JP2012178029A - Pressure reduction valve for liquid - Google Patents

Pressure reduction valve for liquid Download PDF

Info

Publication number
JP2012178029A
JP2012178029A JP2011040275A JP2011040275A JP2012178029A JP 2012178029 A JP2012178029 A JP 2012178029A JP 2011040275 A JP2011040275 A JP 2011040275A JP 2011040275 A JP2011040275 A JP 2011040275A JP 2012178029 A JP2012178029 A JP 2012178029A
Authority
JP
Japan
Prior art keywords
lever
pressure
valve
liquid
operating rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011040275A
Other languages
Japanese (ja)
Inventor
Toshihiko Suzuki
年彦 鈴木
Satoshi Suganobu
敏 菅信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2011040275A priority Critical patent/JP2012178029A/en
Publication of JP2012178029A publication Critical patent/JP2012178029A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a fluctuation range of a secondary side pressure of a pressure reduction valve for liquid.SOLUTION: The pressure reduction valve for liquid includes a drive shaft 26 for driving a valve body 23 in approaching/separating direction and a lever mechanism for driving the drive shaft corresponding to the movement of an operating rod. The lever mechanism includes: a first link mechanism provided with a lever 31 formed in an L shape, a lever pin 32 for supporting a bend part so as to swing the lever within a lever surface and a first engaging part (32) for freely slidably engaging one end of the lever with the operating rod, for converting the axial direction motion of the operating rod to the swing motion of the lever; and a second link mechanism provided with second engaging parts (36, 37) for engaging the other end of the lever with the drive shaft freely slidably in the longitudinal direction, for converting the swing motion of the lever to the axial direction motion of the drive shaft. A lever ratio K=A/B of an arm dimension A between the lever pin and an engaging pin and an arm dimension B between the lever pin and the axis of the operating rod is smaller than 1.

Description

本発明は、液体用減圧弁に係り、特に、給湯システム等の熱供給システムの給水圧を設定水圧に減圧調整するのに好適な液体用減圧弁に関する。   The present invention relates to a liquid pressure reducing valve, and more particularly, to a liquid pressure reducing valve suitable for adjusting a water supply pressure of a heat supply system such as a hot water supply system to a set water pressure.

熱供給システムとは、加熱源により水道水などの給水を加熱して給湯あるいは暖房の熱として供給するシステムを指すものとする。例えば、加熱源として太陽熱集熱器、ガス給湯器又はヒートポンプ給湯器等を単独で、又はそれらの加熱源を適宜組み合わせた熱供給システムが知られている。このような熱供給システムにおいて、太陽熱集熱器やヒートポンプ給湯器を加熱源とする場合は、昼間の太陽熱あるいは深夜電力を利用して貯湯槽内の水を沸上げて、例えば1日に必要な湯量を貯湯して運用する。給湯時には、貯湯槽から出湯させた高温の給湯に低温の給水を混合して設定温度に調節した後、台所、洗面、シャワー、ふろなどの使用場所に供給する。また、暖房器などの場合は、貯湯槽内に熱交換器を設け、その熱交換器と暖房器との間で熱媒を循環して熱を供給する。給湯温度を設定温度に調整するために、通常、高温の給湯と低温の給水の混合率を調整する温度調整弁が設けられる。   A heat supply system refers to a system that supplies water such as tap water by a heating source and supplies it as hot water supply or heating heat. For example, a heat supply system is known in which a solar heat collector, a gas water heater, a heat pump water heater, or the like is used alone as a heating source or an appropriate combination of these heating sources. In such a heat supply system, when a solar heat collector or a heat pump water heater is used as a heating source, water in a hot water tank is boiled using solar heat or midnight power in the daytime, for example, necessary for one day. The hot water is stored and operated. At the time of hot water supply, the hot water supplied from the hot water tank is mixed with the low temperature water to adjust the temperature to the set temperature, and then supplied to the kitchen, washroom, shower, bath, etc. In the case of a heater or the like, a heat exchanger is provided in the hot water tank, and heat is circulated between the heat exchanger and the heater to supply heat. In order to adjust the hot water supply temperature to the set temperature, a temperature adjustment valve that adjusts the mixing ratio of hot hot water and low temperature hot water is usually provided.

しかし、水道水の圧力、あるいは熱供給システムの各部に供給する給水圧や給水量が変動すると、温度調整動作が安定しなくなる。そのために、設定温度よりも高い温度の給湯が行われることがあり、熱量効率が低下することがある。そこで、水道水などの給水受入ラインに水用減圧弁を設けて給水圧力を所定圧に制御することが望ましい。   However, if the pressure of tap water or the supply water pressure or the amount of water supplied to each part of the heat supply system fluctuates, the temperature adjustment operation becomes unstable. For this reason, hot water supply at a temperature higher than the set temperature may be performed, and the heat efficiency may be reduced. Therefore, it is desirable to provide a water pressure reducing valve in a water supply receiving line such as tap water to control the water supply pressure to a predetermined pressure.

