JP2012175752A - Synchronous rotary electric machine - Google Patents

Synchronous rotary electric machine Download PDF

Info

Publication number
JP2012175752A
JP2012175752A JP2011033229A JP2011033229A JP2012175752A JP 2012175752 A JP2012175752 A JP 2012175752A JP 2011033229 A JP2011033229 A JP 2011033229A JP 2011033229 A JP2011033229 A JP 2011033229A JP 2012175752 A JP2012175752 A JP 2012175752A
Authority
JP
Japan
Prior art keywords
rotor
phase
synchronous
permanent magnets
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011033229A
Other languages
Japanese (ja)
Inventor
Nobuyuki Matsui
信行 松井
Suguru Kosaka
卓 小坂
Kazuki Sotoki
一樹 外木
Toshihiko Yoshida
稔彦 吉田
Norimoto Minoshima
紀元 蓑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Nagoya Institute of Technology NUC
Original Assignee
Toyota Industries Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Nagoya Institute of Technology NUC filed Critical Toyota Industries Corp
Priority to JP2011033229A priority Critical patent/JP2012175752A/en
Publication of JP2012175752A publication Critical patent/JP2012175752A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a synchronous rotary electric machine which can have torque larger than torque generated through mutual action between a rotating magnetic field of a stator and magnetic flux of permanent magnets of a rotor in synchronous operation.SOLUTION: A synchronous rotary electric machine 11 includes a rotor 13 having a plurality of permanent magnets 19 arranged so that adjacent permanent magnets have alternately different magnetic poles, and a stator winding is a concentrated winding. The rotor 13 has bar conductors 20a arranged on inner-diameter sides of the permanent magnets 19 and at positions corresponding to gaps between permanent magnets 19 so as to always perform synchronous operation over the entire rotation area. The synchronous rotary electric machine 11 is characterized in that the number (q) of slots of each pole and each phase represented as q=Z/(2Zm) is a fractional slot smaller than 1/2, where Zis the number of slots, Zis the number of pole pairs, and (m) is the number of phases.

Description

本発明は、同期回転電機に係り、詳しくは回転子(ロータ)に永久磁石が設けられた同期回転電機に関する。   The present invention relates to a synchronous rotating electric machine, and more particularly to a synchronous rotating electric machine in which a permanent magnet is provided on a rotor (rotor).

回転子に永久磁石を有する同期モータは、固定子に設けられた固定子巻線の回転磁界と回転子の永久磁石の磁束との相互作用によって回転子が回転磁界と同期速度で回転する。各相の固定子巻線のインダクタンスは回転子の回転位置に応じて変化し、回転子の回転に伴って固定子巻線のインダクタンスが増加するときに固定子巻線に励磁電流を供給すると、回転子を回転方向に回転させるトルク(正トルク)が発生する。一方、回転子の回転に伴って固定子巻線のインダクタンスが減少するときに固定子巻線に励磁電流を供給すると、回転子を回転方向と反対方向に回転させるトルク(負トルク)が発生する。そして、回転子の位置に対応して各相の固定子巻線への励磁電流の供給タイミングを制御する(例えば、特許文献1参照。)。   In a synchronous motor having a permanent magnet in the rotor, the rotor rotates at a synchronous speed with the rotating magnetic field by the interaction between the rotating magnetic field of the stator winding provided in the stator and the magnetic flux of the permanent magnet of the rotor. When the inductance of the stator winding of each phase changes according to the rotational position of the rotor, and when the inductance of the stator winding increases with the rotation of the rotor, an excitation current is supplied to the stator winding, Torque (positive torque) that rotates the rotor in the rotation direction is generated. On the other hand, if an excitation current is supplied to the stator winding when the inductance of the stator winding decreases with the rotation of the rotor, torque (negative torque) that rotates the rotor in the direction opposite to the rotation direction is generated. . And the supply timing of the exciting current to the stator winding of each phase is controlled corresponding to the position of the rotor (see, for example, Patent Document 1).

また、永久磁石式回転電機として、回転子に永久磁石の他に始動巻線を形成する導体を備えたものがある(例えば、特許文献2参照)。特許文献2に開示された回転電機は、図7に示すように、回転子51に複数の第1永久磁石52と、第1永久磁石52の間に第1永久磁石52と同じ極性を電機子としての固定子53に向け、固定子53から見た背面までの距離を第1永久磁石52よりも小さくなるように配置した第2永久磁石54とから成る界磁極が設けられている。界磁極の間及び第2永久磁石54の背面側に始動巻線を構成する導体55が設けられている。始動巻線を設けた永久磁石式同期電機では、非同期制御で始動された後、同期制御となる。   Further, as a permanent magnet type rotating electrical machine, there is one in which a rotor is provided with a conductor that forms a starting winding in addition to a permanent magnet (see, for example, Patent Document 2). As shown in FIG. 7, the rotating electrical machine disclosed in Patent Document 2 has a plurality of first permanent magnets 52 in the rotor 51 and the same polarity as the first permanent magnets 52 between the first permanent magnets 52. A field pole composed of a second permanent magnet 54 arranged so that the distance from the stator 53 to the back surface as viewed from the stator 53 is smaller than that of the first permanent magnet 52 is provided. A conductor 55 constituting a starting winding is provided between the field poles and on the back side of the second permanent magnet 54. In the permanent magnet type synchronous electric machine provided with the start winding, the synchronous control is performed after being started by the asynchronous control.

