JP2012173435A - Fixed-focus lens - Google Patents

Fixed-focus lens Download PDF

Info

Publication number
JP2012173435A
JP2012173435A JP2011033958A JP2011033958A JP2012173435A JP 2012173435 A JP2012173435 A JP 2012173435A JP 2011033958 A JP2011033958 A JP 2011033958A JP 2011033958 A JP2011033958 A JP 2011033958A JP 2012173435 A JP2012173435 A JP 2012173435A
Authority
JP
Japan
Prior art keywords
lens group
lens
focus
fixed focus
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011033958A
Other languages
Japanese (ja)
Inventor
Noriyuki Adachi
宣幸 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2011033958A priority Critical patent/JP2012173435A/en
Priority to CN2011103865334A priority patent/CN102645726A/en
Publication of JP2012173435A publication Critical patent/JP2012173435A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a small sized, light-weight and wide angle fixed-focus lens of an inner focus method provided with excellent imaging performance.SOLUTION: The fixed-focus lens is composed by arranging a first lens group Ghaving negative refractive power, a second lens group Ghaving negative refractive power and a third lens group Ghaving positive refractive power in this order from an object side. The second lens group Gis composed of a single lens element. In addition, when focusing, the second lens group Gis moved along an optical axis and the first lens group Gand the third lens group Gare fixed to an image formation surface IMG.

Description

この発明は、35mmカメラ、ビデオカメラ、電子スチルカメラなどに好適な固定焦点レンズに関する。   The present invention relates to a fixed focus lens suitable for a 35 mm camera, a video camera, an electronic still camera, and the like.

一眼レフカメラでは、撮影画像とファインダー画像とを一致させるために、撮影用レンズを通った光をフィルムの手前に置いたミラーで反射させ、その光を光学式ファインダーに導く機構を備えていた。このため、一眼レフカメラに用いる固定焦点レンズには、長いバックフォーカスが必要となり、設計の自由度が制限されていた。一方、デジタルカメラでは、撮像素子で捉えた画像を電子式ファインダーに表示するだけで従来の一眼レフカメラと同等のことを実現できる。このため、光学式ファインダーやこれに撮影像を導くためのミラーを省くことで装置の小型化を実現する、いわゆる「ミラーレス一眼カメラ」が登場してきた。ミラーレス一眼カメラでは、撮影用レンズのバックフォーカスを短くすることができるため、これに用いる固定焦点レンズの設計自由度も向上するという利点がある。そこで、ミラーレス一眼カメラに搭載可能な固定焦点レンズも多くなってきている(たとえば、特許文献1,2を参照。)。   In order to make a captured image and a viewfinder image coincide with each other, a single lens reflex camera has a mechanism for reflecting light passing through a photographing lens by a mirror placed in front of the film and guiding the light to an optical viewfinder. For this reason, a fixed focus lens used in a single-lens reflex camera requires a long back focus, and the degree of design freedom is limited. On the other hand, a digital camera can realize the same as a conventional single-lens reflex camera simply by displaying an image captured by an image sensor on an electronic viewfinder. For this reason, a so-called “mirrorless single-lens camera” has emerged that realizes downsizing of the apparatus by omitting an optical viewfinder and a mirror for guiding a photographed image thereto. In the mirrorless single-lens camera, the back focus of the photographing lens can be shortened, so that there is an advantage that the degree of freedom in designing the fixed focus lens used for this is improved. Therefore, there are an increasing number of fixed focus lenses that can be mounted on mirrorless single-lens cameras (for example, see Patent Documents 1 and 2).

