JP2012176063A - Measuring instrument - Google Patents

Measuring instrument Download PDF

Info

Publication number
JP2012176063A
JP2012176063A JP2011039902A JP2011039902A JP2012176063A JP 2012176063 A JP2012176063 A JP 2012176063A JP 2011039902 A JP2011039902 A JP 2011039902A JP 2011039902 A JP2011039902 A JP 2011039902A JP 2012176063 A JP2012176063 A JP 2012176063A
Authority
JP
Japan
Prior art keywords
electrode
impedance
contact pressure
measurement
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011039902A
Other languages
Japanese (ja)
Other versions
JP5610157B2 (en
Inventor
Yoshio Sakai
良雄 酒井
Yasuhiro Kasahara
靖弘 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
Original Assignee
Tanita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp filed Critical Tanita Corp
Priority to JP2011039902A priority Critical patent/JP5610157B2/en
Publication of JP2012176063A publication Critical patent/JP2012176063A/en
Application granted granted Critical
Publication of JP5610157B2 publication Critical patent/JP5610157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate contact pressure acting on a body from an electrode portion by a simple structure.SOLUTION: The electrode portion 14 includes an electrode pair PA (electrode E1 and electrode E2) coming into contact with a measurement region of a subject and an electrode pair PB (electrode E3 and electrode E4). A control portion 22 computes impedance ZA[n] by a two-electrode method using the electrode pair PA and computes impedance ZB[n] by a four-electrode method using the electrode pair PA and the electrode pair PB, and computes a contact pressure index C[n] of the electrode portion 14 relative to the measurement region on the basis of a difference between the impedance ZA[n] and the impedance ZB[n].

Description

本発明は、皮下脂肪厚等の生体情報を計測する技術に関する。   The present invention relates to a technique for measuring biological information such as subcutaneous fat thickness.

生体インピーダンスを利用して被験者の生体情報を算定する技術が従来から提案されている。例えば特許文献1には、電極部(プローブ)に形成された4個の電極を被験者の身体に接触させて生体インピーダンスを算定し、生体インピーダンスから特定されるレジスタンスRとリアクタンスXとの比(R/X)から被験者の皮下脂肪厚を算定する技術が開示されている。   Conventionally, techniques for calculating biological information of a subject using bioelectrical impedance have been proposed. For example, in Patent Document 1, bioimpedance is calculated by bringing four electrodes formed on an electrode part (probe) into contact with the body of a subject, and the ratio (R) of resistance R and reactance X specified from the bioimpedance. / X) discloses a technique for calculating a subject's subcutaneous fat thickness.

特開2010−259776号公報JP 2010-259776 A

しかし、電極部から作用する接触圧(押圧力)に応じて皮下脂肪は変形するため、生体インピーダンスに応じて算定される皮下脂肪厚には誤差が発生する可能性がある。電極部の接触圧を検出する圧力センサ等の検出器を利用すれば、電極部から身体に作用する接触圧の適否(例えば皮下脂肪の変形の有無)を検出することも可能であるが、検出器の追加により測定装置の構成が複雑化するという問題がある。なお、以上の説明では皮下脂肪厚の測定を想定したが、電極部の接触圧に依存する他の生体情報(例えば筋肉厚)の測定時にも同様の問題が発生し得る。以上の事情を考慮して、本発明は、電極部から身体に作用する接触圧を簡易な構成で評価することを目的とする。   However, since the subcutaneous fat is deformed according to the contact pressure (pressing force) acting from the electrode part, there is a possibility that an error occurs in the subcutaneous fat thickness calculated according to the bioimpedance. If a detector such as a pressure sensor that detects the contact pressure of the electrode part is used, it is possible to detect the suitability of the contact pressure acting on the body from the electrode part (for example, the presence or absence of deformation of subcutaneous fat). There is a problem that the configuration of the measuring apparatus becomes complicated due to the addition of the measuring instrument. In the above description, the measurement of the subcutaneous fat thickness is assumed, but the same problem may occur when measuring other biological information (for example, muscle thickness) that depends on the contact pressure of the electrode portion. In view of the above circumstances, an object of the present invention is to evaluate the contact pressure acting on the body from the electrode portion with a simple configuration.

以上の課題を解決するために本発明が採用する手段を説明する。なお、本発明の理解を容易にするために、以下の説明では、本発明の要素と後述の実施形態の要素との対応を括弧書で付記するが、本発明の範囲を実施形態の例示に限定する趣旨ではない。   Means employed by the present invention to solve the above problems will be described. In order to facilitate the understanding of the present invention, in the following description, the correspondence between the elements of the present invention and the elements of the embodiments described later will be indicated in parentheses, but the scope of the present invention will be exemplified in the embodiments. It is not intended to be limited.

本発明の測定装置は、被験者の身体(例えば測定部位60)に接触する第1電極対(例えば電極対PA)および第2電極対(例えば電極対PB)を含む電極部(例えば電極部14)と、第1電極対を利用した2電極法で第1インピーダンス(例えばインピーダンスZA[n])を算定する第1算定手段(例えば制御部22)と、第1電極対と第2電極対とを利用した4電極法で第2インピーダンス(例えばインピーダンスZB[n])を算定する第2算定手段(例えば制御部22)と、被験者の身体に対する電極部の接触圧に応じた接触圧指標(例えば接触圧指標C[n])を第1インピーダンスと第2インピーダンスとの差分に基づいて算定する指標算定手段(例えば制御部22)とを具備する。以上の構成では、第1電極対を利用した2電極法で測定された第1インピーダンスと第1電極対および第2電極対を利用した4電極法で測定された第2インピーダンスとの差分に応じた接触圧指標C[n]が電極部の接触圧の指標として算定される。したがって、電極部の接触圧の検出に専用される圧力センサ等の検出器を必要とせずに身体に対する電極部の接触圧を評価することが可能である。   The measurement apparatus of the present invention includes an electrode unit (for example, electrode unit 14) including a first electrode pair (for example, electrode pair PA) and a second electrode pair (for example, electrode pair PB) that are in contact with a subject's body (for example, measurement site 60). A first calculating means (for example, control unit 22) for calculating a first impedance (for example, impedance ZA [n]) by a two-electrode method using the first electrode pair, and a first electrode pair and a second electrode pair. Second calculation means (for example, control unit 22) for calculating the second impedance (for example, impedance ZB [n]) by the four-electrode method used, and a contact pressure index (for example, contact) according to the contact pressure of the electrode unit with respect to the body of the subject And an index calculating means (for example, the control unit 22) that calculates the pressure index C [n]) based on the difference between the first impedance and the second impedance. In the above configuration, according to the difference between the first impedance measured by the two-electrode method using the first electrode pair and the second impedance measured by the four-electrode method using the first electrode pair and the second electrode pair. The contact pressure index C [n] is calculated as an index of the contact pressure of the electrode part. Therefore, it is possible to evaluate the contact pressure of the electrode part with respect to the body without requiring a detector such as a pressure sensor dedicated to the detection of the contact pressure of the electrode part.

本発明の好適な態様に係る測定装置は、第1電極対の電極間に被験者の身体を介して電流(例えば測定電流I)を流す電流生成手段(例えば電流生成部32)と、第1電極対および第2電極対の一方を選択する電極選択手段(例えば電極選択部36)と、電極選択手段が選択した電極対の電極間の電圧(例えば測定電圧V)を検出する電圧検出手段(例えば電圧検出部34)とを具備し、第1算定手段は、電極選択手段が第1電極対を選択した状態で電流生成手段が生成する電流と電圧検出手段が検出する電圧とに応じて第1インピーダンスを算定し、第2算定手段は、電極選択手段が第2電極対を選択した状態で電流生成手段が生成する電流と電圧検出手段が検出する電圧とに応じて第2インピーダンスを算定する。以上の態様では、電極選択手段の選択の対象に応じて2電極法と4電極法とを簡便に切替えることが可能である。   The measurement apparatus according to a preferred aspect of the present invention includes a current generation means (for example, a current generation unit 32) that causes a current (for example, a measurement current I) to flow between the electrodes of the first electrode pair via the body of the subject, and the first electrode. Electrode selection means (for example, electrode selection unit 36) for selecting one of the pair and the second electrode pair, and voltage detection means (for example, measurement voltage V) for detecting the voltage between the electrodes of the electrode pair selected by the electrode selection means (for example, measurement voltage V) Voltage detector 34), and the first calculating means includes a first calculating means according to a current generated by the current generating means and a voltage detected by the voltage detecting means in a state where the electrode selecting means selects the first electrode pair. The impedance is calculated, and the second calculation means calculates the second impedance according to the current generated by the current generation means and the voltage detected by the voltage detection means in a state where the electrode selection means selects the second electrode pair. In the above aspect, it is possible to easily switch between the two-electrode method and the four-electrode method according to the selection target of the electrode selection means.