従来、一般に用いられている水用等の液体用減圧弁は、特許文献1、2に記載されているように、二次側の圧力が作用する調圧室の隔壁にダイヤフラムを設け、そのダイヤフラムを第1の調圧ばねで調圧室側に押圧した調圧機構が知られている。一方、調圧室に連通された開口を有する弁座に接離可能に弁体を設けた調圧弁を一次側の高圧液体の流入口に連通してなり、その弁体を第2の調圧ばねで弁座側に押圧した減圧機構が知られている。そして、調圧機構のダイヤフラムの中心に連結した作動桿を弁体の駆動軸に直結し、調圧室に作用する二次側の液体圧力に応じて変位するダイヤフラムの動きにより弁体を駆動して調圧弁の開度を制御し、流入口から流入される高圧液体を設定圧に減圧して調圧室の流出口から供給場所に送出するようにしている。   Conventionally, a pressure reducing valve for liquid such as water that is generally used is provided with a diaphragm in a partition wall of a pressure regulating chamber on which a secondary pressure acts, as described in Patent Documents 1 and 2, and the diaphragm There is known a pressure regulating mechanism in which a pressure regulating spring is pressed to the pressure regulating chamber side by a first pressure regulating spring. On the other hand, a pressure regulating valve provided with a valve body detachably connected to a valve seat having an opening communicated with the pressure regulating chamber is communicated with the inlet of the high-pressure liquid on the primary side, and the valve body is connected to the second pressure regulating valve. There is known a pressure reducing mechanism that is pressed against a valve seat by a spring. Then, the operating rod connected to the center of the diaphragm of the pressure regulating mechanism is directly connected to the drive shaft of the valve body, and the valve body is driven by the movement of the diaphragm displaced according to the secondary liquid pressure acting on the pressure regulating chamber. Thus, the opening degree of the pressure regulating valve is controlled, and the high-pressure liquid flowing in from the inflow port is reduced to a set pressure and sent out from the outflow port of the pressure regulating chamber to the supply place.

特開2002−23856号公報JP 2002-23856 A 特開2010−176229号公報JP 2010-176229 A

しかしながら、従来の液体用減圧弁は、ダイヤフラムの作動桿と、減圧弁の弁体の駆動軸が直結されているから、ダイヤフラムと弁体の変位量(ストローク)が同一の関係になる。その結果、調圧室内の二次側圧力の変動幅に応じて、調圧弁の開度が1対1の関係で調整されるので、二次側の圧力の変動幅が大きく、調圧精度が悪いという問題がある。   However, in the conventional pressure reducing valve for liquid, since the operating rod of the diaphragm and the drive shaft of the valve body of the pressure reducing valve are directly connected, the displacement amount (stroke) of the diaphragm and the valve body has the same relationship. As a result, the opening degree of the pressure regulating valve is adjusted in a one-to-one relationship according to the fluctuation range of the secondary side pressure in the pressure regulating chamber, so that the fluctuation range of the secondary side pressure is large and the pressure regulation accuracy is high. There is a problem of being bad.

特に、熱供給システムの給水系の水用減圧弁に適用する場合、二次側の給水圧の変動幅が大きいと、給湯と給水を混合して温度を調整する温度調整弁の温度調整が安定せず、給湯温度が設定温度よりも高くなることがあり、熱量効率が低下するという問題がある。   In particular, when applied to the water pressure reducing valve in the water supply system of the heat supply system, if the fluctuation range of the secondary side water supply pressure is large, the temperature adjustment of the temperature adjustment valve that adjusts the temperature by mixing hot water and water supply is stable. However, there is a problem that the hot water supply temperature becomes higher than the set temperature, and the heat efficiency is lowered.

また、給水量を計測する量水器(水道メータ)は、給水の流速により回転する水車の回転数に基づいて給水量を計量しているから、給水圧の変動により給水の流速が変動して量水器の計量値が安定しないという問題がある。   In addition, a water meter (water meter) that measures the amount of water supplied measures the amount of water supplied based on the number of rotations of the water turbine that rotates according to the flow rate of the water supply. There is a problem that the measured value of the water meter is not stable.

本発明が解決しようとする課題は、液体用減圧弁の二次側圧力の変動幅を抑制することにある。   The problem to be solved by the present invention is to suppress the fluctuation range of the secondary pressure of the liquid pressure reducing valve.

上記の課題を解決するため、本発明の液体用減圧弁は、内部に調圧室が形成されたボディと、前記調圧室の隔壁の一部を構成するダイアフラムと、該ダイヤフラムの中心に連結され摺動自由に支持された作動桿と、前記調圧室に連通して設けられた開口を有する弁座と、該弁座に対向させて設けられた弁体と、該弁体に連結して摺動自由に支持され前記弁座に対して接離方向に駆動する駆動軸と、該駆動軸を前記作動桿の動きに応じて駆動するレバー機構と、前記調圧室に前記弁座を介して連通された液体流入口と、前記調圧室に連通された液体流出口とを備えてなり、前記レバー機構は、L字状に形成されたレバーと、該レバーをレバー面内で遥動可能に曲り部を支持するレバーピンと、前記レバーの一端が前記作動桿に摺動自由に係合する第1の係合部とを有し、前記作動桿の軸方向運動を当該レバーの遥動運動に変換する第1のリンク機構と、前記レバーの他端が長手方向に摺動自由に前記駆動軸に係合する第2の係合部を有し、当該レバーの遥動運動を前記駆動軸の軸方向運動に変換する第2のリンク機構とを有してなり、前記レバーピンと前記係合ピンとの間のアーム寸法Aと前記レバーピンと前記作動桿の軸との間のアーム寸法Bとのレバー比K=A/Bが1未満であることを特徴とする。   In order to solve the above problems, a liquid pressure reducing valve according to the present invention includes a body having a pressure regulating chamber formed therein, a diaphragm constituting a part of a partition wall of the pressure regulating chamber, and a center of the diaphragm. An operating rod that is slidably supported, a valve seat having an opening provided in communication with the pressure regulating chamber, a valve body provided to face the valve seat, and a valve body connected to the valve body. A drive shaft that is supported slidably and drives in the direction away from the valve seat, a lever mechanism that drives the drive shaft according to the movement of the operating rod, and the valve seat in the pressure regulating chamber. And a liquid outlet connected to the pressure regulating chamber. The lever mechanism includes a lever formed in an L shape and the lever in the lever surface. A lever pin that movably supports the bending portion, and one end of the lever is slidably engaged with the operating rod. A first link mechanism that converts an axial movement of the operating rod into a swaying movement of the lever, and the other end of the lever is freely slidable in the longitudinal direction. And a second link mechanism that has a second engaging portion that engages with the shaft and converts the swinging motion of the lever into the axial motion of the drive shaft. The lever ratio K = A / B between the arm dimension A between the pin and the arm dimension B between the lever pin and the shaft of the operating rod is less than 1.