特開2009−271354号公報JP 2009-271354 A 特許第3445554号公報Japanese Patent No. 3445554

特許文献1に開示されている光学系は、1枚の負レンズでフォーカス群を構成している点では簡素な構成となっているものの、フォーカス群以外のレンズ群はレンズ枚数が多く構成の簡素化が図られていない。また、画角も6度程度と狭いうえ、第1レンズ群が正の屈折力を備えているため光学系全長が長くなる傾向にあり、十分な小型化が図られているとは云えない。以上の理由により、特許文献1に開示されている光学系は、近年、さらなる小型、広角化が要求されているミラーレス一眼カメラには不向きである。   Although the optical system disclosed in Patent Document 1 has a simple configuration in that the focus group is configured by one negative lens, the lens group other than the focus group has a simple configuration with a large number of lenses. It is not planned. In addition, since the angle of view is as narrow as about 6 degrees and the first lens group has a positive refractive power, the total length of the optical system tends to be long, and it cannot be said that sufficient miniaturization is achieved. For the above reasons, the optical system disclosed in Patent Document 1 is not suitable for a mirrorless single-lens camera that is required to be further downsized and widened in recent years.

また、特許文献2に開示されている光学系は、1枚の負レンズでフォーカス群を構成し、フォーカス群以外のレンズ群も少ないレンズで構成している点で、構成の簡素化が図られていると云える。しかしながら、画角が25度程度と狭い。また、第1レンズ群が正の屈折力を備えているため光学系全長が長くなる傾向にある。以上のことから、特許文献2に開示されている光学系も、近年、さらなる小型、広角化が要求されているミラーレス一眼カメラには不向きである。   In addition, the optical system disclosed in Patent Document 2 is configured by a single negative lens to form a focus group, and a lens group other than the focus group is also formed from a small number of lenses, thereby simplifying the configuration. It can be said that However, the angle of view is as narrow as about 25 degrees. Further, since the first lens group has a positive refractive power, the total length of the optical system tends to be long. From the above, the optical system disclosed in Patent Document 2 is also unsuitable for a mirrorless single-lens camera that is required to be further reduced in size and widened in recent years.

このように、上記各特許文献に記載の技術をはじめとする従来の固定焦点レンズでは、十分な小型、広角化が達成されたと云えるものはなかった。   As described above, none of the conventional fixed focus lenses including the techniques described in the above-mentioned patent documents has achieved a sufficiently small size and wide angle.

この発明は、上述した従来技術による問題点を解消するため、小型、軽量、広角で、優れた結像性能を備えたインナーフォーカス方式の固定焦点レンズを提供することを目的とする。   An object of the present invention is to provide an inner focus type fixed focus lens that is compact, lightweight, wide-angle, and has excellent imaging performance, in order to eliminate the above-described problems caused by the prior art.

上述した課題を解決し、目的を達成するため、この発明にかかる固定焦点レンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備え、前記第2レンズ群は単体のレンズ要素で構成され、フォーカシング時に、前記第2レンズ群が光軸に沿って移動し、前記第1レンズ群および前記第3レンズ群は結像面に対して固定されることを特徴とする。   In order to solve the above-described problems and achieve the object, a fixed focus lens according to the present invention includes a first lens group having negative refractive power and a second lens having negative refractive power, which are arranged in order from the object side. A lens group and a third lens group having a positive refractive power, and the second lens group is composed of a single lens element, and during focusing, the second lens group moves along the optical axis, The first lens group and the third lens group are fixed with respect to the image plane.

この発明によれば、小型、軽量、広角で、結像性能に優れたインナーフォーカス方式の固定焦点レンズを提供することができる。   According to the present invention, it is possible to provide an inner focus type fixed focus lens that is compact, lightweight, wide-angle, and excellent in imaging performance.

さらに、この発明にかかる固定焦点レンズは、前記発明において、開口絞りが、前記第2レンズ群と前記第3レンズ群との間に配置されていることを特徴とする。   Furthermore, the fixed focus lens according to the present invention is characterized in that, in the above invention, an aperture stop is disposed between the second lens group and the third lens group.

この発明によれば、軽量で、結像性能に優れたインナーフォーカス方式の固定焦点レンズを提供することができる。   According to the present invention, it is possible to provide an inner focus type fixed focus lens that is lightweight and excellent in imaging performance.