本発明の好適な態様に係る測定装置は、被験者の身体と電極部との接触状態の適否を接触圧指標に応じて判定する接触状態判定手段(例えば制御部22)と、被験者の身体と電極部との接触状態が適正であると接触状態判定手段が判定した場合に第2インピーダンスに応じた生体情報を算定する情報生成手段(例えば制御部22)とを具備する。以上の態様では、被験者の身体と電極部との接触状態(例えば接触圧)が適正である場合に生体情報が生成されるから、被験者の身体と電極部との接触状態に依存する生体情報(例えば皮下脂肪厚)を高精度に測定できるという利点がある。   A measuring apparatus according to a preferred aspect of the present invention includes a contact state determination unit (for example, the control unit 22) that determines whether or not a contact state between the body of the subject and the electrode unit is appropriate according to a contact pressure index, and the body and electrode of the subject. And an information generation unit (for example, control unit 22) that calculates biological information corresponding to the second impedance when the contact state determination unit determines that the contact state with the unit is appropriate. In the above aspect, since the biological information is generated when the contact state (for example, contact pressure) between the body of the subject and the electrode portion is appropriate, the biological information that depends on the contact state between the body of the subject and the electrode portion ( For example, there is an advantage that (subcutaneous fat thickness) can be measured with high accuracy.

本発明の好適な態様では、第1算定手段による第1インピーダンスの算定と第2算定手段による第2インピーダンスの算定と指標算定手段による接触圧指標の算定とを含む測定処理が複数回にわたり実行され、接触状態判定手段は、各測定処理にて測定された接触圧指標を基準値(例えば基準値CREF)と比較することで被験者の身体と電極部との接触状態の適否を測定処理毎に判定する。以上の態様では、各測定処理で算定された接触圧指標を基準値と比較することで被験者の身体と電極部との接触状態(接触圧)の変化を検出することが可能である。接触圧指標の基準値は任意であるが、例えば、一の測定処理(例えば第1回目の測定処理)にて測定された接触圧指標を、以後の各測定処理の接触圧指標と比較される基準値とする構成が好適である。   In a preferred aspect of the present invention, the measurement process including the calculation of the first impedance by the first calculation means, the calculation of the second impedance by the second calculation means, and the calculation of the contact pressure index by the index calculation means is performed a plurality of times. The contact state determination means determines the suitability of the contact state between the body of the subject and the electrode unit for each measurement process by comparing the contact pressure index measured in each measurement process with a reference value (for example, the reference value CREF). To do. In the above aspect, it is possible to detect a change in the contact state (contact pressure) between the body of the subject and the electrode unit by comparing the contact pressure index calculated in each measurement process with a reference value. Although the reference value of the contact pressure index is arbitrary, for example, the contact pressure index measured in one measurement process (for example, the first measurement process) is compared with the contact pressure index in each subsequent measurement process. A configuration using a reference value is preferable.

本発明の好適な態様において、情報生成手段は、接触状態が適正であるとの判定が所定回(例えば閾値MTH)の測定処理にわたって連続した場合に生体情報を生成する。以上の態様では、接触状態が適正であるとの判断が所定回の測定処理にわたって連続した場合(すなわち接触状態が安定した場合)に生体情報が生成されるから、接触状態が不安定に変化する状態で生体情報を生成する構成と比較して、接触状態に依存する生体情報を高精度に測定できるという利点がある。   In a preferred aspect of the present invention, the information generating means generates biological information when the determination that the contact state is appropriate continues for a predetermined number of times (for example, threshold value MTH). In the above aspect, since the biological information is generated when the determination that the contact state is appropriate continues for a predetermined number of measurement processes (that is, when the contact state is stable), the contact state changes in an unstable manner. Compared to a configuration in which biological information is generated in a state, there is an advantage that biological information that depends on the contact state can be measured with high accuracy.

本発明の好適な態様において、第1電極対は、第1電極(例えば電極E1)と第2電極(例えば電極E2)とで構成され、第2電極対は、第1電極および第2電極の間に配置された第3電極(例えば電極E3)と第4電極(例えば電極E4)とで構成され、第1電極と第2電極と第3電極と第4電極とは、第1方向(例えばX方向)に長尺な形状に形成され、第1方向に直交する第2方向(例えばY方向)に相互に間隔をあけて配列する。以上の態様によれば、各電極を確実に被験者の身体に接触させることが可能である。   In a preferred aspect of the present invention, the first electrode pair includes a first electrode (for example, the electrode E1) and a second electrode (for example, the electrode E2), and the second electrode pair includes the first electrode and the second electrode. A third electrode (for example, electrode E3) and a fourth electrode (for example, electrode E4) disposed between the first electrode, the second electrode, the third electrode, and the fourth electrode are arranged in a first direction (for example, It is formed in a long shape in the (X direction), and is arranged with a space between each other in a second direction (for example, the Y direction) orthogonal to the first direction. According to the above aspect, each electrode can be reliably brought into contact with the body of the subject.

以上の各態様に係る測定装置は、例えば演算処理装置とプログラム(ソフトウェア)との協働で実現される。本発明のプログラムは、被験者の身体に接触する第1電極対および第2電極対を含む電極部が接続されたコンピュータに、第1電極対を利用した2電極法で第1インピーダンスを算定する第1算定処理(例えば処理S3)と、第1電極対と第2電極対とを利用した4電極法で第2インピーダンスを算定する第2算定処理(例えば処理S6)と、被験者の身体に対する電極部の接触圧に応じた接触圧指標を第1インピーダンスと第2インピーダンスとの差分に基づいて算定する指標算定処理(例えば処理S8)とを実行させる。以上のプログラムによれば、本発明の測定装置と同様の作用および効果が実現される。本発明のプログラムは、コンピュータが読取可能な記録媒体に格納された形態で利用者に提供されてコンピュータにインストールされるほか、通信網を介した配信の形態でサーバ装置から提供されてコンピュータにインストールされる。   The measurement device according to each of the above aspects is realized by, for example, cooperation between an arithmetic processing device and a program (software). The program according to the present invention calculates a first impedance by a two-electrode method using a first electrode pair to a computer to which an electrode unit including a first electrode pair and a second electrode pair in contact with the body of a subject is connected. 1 calculation process (for example, process S3), a second calculation process (for example, process S6) for calculating the second impedance by the four-electrode method using the first electrode pair and the second electrode pair, and an electrode section for the subject's body An index calculation process (for example, process S8) for calculating a contact pressure index corresponding to the contact pressure based on the difference between the first impedance and the second impedance is executed. According to the above program, the same operation and effect as the measuring apparatus of the present invention are realized. The program of the present invention is provided to a user in a form stored in a computer-readable recording medium and installed in the computer, or provided from a server device in a form of distribution via a communication network and installed in the computer. Is done.

本発明の第1実施形態に係る測定装置の外観図である。1 is an external view of a measuring apparatus according to a first embodiment of the present invention. 測定装置の電気的な構成のブロック図である。It is a block diagram of the electric constitution of a measuring device. 測定処理のフローチャートである。It is a flowchart of a measurement process. 測定電流の電流経路および測定電圧の検出位置の説明図である。It is explanatory drawing of the current path of a measurement current, and the detection position of a measurement voltage. 接触圧と測定部位のインピーダンスとの関係を示す図表である。It is a graph which shows the relationship between a contact pressure and the impedance of a measurement site | part. 第2実施形態における測定処理のフローチャートである。It is a flowchart of the measurement process in 2nd Embodiment.

<A:第1実施形態>
図1は、第1実施形態に係る測定装置100の構成図である。測定装置100は、被験者の身体に関する生体情報(例えば体組成に関する指標)を測定する生体計測器である。第1実施形態では、被験者の身体のうち測定対象となる任意の部位(以下「測定部位」という)の皮下脂肪厚Lfを生体情報として例示する。図1に示すように、測定装置100は、本体部12と電極部(プローブ)14とを具備する。本体部12と電極部14とはケーブル16を介して電気的に接続される。なお、本体部12と電極部14とを一体に構成することも可能である。
<A: First Embodiment>
FIG. 1 is a configuration diagram of a measuring apparatus 100 according to the first embodiment. The measuring apparatus 100 is a biometric instrument that measures biological information (for example, an index related to body composition) related to the body of a subject. In the first embodiment, the subcutaneous fat thickness Lf of an arbitrary part to be measured (hereinafter referred to as “measurement part”) in the body of the subject is exemplified as the biological information. As shown in FIG. 1, the measuring apparatus 100 includes a main body portion 12 and an electrode portion (probe) 14. The main body portion 12 and the electrode portion 14 are electrically connected via a cable 16. In addition, it is also possible to comprise the main-body part 12 and the electrode part 14 integrally.