特開2000−278989号公報Japanese Patent Laid-Open No. 2000-278989 特開昭57−145556号公報JP-A-57-145556

回転電機は小型化が望まれており、同じ消費電力においてトルクアップを図ることができれば回転電機の小型化も容易になる。しかし、特許文献1のように固定子の回転磁界と回転子の永久磁石の磁束との相互作用だけによって回転子を回転させる構成では、トルクアップを図るには消費電力が多くなる。   The rotating electrical machine is desired to be downsized, and if the torque can be increased with the same power consumption, the rotating electrical machine can be easily downsized. However, in the configuration in which the rotor is rotated only by the interaction between the rotating magnetic field of the stator and the magnetic flux of the permanent magnet of the rotor as in Patent Document 1, power consumption increases in order to increase the torque.

一方、特許文献2は始動巻線を設けることにより、非同期運転時である始動時のトルクは大きくなる。しかし、始動巻線を構成する導体55は始動トルクを得るためのものであり、同期運転時のトルクアップに関しては何ら考慮されていない。   On the other hand, in Patent Document 2, by providing the start winding, the torque at the start, which is an asynchronous operation, is increased. However, the conductor 55 constituting the starting winding is for obtaining the starting torque, and no consideration is given to the torque increase during the synchronous operation.

本発明は前記の問題に鑑みてなされたものであって、その目的は、全回転領域において固定子の回転磁界と回転子の永久磁石の磁束との相互作用により発生するトルクよりトルクアップを図ることができる同期回転電機を提供することにある。   The present invention has been made in view of the above-described problems, and its object is to increase the torque from the torque generated by the interaction between the rotating magnetic field of the stator and the magnetic flux of the permanent magnet of the rotor in the entire rotation region. An object of the present invention is to provide a synchronous rotating electrical machine that can perform the above.

前記の目的を達成するため、請求項1に記載の発明は、隣り合う永久磁石の磁極が交互に異なるように配置された複数の永久磁石を有する回転子を備えた同期回転電機であって、固定子巻線を集中巻とし、前記回転子には前記永久磁石より内径側又は前記永久磁石間に二次導体を配置した。   In order to achieve the above object, the invention according to claim 1 is a synchronous rotating electric machine including a rotor having a plurality of permanent magnets arranged such that magnetic poles of adjacent permanent magnets are alternately different from each other. The stator winding is a concentrated winding, and a secondary conductor is disposed on the rotor on the inner diameter side or between the permanent magnets.

従来、二次導体を備えた永久磁石式同期回転電機はあるが、二次導体は始動トルクを得るために設けられており、始動時には非同期制御で運転が開始され、その後同期運転に移行される。一方、この発明の回転電機を、始動時から常に同期制御で運転すると、始動時以外の同期運転時にも、空間起磁力分布の高調波成分の一部が二次導体に作用することにより、二次導体から回転子の回転方向に対して正の誘導トルクが発生する。そして、固定子巻線が集中巻のため、分布巻に比べて高調波成分が多い。したがって、全回転領域において固定子の回転磁界と、回転子の永久磁石の磁束との相互作用により発生するトルクよりトルクアップを図ることができる。   Conventionally, there is a permanent magnet type synchronous rotating electrical machine having a secondary conductor, but the secondary conductor is provided to obtain a starting torque, and at the time of starting, the operation is started by asynchronous control, and then the operation is shifted to the synchronous operation. . On the other hand, when the rotating electrical machine of the present invention is always operated with synchronous control from the start, a part of the harmonic component of the spatial magnetomotive force distribution acts on the secondary conductor even during the synchronous operation other than the start. A positive induction torque is generated from the secondary conductor with respect to the rotation direction of the rotor. And since a stator winding is concentrated winding, there are many harmonic components compared with distributed winding. Therefore, the torque can be increased from the torque generated by the interaction between the rotating magnetic field of the stator and the magnetic flux of the permanent magnet of the rotor in the entire rotation region.

請求項2に記載の発明は、請求項1に記載の発明において、回転電機は全回転領域で同期運転を行う。したがって、全回転領域において固定子の回転磁界と、回転子の永久磁石の磁束との相互作用により発生するトルクよりトルクアップを図ることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, the rotating electrical machine performs a synchronous operation in the entire rotation region. Therefore, the torque can be increased from the torque generated by the interaction between the rotating magnetic field of the stator and the magnetic flux of the permanent magnet of the rotor in the entire rotation region.

請求項3に記載の発明は、請求項1又は2に記載の発明において、スロット数をZ、極対数をZ、相数をmとした場合にq=Z/(2Zm)で表わされる毎極毎相のスロット数qが1/2より小さい分数スロットである。分数スロットでは極数とスロット数を近づけることで極数とスロット数の最小公倍数が大きな組み合わせが実現できる。また、同相の固定子巻線に対応するティースであっても、ティースごとに回転子の永久磁石との対向具合が異なる配置となり、スキューなしでもコギングトルクやトルクリプルを小さくすることができる。 The invention according to claim 3 is the invention according to claim 1 or 2, wherein q = Z 1 / (2Z 2 m) where Z 1 is the number of slots, Z 2 is the number of pole pairs, and m is the number of phases. The number of slots per phase per pole represented by is a fractional slot smaller than 1/2. In the fractional slot, by combining the number of poles with the number of slots, a combination with a large least common multiple of the number of poles and the number of slots can be realized. Moreover, even if the teeth corresponding to the stator windings of the same phase are disposed, the coping torque and the torque ripple can be reduced without skew even if the teeth are arranged differently from the permanent magnets of the rotor.