さらに、この発明にかかる固定焦点レンズは、前記発明において、以下の条件式を満足することを特徴とする。
(1) −3.5≦(R1+R2)/(R1−R2)≦1
ただし、R1は前記第2レンズ群の最も物体側面の曲率半径、R2は前記第2レンズ群の最も像側面の曲率半径を示す。
Furthermore, the fixed focus lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(1) −3.5 ≦ (R1 + R2) / (R1−R2) ≦ 1
Here, R1 represents the radius of curvature of the second lens group closest to the object side, and R2 represents the radius of curvature closest to the image side of the second lens group.

この発明によれば、光学系の小型化を阻害せずに、結像性能を向上させることができる。   According to the present invention, it is possible to improve the imaging performance without hindering the downsizing of the optical system.

さらに、この発明にかかる固定焦点レンズは、前記発明において、以下の条件式を満足することを特徴とする。
(2) 0.7≦|(1−β2G)×β3G|≦2.5
ただし、β2Gは無限遠合焦状態における前記第2レンズ群の近軸結像倍率、β3Gは無限遠合焦状態における前記第3レンズ群の近軸結像倍率を示す。
Furthermore, the fixed focus lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(2) 0.7 ≦ | (1-β2G) × β3G | ≦ 2.5
Here, β2G represents the paraxial imaging magnification of the second lens group in the infinitely focused state, and β3G represents the paraxial imaging magnification of the third lens group in the infinitely focused state.

この発明によれば、光学系の小型化を阻害せずに、結像性能をより向上させることができる。   According to the present invention, it is possible to further improve the imaging performance without hindering the downsizing of the optical system.

さらに、この発明にかかる固定焦点レンズは、前記発明において、以下の条件式を満足することを特徴とする。
(3) 1.5≦|F1/F|≦4.1
ただし、F1は前記第1レンズ群の焦点距離、Fは光学系全系の焦点距離を示す。
Furthermore, the fixed focus lens according to the present invention is characterized in that, in the above invention, the following conditional expression is satisfied.
(3) 1.5 ≦ | F1 / F | ≦ 4.1
Here, F1 represents the focal length of the first lens group, and F represents the focal length of the entire optical system.

この発明によれば、高い光学性能を維持したまま、簡素で小型の固定焦点レンズを実現できる。   According to the present invention, a simple and small fixed focus lens can be realized while maintaining high optical performance.

この発明によれば、小型、軽量、広角で、優れた結像性能を備えたインナーフォーカス方式の固定焦点レンズを提供することができるという効果を奏する。   According to the present invention, there is an effect that it is possible to provide an inner focus type fixed focus lens having a small size, light weight, wide angle and excellent imaging performance.

実施例1にかかる固定焦点レンズの構成を示す光軸に沿う断面図である。1 is a cross-sectional view along the optical axis showing the configuration of a fixed focus lens according to Example 1. FIG. 実施例1にかかる固定焦点レンズの無限遠合焦状態における諸収差図である。FIG. 5 is a diagram illustrating various aberrations of the fixed focus lens according to Example 1 in an infinitely focused state. 実施例1にかかる固定焦点レンズの撮影倍率0.025倍合焦状態における諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the fixed focus lens according to Example 1 in a focusing state of 0.025 times the shooting magnification. 実施例1にかかる固定焦点レンズの最至近距離合焦状態における諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the fixed focus lens according to Example 1 in the closest focus state. 実施例2にかかる固定焦点レンズの構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a fixed focus lens according to Example 2. 実施例2にかかる固定焦点レンズの無限遠合焦状態における諸収差図である。FIG. 10 is a diagram illustrating various aberrations of the fixed focus lens according to Example 2 in an infinitely focused state. 実施例2にかかる固定焦点レンズの撮影倍率0.025倍合焦状態における諸収差図である。FIG. 10 is a diagram illustrating various aberrations of the fixed focus lens according to Example 2 when the imaging magnification is in the in-focus state of 0.025. 実施例2にかかる固定焦点レンズの最至近距離合焦状態における諸収差図である。FIG. 9 is a diagram illustrating various aberrations of the fixed focus lens according to Example 2 in the closest focus state. 実施例3にかかる固定焦点レンズの構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a fixed focus lens according to Example 3; 実施例3にかかる固定焦点レンズの無限遠合焦状態における諸収差図である。FIG. 9 is a diagram illustrating various aberrations of the fixed focus lens according to Example 3 in an infinitely focused state. 実施例3にかかる固定焦点レンズの撮影倍率0.025倍合焦状態における諸収差図である。FIG. 10 is a diagram illustrating all aberrations of the fixed focus lens according to Example 3 when the photographing magnification is in the focused state of 0.025. 実施例3にかかる固定焦点レンズの最至近距離合焦状態における諸収差図である。FIG. 10 is a diagram illustrating various aberrations of the fixed focus lens according to Example 3 in a state of focusing at the closest distance.