電極部14は、利用者(被験者自身や測定者)が把持可能な筐体142と、筐体142の表面144に形成された電極対PAおよび電極対PBとを含んで構成される。電極対PAは電極E1および電極E2の対であり、電極対PBは電極E3および電極E4の対である。4個の電極E1〜E4の各々は、X方向に長尺な形状(略長方形状)に形成され、X方向に直交するY方向に相互に間隔をあけて配列する。図1に示すように、電極E3および電極E4は、電極E1と電極E2との間に位置する。図1では電極E1〜E4を等間隔に配置した場合を例示した。利用者は、被験者の身体の測定部位に4個の電極E1〜E4が接触するように電極部14を移動させることが可能である。   The electrode unit 14 includes a housing 142 that can be held by a user (subject himself / herself or a measurer), and an electrode pair PA and an electrode pair PB formed on the surface 144 of the housing 142. The electrode pair PA is a pair of the electrode E1 and the electrode E2, and the electrode pair PB is a pair of the electrode E3 and the electrode E4. Each of the four electrodes E1 to E4 is formed in an elongated shape (substantially rectangular shape) in the X direction, and is arranged at intervals in the Y direction perpendicular to the X direction. As shown in FIG. 1, the electrode E3 and the electrode E4 are located between the electrode E1 and the electrode E2. FIG. 1 illustrates the case where the electrodes E1 to E4 are arranged at equal intervals. The user can move the electrode unit 14 so that the four electrodes E1 to E4 are in contact with the measurement site of the subject's body.

図2は、測定装置100の電気的な構成のブロック図である。図2に示すように、本体部12は、制御部22と記憶部24と操作部26と表示部28とを具備する。制御部22(CPU)は、記憶部24に記憶されたプログラムの実行で測定装置100の各要素を制御する。記憶部24は、制御部22が実行するプログラムや制御部22が使用する各種のデータを記憶する記憶回路(例えばROMやRAM)である。   FIG. 2 is a block diagram of the electrical configuration of the measuring apparatus 100. As shown in FIG. 2, the main body unit 12 includes a control unit 22, a storage unit 24, an operation unit 26, and a display unit 28. The control unit 22 (CPU) controls each element of the measurement apparatus 100 by executing a program stored in the storage unit 24. The storage unit 24 is a storage circuit (for example, ROM or RAM) that stores programs executed by the control unit 22 and various data used by the control unit 22.

操作部26は、利用者からの指示を受付ける入力機器であり、図1に示すように複数の操作子を含んで構成される。例えば皮下脂肪厚Lfの測定開始が操作部26に対する操作で指示される。表示部28(例えば液晶表示装置)は、制御部22による制御のもとで各種の画像を表示する。例えば、表示部28は、測定装置100を利用した測定手順の案内や測定装置100の測定結果(皮下脂肪厚Lf)を表示する。   The operation unit 26 is an input device that accepts an instruction from a user, and includes a plurality of operators as shown in FIG. For example, the start of measurement of the subcutaneous fat thickness Lf is instructed by an operation on the operation unit 26. The display unit 28 (for example, a liquid crystal display device) displays various images under the control of the control unit 22. For example, the display unit 28 displays measurement procedure guidance using the measurement apparatus 100 and measurement results (subcutaneous fat thickness Lf) of the measurement apparatus 100.

図2に示すように、電極部14は、前述の電極対PAおよび電極対PBのほか、筐体142に収容された電流生成部32と電圧検出部34と電極選択部36とを具備する。なお、電流生成部32と電圧検出部34と電極選択部36とを本体部12に設置することも可能である。   As shown in FIG. 2, the electrode unit 14 includes a current generation unit 32, a voltage detection unit 34, and an electrode selection unit 36 housed in the casing 142, in addition to the electrode pair PA and the electrode pair PB described above. Note that the current generation unit 32, the voltage detection unit 34, and the electrode selection unit 36 can be installed in the main body unit 12.

図2の電流生成部32は、電極E1と電極E2との間に測定電流Iを供給する。測定電流Iは、被験者の身体を経由して電極E1と電極E2との間を流れる所定の周波数(例えば500kHzまたは6.25kHz)の交流電流である。電圧検出部34は、一対の電極E間の電圧(以下「測定電圧」という)Vを検出する。電圧検出部34が検出した測定電圧Vは、A/D変換器(図示略)にてデジタル信号に変換されたうえで制御部22に供給される。   The current generator 32 in FIG. 2 supplies the measurement current I between the electrode E1 and the electrode E2. The measurement current I is an alternating current having a predetermined frequency (for example, 500 kHz or 6.25 kHz) that flows between the electrode E1 and the electrode E2 via the body of the subject. The voltage detector 34 detects a voltage V (hereinafter referred to as “measurement voltage”) V between the pair of electrodes E. The measurement voltage V detected by the voltage detector 34 is converted into a digital signal by an A / D converter (not shown) and then supplied to the controller 22.

電極選択部36は、電極対PAおよび電極対PBの何れかを電圧検出部34の接続先として選択する。図2に示すように、第1実施形態の電極選択部36は、スイッチSW1とスイッチSW2とを含んで構成される。スイッチSW1は、電圧検出部34の端子TV1を電極E1(接点a)および電極E3(接点b)の一方に接続し、スイッチSW2は、電圧検出部34の端子TV2を電極E2(接点a)および電極E4(接点b)の一方に接続する。   The electrode selection unit 36 selects either the electrode pair PA or the electrode pair PB as the connection destination of the voltage detection unit 34. As shown in FIG. 2, the electrode selection unit 36 of the first embodiment includes a switch SW1 and a switch SW2. The switch SW1 connects the terminal TV1 of the voltage detector 34 to one of the electrode E1 (contact a) and the electrode E3 (contact b), and the switch SW2 connects the terminal TV2 of the voltage detector 34 to the electrode E2 (contact a) and Connect to one of the electrodes E4 (contact b).

図3は、制御部22が実行する測定処理のフローチャートである。電極部14の4個の電極E1〜E4が被験者の測定部位60に接触した状態で測定開始の指示が操作部26に付与されると、例えば割込信号で規定される所定の間隔で図3の測定処理が反復される。変数nは測定処理の回数(nは自然数)を意味する。また、図4は、測定処理の実行中における測定電流Iの電流経路および測定電圧Vの検出位置の模式図である。   FIG. 3 is a flowchart of the measurement process executed by the control unit 22. When an instruction to start measurement is given to the operation unit 26 in a state where the four electrodes E1 to E4 of the electrode unit 14 are in contact with the measurement site 60 of the subject, for example, at a predetermined interval defined by an interrupt signal, FIG. The measurement process is repeated. The variable n means the number of measurement processes (n is a natural number). FIG. 4 is a schematic diagram of the current path of the measurement current I and the detection position of the measurement voltage V during execution of the measurement process.

第n回目の測定処理を開始すると、制御部22は、電圧検出部34の接続先として電極対PAが選択されるように電極選択部36を制御する(S1)。具体的には、制御部22は、スイッチSW1およびスイッチSW2の各々を接点a側に制御することで、図4の部分(A)に示すように、電圧検出部34の端子TV1を電極E1に接続するとともに端子TV2を電極E2に接続する。電極E3および電極E4は電圧検出部34から電気的に絶縁された状態となる。制御部22は、以上の状態で電流生成部32と電圧検出部34とを動作させる(S2)。したがって、電流生成部32が生成した測定電流Iが電極E1から測定部位60を経由して電極E2に流れた状態で、電圧検出部34は電極E1と電極E2との間の測定電圧Vを検出する。   When the n-th measurement process is started, the control unit 22 controls the electrode selection unit 36 so that the electrode pair PA is selected as a connection destination of the voltage detection unit 34 (S1). Specifically, the control unit 22 controls each of the switch SW1 and the switch SW2 to the contact a side, so that the terminal TV1 of the voltage detection unit 34 is connected to the electrode E1 as shown in part (A) of FIG. In addition, the terminal TV2 is connected to the electrode E2. Electrode E3 and electrode E4 are electrically insulated from voltage detector 34. The controller 22 operates the current generator 32 and the voltage detector 34 in the above state (S2). Therefore, the voltage detection unit 34 detects the measurement voltage V between the electrode E1 and the electrode E2 in a state where the measurement current I generated by the current generation unit 32 flows from the electrode E1 to the electrode E2 via the measurement site 60. To do.

制御部22は、処理S2での測定電流Iと測定電圧Vとに応じてインピーダンスZA[n]を算定する(S3)。インピーダンスZA[n]の算定には公知の技術が任意に採用される。以上の説明から理解されるように、制御部22が処理S1から処理S3を実行することで、電極対PAを利用した2電極法(電極対PBは不使用)でインピーダンスZA[n]を算定する手段(第1算定手段)が実現される。   The controller 22 calculates the impedance ZA [n] according to the measured current I and the measured voltage V in the process S2 (S3). A known technique is arbitrarily employed for calculating the impedance ZA [n]. As can be understood from the above description, the control unit 22 calculates the impedance ZA [n] by the two-electrode method using the electrode pair PA (the electrode pair PB is not used) by executing the processes S1 to S3. Means (first calculation means) to perform is realized.