請求項4に記載の発明は、請求項3に記載の発明において、前記スロット数が24、磁極数が28の3相交流電機である。したがって、一般に使用される3相回転電機において、トルクアップを図ることができる。   A fourth aspect of the present invention is the three-phase AC electric machine according to the third aspect, wherein the number of slots is 24 and the number of magnetic poles is 28. Therefore, torque can be increased in a generally used three-phase rotating electrical machine.

本発明によれば、全回転領域において固定子の回転磁界と回転子の永久磁石の磁束との相互作用により発生するトルクよりトルクアップを図ることができる同期回転電機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the synchronous rotary electric machine which can aim at a torque up from the torque which generate | occur | produces by the interaction of the rotating magnetic field of a stator and the magnetic flux of the permanent magnet of a rotor in a full rotation area | region can be provided.

(a)は同期回転電動機の模式断面図、(b)は(a)の部分拡大図。(A) is a schematic cross section of a synchronous rotary electric motor, (b) is the elements on larger scale of (a). 二次導体の斜視図。The perspective view of a secondary conductor. 同期回転電動機の制御構成を示すブロック図。The block diagram which shows the control structure of a synchronous rotary electric motor. 起磁力座標の定義を示す模式図。The schematic diagram which shows the definition of a magnetomotive force coordinate. U相単層巻起磁力分布を示す図。The figure which shows U-phase single layer winding magnetomotive force distribution. 二次導体に流れる電流を示す図。The figure which shows the electric current which flows into a secondary conductor. 従来技術の断面図。Sectional drawing of a prior art.

以下、本発明を3相の同期回転電動機に具体化した一実施形態を図1〜図6にしたがって説明する。
図1(a)に示すように、同期回転電動機11は、円筒状の固定子(ステータ)12及び固定子12の内側に配置された回転子13を備えている。固定子12は、内側に複数のティース14が等間隔になるようにスロット15が等間隔で設けられている。この実施形態ではティース14及びスロット15がそれぞれ24個設けられている。ティース14には、固定子巻線としてのU相巻線16u、V相巻線16v、W相巻線16wがそれぞれ集中巻で巻回されている。U相巻線16u、V相巻線16v、W相巻線16wは、図1において時計方向にU相、V相、W相の順で配置されるように、かつ、同相の巻線が直列で各ティース14に巻き付けられた巻線の巻き付け方向がティース14毎に交互に反対方向となるように単層巻で巻き付けられている。即ち、U相巻線16u、V相巻線16v、W相巻線16wにそれぞれ電流が供給された際、同相の巻線が巻き付けられたティース14の起磁力の向きが交互に反対方向となるように巻き付けられている。
Hereinafter, an embodiment in which the present invention is embodied in a three-phase synchronous rotating motor will be described with reference to FIGS.
As shown in FIG. 1A, the synchronous rotary electric motor 11 includes a cylindrical stator (stator) 12 and a rotor 13 arranged inside the stator 12. The stator 12 is provided with slots 15 at equal intervals so that a plurality of teeth 14 are equally spaced inside. In this embodiment, 24 teeth 14 and 24 slots 15 are provided. A U-phase winding 16u, a V-phase winding 16v, and a W-phase winding 16w as stator windings are wound around the teeth 14 in a concentrated manner. The U-phase winding 16u, the V-phase winding 16v, and the W-phase winding 16w are arranged in the order of the U-phase, V-phase, and W-phase in the clockwise direction in FIG. The windings of the windings wound around the teeth 14 are wound in a single layer winding so that the winding directions of the teeth 14 are alternately opposite to each other. That is, when current is supplied to each of the U-phase winding 16u, the V-phase winding 16v, and the W-phase winding 16w, the direction of the magnetomotive force of the teeth 14 around which the in-phase winding is wound is alternately opposite. It is wound like so.

回転子13は、円板状の電磁鋼板を複数枚(例えば、数十枚)積層したロータコア17と、ロータコア17の中心に貫挿されたロータ軸(回転軸)18とを備えている。そして、回転子13は、ロータコア17の外周面がティース14と所定の間隔を置いた状態で、図示しないハウジングの軸受けにロータ軸18を介して回転可能に支持されている。ロータコア17には、ロータコア17を周方向に等分割(この実施形態では28分割)した各仮想領域に孔(フラックスバリア)が形成され、各孔内に断面略矩形の平板状に形成された永久磁石19が装着されている。各永久磁石19は、着磁方向(磁化方向)が厚さ方向となるように着磁されている。隣り合う永久磁石19は、回転子13の外周側が異なる極になるように、即ち、隣接する永久磁石19のN極及びS極が交互に固定子12側に向くように設けられている。この実施形態の同期回転電動機11は、固定子12のスロット数が24で、回転子13の磁極が28の構成になっている。なお、図1(a)において、永久磁石19の径方向内側に当該永久磁石19のN極及びS極のいずれが固定子12側に向くのかを示す符号N又はSを付した(符号の図示は一部省略)。   The rotor 13 includes a rotor core 17 in which a plurality of (for example, several tens) disk-shaped electromagnetic steel plates are stacked, and a rotor shaft (rotating shaft) 18 inserted through the center of the rotor core 17. The rotor 13 is rotatably supported by a bearing of a housing (not shown) via a rotor shaft 18 with the outer peripheral surface of the rotor core 17 spaced apart from the teeth 14. In the rotor core 17, holes (flux barriers) are formed in each virtual region obtained by equally dividing the rotor core 17 in the circumferential direction (28 divisions in this embodiment), and the permanent core is formed in a flat plate shape having a substantially rectangular cross section in each hole. A magnet 19 is attached. Each permanent magnet 19 is magnetized such that the magnetization direction (magnetization direction) is the thickness direction. The adjacent permanent magnets 19 are provided so that the outer peripheral side of the rotor 13 has different poles, that is, the N poles and S poles of the adjacent permanent magnets 19 are alternately directed to the stator 12 side. In the synchronous rotary electric motor 11 of this embodiment, the stator 12 has 24 slots and the rotor 13 has 28 magnetic poles. In FIG. 1A, a symbol N or S indicating which of the N pole and S pole of the permanent magnet 19 faces the stator 12 side is attached to the inner side in the radial direction of the permanent magnet 19 (illustration of the symbols). Are omitted).