以下、この発明にかかる固定焦点レンズの好適な実施の形態を詳細に説明する。   Hereinafter, preferred embodiments of the fixed focus lens according to the present invention will be described in detail.

この発明にかかる固定焦点レンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を含み構成される。   The fixed focus lens according to the present invention includes a first lens group having a negative refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power, which are arranged in order from the object side. And a group.

前記第1レンズ群は、少なくとも1枚の負レンズと1枚の正レンズを含み構成されている。前述のように、前記第1レンズ群は負の屈折力を有していることから、前記第1レンズ群では特に歪曲収差が大きくアンダー側に発生するおそれがある。ここで発生した歪曲収差は、前記第3レンズ群で補正することができる。しかしながら、前記第3レンズ群にその補正作用を持たせすぎると、当該第3レンズ群で球面収差がアンダー側に大きく発生することになり、好ましくない。そこで、前記第1レンズ群を構成するレンズに非球面を形成し、この非球面効果で当該第1レンズ群で発生する歪曲収差を補正することがより好ましい。なお、前記第1レンズ群は、撮像面に対して固定されている。   The first lens group includes at least one negative lens and one positive lens. As described above, since the first lens group has a negative refractive power, the first lens group has a particularly large distortion and may occur on the under side. The distortion generated here can be corrected by the third lens group. However, if the third lens group has too much correcting action, spherical aberration is greatly generated in the third lens group on the under side, which is not preferable. Therefore, it is more preferable to form an aspherical surface in the lenses constituting the first lens group, and to correct distortion aberration generated in the first lens group by the aspherical effect. The first lens group is fixed with respect to the imaging surface.

前記第2レンズ群は、単体のレンズ要素で構成されることが好ましい。この発明にかかる固定焦点レンズでは、前記第2レンズ群を光軸に沿う方向に移動させることによりフォーカシングを行う。このため、フォーカス群である前記第2レンズ群を単体のレンズ要素で構成して軽量化することは、オートフォーカス機構の負荷を減らし、低消費電力、鏡筒外径の縮小化を図ることができる。なお、単体のレンズ要素とは、単一の研磨レンズや、非球面レンズ、複合非球面レンズ、接合レンズを含み、空気層をもち互いに接着されていないたとえば正負の2枚レンズなどは含まない。   The second lens group is preferably composed of a single lens element. In the fixed focus lens according to the present invention, focusing is performed by moving the second lens group in a direction along the optical axis. For this reason, reducing the weight by configuring the second lens group, which is the focus group, as a single lens element can reduce the load on the autofocus mechanism, reduce power consumption, and reduce the outer diameter of the lens barrel. it can. The single lens element includes a single polished lens, an aspheric lens, a composite aspheric lens, and a cemented lens, and does not include, for example, two positive and negative lenses that have an air layer and are not bonded to each other.