図4の部分(A)に示すように、測定電流Iの経路上には、測定部位60(皮下脂肪)の生体インピーダンスRBに加えて、電極E1と測定部位60との間の接触インピーダンスRC1と、電極E2と測定部位60との間の接触インピーダンスRC2とが付随する。したがって、処理S3で算定されるインピーダンスZA[n]は、近似的に以下の数式(1)で表現される。
ZA[n]=RB+RC1+RC2 ……(1)
As shown in part (A) of FIG. 4, on the path of the measurement current I, in addition to the bioimpedance RB of the measurement site 60 (subcutaneous fat), the contact impedance RC1 between the electrode E1 and the measurement site 60 and A contact impedance RC2 between the electrode E2 and the measurement site 60 is attached. Accordingly, the impedance ZA [n] calculated in the process S3 is approximately expressed by the following formula (1).
ZA [n] = RB + RC1 + RC2 (1)

以上の手順でインピーダンスZA[n]を算定すると、制御部22は、電圧検出部34の接続先として電極対PBが選択されるように電極選択部36を制御する(S4)。具体的には、制御部22は、スイッチSW1およびスイッチSW2の各々を接点b側に制御することで、図4の部分(B)に示すように、電圧検出部34の端子TV1を電極E3に接続するとともに端子TV2を電極E4に接続する。制御部22は、以上の状態で電流生成部32と電圧検出部34とを動作させる(S5)。したがって、測定電流Iが電極E1から測定部位60を経由して電極E2に流れた状態で、電圧検出部34は電極E3と電極E4との間の測定電圧Vを検出する。   When the impedance ZA [n] is calculated by the above procedure, the control unit 22 controls the electrode selection unit 36 so that the electrode pair PB is selected as the connection destination of the voltage detection unit 34 (S4). Specifically, the control unit 22 controls each of the switch SW1 and the switch SW2 to the contact b side so that the terminal TV1 of the voltage detection unit 34 is connected to the electrode E3 as shown in part (B) of FIG. At the same time, the terminal TV2 is connected to the electrode E4. The controller 22 operates the current generator 32 and the voltage detector 34 in the above state (S5). Therefore, in a state where the measurement current I flows from the electrode E1 to the electrode E2 via the measurement site 60, the voltage detection unit 34 detects the measurement voltage V between the electrode E3 and the electrode E4.

制御部22は、処理S5での測定電流Iと測定電圧Vとに応じてインピーダンスZB[n]を算定する(S6)。インピーダンスZB[n]の算定には公知の技術が任意に採用される。以上の説明から理解されるように、制御部22が処理S4から処理S6を実行することで、電極対PAおよび電極対PBを利用した4電極法でインピーダンスZB[n]を算定する手段(第2算定手段)が実現される。また、制御部22は、測定電流Iと測定電圧Vとの位相差θおよびインピーダンスZB[n]からレジスタンスR(インピーダンスZB[n]の実数部)とリアクタンスX(インピーダンスZB[n]の虚数部)とを算定したうえで両者間の比R/Xを算定する(S7)。   The controller 22 calculates the impedance ZB [n] according to the measurement current I and the measurement voltage V in the process S5 (S6). A known technique is arbitrarily employed for calculating the impedance ZB [n]. As will be understood from the above description, the control unit 22 executes the process S4 to the process S6, thereby calculating the impedance ZB [n] by the four-electrode method using the electrode pair PA and the electrode pair PB (first step). 2 calculation means) is realized. Further, the control unit 22 determines the resistance R (the real part of the impedance ZB [n]) and the reactance X (the imaginary part of the impedance ZB [n]) from the phase difference θ between the measurement current I and the measurement voltage V and the impedance ZB [n]. ) And the ratio R / X between them is calculated (S7).

処理S5では、電極対PAの内側に位置する電極対PBを利用して測定電圧Vが測定されるから、電極E1の接触インピーダンスRC1や電極E2の接触インピーダンスRC2は測定電圧Vに影響しない。また、電圧検出部34の端子TV1や端子TV2には電流が殆ど流れないから、電極E3の接触インピーダンスRC3や電極E4の接触インピーダンスRC4も測定電圧Vには影響しない。以上のように4電極法では各電極Eの接触インピーダンスRC(RC1〜RC4)を無視できるから、処理S6で算定されるインピーダンスZB[n]は、以下の数式(2)で表現されるように測定部位60の生体インピーダンスRBに略一致する。
ZB[n]=RB ……(2)
In the process S5, since the measurement voltage V is measured using the electrode pair PB located inside the electrode pair PA, the contact impedance RC1 of the electrode E1 and the contact impedance RC2 of the electrode E2 do not affect the measurement voltage V. Further, since almost no current flows through the terminal TV1 and the terminal TV2 of the voltage detector 34, the contact impedance RC3 of the electrode E3 and the contact impedance RC4 of the electrode E4 do not affect the measurement voltage V. As described above, since the contact impedance RC (RC1 to RC4) of each electrode E can be ignored in the four-electrode method, the impedance ZB [n] calculated in the process S6 is expressed by the following formula (2). It substantially matches the bioimpedance RB of the measurement site 60.
ZB [n] = RB (2)

制御部22は、処理S3で算定したインピーダンスZA[n]と処理S6で算定したインピーダンスZB[n]との相違に応じた接触圧指標C[n]を算定する(S8)。具体的には、制御部22は、以下の数式(3)で示すように、インピーダンスZA[n]とインピーダンスZB[n]との差分を接触圧指標C[n]として算定する。
C[n]=ZA[n]−ZB[n] ……(3)
The controller 22 calculates a contact pressure index C [n] corresponding to the difference between the impedance ZA [n] calculated in the process S3 and the impedance ZB [n] calculated in the process S6 (S8). Specifically, the control unit 22 calculates the difference between the impedance ZA [n] and the impedance ZB [n] as the contact pressure index C [n] as shown in the following formula (3).
C [n] = ZA [n] −ZB [n] (3)

数式(1)および数式(2)を数式(3)に代入すると以下の数式(4)が導出される。
C[n]=RC1+RC2 ……(4)
数式(4)の通り、接触圧指標C[n]は、電極E1の接触インピーダンスRC1と電極E2の接触インピーダンスRC2との加算値に相当する。接触インピーダンスRC(RC1,RC2)は、電極部14から測定部位60に作用する接触圧(押圧力)に応じて変化する。したがって、測定部位60に対する電極部14の接触圧の指標として数式(3)の接触圧指標C[n]を利用することが可能である。
By substituting Equation (1) and Equation (2) into Equation (3), the following Equation (4) is derived.
C [n] = RC1 + RC2 (4)
As expressed by Equation (4), the contact pressure index C [n] corresponds to the added value of the contact impedance RC1 of the electrode E1 and the contact impedance RC2 of the electrode E2. The contact impedance RC (RC1, RC2) changes according to the contact pressure (pressing force) acting on the measurement site 60 from the electrode portion 14. Therefore, it is possible to use the contact pressure index C [n] of Equation (3) as an index of the contact pressure of the electrode unit 14 with respect to the measurement site 60.

図5は、電極部14から測定部位60に作用する接触圧と各インピーダンスとの関係を示す図表である。2電極法で測定されたインピーダンスZA[n]と4電極法で測定されたインピーダンスZB[n]と接触圧指標C[n]との各数値が、接触圧を変化させた複数の場合の各々について図示されている。図5の部分(A)は被験者の腹部を測定部位60とした場合の測定結果であり、図5の部分(B)は被験者の上腕(二の腕)を測定部位60とした場合の測定結果である。   FIG. 5 is a chart showing the relationship between the contact pressure acting on the measurement site 60 from the electrode section 14 and each impedance. Each of the cases where the numerical values of the impedance ZA [n] measured by the two-electrode method, the impedance ZA [n] measured by the four-electrode method, and the contact pressure index C [n] change the contact pressure. Is shown. Part (A) of FIG. 5 is a measurement result when the subject's abdomen is the measurement site 60, and part (B) of FIG. 5 is a measurement result when the subject's upper arm (second arm) is the measurement site 60. .

図5に示すように、測定部位60に対する電極部14の接触圧が増加するほど2電極法のインピーダンスZA[n]は減少するのに対し、4電極法のインピーダンスZB[n]は殆ど変化しない。したがって、測定部位60に対する接触圧に応じて接触圧指標C[n]は変化する。具体的には、接触圧が増加するほど接触圧指標C[n]が減少するという相関が図5から把握される。以上の傾向を考慮して、第1実施形態では、処理S8で算定される接触圧指標C[n]を測定部位60と電極部14との接触状態(接触圧)の適否の評価に利用する。   As shown in FIG. 5, the impedance ZA [n] of the two-electrode method decreases as the contact pressure of the electrode portion 14 with respect to the measurement site 60 increases, whereas the impedance ZB [n] of the four-electrode method hardly changes. . Therefore, the contact pressure index C [n] changes according to the contact pressure with respect to the measurement site 60. Specifically, the correlation that the contact pressure index C [n] decreases as the contact pressure increases is understood from FIG. In consideration of the above tendency, in the first embodiment, the contact pressure index C [n] calculated in the process S8 is used for evaluating the suitability of the contact state (contact pressure) between the measurement site 60 and the electrode unit 14. .

図3の処理S8で接触圧指標C[n]を算定すると、制御部22は、現段階で実行している測定処理が第1回目(n=1)であるか否かを判定する(S9)。処理S9の結果が肯定である場合、制御部22は、今回の測定処理の処理S8で算定した接触圧指標C[n](C[1])を基準値CREFとして記憶部24に格納したうえで第1回目の測定処理を終了する(S10)。基準値CREFは、第2回目以降の各測定処理で算定される接触圧指標C[n]の基準となる数値である。   When the contact pressure index C [n] is calculated in the process S8 of FIG. 3, the control unit 22 determines whether or not the measurement process being executed at the current stage is the first (n = 1) (S9). ). When the result of the process S9 is positive, the control unit 22 stores the contact pressure index C [n] (C [1]) calculated in the process S8 of the current measurement process in the storage unit 24 as the reference value CREF. Thus, the first measurement process is terminated (S10). The reference value CREF is a numerical value that serves as a reference for the contact pressure index C [n] calculated in each measurement process after the second time.