したがって、この実施形態の同期回転電動機11は、次式で表わされる毎極毎相のスロット数qを計算すると1/2より小さい分数になり、同期回転電動機11は集中巻分数スロット埋込磁石同期モータとなる。   Therefore, the synchronous rotary electric motor 11 of this embodiment has a fraction smaller than ½ when the number of slots q per pole per phase expressed by the following equation is calculated, and the synchronous rotary electric motor 11 has a concentrated winding fraction slot embedded magnet synchronization. Become a motor.

q=Z/(2Zm)
但し、Zはスロット数、Zは極対数(磁極の数の1/2)、mは相数である。同期回転電動機11は、スロット数Zが24、極対数Zが14(28/2)、相数が3であるため、q=24/(2×14×3)=2/7で分数スロットになる。
q = Z 1 / (2Z 2 m)
However, Z 1 is the number of slots, Z 2 is pole pair (the number of magnetic poles 1/2), m is the number of phases. The synchronous rotary motor 11 has a slot number Z 1 of 24, a pole pair number Z 2 of 14 (28/2), and a phase number of 3, so that q = 24 / (2 × 14 × 3) = 2/7 is a fraction. Become a slot.

また、ロータコア17には、各永久磁石19よりロータ軸18寄りで隣り合う永久磁石19の中央と対向する位置に二次導体としてのバー導体20aがロータコア17を貫通するように設けられている。図2に示すように、各バー導体20aの両端部はそれぞれエンドリング20bに接続され、全体としてかご型の二次導体20が回転子13に一体回転可能に固定されている。   Further, the rotor core 17 is provided with a bar conductor 20a as a secondary conductor penetrating the rotor core 17 at a position facing the center of the adjacent permanent magnet 19 closer to the rotor shaft 18 than each permanent magnet 19. As shown in FIG. 2, both end portions of each bar conductor 20a are connected to an end ring 20b, respectively, and a cage-shaped secondary conductor 20 as a whole is fixed to the rotor 13 so as to be integrally rotatable.

次に前記のように構成された同期回転電動機11を車両に搭載される走行用モータに適用した場合の作用を説明する。図3に示すように、同期回転電動機11の制御装置21は、直流電源としてのバッテリ22の直流電力をインバータ23で3相交流に変換して、同期回転電動機11の各相(U相,V相,W相)の巻線16u,16v,16wに供給すべき交流電流を供給するようにインバータ23を制御する。各相に供給される電流は電流センサ24で検出されて、その検出信号が制御装置21に入力される。また、同期回転電動機11には回転子13の位置(磁極の位置)を検出する位置検出手段としての位置センサ25が設けられ、その検出信号が制御装置21に入力される。位置センサ25には、例えば、レゾルバやロータリエンコーダが使用される。   Next, the operation when the synchronous rotary electric motor 11 configured as described above is applied to a traveling motor mounted on a vehicle will be described. As shown in FIG. 3, the control device 21 of the synchronous rotary motor 11 converts the DC power of the battery 22 as a DC power source into three-phase AC by the inverter 23, and each phase (U phase, V) of the synchronous rotary motor 11. The inverter 23 is controlled so as to supply an alternating current to be supplied to the windings 16u, 16v, 16w of the phase (phase W). The current supplied to each phase is detected by the current sensor 24, and the detection signal is input to the control device 21. The synchronous rotating motor 11 is provided with a position sensor 25 as position detecting means for detecting the position of the rotor 13 (the position of the magnetic pole), and the detection signal is input to the control device 21. For the position sensor 25, for example, a resolver or a rotary encoder is used.

制御装置21はCPU26及びメモリ27を備え、アクセルの踏み角等のデータ及び位置センサ25の検出信号に基づいて目的車速となるように各相の巻線16u,16v,16wに供給すべき交流電流量及び周波数を演算して、その交流電流が各相の巻線16u,16v,16wに供給されるようにインバータ23を制御する。制御装置21は低回転領域(低速領域)から高回転領域(高速領域)の全回転領域で常に同期運転を行うように、位置センサ25による回転子13の位置情報に基づいて同期制御によりインバータ23を制御して同期回転電動機11を駆動制御する。   The control device 21 includes a CPU 26 and a memory 27, and the amount of alternating current to be supplied to the windings 16u, 16v, 16w of each phase so as to achieve the target vehicle speed based on the data such as the accelerator depression angle and the detection signal of the position sensor 25. And the frequency is calculated and the inverter 23 is controlled so that the alternating current is supplied to the windings 16u, 16v, and 16w of each phase. The control device 21 performs the synchronous control based on the position information of the rotor 13 by the position sensor 25 so as to always perform the synchronous operation in the entire rotation region from the low rotation region (low speed region) to the high rotation region (high speed region). To control the drive of the synchronous rotating motor 11.