本発明によれば、調圧機構を構成するダイヤフラムの作動桿に、L字型のレバーをレバーピン周り遥動可能に構成したレバー機構を介して、減圧機構を構成する調圧弁の弁体の駆動棒を連結し、L字型のレバーのレバー比Kを1未満にしたことから、ダイヤフラムの変位量(ストローク)の変化に対する弁体の変位量(ストローク)、つまり調圧弁の開き量(開度)の変化を小さくできる。その結果、調圧室の圧力をきめ細かく制御できるから、二次側の圧力の変動幅を抑えて、調圧精度を向上することができる。なお、水減圧弁の場合、レバー比Kを1/(1.3〜1.5)に設定することが好ましい。   According to the present invention, the valve body of the pressure regulating valve constituting the pressure reducing mechanism is driven via the lever mechanism in which the L-shaped lever is configured to be swingable around the lever pin on the operating rod of the diaphragm constituting the pressure regulating mechanism. Since the rod is connected and the lever ratio K of the L-shaped lever is less than 1, the displacement amount (stroke) of the valve body relative to the change in the displacement amount (stroke) of the diaphragm, that is, the opening amount of the pressure regulating valve (opening degree) ) Can be reduced. As a result, since the pressure in the pressure adjusting chamber can be finely controlled, the pressure fluctuation accuracy can be improved by suppressing the fluctuation range of the pressure on the secondary side. In the case of a water pressure reducing valve, the lever ratio K is preferably set to 1 / (1.3 to 1.5).

上記の場合において、前記第1の係合部は、前記作動桿の軸に交差して形成され前記レバーの一端が挿入される矩形の挿通穴であり、前記挿通穴は、遥動運動により前記レバーが当接する内面が穴に沿って円弧状に形成されてなり、前記第2の係合部は、前記駆動軸の軸に交差して形成された係合ピン37と、前記レバーの他端に当該レバーの長手方向に沿って形成され前記係合ピンが挿入される長穴36とを有して形成することができる。   In the above case, the first engaging portion is a rectangular insertion hole formed so as to intersect with the axis of the operating rod and into which one end of the lever is inserted. The inner surface with which the lever abuts is formed in an arc shape along the hole, and the second engagement portion includes an engagement pin 37 formed so as to intersect the axis of the drive shaft, and the other end of the lever And a long hole 36 formed along the longitudinal direction of the lever and into which the engagement pin is inserted.

さらに、上記のいずれかの液体用減圧弁において、前記ボディを含む全体を断熱材で覆うことができる。これによれば、冬季の減圧弁凍結防止を簡易に図ることができる。   Furthermore, in any one of the liquid pressure reducing valves described above, the entire body including the body can be covered with a heat insulating material. According to this, it is possible to easily prevent the pressure reducing valve from freezing in winter.

本発明によれば、液体用減圧弁の二次側圧力の変動幅を抑制することができるから調圧精度を向上することができる。   According to the present invention, since the fluctuation range of the secondary pressure of the liquid pressure reducing valve can be suppressed, the pressure adjustment accuracy can be improved.

本発明の一実施例の水用減圧弁の構成を示す図であり、(a)は上面図、(b)は正面から見た断面図である。It is a figure which shows the structure of the pressure reducing valve for water of one Example of this invention, (a) is a top view, (b) is sectional drawing seen from the front. 図1実施例の水用減圧弁を断熱材で覆った構成を示す図であり、水用減圧弁を側面から見た断面図である。It is a figure which shows the structure which covered the pressure reducing valve for water of FIG. 1 Example with the heat insulating material, and is sectional drawing which looked at the pressure reducing valve for water from the side surface. 駆動軸の支持部材の一例を示す図である。It is a figure which shows an example of the supporting member of a drive shaft. 図1実施例の二次側圧力の変動幅と、従来の液体用減圧弁の二次側圧力の変動幅とを比較して示す図である。It is a figure which compares and shows the fluctuation range of the secondary side pressure of FIG. 1 Example, and the fluctuation range of the secondary side pressure of the conventional pressure reducing valve for liquids. 本発明の水用減圧弁の適用対象の熱供給システムの一例を示す全体構成図である。It is a whole lineblock diagram showing an example of the heat supply system of the application object of the pressure reducing valve for water of the present invention.

以下、本発明の液体用減圧弁の実施例を、図面を参照して説明する。   Embodiments of the liquid pressure reducing valve of the present invention will be described below with reference to the drawings.

本発明の水用減圧弁が適用される熱供給システムの一例の全体構成図を、図5を参照して説明する。同図に示す熱供給システムは、加熱源として太陽熱の集熱器101及びガス又は石油を燃料とする給湯器102と、貯湯槽103を備えて構成される。集熱器101は図示例では2つの集熱ユニット101a,bを備えて構成され、貯湯槽103の内部に設けられた熱交換器120と熱媒循環路121a、121bを介して連結され、熱媒循環路121aに介装された循環ポンプ123により熱媒を循環して、貯湯槽103内の水を沸上げるようになっている。   An overall configuration diagram of an example of a heat supply system to which the water pressure reducing valve of the present invention is applied will be described with reference to FIG. The heat supply system shown in the figure includes a solar heat collector 101 as a heating source, a hot water heater 102 using gas or petroleum as fuel, and a hot water storage tank 103. In the illustrated example, the heat collector 101 includes two heat collecting units 101a and 101b, and is connected to the heat exchanger 120 provided in the hot water storage tank 103 via the heat medium circulation paths 121a and 121b. The heat medium is circulated by a circulation pump 123 interposed in the medium circulation path 121 a to boil water in the hot water storage tank 103.