処理S9の結果が否定である場合(すなわち、第2回目以降の測定処理の実行中である場合)、制御部22は、現段階(第n回目)の測定処理内の処理S8で算定した接触圧指標C[n]を記憶部24内の基準値CREFと比較したときの変動量δC[n]を算定する(S11)。具体的には、変動量δC[n]は、接触圧指標C[n]と基準値CREFとの差分の絶対値(δC[n]=|C[n]−CREF|)である。そして、制御部22は、変動量δC[n]が所定の閾値δTHを下回るか否かを判定する(S12)。閾値δTHは、例えば50Ω程度の数値に設定される。   When the result of the process S9 is negative (that is, when the second and subsequent measurement processes are being executed), the control unit 22 determines the contact calculated in the process S8 in the current stage (n-th) measurement process. A fluctuation amount δC [n] is calculated when the pressure index C [n] is compared with the reference value CREF in the storage unit 24 (S11). Specifically, the fluctuation amount δC [n] is an absolute value of the difference between the contact pressure index C [n] and the reference value CREF (δC [n] = | C [n] −CREF |). Then, the control unit 22 determines whether or not the fluctuation amount δC [n] is below a predetermined threshold value δTH (S12). The threshold value δTH is set to a numerical value of about 50Ω, for example.

測定部位60に対する接触圧が測定開始の直後(第1回目の測定処理)から大幅に増加した場合、測定部位60の皮下脂肪が電極部14による押圧で大きく変形している可能性が高い。以上のように測定部位60が変形した状態では皮下脂肪厚Lfを正確に推定できない。そこで、変動量δC[n]が閾値δTHを上回ると処理S12で判定した場合(すなわち、第1回目の測定処理の実行時と比較して接触圧が大幅に変化した場合)、制御部22は、測定部位60に対する接触圧が不適正である旨の警告(測定エラー)を利用者に報知したうえで第n回目の測定処理を終了する(S13)。利用者に対する警告の方法は任意であるが、例えば表示部28に対する画像の表示や音声での出力が好適である。以上の説明から理解されるように、制御部22が処理S12を実行することで、測定部位60と電極部14(各電極E)との接続状態の適否を接触圧指標C[n]に応じて判定する手段(接触状態判定手段)が実現される。   When the contact pressure with respect to the measurement site 60 has increased significantly immediately after the start of measurement (the first measurement process), there is a high possibility that the subcutaneous fat at the measurement site 60 has been greatly deformed by the pressure applied by the electrode portion 14. As described above, the subcutaneous fat thickness Lf cannot be accurately estimated in a state where the measurement site 60 is deformed. Therefore, when it is determined in the process S12 that the fluctuation amount δC [n] exceeds the threshold value δTH (that is, when the contact pressure changes significantly compared to when the first measurement process is performed), the control unit 22 Then, after notifying the user of a warning (measurement error) that the contact pressure with respect to the measurement site 60 is inappropriate, the n-th measurement process is terminated (S13). The method for warning the user is arbitrary, but for example, display of an image on the display unit 28 or output by sound is preferable. As understood from the above description, the control unit 22 executes the process S12 to determine whether or not the connection state between the measurement site 60 and the electrode unit 14 (each electrode E) is appropriate according to the contact pressure index C [n]. Means (contact state determination means) are determined.

他方、測定部位60に対する接触圧が適正な範囲内に維持されている場合(すなわち第1回目の測定処理の実行時から測定部位60が過度に変形していない場合)、接触圧指標C[n]は基準値CREFを含む所定の範囲(例えば(CREF±δTH)の範囲)内の数値となる。そこで、変動量δC[n]が閾値δTHを下回ると処理S12で判定した場合、制御部22は、今回(第n回目)の測定処理の処理S6で算定したインピーダンスZB[n](生体インピーダンスRB)に応じた皮下脂肪厚Lfを算定する(S14)。すなわち、制御部22が処理S14を実行することで、測定部位60と電極部14との接触状態が適正であると判定された場合(S12:YES)に生体情報を算定する要素(情報生成手段)が実現される。   On the other hand, when the contact pressure with respect to the measurement site 60 is maintained within an appropriate range (that is, when the measurement site 60 has not been deformed excessively since the execution of the first measurement process), the contact pressure index C [n ] Is a numerical value within a predetermined range (for example, a range of (CREF ± δTH)) including the reference value CREF. Therefore, when it is determined in the process S12 that the fluctuation amount δC [n] is less than the threshold value δTH, the control unit 22 determines the impedance ZB [n] (bioimpedance RB) calculated in the process (S6) of the current (n-th) measurement process. ) To calculate the subcutaneous fat thickness Lf (S14). That is, the element (information generating means) that calculates biological information when it is determined that the contact state between the measurement site 60 and the electrode unit 14 is appropriate (S12: YES) by executing the process S14 by the control unit 22. ) Is realized.

皮下脂肪は筋肉と比較して測定電流Iと測定電圧Vとの位相差θを発生させ難いから、測定部位60の皮下脂肪厚Lfが大きいほど位相差θは小さくなる。したがって、皮下脂肪厚Lfが大きいほど、処理S7で算定される比R/Xが大きくなるという傾向がある。以上の傾向を考慮すると、皮下脂肪厚Lf(測定部位60の表面を基準(ゼロ)とした皮下脂肪の深さ)は、定数aおよび定数bを含む以下の数式(5)で表現される。定数aおよび定数bは、比R/Xと皮下脂肪厚Lfの実測値との相関に応じて統計的に選定される。なお、皮下脂肪厚Lfと比R/Xとの関係については特許文献1にも詳述されている。
Lf=−a−b×(R/X) ……(5)
Since the subcutaneous fat is less likely to generate the phase difference θ between the measurement current I and the measurement voltage V as compared to the muscle, the phase difference θ decreases as the subcutaneous fat thickness Lf at the measurement site 60 increases. Therefore, the ratio R / X calculated in the process S7 tends to increase as the subcutaneous fat thickness Lf increases. Considering the above tendency, the subcutaneous fat thickness Lf (the depth of the subcutaneous fat with the surface of the measurement site 60 as a reference (zero)) is expressed by the following formula (5) including the constant a and the constant b. The constant a and the constant b are statistically selected according to the correlation between the ratio R / X and the measured value of the subcutaneous fat thickness Lf. The relationship between the subcutaneous fat thickness Lf and the ratio R / X is also described in detail in Patent Document 1.
Lf = −a−b × (R / X) (5)

図3の処理S14において、制御部22は、4電極法のインピーダンスZB[n](測定部位60の生体インピーダンスRB)に応じて処理S7で算定した比R/Xについて数式(5)の演算を実行することで皮下脂肪厚Lfを生体情報として算定する。そして、制御部22は、処理S14で算定した皮下脂肪厚Lfを測定結果として表示部28に表示させる(S15)。以上の説明から理解されるように、表示部28に表示される皮下脂肪厚Lfの数値が測定処理毎に刻々と変化し、測定部位60に対する電極部14の接触圧が測定開始時と比較して大幅に変化した場合(すなわち、第1回目の測定処理の実行時と比較して測定部位60が大きく変形した場合)には利用者に警告が報知される。   In the process S14 of FIG. 3, the control unit 22 calculates the formula (5) for the ratio R / X calculated in the process S7 according to the impedance ZB [n] (the biological impedance RB of the measurement site 60) of the four-electrode method. By executing, the subcutaneous fat thickness Lf is calculated as biometric information. And the control part 22 displays on the display part 28 the subcutaneous fat thickness Lf calculated by process S14 as a measurement result (S15). As understood from the above description, the numerical value of the subcutaneous fat thickness Lf displayed on the display unit 28 changes every time the measurement process is performed, and the contact pressure of the electrode unit 14 with respect to the measurement site 60 is compared with that at the start of measurement. If the measurement site 60 has changed significantly (that is, when the measurement site 60 is greatly deformed compared to when the first measurement process is executed), a warning is notified to the user.

以上に例示した第1実施形態では、電極対PAを利用した2電極法で測定されたインピーダンスZA[n]と電極対PAおよび電極対PBを利用した4電極法で測定されたインピーダンスZB[n]との相違に応じた接触圧指標C[n]が、測定部位60に対する電極部14の接触圧の指標として算定される。すなわち、皮下脂肪厚Lfの測定に使用される各電極Eが接触圧指標C[n]の算定に流用される。したがって、電極部14の接触圧の検出に専用される圧力センサ等の検出器を必要とせずに、簡易な構成で測定部位60と各電極Eとの接触状態を評価することが可能である。   In the first embodiment exemplified above, the impedance ZA [n] measured by the two-electrode method using the electrode pair PA and the impedance ZB [n] measured by the four-electrode method using the electrode pair PA and the electrode pair PB are used. ] Is calculated as an index of the contact pressure of the electrode part 14 with respect to the measurement site 60. That is, each electrode E used for measuring the subcutaneous fat thickness Lf is used for calculating the contact pressure index C [n]. Therefore, it is possible to evaluate the contact state between the measurement site 60 and each electrode E with a simple configuration without requiring a detector such as a pressure sensor dedicated to the detection of the contact pressure of the electrode portion 14.