また、この発明にかかる固定焦点レンズにおいて前記第2レンズ群をフォーカス群としているのは、前記第2レンズ群が配置されている付近が光学系中最も光線が細くなり、フォーカス群である前記第2レンズ群の口径を最小にすることができるためである。すなわち、この発明のように、負群先行タイプで比較的広角(70〜80度程度)の光学系を実現しようとする場合、軸上Fナンバ光線は前記第1レンズ群で細くなり、像側に向かって太くなっていく。一方、軸外光線は、前記第1レンズ群で光軸に対して高い部分を通過し、前記第2レンズ群付近で光軸に対して最低位置を通過する。このような軸上光線、軸外光線の振る舞いから、前記第2レンズ群が配置されている付近が光学系中最も光線が細くなる部分であると云える。したがって、光学系中最も光線が細くなる部分に配置された前記第2レンズ群の口径は光学系中最小とすることができ、光学系の軽量化を促進することができる。   In the fixed focus lens according to the present invention, the second lens group is a focus group. The light beam is the thinnest in the optical system in the vicinity of the second lens group, and the focus group is the first group. This is because the aperture of the two lens groups can be minimized. That is, as in the present invention, when an optical system having a relatively wide angle (about 70 to 80 degrees) is intended to be realized by the negative group leading type, the axial F number light beam is narrowed by the first lens group, and the image side It gets thicker toward. On the other hand, off-axis rays pass through a portion higher than the optical axis in the first lens group, and pass through the lowest position relative to the optical axis in the vicinity of the second lens group. From the behavior of the on-axis light beam and off-axis light beam, it can be said that the portion where the second lens group is disposed is the portion where the light beam is the thinnest in the optical system. Therefore, the aperture of the second lens group disposed in the portion where the light beam becomes the thinnest in the optical system can be minimized in the optical system, and the weight reduction of the optical system can be promoted.

前記第3レンズ群は、結像面に対して固定されている。これは、移動を可能にして差し支えないが、鏡筒外部からたとえば指などの進入によりレンズ保持機構を破壊することを防ぐため、固定とすることが好ましい。   The third lens group is fixed with respect to the image plane. This may be allowed to move, but is preferably fixed in order to prevent the lens holding mechanism from being destroyed by the entry of a finger or the like from the outside of the lens barrel.

また、この発明にかかる固定焦点レンズでは、前記第2レンズ群と前記第3レンズ群との間に開口絞りを配置することが好ましい。このようにすることで、開口絞りを挟みその前後に正負の屈折力を適切に分散させて、諸収差の補正を容易に行えるようになる。開口絞りを前記第2レンズ群より物体側に配置してしまうと、射出瞳位置が深くなる(像側に寄り過ぎる)ため、前記第3レンズ群の口径を大きくせざるを得なくなる。レンズ口径が拡大すればレンズの重量も増大してしまうため、好ましくない。   In the fixed focus lens according to the present invention, it is preferable that an aperture stop is disposed between the second lens group and the third lens group. By doing so, it becomes possible to easily correct various aberrations by appropriately dispersing positive and negative refractive powers before and after the aperture stop. If the aperture stop is disposed closer to the object side than the second lens group, the exit pupil position becomes deep (too close to the image side), and thus the aperture of the third lens group must be increased. If the lens diameter is increased, the weight of the lens also increases, which is not preferable.

以上のような特徴を備えることで、小型、軽量、広角の固定焦点レンズを実現することができる。   By providing the above features, a small, light, and wide-angle fixed focus lens can be realized.

さらに、この発明では、より良好な結像性能を備えた固定焦点レンズを実現するため、上記の特徴に加え、以下に示すような各種条件を設定している。   Furthermore, in the present invention, in order to realize a fixed focus lens having better imaging performance, various conditions as shown below are set in addition to the above features.

まず、この発明にかかる固定焦点レンズでは、前記第2レンズ群の最も物体側面の曲率半径をR1、前記第2レンズ群の最も像側面の曲率半径をR2とするとき、次の条件式を満足することが好ましい。
(1) −3.5≦(R1+R2)/(R1−R2)≦1
First, in the fixed focus lens according to the present invention, when the radius of curvature of the most object side surface of the second lens group is R1, and the radius of curvature of the most image side surface of the second lens group is R2, the following conditional expression is satisfied. It is preferable to do.
(1) −3.5 ≦ (R1 + R2) / (R1−R2) ≦ 1