一方、水道などの給水105は給水管106、水用減圧弁107、給水管108を介して貯湯槽103の底部に給水される。貯湯槽103内の湯は給水管108の水圧で押し出され、給湯管109から電動三方弁110を介して台所などの給湯場所に給湯111するようになっている。また、給湯管109から分岐された給湯管112と給水管108から分岐された給水管114は、それぞれ温度調整弁113に接続されている。温度調整弁113は給湯に給水を混合して湯温を設定温度に調整し、給湯管115を介して手動切換弁116に供給するようになっている。手動切換弁116は、給水管106からの給水と、給湯管115からの給湯のいずれかを切り換えて、給湯器102に供給するようになっている。給湯器102により加熱された湯は、電動三方弁110を介して給湯場所に給湯111するようになっている。なお、図中の符号117は、給湯圧が設定値を超えたときに動作する逃し弁である。   On the other hand, water 105 such as water is supplied to the bottom of the hot water storage tank 103 through a water supply pipe 106, a water pressure reducing valve 107, and a water supply pipe 108. Hot water in the hot water storage tank 103 is pushed out by the water pressure of the water supply pipe 108, and hot water 111 is supplied from the hot water supply pipe 109 to a hot water supply place such as a kitchen via the electric three-way valve 110. A hot water supply pipe 112 branched from the hot water supply pipe 109 and a water supply pipe 114 branched from the water supply pipe 108 are connected to the temperature control valve 113, respectively. The temperature adjustment valve 113 mixes hot water with hot water to adjust the hot water temperature to a set temperature, and supplies it to the manual switching valve 116 via the hot water supply pipe 115. The manual switching valve 116 switches either water supply from the water supply pipe 106 or hot water supply from the hot water supply pipe 115 and supplies it to the water heater 102. Hot water heated by the water heater 102 is supplied to the hot water supply place 111 via the electric three-way valve 110. In addition, the code | symbol 117 in a figure is a relief valve which operate | moves when the hot water supply pressure exceeds a preset value.

ここで、図1、2を参照して、本発明の一実施例の水用減圧弁107の詳細構成について説明する。本実施例の水用減圧弁107は、図1(b)の断面図に示すように、調圧機構と減圧機構とレバー機構を有して構成されている。調圧機構は、内部に調圧室1が形成されたボディ2と、ボディ2の図において上部隔壁に形成された開口を塞いで設けられたカバーボディ3を有して形成されている。ボディ2とカバーボディ3との接合部に、調圧室1の隔壁の一部としてダイアフラム4が設けられている。ボディ2とカバーボディ3はボルト5により締結されている。ダイアフラム4の上面にダイヤフラム受板6が積層され、ダイヤフラム受板6の上面に当接させて調圧ばね7が設けられている。調圧ばね7の他端はカバーボディ3の円筒部に設けられた円盤状の調圧板8に当接されている。調圧板8の中心に調圧ねじ9の一端が回転可能に係合され、調圧ねじ9の外周面に形成されたねじがカバーボディ3の頂部に固定されたインサートナット10に形成されたねじに螺合されている。したがって、調圧板8は、調圧ねじ9を回転することによってカバーボディ3内で上下移動可能に形成されている。また、ダイヤフラム4の中心部に作動桿11の頭部が突出して設けられ、作動桿11の鍔部11aとナット12によりダイヤフラム受板6を挟持して固定されている。作動桿11の脚部は調圧室1に延在して設けられ、その下端は調圧室1の底部壁に起立して設けられた筒状の支持部13に摺動自由に支持されている。筒状の支持部13の底部に近い位置の筒壁に、調圧室1に連通する開口13aが設けられている。これにより、作動桿11の摺動を円滑にして後述するレバー機構の動作の安定化を図っている。   Here, with reference to FIGS. 1 and 2, a detailed configuration of the water pressure reducing valve 107 according to an embodiment of the present invention will be described. As shown in the sectional view of FIG. 1B, the water pressure reducing valve 107 of the present embodiment is configured to include a pressure adjusting mechanism, a pressure reducing mechanism, and a lever mechanism. The pressure regulating mechanism is formed to have a body 2 in which a pressure regulating chamber 1 is formed, and a cover body 3 provided by closing an opening formed in an upper partition wall in the figure of the body 2. A diaphragm 4 is provided at a joint portion between the body 2 and the cover body 3 as a part of the partition wall of the pressure regulating chamber 1. The body 2 and the cover body 3 are fastened by bolts 5. A diaphragm receiving plate 6 is laminated on the upper surface of the diaphragm 4, and a pressure adjusting spring 7 is provided in contact with the upper surface of the diaphragm receiving plate 6. The other end of the pressure adjusting spring 7 is in contact with a disk-shaped pressure adjusting plate 8 provided in the cylindrical portion of the cover body 3. One end of the pressure adjusting screw 9 is rotatably engaged with the center of the pressure adjusting plate 8, and the screw formed on the outer peripheral surface of the pressure adjusting screw 9 is formed on the insert nut 10 fixed to the top of the cover body 3. Are screwed together. Therefore, the pressure adjusting plate 8 is formed to be movable up and down in the cover body 3 by rotating the pressure adjusting screw 9. Further, the head of the operating rod 11 protrudes from the center of the diaphragm 4, and the diaphragm receiving plate 6 is sandwiched and fixed by the flange 11 a of the operating rod 11 and the nut 12. A leg portion of the operating rod 11 is provided to extend to the pressure regulating chamber 1, and a lower end thereof is slidably supported by a cylindrical support portion 13 provided upright on the bottom wall of the pressure regulating chamber 1. Yes. An opening 13 a that communicates with the pressure regulating chamber 1 is provided on the cylindrical wall at a position close to the bottom of the cylindrical support portion 13. Thereby, the operation rod 11 is smoothly slid to stabilize the operation of a lever mechanism described later.