固定子12のU相巻線16u、V相巻線16v、W相巻線16wに所定周波数の交流が供給されると固定子12に回転磁界が発生し、回転子13に回転磁界が作用する。そして、回転磁界と永久磁石19の磁束との間の磁気的な吸引力及び反発力により回転子13が回転磁界と同期して回転する。   When an alternating current having a predetermined frequency is supplied to the U-phase winding 16u, V-phase winding 16v, and W-phase winding 16w of the stator 12, a rotating magnetic field is generated in the stator 12, and the rotating magnetic field acts on the rotor 13. . Then, the rotor 13 rotates in synchronization with the rotating magnetic field by the magnetic attractive force and the repulsive force between the rotating magnetic field and the magnetic flux of the permanent magnet 19.

分数スロットモータは同期回転磁界成分以外にも多数の回転磁界を含み、その非同期回転磁界成分がロータコア17に挿入されたバー導体20aに作用して誘導トルクを発生させ、バー導体20aがない場合に比べて全回転領域でトルクアップされる。   The fractional slot motor includes a large number of rotating magnetic fields in addition to the synchronous rotating magnetic field component, and the asynchronous rotating magnetic field component acts on the bar conductor 20a inserted in the rotor core 17 to generate an induction torque, and there is no bar conductor 20a. Compared to the torque, the torque is increased in the entire rotation range.

以下、バー導体20aにより回転方向と同方向の正トルクが発生する理由を説明する。空間起磁力分布はU相、V相及びW相の空間起磁力分布を合成して成り立っている。1スロットで誘起される起磁力Fは巻線のターン数をN、電機子電流をIとすると、F=NIと定義されている。固定子12に発生する空間起磁力分布の座標定義を図4のように定め、定義にしたがってU相巻線の単層巻起磁力分布を図5に示す。図5より24スロット単層巻でのU相起磁力分布は次のようになる。   Hereinafter, the reason why the bar conductor 20a generates a positive torque in the same direction as the rotation direction will be described. The spatial magnetomotive force distribution is formed by synthesizing the spatial magnetomotive force distributions of the U phase, the V phase, and the W phase. The magnetomotive force F induced in one slot is defined as F = NI, where N is the number of turns of the winding and I is the armature current. The coordinate definition of the space magnetomotive force distribution generated in the stator 12 is defined as shown in FIG. 4, and the single layer magnetomotive force distribution of the U-phase winding is shown in FIG. 5 according to the definition. From FIG. 5, the U-phase magnetomotive force distribution in the 24-slot single layer winding is as follows.

Figure 2012175752
フーリエ級数展開は一般的に次式で与えられる。
Figure 2012175752
The Fourier series expansion is generally given by

Figure 2012175752
係数a,bは次式で示される。
Figure 2012175752
The coefficients a n and b n are expressed by the following equations.

Figure 2012175752
したがって、以上の条件からU相の起磁力分布F(θ)は次式で表すことができる。θは機械角。
Figure 2012175752
Therefore, from the above conditions, the magnetomotive force distribution F Um ) of the U phase can be expressed by the following equation. θ m is the mechanical angle.

Figure 2012175752
このとき、n=4k−2(k=1,2,3…)である。V相、W相の起磁力分布はU相の起磁力分布の位相を±2π/3ずらすことによって得られる。したがって、V相、W相の起磁力分布F(θ)、F(θ)は次式で表される。
Figure 2012175752
At this time, n = 4k−2 (k = 1, 2, 3,...). The magnetomotive force distribution of the V phase and the W phase is obtained by shifting the phase of the magnetomotive force distribution of the U phase by ± 2π / 3. Therefore, the magnetomotive force distributions F Vm ) and F Wm ) of the V phase and the W phase are expressed by the following equations.

Figure 2012175752
このとき、I,I,Iは次式で表される。
Figure 2012175752
At this time, I U , I V , and I W are expressed by the following equations.

Figure 2012175752
βは電流位相角、ωは電源角速度であり、ωt=14θで表される。F(θ)、F(θ)、F(θ)にそれぞれ各相電流を代入し、足し合わせて合成することによってkごとの空間起磁力成分F(θ)は次式で表される。
Figure 2012175752
β is a current phase angle, ω S is a power source angular velocity, and is expressed by ω r t = 14θ m . By substituting each phase current for F Um ), F Vm ), and F Wm ), and adding them together, the spatial magnetomotive force component F km ) for each k is It is expressed by the following formula.

Figure 2012175752
このとき、Fは起磁力の振幅、sはすべりとする。また、tを自然数としてδはk=3tのとき+、k=3t−2のとき−の符号を表し、k=3t−1のときF(θ)は零になる。起磁力の振幅を定数と変数に分離し、F=ANIとする。但し、Aを起磁力振幅係数とする。kに対するすべりsと起磁力振幅係数Aとの関係を表1に示す。
Figure 2012175752
At this time, F k is an amplitude of the magnetomotive force, and s k is a slip. Further, δ k represents a sign of + when k = 3t and − when k = 3t−2, where t is a natural number, and F km ) becomes zero when k = 3t−1. The amplitude of the magnetomotive force is separated into a constant and a variable, and F k = ANI is set. However, A is a magnetomotive force amplitude coefficient. Table 1 shows the relationship between the slip s k and the magnetomotive force amplitude coefficient A with respect to k .

