inspection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006234832A Division JP2008058124A (en) 2006-08-31 2006-08-31 Flaw inspection method and flaw inspection device

Publications (1)

Publication Number Publication Date
JP2012178159A true JP2012178159A (en) 2012-09-13

Family

ID=46979924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059628A Pending JP2012178159A (en) 2012-03-16 2012-03-16 Flaw inspection method and flaw inspection device

Country Status (1)

Country Link
JP (1) JP2012178159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353324A (en) * 2016-08-10 2017-01-25 浙江理工大学 Magnet ring surface defect extraction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374855A (en) * 1989-08-16 1991-03-29 Hitachi Ltd Chip size detection, chip pitch detection, automatic chip arrangement data formation, and method and device for inspecting semiconductor substrate using them
JP2003215060A (en) * 2002-01-22 2003-07-30 Tokyo Seimitsu Co Ltd Pattern inspection method and inspection apparatus
WO2005001456A1 (en) * 2003-06-30 2005-01-06 Tokyo Seimitsu Co., Ltd. Pattern comparison inspection method and pattern comparison inspection device
JP2008058124A (en) * 2006-08-31 2008-03-13 Hitachi High-Technologies Corp Flaw inspection method and flaw inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374855A (en) * 1989-08-16 1991-03-29 Hitachi Ltd Chip size detection, chip pitch detection, automatic chip arrangement data formation, and method and device for inspecting semiconductor substrate using them
JP2003215060A (en) * 2002-01-22 2003-07-30 Tokyo Seimitsu Co Ltd Pattern inspection method and inspection apparatus
WO2005001456A1 (en) * 2003-06-30 2005-01-06 Tokyo Seimitsu Co., Ltd. Pattern comparison inspection method and pattern comparison inspection device
JP2008058124A (en) * 2006-08-31 2008-03-13 Hitachi High-Technologies Corp Flaw inspection method and flaw inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353324A (en) * 2016-08-10 2017-01-25 浙江理工大学 Magnet ring surface defect extraction method
CN106353324B (en) * 2016-08-10 2019-01-18 浙江理工大学 Magnet ring method for extracting surface defects

Similar Documents

Publication Publication Date Title
KR101674698B1 (en) Detecting defects on a wafer
US9721337B2 (en) Detecting defects on a wafer using defect-specific information
US9335277B2 (en) Region-of-interest determination apparatus, observation tool or inspection tool, region-of-interest determination method, and observation method or inspection method using region-of-interest determination method
US9053527B2 (en) Detecting defects on a wafer
US8775101B2 (en) Detecting defects on a wafer
TWI643280B (en) Defect detection using structural information
KR102363265B1 (en) Adaptive local threshold and color filtering
TWI631638B (en) Inspection recipe setup from reference image variation
US20170323435A1 (en) Defect quantification method, defect quantification device, and defect evaluation value display device
KR20130118822A (en) Classifier readiness and maintenance in automatic defect classification
JP2010535430A5 (en)
EP2482067A1 (en) A non-destructive test method for automatic fastener inspection
JP4189061B2 (en) Crack detection method for concrete surface
JP5088165B2 (en) Defect detection method and defect detection apparatus
Konovalenko et al. Error analysis of an algorithm for identifying thermal fatigue cracks
JP2012068162A (en) Method, apparatus, and program for processing contrast image of semiconductor device
TW202038192A (en) Defect classification by fitting optical signals to a point-spread function
JP2008058124A (en) Flaw inspection method and flaw inspection device
JP2012178159A (en) Flaw inspection method and flaw inspection device
JP5155938B2 (en) Pattern contour detection method
CN114882009A (en) Fatigue crack tip automatic detection method and system capable of adapting to various surface states
JP2005061929A (en) Defect inspection method
JP2022013285A (en) Machine learning method
WO2024069701A1 (en) Model generating method and defect inspection system
JP2008011005A (en) Defect inspection method and program of image sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702