一方、減圧機構は、給水の流入口20が調圧弁21を介して調圧室1に連通され、調圧弁21は調圧室1に連通された開口を有する円筒状の弁座22に接離可能に設けられたゴム製の弁体23を有して構成されている。弁体23は、弁カバー24を挟んでねじ25により駆動軸26の一端に固定されている。駆動軸26は、図3に示すように、弁座22の円筒の内面に装着された筒状の支持部材27により軸方向に摺動自由に支持されている。すなわち、支持部材27は、駆動軸26が摺動自由に嵌入される円筒体27aと、円筒体27aの両端に放射状に突出された梁部材27bと、梁部材27bに支持され弁座22の円筒両端の内面に装着された一対の円筒状の支持体27cを有して形成されている。これにより、駆動軸26は、流入口20に流入される高圧の給水圧が弁カバー24に作用して、弁座22方向に付勢されている。また、給水の流入口20と調圧弁21との間に、調圧弁21を覆うようにフィルタ29が設けられ、これにより給水に含まれる異物を除去するようになっている。なお、支持部材27は、駆動軸26を軸方向に摺動自由に支持することができれば、図3に例示した構造に限られるものではない。   On the other hand, in the pressure reducing mechanism, the inlet 20 of the water supply is communicated with the pressure regulating chamber 1 via the pressure regulating valve 21, and the pressure regulating valve 21 contacts and separates from the cylindrical valve seat 22 having an opening communicated with the pressure regulating chamber 1. It has a rubber valve body 23 that can be provided. The valve body 23 is fixed to one end of the drive shaft 26 by a screw 25 with the valve cover 24 interposed therebetween. As shown in FIG. 3, the drive shaft 26 is slidably supported in the axial direction by a cylindrical support member 27 attached to the inner surface of the cylinder of the valve seat 22. That is, the support member 27 includes a cylindrical body 27a into which the drive shaft 26 is slidably inserted, a beam member 27b projecting radially at both ends of the cylindrical body 27a, and a cylinder of the valve seat 22 supported by the beam member 27b. It has a pair of cylindrical supports 27c attached to the inner surfaces of both ends. As a result, the drive shaft 26 is biased in the direction of the valve seat 22 by the high water supply pressure flowing into the inlet 20 acting on the valve cover 24. Further, a filter 29 is provided between the water supply inlet 20 and the pressure regulating valve 21 so as to cover the pressure regulating valve 21, thereby removing foreign matters contained in the water supply. The support member 27 is not limited to the structure illustrated in FIG. 3 as long as the drive shaft 26 can be slidably supported in the axial direction.

レバー機構は、L字状に形成された平板状のレバー31と、レバー31の曲り部を支持するレバーピン32を有して形成されている。これにより、レバー31はレバーピン32の周りにレバー面内で遥動可能に支持されている。レバー31の一端は、作動桿11の軸に交差(図示例では、直交)して形成された矩形のレバー挿通穴33に挿入されている(図2参照)。矩形のレバー挿通穴33は、レバー31の遥動方向の2つの挿通穴内面33a,33b(図において、上下の内面)は、レバー31の遥動が円滑に行えるように、穴の延在方向に沿って円弧状に形成されている。そして、レバー31の図において上下面がレバー挿通穴33の円弧状の内面を摺動するように接触されている。この構成により、レバー31の一端が係合して作動桿11の軸方向運動をレバー31の遥動運動に変換する第1のリンク機構が形成されている。
一方、レバー31の他端には、レバー31の長手方向に沿って長穴36が形成され、長穴36は調圧弁21の駆動軸26の外面に植設され係合ピン37に係合されている。これにより、レバー31の遥動運動を駆動軸26の軸方向運動に変換する第2のリンク機構が形成されている。また、レバーピン32と係合ピン37との間の寸法をAとし、レバーピン32と作動桿11の軸心との間の寸法をBとする。そして、A/Bの寸法比をレバー比K=A/Bと定義すると、本発明ではK<1に設定される。さらに具体的には、レバー比Kは、1/(1.3〜1.5)の範囲に設定することが好ましい。
The lever mechanism includes a flat lever 31 formed in an L shape and a lever pin 32 that supports a bent portion of the lever 31. Thus, the lever 31 is supported around the lever pin 32 so as to be able to swing in the lever surface. One end of the lever 31 is inserted into a rectangular lever insertion hole 33 formed so as to intersect with the axis of the operating rod 11 (orthogonal in the illustrated example) (see FIG. 2). The rectangular lever insertion hole 33 has two insertion hole inner surfaces 33a and 33b (upper and lower inner surfaces in the figure) in the swing direction of the lever 31 so that the lever 31 can move smoothly. It is formed in an arc shape along. In the drawing of the lever 31, the upper and lower surfaces are in contact with each other so as to slide on the arc-shaped inner surface of the lever insertion hole 33. With this configuration, a first link mechanism that engages one end of the lever 31 and converts the axial movement of the operating rod 11 into the swaying movement of the lever 31 is formed.
On the other hand, an elongated hole 36 is formed at the other end of the lever 31 along the longitudinal direction of the lever 31, and the elongated hole 36 is planted on the outer surface of the drive shaft 26 of the pressure regulating valve 21 and engaged with the engaging pin 37. ing. As a result, a second link mechanism that converts the swaying motion of the lever 31 into the axial motion of the drive shaft 26 is formed. A dimension between the lever pin 32 and the engagement pin 37 is A, and a dimension between the lever pin 32 and the shaft center of the operating rod 11 is B. If the dimensional ratio of A / B is defined as lever ratio K = A / B, K <1 is set in the present invention. More specifically, the lever ratio K is preferably set to a range of 1 / (1.3 to 1.5).