条件式(1)は、前記第2レンズ群の形状を規定するものである。この発明の光学系は、条件式(1)を満足することで良好な結像性能を維持することができる。条件式(1)においてその下限を下回ると、前記第2レンズ群の負の屈折力が弱くなり過ぎ、前記第2レンズ群におけるフォーカシング時のストローク量が増大し、結果として光学系全長が延びるため、好ましくない。一方、条件式(1)においてその上限を超えると、前記第2レンズ群の物体側面の曲率半径が大きくなりすぎ、歪曲収差の補正が困難となるとともに、像面湾曲がアンダー側に過大となるため、好ましくない。   Conditional expression (1) defines the shape of the second lens group. The optical system of the present invention can maintain good imaging performance by satisfying conditional expression (1). If the lower limit of conditional expression (1) is not reached, the negative refractive power of the second lens group becomes too weak, and the stroke amount during focusing in the second lens group increases, resulting in an increase in the overall length of the optical system. It is not preferable. On the other hand, if the upper limit in conditional expression (1) is exceeded, the radius of curvature of the object side surface of the second lens group becomes too large, and it becomes difficult to correct distortion, and the field curvature becomes excessive on the under side. Therefore, it is not preferable.

なお、上記条件式(1)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(1)’ −3.0≦(R1+R2)/(R1−R2)≦0.5
In addition, the said conditional expression (1) can anticipate a more preferable effect, if the range shown next is satisfied.
(1) ′ − 3.0 ≦ (R1 + R2) / (R1−R2) ≦ 0.5

この条件式(1)’で規定する範囲を満足することにより、より光学系全長の短縮化を達成しつつ、より結像性能の向上を図ることができる。   By satisfying the range defined by the conditional expression (1) ′, it is possible to further improve the imaging performance while further shortening the total length of the optical system.

さらに、上記条件式(1)’は、次に示す範囲を満足すると、さらなる好ましい効果が期待できる。
(1)’’ −2.5≦(R1+R2)/(R1−R2)≦−0.1
Furthermore, when the conditional expression (1) ′ satisfies the following range, a further preferable effect can be expected.
(1) ″ − 2.5 ≦ (R1 + R2) / (R1−R2) ≦ −0.1

この条件式(1)’’で規定する範囲を満足することにより、光学系全長のさらなる短縮化を達成しつつ、結像性能のさらなる向上を図ることができる。   By satisfying the range defined by the conditional expression (1) ″, it is possible to further improve the imaging performance while achieving further shortening of the total length of the optical system.

さらに、この発明にかかる固定焦点レンズでは、無限遠合焦状態における前記第2レンズ群の近軸結像倍率をβ2G、無限遠合焦状態における前記第3レンズ群の近軸結像倍率をβ3Gとするとき、次の条件式を満足することが好ましい。
(2) 0.7≦|(1−β2G)×β3G|≦2.5
Furthermore, in the fixed focus lens according to the present invention, the paraxial imaging magnification of the second lens group in the infinitely focused state is β2G, and the paraxial imaging magnification of the third lens group in the infinitely focused state is β3G. In this case, it is preferable that the following conditional expression is satisfied.
(2) 0.7 ≦ | (1-β2G) × β3G | ≦ 2.5

条件式(2)は、光学系のピント敏感度を規定し、無限遠合焦状態から最至近距離合焦状態にかけてのフォーカス群のストローク量を決定するものである。ピント敏感度とは、フォーカス群の移動量に対する、結像面上のピント位置の移動量の割合を示すものである。この条件式(2)で規定される値は、光学系のサイズ、結像性能を決定する重要な要素である。条件式(2)においてその下限を下回ると、所望の最至近距離合焦状態を確保しようとする場合、フォーカス群である前記第2レンズ群のストローク量が増え、光学系全長の拡大が不可避となってしまい、好ましくない。一方、条件式(2)においてその上限を超えると、像面湾曲がオーバー側に過大となるばかりか、球面収差もオーバー側に過大となって結像性能の劣化を招くため、好ましくない。   Conditional expression (2) defines the focus sensitivity of the optical system and determines the stroke amount of the focus group from the infinite focus state to the closest focus state. The focus sensitivity indicates the ratio of the amount of movement of the focus position on the image plane to the amount of movement of the focus group. The value defined by the conditional expression (2) is an important factor that determines the size of the optical system and the imaging performance. If the lower limit of conditional expression (2) is not reached, when the desired closest focus state is to be secured, the stroke amount of the second lens group, which is the focus group, increases, and the total length of the optical system is inevitable. This is not preferable. On the other hand, exceeding the upper limit in conditional expression (2) is not preferable because not only the curvature of field becomes excessive on the over side, but also the spherical aberration becomes excessive on the over side, resulting in deterioration of imaging performance.