第1実施形態では、測定部位60に対する電極部14(各電極E)の接触圧の適否が接触圧指標C[n]に応じて判定され、接触圧が適正であると判定された場合に皮下脂肪厚Lfの測定(S14)が実行される。したがって、電極部14の接触圧の異常(例えば測定部位60に対する過度な押圧)に起因した測定誤差を抑制することが可能である。また、電極部14の接触圧が不適正である場合には利用者に報知されるから、接触圧が適正な状態となるように利用者が電極部14を調整できる(したがって高精度な測定が実現される)という利点もある。   In the first embodiment, the suitability of the contact pressure of the electrode part 14 (each electrode E) with respect to the measurement site 60 is determined according to the contact pressure index C [n], and when it is determined that the contact pressure is appropriate, it is subcutaneous. Measurement of the fat thickness Lf (S14) is performed. Therefore, it is possible to suppress a measurement error caused by an abnormality in the contact pressure of the electrode unit 14 (for example, excessive pressing on the measurement site 60). Further, since the user is notified when the contact pressure of the electrode portion 14 is inappropriate, the user can adjust the electrode portion 14 so that the contact pressure is in an appropriate state (therefore, a highly accurate measurement can be performed). Is also realized).

ところで、接触圧指標C[n](接触インピーダンスRC1,RC2)は、電極部14の接触圧だけでなく測定部位60の皮膚状態(例えば乾湿状態)にも依存する。したがって、基準値CREFを所定値に固定した構成では、電極部14の接触圧が変化しない(皮下脂肪が変形しない)場合でも、測定部位60の皮膚状態に起因して接触圧指標C[n]と基準値CREFとの間の変動量δC[n]が閾値δTHを上回り、電極部14の接触圧が不適正であると処理S12で判定される可能性がある。他方、第1実施形態では、過去(第1回目)の測定処理で算定された接触圧指標C[n]を基準値CREFとして第2回目以降の測定処理での接触圧の適否を判定するから、基準値CREFを所定値に固定した構成と比較すると、処理S12での判定について測定部位60の皮膚状態の影響が減殺される。したがって、電極部14の接触圧の変化(測定部位60の変形の有無)を高精度に評価できるという利点がある。   By the way, the contact pressure index C [n] (contact impedance RC1, RC2) depends not only on the contact pressure of the electrode part 14, but also on the skin state (for example, wet and dry state) of the measurement site 60. Therefore, in the configuration in which the reference value CREF is fixed to a predetermined value, the contact pressure index C [n] is attributed to the skin state of the measurement site 60 even when the contact pressure of the electrode portion 14 does not change (subcutaneous fat does not deform). The variation amount δC [n] between the reference value CREF and the reference value CREF may exceed the threshold value δTH, and it may be determined in step S12 that the contact pressure of the electrode unit 14 is inappropriate. On the other hand, in the first embodiment, the contact pressure index C [n] calculated in the past (first) measurement process is used as the reference value CREF to determine the suitability of the contact pressure in the second and subsequent measurement processes. When compared with the configuration in which the reference value CREF is fixed to a predetermined value, the influence of the skin condition of the measurement site 60 is reduced for the determination in the process S12. Therefore, there is an advantage that a change in contact pressure of the electrode part 14 (presence or absence of deformation of the measurement site 60) can be evaluated with high accuracy.

<B:第2実施形態>
本発明の第2実施形態を以下に説明する。なお、以下に例示する各形態において作用や機能が第1実施形態と同等である要素については、以上の説明で参照した符号を流用して各々の詳細な説明を適宜に省略する。
<B: Second Embodiment>
A second embodiment of the present invention will be described below. In addition, about the element which an effect | action and a function are equivalent to 1st Embodiment in each form illustrated below, each reference detailed in the above description is diverted and each detailed description is abbreviate | omitted suitably.

図6は、第2実施形態の制御部22が実行する測定処理のフローチャートである。図6に示すように、第2実施形態の測定処理は、第1実施形態の測定処理(図3)に処理S20〜S23を追加した内容である。   FIG. 6 is a flowchart of the measurement process executed by the control unit 22 of the second embodiment. As shown in FIG. 6, the measurement process of the second embodiment is the content obtained by adding processes S20 to S23 to the measurement process of the first embodiment (FIG. 3).

第1回目の測定処理にて接触圧指標C[1]を基準値CREFに設定すると(S10)、制御部22は、記憶部24に記憶された変数Mをゼロに初期化する(S20)。変数Mは、測定部位60に対する電極部14の接触圧が適正であるとの判定(S12:YES)が連続した回数を意味する。   When the contact pressure index C [1] is set to the reference value CREF in the first measurement process (S10), the control unit 22 initializes the variable M stored in the storage unit 24 to zero (S20). The variable M means the number of times that the determination (S12: YES) that the contact pressure of the electrode portion 14 with the measurement site 60 is appropriate is continued.

第2回目以降の各測定処理の処理S12で変動量δC[n]が閾値δTHを下回る(すなわち電極部14の接触圧が適正である)と判定すると、制御部22は、記憶部24に記憶された変数Mに1を加算し(S21)、加算後の変数Mが所定の閾値MTHを下回るか否かを判定する(S22)。処理S22の結果が否定である場合(すなわち、MTH回の測定処理にわたって連続して接触圧が適正であると判定された場合)、制御部22は、第1実施形態と同様に、4電極法(S4〜S6)で測定されたインピーダンスZB[n]に応じた皮下脂肪厚Lfの算定(S14)とその表示(S15)とを実行する。他方、処理S22の結果が肯定である場合(接触圧が適正であると連続して判定された回数Mが未だ閾値MTHに満たない場合)、制御部22は、処理S14および処理S15を実行せずに第n回目の測定処理を終了する。   If it is determined that the variation δC [n] is lower than the threshold δTH (ie, the contact pressure of the electrode unit 14 is appropriate) in the process S12 of each measurement process after the second time, the control unit 22 stores it in the storage unit 24. 1 is added to the variable M (S21), and it is determined whether or not the variable M after the addition is below a predetermined threshold value MTH (S22). When the result of the process S22 is negative (that is, when the contact pressure is determined to be appropriate continuously over the MTH measurement processes), the control unit 22 uses the four-electrode method as in the first embodiment. The calculation (S14) of the subcutaneous fat thickness Lf according to the impedance ZB [n] measured in (S4 to S6) and the display (S15) are executed. On the other hand, when the result of the process S22 is affirmative (when the number M of times that the contact pressure is continuously determined to be appropriate is still less than the threshold value MTH), the control unit 22 executes the process S14 and the process S15. The n-th measurement process is terminated.

第2回目以降の各測定処理の処理S12で変動量δC[n]が閾値δTHを上回る(すなわち電極部14の接触圧が不適正である)と判定すると、制御部22は、利用者に対するエラー報知(S13)を実行するとともに、記憶部24に記憶された変数Mをゼロに初期化する(S23)。以上の説明から理解されるように、電極部14の接触圧が適正であると連続して判定(S12:YES)される回数Mが閾値MTHに到達するまで(すなわち、電極部14の接触圧が安定するまで)、皮下脂肪厚Lfの算定(S14)および出力(S15)は実行されない。したがって、電極部14の接触圧が安定する以前の段階で皮下脂肪厚Lfの算定を開始する構成と比較して、皮下脂肪厚Lfを高精度に算定できるという利点がある。   If it is determined that the variation amount δC [n] exceeds the threshold value δTH (that is, the contact pressure of the electrode unit 14 is inappropriate) in the process S12 of each measurement process after the second time, the control unit 22 gives an error to the user. While performing notification (S13), the variable M memorize | stored in the memory | storage part 24 is initialized to zero (S23). As will be understood from the above description, until the number M of times that the contact pressure of the electrode portion 14 is continuously determined (S12: YES) reaches the threshold value MTH (that is, the contact pressure of the electrode portion 14). The calculation (S14) and output (S15) of the subcutaneous fat thickness Lf are not executed until the value is stabilized. Therefore, there is an advantage that the subcutaneous fat thickness Lf can be calculated with high accuracy as compared with the configuration in which the calculation of the subcutaneous fat thickness Lf is started before the contact pressure of the electrode portion 14 is stabilized.

<C:変形例>
前述の各形態は多様に変形され得る。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様は適宜に併合され得る。
<C: Modification>
Each of the above-described embodiments can be variously modified. Specific modifications are exemplified below. Two or more aspects arbitrarily selected from the following examples can be appropriately combined.