このように構成される水用減圧弁107の調圧室1は、逆止弁40を介して減圧された給水の流出口41に連通されている。逆止弁40は、流出口41側から調圧室1内に流れ込む水流を遮断するものであり、本発明の特徴には関係しないことから、詳細な説明は省略する。また、水用減圧弁107には、図2に示すように、調圧室1内に所定の設定圧以上の異常水圧が作用したときに、調圧室1内の水を放出するブロー弁42が設けられている。   The pressure regulating chamber 1 of the water pressure reducing valve 107 configured as described above is communicated with the outlet 41 of the water supply via the check valve 40. The check valve 40 shuts off the water flow that flows into the pressure regulating chamber 1 from the outlet 41 side, and is not related to the features of the present invention, and therefore will not be described in detail. As shown in FIG. 2, the water pressure reducing valve 107 is a blow valve 42 that discharges water in the pressure regulating chamber 1 when an abnormal water pressure higher than a predetermined set pressure is applied in the pressure regulating chamber 1. Is provided.

図2は、図1実施例の水用減圧弁107の全体を、断熱材カバー50で覆った構成を示し、水用減圧弁107を側面から見た断面図である。図示のように、断熱材カバー50は、ボディ2とカバーボディ3を包囲するように、上下2つの断熱材カバー50a,bに分割して形成されている。   FIG. 2 is a cross-sectional view of the water pressure reducing valve 107 of the embodiment shown in FIG. 1 as covered by a heat insulating material cover 50 as viewed from the side. As illustrated, the heat insulating material cover 50 is divided into two upper and lower heat insulating material covers 50 a and 50 b so as to surround the body 2 and the cover body 3.

次に、本実施例の水用減圧弁の特徴部の動作及び効果について、図4を参照して説明する。まず、レバー比Kの技術的意味について、本発明の液体用減圧弁の基本原理を説明する。液体用減圧弁の調圧のバランスは次式(1)で表せる。
F1=S×P+K×S×(P−P) (1)
ここで、記号の意味は次のとおりである。
F1:調圧ばね7によりダイヤフラム4に加えられる荷重[kgf]
S :ダイヤフラム4の液体受圧面積[cm
:二次側圧力[kgf/cm
K :レバー比
:弁座22の開口面積[cm
:二次側圧力[kgf/cm
つまり(1)式は、調圧ばね7の荷重と、ダイヤフラム4の受圧面積に二次側圧力を掛けて得られる荷重のバランスを基本に、調圧弁21の弁座22の開き量(開口径と開度)が関係している。
Next, the operation and effect of the characteristic part of the water pressure reducing valve of this embodiment will be described with reference to FIG. First, regarding the technical meaning of the lever ratio K, the basic principle of the liquid pressure reducing valve of the present invention will be described. The balance of pressure regulation of the liquid pressure reducing valve can be expressed by the following equation (1).
F1 = S × P 2 + K × S 0 × (P 1 −P 2 ) (1)
Here, the meanings of the symbols are as follows.
F1: Load [kgf] applied to the diaphragm 4 by the pressure regulating spring 7
S: Liquid pressure receiving area [cm 2 ] of diaphragm 4
P 2 : Secondary pressure [kgf / cm 2 ]
K: Lever ratio S 0 : Opening area of the valve seat 22 [cm 2 ]
P 1 : Secondary pressure [kgf / cm 2 ]
That is, the expression (1) is based on the balance between the load of the pressure regulating spring 7 and the load obtained by applying the secondary pressure to the pressure receiving area of the diaphragm 4 (the opening amount of the pressure regulating valve 21 (opening diameter)). And opening).

弁座22の開き量を算出するために、仮想オリフィスを想定し、仮想オリフィス径Dを次式(2)で算出する。なお、(2)式において、Qmaxは減圧する液体の最大流量、(P−P)は仮想オリフィスの圧力損失、定数0.009は構造的時定数である。なお、仮想オリフィス径Dは、最大流量時のダイヤフラム変位量Hを算出するための前提条件の仮設定である。

Figure 2012178029
In order to calculate the opening amount of the valve seat 22, a virtual orifice is assumed and a virtual orifice diameter D is calculated by the following equation (2). In equation (2), Qmax is the maximum flow rate of the liquid to be depressurized, (P 1 -P 2 ) is the pressure loss of the virtual orifice, and constant 0.009 is the structural time constant. The virtual orifice diameter D is a temporary setting of a precondition for calculating the diaphragm displacement amount H at the maximum flow rate.
Figure 2012178029

一方、ダイヤフラム4の変位量Hは、仮想オリフィス径Dをもとに、弁座開口径Dと次式(3)の関係がある。同式のαは、ダイヤフラム4の変位量係数であり、流量が大きくなるに従い、数値が大きくなる流量ごとの係数である。これにより、ダイヤフラムの流量ごとの変位量が二次曲線的に増加する傾向となる。

Figure 2012178029
On the other hand, the displacement amount H of the diaphragm 4, based on the virtual orifice diameter D, a relationship of BenzaHiraku diameter D 0 and the following equation (3). Α in the equation is a displacement amount coefficient of the diaphragm 4, and is a coefficient for each flow rate in which the numerical value increases as the flow rate increases. As a result, the displacement amount for each flow rate of the diaphragm tends to increase in a quadratic curve.
Figure 2012178029

これらの式(1)〜(3)から明らかなように、ダイヤフラム4の変位量を基に、弁座開口径Dが決まってくる。そして、調圧弁21の弁座22の開き量(開口径と開度)をダイヤフラム4の変位量の相関をレバー比Kで調整し、二次側圧力の変動幅を小さくするように決定する。 As is clear from these equations (1) to (3), the valve seat opening diameter D 0 is determined based on the displacement amount of the diaphragm 4. Then, the opening amount (opening diameter and opening degree) of the valve seat 22 of the pressure regulating valve 21 is determined by adjusting the correlation of the displacement amount of the diaphragm 4 with the lever ratio K so as to reduce the fluctuation range of the secondary pressure.