Figure 2012175752
表1より空間起磁力分布がk=4のとき、すべりが0となり、回転磁界に対しロータが静止していることから、同期磁界として作用していることが確認できる。k=4以外の空間起磁力分布は、回転速度に対し回転速度の14θと比較したときのすべりを導出して、すべりが0より大きく1未満であれば回転方向に対し正のトルクが出ると考えられる。その上で表1よりk=1のときすべりが6/7であり、正の誘導トルクが期待される。
Figure 2012175752
From Table 1, when the spatial magnetomotive force distribution is k = 4, the slip is 0, and the rotor is stationary with respect to the rotating magnetic field, so that it can be confirmed that it acts as a synchronous magnetic field. k = 4 spatial magnetomotive force distribution of the other is to derive a slip when compared to 14Shita m rotational speed relative to the rotational speed, positive torque exits with respect to the rotation direction if greater than 1 than slip 0 it is conceivable that. Furthermore, from Table 1, when k = 1, the slip is 6/7, and a positive induction torque is expected.

バー導体20aの有無による最大トルクの増加を3次元有限要素法解析(3D−FEM)により検証した。その結果、バー導体20aが無い場合の最大トルクを1とした場合に対して、バー導体20aが有る場合の最大トルクは1.07になった。比較のため、バー導体20aを挿入するための孔のみを形成してバー導体20aを挿入せずに空気とした場合の最大トルクを求めたところ、最大トルクは1.01であった。即ち、バー導体20aを設けることによりトルクアップされることが確認された。   The increase in the maximum torque with and without the bar conductor 20a was verified by a three-dimensional finite element method analysis (3D-FEM). As a result, the maximum torque when the bar conductor 20a is present is 1.07 when the maximum torque when the bar conductor 20a is absent is 1. For comparison, when only the hole for inserting the bar conductor 20a was formed and air was used without inserting the bar conductor 20a, the maximum torque was 1.01, and the maximum torque was 1.01. That is, it was confirmed that the torque was increased by providing the bar conductor 20a.

また、電機子電流として正弦波状の電流を流した場合、バー導体20aに流れる電流は、図6に示すように、電源周期(1周期360°)を基準にすると、正トルクに寄与するk=1のすべりから計算される周期である420°と同一であることが確認された。   In addition, when a sinusoidal current is passed as the armature current, the current flowing through the bar conductor 20a, as shown in FIG. 6, contributes to positive torque when the power supply cycle (one cycle is 360 °) is used as a reference. It was confirmed that it was the same as 420 °, which is the period calculated from one slip.

この実施形態によれば、以下に示す効果を得ることができる。
(1)同期回転電動機11は、隣り合う永久磁石の磁極が交互に異なるように配置された複数の永久磁石19を有する回転子13を備え、U相巻線16u、V相巻線16v、W相巻線16wを集中巻とし、回転子13には一定間隔で設けられた永久磁石19より内径側に二次導体(バー導体20a)を配置した。したがって、全回転領域で常に同期運転を行うことにより、全回転領域において固定子12の回転磁界と、回転子13の永久磁石19の磁束との相互作用により発生するトルクよりトルクアップを図ることができる。
According to this embodiment, the following effects can be obtained.
(1) The synchronous rotating motor 11 includes a rotor 13 having a plurality of permanent magnets 19 arranged so that the magnetic poles of adjacent permanent magnets are alternately different, and includes a U-phase winding 16u, a V-phase winding 16v, and W. The phase winding 16w is a concentrated winding, and a secondary conductor (bar conductor 20a) is disposed on the rotor 13 on the inner diameter side of the permanent magnet 19 provided at regular intervals. Therefore, by always performing synchronous operation in the entire rotation region, it is possible to increase the torque from the torque generated by the interaction between the rotating magnetic field of the stator 12 and the magnetic flux of the permanent magnet 19 of the rotor 13 in the entire rotation region. it can.

(2)同期回転電動機11は、スロット数をZ、極対数をZ、相数をmとした場合にq=Z/(2Zm)で表わされる毎極毎相のスロット数qが1/2より小さい分数スロットとなるように構成されている。したがって、極数とスロット数を近づけることで極数とスロット数の最小公倍数が大きな組み合わせが実現できる。また、同相の固定子巻線に対応するティース14であってもティース14ごとに回転子13の永久磁石19との対向具合が異なる配置となり、スキューなしでもコギングトルクやトルクリプルを小さくすることができる。 (2) The synchronous rotating motor 11 has the number of slots q per phase represented by q = Z 1 / (2Z 2 m) where Z 1 is the number of slots, Z 2 is the number of pole pairs, and m is the number of phases. Is a fractional slot smaller than 1/2. Therefore, a combination with a large least common multiple of the number of poles and the number of slots can be realized by bringing the number of poles and the number of slots close to each other. Further, even if the teeth 14 correspond to the stator windings having the same phase, the teeth 14 are arranged in different degrees of opposition to the permanent magnets 19 of the rotor 13 so that cogging torque and torque ripple can be reduced without skew. .