(1)変形例1
測定装置100が生成する生体情報は皮下脂肪厚Lfに限定されない。例えば、測定部位60の筋肉厚Lmを生体情報として算定することが可能である。測定部位60の脂肪率Fは、皮下脂肪厚Lfと筋肉厚Lmとの加算値に対する皮下脂肪厚Lfの比(F=Lf/(Lf+Lm)として近似される。したがって、筋肉厚Lmは以下の数式(6)で表現される。
Lm=(Lf/F)−Lf ……(6)
制御部22は、処理S6で算定したインピーダンスZB[n](すなわち測定部位60の生体インピーダンスRB)から脂肪率Fを算定するとともに前述の数式(5)の演算で皮下脂肪厚Lfを算定し、脂肪率Fと皮下脂肪厚Lfとについて数式(6)の演算を実行することで筋肉厚Lmを算定する。
(1) Modification 1
The biological information generated by the measuring apparatus 100 is not limited to the subcutaneous fat thickness Lf. For example, the muscle thickness Lm of the measurement site 60 can be calculated as biological information. The fat percentage F of the measurement site 60 is approximated as the ratio of the subcutaneous fat thickness Lf to the sum of the subcutaneous fat thickness Lf and the muscle thickness Lm (F = Lf / (Lf + Lm). It is expressed by (6).
Lm = (Lf / F) -Lf (6)
The control unit 22 calculates the fat percentage F from the impedance ZB [n] calculated in the process S6 (that is, the biological impedance RB of the measurement site 60) and calculates the subcutaneous fat thickness Lf by the calculation of the above formula (5). The muscle thickness Lm is calculated by executing the calculation of Equation (6) for the fat percentage F and the subcutaneous fat thickness Lf.

(2)変形例2
以上の各形態では、測定部位60に対する電極部14の接触圧の適否の判定に接触圧指標C[n]を適用したが、生体情報の生成に接触圧指標C[n]を直接に適用することも可能である。例えば、測定部位60に対する電極部14の接触圧が大きい(接触圧指標C[n]が小さい)ほど、皮下脂肪が押圧されて皮下脂肪厚Lfが減少するという傾向がある。そこで、電極部14による押圧に起因した皮下脂肪厚Lfの誤差(減少)が補償されるように、接触圧指標C[n]を補正項として皮下脂肪厚Lfの演算式に含めた構成が採用される。具体的には、接触圧指標C[n]が小さい(接触圧が大きく測定部位60の変形が大きい)ほど皮下脂肪厚Lfが増加するように演算式が選定される。以上の例示から理解されるように、接触圧指標C[n]の利用方法は任意であり、第1実施形態や第2実施形態の処理S12のように接触圧指標C[n]に応じて電極部14の接触圧の適否を判定する要素(接触状態判定手段)は省略され得る。
(2) Modification 2
In each of the above embodiments, the contact pressure index C [n] is applied to determine the suitability of the contact pressure of the electrode unit 14 with respect to the measurement site 60. However, the contact pressure index C [n] is directly applied to the generation of biological information. It is also possible. For example, as the contact pressure of the electrode part 14 with respect to the measurement site 60 is larger (the contact pressure index C [n] is smaller), the subcutaneous fat is pressed and the subcutaneous fat thickness Lf tends to decrease. Therefore, a configuration is adopted in which the contact pressure index C [n] is included in the calculation formula of the subcutaneous fat thickness Lf as a correction term so that the error (decrease) in the subcutaneous fat thickness Lf caused by the pressing by the electrode portion 14 is compensated. Is done. Specifically, an arithmetic expression is selected so that the subcutaneous fat thickness Lf increases as the contact pressure index C [n] is smaller (the contact pressure is large and the deformation of the measurement site 60 is large). As can be understood from the above examples, the method of using the contact pressure index C [n] is arbitrary, and according to the contact pressure index C [n] as in the process S12 of the first embodiment or the second embodiment. The element (contact state determination means) for determining the suitability of the contact pressure of the electrode unit 14 can be omitted.

(3)変形例3
2電極法によるインピーダンスZA[n]の算定と4電極法によるインピーダンスZB[n]の算定との順番は任意である。また、インピーダンスZA[n]およびインピーダンスZB[n]を算定する具体的な方法は適宜に変更される。例えば、2電極法での測定を所定回にわたって反復した場合の各インピーダンスの代表値(例えば平均値や中央値)をインピーダンスZA[n]として処理S3で確定する構成や、4電極法での測定を所定回にわたって反復した場合の各インピーダンスの代表値(例えば平均値や中央値)をインピーダンスZB[n]として処理S6で確定する構成が採用され得る。
(3) Modification 3
The order of the calculation of the impedance ZA [n] by the two-electrode method and the calculation of the impedance ZB [n] by the four-electrode method is arbitrary. Further, the specific method for calculating the impedance ZA [n] and the impedance ZB [n] is appropriately changed. For example, a configuration in which the representative value (for example, average value or median value) of each impedance when measurement by the two-electrode method is repeated a predetermined number of times is determined as the impedance ZA [n] in the processing S3, or measurement by the four-electrode method Can be adopted in which the representative value (for example, average value or median value) of each impedance when it is repeated for a predetermined number of times is determined as impedance ZB [n] in step S6.

(4)変形例4
以上の各形態では、第1回目の測定処理で算定された接触圧指標C[n]を基準値CREFとしたが、基準値CREFの選定の方法は任意である。例えば、事前に選定された所定値を基準値CREFとした構成や、電極部14の接触圧が安定したと判定された以後の測定処理(例えば図6の処理S22の結果が否定となった測定処理)で算定された接触圧指標C[n]を基準値CREFとする構成も採用され得る。
(4) Modification 4
In each of the above embodiments, the contact pressure index C [n] calculated in the first measurement process is set as the reference value CREF, but the method for selecting the reference value CREF is arbitrary. For example, a configuration in which a predetermined value selected in advance is used as the reference value CREF, or a measurement process after the contact pressure of the electrode unit 14 is determined to be stable (for example, measurement in which the result of process S22 in FIG. 6 is negative). A configuration in which the contact pressure index C [n] calculated in the processing) is used as the reference value CREF can also be adopted.

(5)変形例5
インピーダンスZA[n]およびインピーダンスZB[n]の相違(接触インピーダンスRCや接触圧)と接触圧指標C[n]との関係(接触圧指標C[n]の算定方法)は適宜に変更される。例えば、前述の各形態では、測定部位60に対する電極部14の接触圧が増加する(接触インピーダンスRCが減少する)ほど接触圧指標C[n]が減少する場合を例示したが、接触圧が増加するほど接触圧指標C[n]が増加するように接触圧指標C[n]を算定する構成(例えばインピーダンスZA[n]とインピーダンスZB[n]との差分の逆数を接触圧指標C[n]として算定する構成)も採用され得る。以上の説明から理解されるように、制御部22が接触圧指標C[n]を算定する処理S8は、測定部位60に対する電極部14の接触圧に応じた接触圧指標C[n]をインピーダンスZA[n]とインピーダンスZB[n]との相違(典型的には差分)に応じて算定する処理として包括される。
(5) Modification 5
The relationship between the difference between the impedance ZA [n] and the impedance ZB [n] (contact impedance RC and contact pressure) and the contact pressure index C [n] (method for calculating the contact pressure index C [n]) is changed as appropriate. . For example, in each of the above-described embodiments, the case where the contact pressure index C [n] decreases as the contact pressure of the electrode portion 14 with respect to the measurement site 60 increases (the contact impedance RC decreases) is exemplified, but the contact pressure increases. The contact pressure index C [n] is calculated so that the contact pressure index C [n] increases as the contact pressure index C [n] increases (for example, the reciprocal of the difference between the impedance ZA [n] and the impedance ZB [n] is calculated as the contact pressure index C [n]. ] Can also be employed. As understood from the above description, the process S8 in which the control unit 22 calculates the contact pressure index C [n] is performed by using the contact pressure index C [n] corresponding to the contact pressure of the electrode unit 14 with respect to the measurement site 60 as the impedance. It is included as a process for calculating according to a difference (typically a difference) between ZA [n] and impedance ZB [n].

100……測定装置、12……本体部、14……電極部、142……筐体、PA,PB……電極対、E(E1〜E4)……電極、16……ケーブル、22……制御部、24……記憶部、26……操作部、28……表示部、32……電流生成部、34……電圧検出部、36……電極選択部、SW1,SW2……スイッチ、60……測定部位。 100: Measuring device, 12: Main body, 14: Electrode, 142: Case, PA, PB ... Electrode pair, E (E1 to E4) ... Electrode, 16 ... Cable, 22 ... Control unit, 24... Storage unit, 26... Operation unit, 28... Display unit, 32... Current generation unit, 34 ... voltage detection unit, 36 ... electrode selection unit, SW1, SW2. ...... Measurement site.