なお、上記条件式(2)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(2)’ 0.6≦|(1−β2G)×β3G|≦2.3
In addition, the said conditional expression (2) can anticipate a more preferable effect, if the range shown next is satisfied.
(2) ′ 0.6 ≦ | (1-β2G) × β3G | ≦ 2.3

この条件式(2)’で規定する範囲を満足することにより、より光学系全長の短縮化を達成しつつ、より結像性能の向上を図ることができる。   By satisfying the range defined by the conditional expression (2) ′, it is possible to further improve the imaging performance while further shortening the total length of the optical system.

さらに、上記条件式(2)’は、次に示す範囲を満足すると、さらなる好ましい効果が期待できる。
(2)’’ 0.5≦|(1−β2G)×β3G|≦2.1
Furthermore, when the conditional expression (2) ′ satisfies the following range, a further preferable effect can be expected.
(2) '' 0.5 ≦ | (1-β2G) × β3G | ≦ 2.1

この条件式(2)’’で規定する範囲を満足することにより、光学系全長のさらなる短縮化を達成しつつ、結像性能のさらなる向上を図ることができる。   By satisfying the range defined by the conditional expression (2) ″, it is possible to further improve the imaging performance while achieving further shortening of the total length of the optical system.

さらに、この発明にかかる固定焦点レンズでは、前記第1レンズ群の焦点距離をF1、光学系全系の焦点距離をFとするとき、次の条件式を満足することが好ましい。
(3) 1.5≦|F1/F|≦4.1
Furthermore, in the fixed focus lens according to the present invention, it is preferable that the following conditional expression is satisfied, where F1 is the focal length of the first lens group and F is the focal length of the entire optical system.
(3) 1.5 ≦ | F1 / F | ≦ 4.1

条件式(3)は、光学系全長に対する前記第1レンズ群の焦点距離の比率を規定するものである。前記第1レンズ群の焦点距離はそのまま光学系全長に影響を与える。この発明の光学系は、条件式(3)を満足することで、良好な結像性能を維持したまま、光学系全長を短縮することができる。条件式(3)においてその下限を下回ると、前記第2レンズ群以降の結像倍率を大きくする必要が生じ、少ないレンズ構成で結像性能の良好な光学系を実現させることが困難となる。一方、条件式(3)においてその上限を超えると、光学形全長が長くなりすぎ、市場で要求されている光学系の小型化が達成できない。   Conditional expression (3) defines the ratio of the focal length of the first lens group to the total length of the optical system. The focal length of the first lens group directly affects the overall length of the optical system. By satisfying conditional expression (3), the optical system of the present invention can shorten the overall length of the optical system while maintaining good imaging performance. If the lower limit of conditional expression (3) is not reached, it is necessary to increase the imaging magnification after the second lens group, and it becomes difficult to realize an optical system with good imaging performance with a small lens configuration. On the other hand, if the upper limit in conditional expression (3) is exceeded, the total length of the optical shape becomes too long, and the downsizing of the optical system required in the market cannot be achieved.