(3)同期回転電動機11は、スロット数が24、磁極数が28の3相交流電機である。したがって、一般に使用される3相回転電機において、トルクアップを図ることができる。   (3) The synchronous rotating motor 11 is a three-phase AC electric machine having 24 slots and 28 magnetic poles. Therefore, torque can be increased in a generally used three-phase rotating electrical machine.

(4)各巻線16u,16v,16wはそれぞれ単層巻で各ティース14に巻き付けられている。したがって、二層巻で巻き付けた場合に比べてバー導体20aにより正の誘導トルクが発生し易い。   (4) Each winding 16u, 16v, 16w is wound around each tooth 14 by single layer winding. Therefore, a positive induction torque is more likely to be generated by the bar conductor 20a than in the case of winding with two-layer winding.

(5)同期回転電動機11は、回転子13の位置を検出する位置センサ25を備え、制御装置21は位置センサ25により検出される回転子13の位置情報に基づいて全回転領域において同期制御により同期回転電動機11を駆動制御する。したがって、位置センサ25を設けずに同期制御を行う場合に比べてCPU26による制御が簡単になる。   (5) The synchronous rotary electric motor 11 includes a position sensor 25 that detects the position of the rotor 13, and the control device 21 performs synchronous control in the entire rotation region based on the position information of the rotor 13 detected by the position sensor 25. The synchronous rotary motor 11 is driven and controlled. Therefore, the control by the CPU 26 is simplified as compared with the case where the synchronous control is performed without providing the position sensor 25.

(6)同期回転電動機11は、車両に搭載される走行用モータに適用されている。走行用モータは小型化が望まれているが、同期回転電動機11は全回転領域においてトルクアップされるため小型化に寄与する。また、走行用モータには一般に位置センサ25が設けられるため、位置センサ25を設けてもコストアップとはならない。   (6) The synchronous rotating motor 11 is applied to a traveling motor mounted on a vehicle. Although the travel motor is desired to be downsized, the synchronous rotating motor 11 contributes to downsizing because the torque is increased in the entire rotation region. Moreover, since the position sensor 25 is generally provided in the traveling motor, the cost does not increase even if the position sensor 25 is provided.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 同期回転電動機11は、固定子12のスロット数が24で、回転子13の磁極が28の構成に限らず、スロット数と磁極の組み合わせが24と28以外の分数スロットの3相電動機であってもよい。但し、分数スロットの3相電動機であって、スロット数と磁極の組み合わせによってはバー導体20aに作用する高調波成分による誘導トルクが正トルクにならず負トルク(回転子13の回転方向と反対方向のトルク)となる場合があるので、設計に際して空間起磁力成分F(θ)の式を用いてkに対するすべりを計算し、正の誘導トルクが期待される組み合わせを採用する必要がある。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The synchronous rotating motor 11 is a three-phase motor having a fractional slot other than 24 and 28, and the number of slots of the stator 12 is 24 and the magnetic pole of the rotor 13 is not limited to 28. May be. However, in the case of a three-phase motor having a fractional slot, depending on the combination of the number of slots and the magnetic pole, the induction torque due to the harmonic component acting on the bar conductor 20a does not become a positive torque but a negative torque (the direction opposite to the rotation direction of the rotor 13). In the design, it is necessary to calculate the slip with respect to k using the formula of the space magnetomotive force component F km ) and to adopt a combination in which a positive induction torque is expected.

○ 同期回転電動機11は分数スロットに限らない。
○ 同期回転電動機11は埋込磁石型に限らず表面磁石型であってもよい。
○ 固定子巻線は二層巻であってもよい。
The synchronous rotary motor 11 is not limited to a fractional slot.
The synchronous rotary motor 11 is not limited to the embedded magnet type, and may be a surface magnet type.
○ The stator winding may be a two-layer winding.

○ バー導体20aは、永久磁石19と対向する位置で永久磁石19より内径側に設けたり、永久磁石19と同一円周上で永久磁石19の間に設けたりしてもよい。
○ バー導体20aは永久磁石19の数、即ち極数と同じ数ではなく、極数の自然数倍設けてもよい。例えば、永久磁石19の間に2本ずつ設けたり、永久磁石19間及び永久磁石19の内径側にそれぞれ1本ずつ設けたりしてもよい。
The bar conductor 20 a may be provided on the inner diameter side of the permanent magnet 19 at a position facing the permanent magnet 19, or may be provided between the permanent magnets 19 on the same circumference as the permanent magnet 19.
The bar conductor 20a is not the same as the number of the permanent magnets 19, that is, the number of poles, but may be a natural number times the number of poles. For example, two magnets may be provided between the permanent magnets 19, or one magnet may be provided between the permanent magnets 19 and one on the inner diameter side of the permanent magnet 19.

○ 同期回転電動機11は回転子13の位置を検出する位置センサ25が設けられていないセンサレス型の電動機、例えば、電流と電圧から回転子速度と磁極位置とを演算してそれに基づいてベクトル制御を行う電動機であってもよい。   The synchronous rotary motor 11 is a sensorless type motor in which the position sensor 25 for detecting the position of the rotor 13 is not provided. For example, the rotor speed and the magnetic pole position are calculated from the current and the voltage, and the vector control is performed based thereon. It may be an electric motor.

○ 同期回転電動機11は回転子が固定子の外側に設けられるアウターロータタイプの電動機としてもよい。
○ 電動機ではなく発電機に適用してもよい。
The synchronous rotary electric motor 11 may be an outer rotor type electric motor in which the rotor is provided outside the stator.
○ It may be applied to a generator instead of an electric motor.