以上説明したように、本実施例によれば、調圧機構を構成するダイヤフラムの作動桿に、L字型のレバーをレバーピン周り遥動可能に構成したレバー機構を介して、減圧機構を構成する調圧弁の弁体の駆動棒を連結し、L字型のレバーのレバー比Kを1未満にしたことから、ダイヤフラムの変位量(ストローク)の変化に対する弁体の変位量(ストローク)、つまり調圧弁の開き量の変化を小さくできる。その結果、調圧室の圧力をきめ細かく制御できるから、二次側の圧力の変動幅を抑えて、調圧精度を向上することができる。   As described above, according to the present embodiment, the pressure reducing mechanism is configured through the lever mechanism in which the L-shaped lever is configured to be swingable around the lever pin on the operating rod of the diaphragm constituting the pressure adjusting mechanism. Since the drive rod of the valve body of the pressure regulating valve is connected and the lever ratio K of the L-shaped lever is less than 1, the displacement amount (stroke) of the valve body with respect to the change in the displacement amount (stroke) of the diaphragm, that is, the adjustment The change in the opening amount of the pressure valve can be reduced. As a result, since the pressure in the pressure adjusting chamber can be finely controlled, the pressure fluctuation accuracy can be improved by suppressing the fluctuation range of the pressure on the secondary side.

特に、レバー比Kを1/(1.3〜1.5)に設定した水用減圧弁の場合、図4の曲線Iに示すように、設定圧に対する二次側水圧の変動幅を±3%に抑えることができた。これに対して、ダイヤフラムにより調圧弁の弁体を直接駆動する方式の従来の液体用減圧弁の場合は、図4の曲線IIに示すように、±8%の変動幅が生じている。このように、本発明によれば、液体用減圧弁の二次側の圧力変動幅を、大幅に低減できるから、調圧精度を向上することができるという効果がある。   In particular, in the case of a water pressure reducing valve in which the lever ratio K is set to 1 / (1.3 to 1.5), the fluctuation range of the secondary water pressure with respect to the set pressure is ± 3 as shown by the curve I in FIG. %. On the other hand, in the case of a conventional liquid pressure reducing valve in which the valve body of the pressure regulating valve is directly driven by a diaphragm, a fluctuation range of ± 8% occurs as shown by a curve II in FIG. Thus, according to the present invention, the pressure fluctuation range on the secondary side of the pressure reducing valve for liquid can be greatly reduced, so that the pressure regulation accuracy can be improved.

また、ボディを含む全体を断熱材で覆った水用減圧弁によれば、冬季の凍結防止を簡易に図ることができる。   Moreover, according to the water pressure reducing valve in which the entire body including the heat insulating material is covered, it is possible to easily prevent freezing in winter.

1 調圧室
2 ボディ
3 カバーボディ
4 ダイヤフラム
6 ダイヤフラム受板
7 調圧ばね
8 調圧板
9 調圧ねじ
11 作動桿
13 支持部
13a 開口
20 流入口
21 調圧弁
22 弁座
23 弁体
26 駆動軸
27 支持部材
29 フィルタ
31 レバー
32 レバーピン
33 レバー挿通穴
33a,b 挿通穴内面
36 長穴
37 ピン
50 断熱材カバー
DESCRIPTION OF SYMBOLS 1 Pressure regulation chamber 2 Body 3 Cover body 4 Diaphragm 6 Diaphragm receiving plate 7 Pressure regulation spring 8 Pressure regulation plate 9 Pressure regulation screw 11 Actuation rod 13 Support part 13a Opening 20 Inlet 21 Pressure regulation valve 22 Valve seat 23 Valve body 26 Drive shaft 27 Support member 29 Filter 31 Lever 32 Lever pin 33 Lever insertion hole 33a, b Insertion hole inner surface 36 Elongated hole 37 Pin 50 Thermal insulation cover

Claims (4)