Claims (6)

被験者の身体に接触する第1電極対および第2電極対を含む電極部と、
前記第1電極対を利用した2電極法で第1インピーダンスを算定する第1算定手段と、
前記第1電極対と前記第2電極対とを利用した4電極法で第2インピーダンスを算定する第2算定手段と、
前記被験者の身体に対する前記電極部の接触圧に応じた接触圧指標を前記第1インピーダンスと前記第2インピーダンスとの差分に基づいて算定する指標算定手段と
を具備する測定装置。
An electrode portion including a first electrode pair and a second electrode pair in contact with the subject's body;
First calculating means for calculating a first impedance by a two-electrode method using the first electrode pair;
A second calculating means for calculating a second impedance by a four-electrode method using the first electrode pair and the second electrode pair;
A measuring apparatus comprising: an index calculating unit that calculates a contact pressure index corresponding to a contact pressure of the electrode part with respect to the body of the subject based on a difference between the first impedance and the second impedance.
前記第1電極対の電極間に被験者の身体を介して電流を流す電流生成手段と、
前記第1電極対および前記第2電極対の一方を選択する電極選択手段と、
前記電極選択手段が選択した電極対の電極間の電圧を検出する電圧検出手段とを具備し、
前記第1算定手段は、前記電極選択手段が前記第1電極対を選択した状態で前記電流生成手段が生成する電流と前記電圧検出手段が検出する電圧とに応じて前記第1インピーダンスを算定し、
前記第2算定手段は、前記電極選択手段が前記第2電極対を選択した状態で前記電流生成手段が生成する電流と前記電圧検出手段が検出する電圧とに応じて前記第2インピーダンスを算定する
請求項1の測定装置。
Current generating means for passing a current through the body of the subject between the electrodes of the first electrode pair;
Electrode selection means for selecting one of the first electrode pair and the second electrode pair;
Voltage detecting means for detecting the voltage between the electrodes of the electrode pair selected by the electrode selecting means,
The first calculating unit calculates the first impedance according to a current generated by the current generating unit and a voltage detected by the voltage detecting unit in a state where the electrode selecting unit selects the first electrode pair. ,
The second calculating unit calculates the second impedance according to a current generated by the current generating unit and a voltage detected by the voltage detecting unit in a state where the electrode selecting unit selects the second electrode pair. The measuring apparatus according to claim 1.
被験者の身体と前記電極部との接触状態の適否を前記接触圧指標に応じて判定する接触状態判定手段と、
被験者の身体と前記電極部との接触状態が適正であると前記接触状態判定手段が判定した場合に前記第2インピーダンスに応じた生体情報を生成する情報生成手段と
を具備する請求項1または請求項2の測定装置。
Contact state determination means for determining the suitability of the contact state between the body of the subject and the electrode part according to the contact pressure index;
The information generation means which produces | generates the biometric information according to a said 2nd impedance when the said contact state determination means determines that the contact state of a test subject's body and the said electrode part is appropriate. Item 2. The measuring device according to item 2.
前記情報生成手段は、皮下脂肪厚を前記生体情報として算定する
請求項3の測定装置。
The measurement apparatus according to claim 3, wherein the information generation unit calculates a subcutaneous fat thickness as the biological information.
前記第1算定手段による前記第1インピーダンスの算定と前記第2算定手段による前記第2インピーダンスの算定と前記指標算定手段による接触圧指標の算定とを含む測定処理が複数回にわたり実行され、
前記接触状態判定手段は、一の測定処理にて測定された接触圧指標を基準値とし、以降の各測定処理にて測定された接触圧指標を前記基準値と比較することで被験者の身体と前記電極部との接触状態の適否を測定処理毎に判定する
請求項3または請求項4の測定装置。
A measurement process including the calculation of the first impedance by the first calculation means, the calculation of the second impedance by the second calculation means, and the calculation of the contact pressure index by the index calculation means is performed a plurality of times,
The contact state determination means uses the contact pressure index measured in one measurement process as a reference value, and compares the contact pressure index measured in each subsequent measurement process with the reference value to determine the body of the subject. The measurement apparatus according to claim 3 or 4, wherein the suitability of the contact state with the electrode unit is determined for each measurement process.
前記情報生成手段は、前記接触状態が適正であるとの判定が所定回の測定処理にわたって連続した場合に前記生体情報を生成する
請求項5の測定装置。
The measurement apparatus according to claim 5, wherein the information generation unit generates the biological information when the determination that the contact state is appropriate continues over a predetermined number of measurement processes.
JP2011039902A 2011-02-25 2011-02-25 measuring device Active JP5610157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011039902A JP5610157B2 (en) 2011-02-25 2011-02-25 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011039902A JP5610157B2 (en) 2011-02-25 2011-02-25 measuring device

Publications (2)

Publication Number Publication Date
JP2012176063A true JP2012176063A (en) 2012-09-13
JP5610157B2 JP5610157B2 (en) 2014-10-22

Family

ID=46978383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039902A Active JP5610157B2 (en) 2011-02-25 2011-02-25 measuring device

Country Status (1)

Country Link
JP (1) JP5610157B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204849A (en) * 2013-04-12 2014-10-30 トヨタ紡織株式会社 Biological information measuring device and biological information measuring method
JP2015002779A (en) * 2013-06-19 2015-01-08 株式会社タニタ Biometric device and biometric method
JPWO2015133604A1 (en) * 2014-03-07 2017-04-06 学校法人北里研究所 Fat thickness estimation apparatus, fat thickness estimation system, fat thickness estimation method and program
JP2021126463A (en) * 2020-02-17 2021-09-02 株式会社村田製作所 Measuring apparatus and measuring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153437A (en) * 2000-11-17 2002-05-28 Yamato Scale Co Ltd Body impedance measuring device
US20060122533A1 (en) * 2004-11-06 2006-06-08 Samsung Electronics Co., Ltd. Method and apparatus for measuring body fat by using bioelectrical impedance
JP2007209545A (en) * 2006-02-09 2007-08-23 Fukuda Denshi Co Ltd Bioelectrical impedance measuring instrument
US20080045854A1 (en) * 2006-08-16 2008-02-21 Pan Weichao Human body impedance measurement device and its application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153437A (en) * 2000-11-17 2002-05-28 Yamato Scale Co Ltd Body impedance measuring device
US20060122533A1 (en) * 2004-11-06 2006-06-08 Samsung Electronics Co., Ltd. Method and apparatus for measuring body fat by using bioelectrical impedance
JP2007209545A (en) * 2006-02-09 2007-08-23 Fukuda Denshi Co Ltd Bioelectrical impedance measuring instrument
US20080045854A1 (en) * 2006-08-16 2008-02-21 Pan Weichao Human body impedance measurement device and its application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204849A (en) * 2013-04-12 2014-10-30 トヨタ紡織株式会社 Biological information measuring device and biological information measuring method
JP2015002779A (en) * 2013-06-19 2015-01-08 株式会社タニタ Biometric device and biometric method
JPWO2015133604A1 (en) * 2014-03-07 2017-04-06 学校法人北里研究所 Fat thickness estimation apparatus, fat thickness estimation system, fat thickness estimation method and program
US10786176B2 (en) 2014-03-07 2020-09-29 School Juridical Person Kitasato Institute Fat thickness estimating device, fat thickness estimating system, fat thickness measuring method, and program
JP2021126463A (en) * 2020-02-17 2021-09-02 株式会社村田製作所 Measuring apparatus and measuring system

Also Published As

Publication number Publication date
JP5610157B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5635989B2 (en) Impedance measurement circuit and method
JP2002045346A5 (en)
JP2002045346A (en) Device for determining somatic moisture content by in vivo impedance measurement with multi-frequencies
US20200359931A1 (en) Body Composition Scale and Body Composition Measurement Program
JP2010259776A (en) Subcutaneous fat thickness measurement device
JP5610157B2 (en) measuring device
JP5641527B2 (en) Muscle mass evaluation method and muscle mass evaluation apparatus
JP5110277B2 (en) Body composition estimation device and body composition estimation method
JP2010172543A (en) Method of estimating percutaneous water transpiration quantity and skin barrier function evaluating device
JP6555715B2 (en) Lymphedema monitor device
JP2019502931A5 (en)
JP2015002779A (en) Biometric device and biometric method
JP2015093133A (en) Biometric device
JP6941258B2 (en) An arithmetic processing device and a program for evaluating the water content of the stratum corneum, an electronic device equipped with the arithmetic processing apparatus, and a method for evaluating the water content of the stratum corneum.
JP7025641B2 (en) An arithmetic processing device for evaluating skin moisture content, a program, an electronic device equipped with the arithmetic processing apparatus, and a method for evaluating skin moisture content.
EP3114993B1 (en) Fat thickness estimation device, fat thickness estimation system, fat thickness estimation method, and program
JP6925576B2 (en) An electronic device having an arithmetic processing unit, a program, and an arithmetic processing unit for evaluating the skin barrier function.
US11445931B2 (en) Operation processing apparatus calculating numerical value representing skin barrier function, equipment, computer readable medium, and method for evaluating skin barrier function
JP5610535B2 (en) measuring device
JP5445958B2 (en) Battery evaluation apparatus and battery evaluation method
JP4604983B2 (en) Body fat measuring device
JP2022540590A (en) Estimation of contact angles between catheters and tissue, and related devices, systems, and methods
JP5614628B2 (en) Fuel cell evaluation apparatus and fuel cell evaluation method
JP5314099B2 (en) Subcutaneous fat thickness measurement device
JP2019208843A (en) Semiconductor device, measurement system, and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5610157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250