○ 予め試験により、バー導体20aに流れる電流に正の誘導トルクが発生する高調波成分が多く含まれる電機子電流の状態と、回転子13の回転速度との関係データを求めておき、その関係データに基づいて制御装置21が同期制御を行うようにしてもよい。   A relationship between the state of the armature current in which the current flowing through the bar conductor 20a contains a large amount of harmonic components that generate a positive induction torque and the rotational speed of the rotor 13 is obtained in advance by testing. The control device 21 may perform synchronous control based on the data.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項3のいずれか1項に記載の発明において、前記固定子巻線は単層巻で巻き付けられている。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 3, the stator winding is wound by a single layer winding.

(2)請求項1〜請求項3及び前記技術的思想(1)のいずれか1項に記載の発明において、同期回転電機には回転子の位置を検出するセンサが設けられ、センサで検出された位置情報に基づいて同期運転が行われる。   (2) In the invention according to any one of claims 1 to 3 and the technical idea (1), the synchronous rotating electrical machine is provided with a sensor for detecting the position of the rotor, and is detected by the sensor. Synchronous operation is performed based on the obtained position information.

13…回転子、16u…固定子巻線としてのU相巻線、16v…同じくV相巻線、16w…同じくW相巻線、19…永久磁石、20a…二次導体としてのバー導体。   DESCRIPTION OF SYMBOLS 13 ... Rotor, 16u ... U phase winding as stator winding, 16v ... V phase winding similarly, 16w ... W phase winding similarly, 19 ... Permanent magnet, 20a ... Bar conductor as a secondary conductor.

Claims (4)

隣り合う永久磁石の磁極が交互に異なるように配置された複数の永久磁石を有する回転子を備えた同期回転電機であって、
固定子巻線を集中巻とし、前記回転子には前記永久磁石より内径側又は前記永久磁石間に二次導体を配置したことを特徴とする同期回転電機。
A synchronous rotating electrical machine including a rotor having a plurality of permanent magnets arranged so that magnetic poles of adjacent permanent magnets are alternately different from each other,
A synchronous rotating electrical machine characterized in that a stator winding is a concentrated winding, and a secondary conductor is disposed on the rotor on the inner diameter side or between the permanent magnets.
全回転領域で同期運転を行うことを特徴とする請求項1に記載の同期回転電機。   The synchronous rotating electric machine according to claim 1, wherein synchronous operation is performed in the entire rotation region. スロット数をZ、極対数をZ、相数をmとした場合にq=Z/(2Zm)で表わされる毎極毎相のスロット数qが1/2より小さい分数スロットである請求項1又は2に記載の同期回転電機。 When the number of slots is Z 1 , the number of pole pairs is Z 2 , and the number of phases is m, the number of slots per phase per pole represented by q = Z 1 / (2Z 2 m) is a fractional slot smaller than 1/2. The synchronous rotating electrical machine according to claim 1 or 2. 前記スロット数が24、磁極数が28の3相交流電機である請求項3に記載の同期回転電機。   The synchronous rotating electric machine according to claim 3, wherein the synchronous rotating electric machine is a three-phase AC electric machine having 24 slots and 28 magnetic poles.
JP2011033229A 2011-02-18 2011-02-18 Synchronous rotary electric machine Withdrawn JP2012175752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011033229A JP2012175752A (en) 2011-02-18 2011-02-18 Synchronous rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033229A JP2012175752A (en) 2011-02-18 2011-02-18 Synchronous rotary electric machine

Publications (1)

Publication Number Publication Date
JP2012175752A true JP2012175752A (en) 2012-09-10

Family

ID=46978130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033229A Withdrawn JP2012175752A (en) 2011-02-18 2011-02-18 Synchronous rotary electric machine

Country Status (1)

Country Link
JP (1) JP2012175752A (en)

Similar Documents

Publication Publication Date Title
JP5449892B2 (en) Permanent magnet excitation type radial magnetic bearing and magnetic bearing device including the radial magnetic bearing
JP6097024B2 (en) Electric machine
US10340780B2 (en) Transverse flux machine
EP2782227A1 (en) Motor and motor system
US20140246940A1 (en) Motor and motor system
EP3062426A1 (en) Single-phase brushless motor
JP2009247046A (en) Rotary electric machine
JP2013074743A (en) Rotary electric machine
JP4796472B2 (en) Brushless DC motor control device, brushless DC motor control method, and brushless DC motor module
US20130257188A1 (en) Flux-switching electric machine
EP2528207A1 (en) Brushless electric machine
JP2008067561A (en) Permanent-magnet electromotor
US20100052460A1 (en) Electrical rotating machine
Barman et al. Cogging torque reduction in surface mounted permanent magnet synchronous machine
JP5885423B2 (en) Permanent magnet rotating electric machine
Lee et al. Evaluation of slotless permanent synchronous motor with toroidal winding
JP5337382B2 (en) Permanent magnet synchronous motor
JP2004064857A (en) Brushless motor
JP2014197957A (en) Multi-gap type synchronous motor
JP5708566B2 (en) Electromagnetic coupling
JP2017063594A (en) Brushless motor
RU2499344C1 (en) Synchronous electric motor
JP2012175752A (en) Synchronous rotary electric machine
US9018815B2 (en) Generator
JP6404092B2 (en) Motor with resolver, motor resolver structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513