内部に調圧室が形成されたボディと、前記調圧室の隔壁の一部を構成するダイアフラムと、該ダイヤフラムの中心に連結され摺動自由に支持された作動桿と、前記調圧室に連通して設けられた開口を有する弁座と、該弁座に対向させて設けられた弁体と、該弁体に連結して摺動自由に支持され前記弁座に対して接離方向に駆動する駆動軸と、該駆動軸を前記作動桿の動きに応じて駆動するレバー機構と、前記調圧室に前記弁座を介して連通された液体流入口と、前記調圧室に連通された液体流出口とを備えてなり、前記レバー機構は、L字状に形成されたレバーと、該レバーをレバー面内で遥動可能に曲り部を支持するレバーピンと、前記レバーの一端が前記作動桿に摺動自由に係合する第1の係合部とを有し、前記作動桿の軸方向運動を当該レバーの遥動運動に変換する第1のリンク機構と、前記レバーの他端が長手方向に摺動自由に前記駆動軸に係合する第2の係合部を有し、当該レバーの遥動運動を前記駆動軸の軸方向運動に変換する第2のリンク機構とを有してなり、前記レバーピンと前記係合ピンとの間のアーム寸法Aと前記レバーピンと前記作動桿の軸との間のアーム寸法Bとのレバー比K=A/Bが1未満である液体用減圧弁。   A body having a pressure regulating chamber formed therein, a diaphragm constituting a part of the partition wall of the pressure regulating chamber, an operating rod connected to the center of the diaphragm and supported to be freely slidable, and the pressure regulating chamber A valve seat having an opening provided in communication, a valve body provided to face the valve seat, and connected to the valve body so as to be slidably supported in a contact / separation direction with respect to the valve seat A drive shaft for driving, a lever mechanism for driving the drive shaft according to the movement of the operating rod, a liquid inflow port communicated with the pressure regulating chamber via the valve seat, and a pressure regulating chamber. The lever mechanism includes an L-shaped lever, a lever pin that supports the bent portion so that the lever can swing in the lever surface, and one end of the lever is the end of the lever. A first engaging portion that is slidably engaged with the operating rod, and applies the axial movement of the operating rod. A first link mechanism for converting the lever into a swaying motion, and a second engaging portion at which the other end of the lever slidably engages with the drive shaft in the longitudinal direction. And a second link mechanism for converting the movement into the axial movement of the drive shaft, between the arm dimension A between the lever pin and the engagement pin, and between the lever pin and the shaft of the operating rod. A pressure reducing valve for liquid having a lever ratio K = A / B with an arm dimension B of less than 1. 請求項1に記載の液体用減圧弁において、
前記第1の係合部は、前記作動桿の軸に交差して形成され前記レバーの一端が挿入される矩形の挿通穴であり、前記挿通穴は、遥動運動により前記レバーが当接する内面が穴に沿って円弧状に形成されてなり、
前記第2の係合部は、前記駆動軸の軸に交差して形成された係合ピンと、前記レバーの他端に当該レバーの長手方向に沿って形成され前記係合ピンが挿入される長穴とを有して形成してなることを特徴とする液体用減圧弁。
The pressure reducing valve for liquid according to claim 1,
The first engagement portion is a rectangular insertion hole formed so as to intersect with the axis of the operating rod and into which one end of the lever is inserted. The insertion hole is an inner surface on which the lever abuts by a swinging motion. Is formed in an arc shape along the hole,
The second engagement portion includes an engagement pin formed to intersect the axis of the drive shaft, and a length at which the engagement pin is inserted at the other end of the lever along the longitudinal direction of the lever. A pressure reducing valve for liquid, comprising a hole.
請求項1又は2に記載の液体用減圧弁において、
前記レバー比Kが1/(1.3〜1.5)であることを特徴とする液体用減圧弁。
The pressure reducing valve for liquid according to claim 1 or 2,
The pressure reducing valve for liquid, wherein the lever ratio K is 1 / (1.3 to 1.5).
請求項1乃至3のいずれか1項に記載の液体用減圧弁において、
前記ボディを含む全体を断熱材で覆ってなる液体用減圧弁。
The liquid pressure reducing valve according to any one of claims 1 to 3,
A pressure reducing valve for liquid, wherein the whole body including the body is covered with a heat insulating material.
JP2011040275A 2011-02-25 2011-02-25 Pressure reduction valve for liquid Withdrawn JP2012178029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040275A JP2012178029A (en) 2011-02-25 2011-02-25 Pressure reduction valve for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040275A JP2012178029A (en) 2011-02-25 2011-02-25 Pressure reduction valve for liquid

Publications (1)

Publication Number Publication Date
JP2012178029A true JP2012178029A (en) 2012-09-13

Family

ID=46979836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040275A Withdrawn JP2012178029A (en) 2011-02-25 2011-02-25 Pressure reduction valve for liquid

Country Status (1)

Country Link
JP (1) JP2012178029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499865A (en) * 2015-09-06 2017-03-15 费希尔调压器(上海)有限公司 The lever assembly with damper for fluid conditioner
JP2017079158A (en) * 2015-10-21 2017-04-27 本田技研工業株式会社 Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106499865A (en) * 2015-09-06 2017-03-15 费希尔调压器(上海)有限公司 The lever assembly with damper for fluid conditioner
JP2017079158A (en) * 2015-10-21 2017-04-27 本田技研工業株式会社 Fuel cell system
US10205182B2 (en) 2015-10-21 2019-02-12 Honda Motor Co., Ltd. Fuel cell system

Similar Documents

Publication Publication Date Title
US10254009B2 (en) Small thermostatic electric storage water heater for water supply terminal
CN103968143B (en) Health insertion, the part of sanitary water fitting and the method for controlling the flow of medium of flowing
US10900668B2 (en) Recirculating fluid heating systems
US9341390B2 (en) Tap water device for storing and heating tap water
US9309870B2 (en) Thermal actuator
KR101181490B1 (en) Auto-control heating system of district heating and control method for heating
US20200049375A1 (en) Electric water heater having instantaneous hot water storage-type structure
JP5388186B2 (en) Drinking water supply device
JP2012178029A (en) Pressure reduction valve for liquid
US20110162732A1 (en) anti-siphon check valve
CN102221100A (en) Thermal-insulation faucet
JP2014105949A (en) Hot water storage type water heater
CN204128057U (en) The Water way controller of wall-hung boiler Living Water and the water inlet of heating water homonymy
CN202303650U (en) Separating solar water heating system
JP5936076B2 (en) Motor drive control valve
CN202812297U (en) Water mixing valve
CN201723836U (en) Integrated instantaneously heating water tap
CN220582525U (en) Self-excitation temperature-control rapid water heater and heating system
EP2450635A1 (en) Solar heating system
CN221076753U (en) Double-layer electric water heater
CN210197736U (en) Temperature control device of water heater
CN102349794A (en) Simple cooling device
CN201340118Y (en) Automatic water replenishing and heat storage device of solar water heater
CN202885281U (en) Solar water heater
CN102777631B (en) Water mixing valve

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513