なお、上記条件式(3)は、次に示す範囲を満足すると、より好ましい効果が期待できる。
(3)’ 1.4≦|F1/F|≦4.0
In addition, if the said conditional expression (3) satisfies the range shown next, a more preferable effect can be anticipated.
(3) ′ 1.4 ≦ | F1 / F | ≦ 4.0

この条件式(3)’で規定する範囲を満足することにより、光学系の小型化を阻害せず、より良好な結像性能が得られる。   By satisfying the range defined by the conditional expression (3) ′, it is possible to obtain better imaging performance without hindering the downsizing of the optical system.

さらに、上記条件式(3)’は、次に示す範囲を満足すると、さらなる好ましい効果が期待できる。
(3)’’ 1.3≦|F1/F|≦3.9
Furthermore, when the conditional expression (3) ′ satisfies the following range, a further preferable effect can be expected.
(3) '' 1.3 ≦ | F1 / F | ≦ 3.9

この条件式(3)’’で規定する範囲を満足することにより、光学系の小型化を阻害せず、結像性能のさらなる向上を図ることができる。   By satisfying the range defined by the conditional expression (3) ″, it is possible to further improve the imaging performance without hindering the downsizing of the optical system.

以上説明したように、この発明によれば、小型、軽量、広角の固定焦点レンズを実現することができる。特に、開口絞りを前記第2レンズ群と前記第3レンズ群との間に配置することで、開口絞りを挟みその前後に正負の屈折力を適切に分散させることができ、諸収差の補正が容易になる。さらに、上記各条件式を満足することにより、より小型で、優れた結像性能を備えたインナーフォーカス式の固定焦点レンズを実現することができる。   As described above, according to the present invention, a small, light, wide-angle fixed focus lens can be realized. In particular, by disposing the aperture stop between the second lens group and the third lens group, the positive and negative refractive powers can be appropriately distributed before and after the aperture stop, and various aberrations can be corrected. It becomes easy. Furthermore, by satisfying the above conditional expressions, it is possible to realize an inner focus type fixed focus lens that is smaller and has excellent imaging performance.

以下、この発明にかかる固定焦点レンズの実施例を図面に基づき詳細に説明する。なお、以下の実施例によりこの発明が限定されるものではない。   Embodiments of the fixed focus lens according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the following examples.

図1は、実施例1にかかる固定焦点レンズの構成を示す光軸に沿う断面図である。この固定焦点レンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G11と、負の屈折力を有する第2レンズ群G12と、正の屈折力を有する第3レンズ群G13と、が配置されて構成される。また、第2レンズ群G12と第3レンズ群G13との間には、所定の口径を規定する開口絞りSTが配置されている。 FIG. 1 is a cross-sectional view along the optical axis showing the configuration of the fixed focus lens according to the first example. This fixed focus lens includes a first lens group G 11 having a negative refractive power, a second lens group G 12 having a negative refractive power, and a third lens having a positive refractive power in order from the object side (not shown). a group G 13, is formed is disposed. Further, the second lens group G 12 between the third lens group G 13, an aperture stop ST is disposed to define a predetermined diameter.

第1レンズ群G11は、前記物体側から順に、負レンズL111と、正レンズL112と、が配置されて構成される。負レンズL111の結像面IMG側面には、非球面が形成されている。なお、第1レンズ群G11は固定されており、フォーカシング時に移動しない。 The first lens group G 11 includes a negative lens L 111 and a positive lens L 112 arranged in order from the object side. The imaging plane IMG side of the negative lens L 111, aspheric surface is formed. The first lens group G 11 is fixed and does not move during focusing.

第2レンズ群G12は、負レンズL121により構成される。第2レンズ群G12は、光軸に沿って結像面IMG側から前記物体側へ移動することにより、無限遠合焦状態から最至近距離合焦状態までのフォーカシングを行う。 The second lens group G 12 includes, formed by a negative lens L 121. The second lens group G 12 includes, by moving to the object side from the image plane IMG side along the optical axis to perform focusing from an infinity in-focus state to a closest distance in-focus state.

第3レンズ群G13は、前記物体側から順に、正レンズL131と、負レンズL132と、正レンズL133と、負レンズL134と、が配置されて構成される。正レンズL131と負レンズL132とは接合されている。また、正レンズL131の前記物体側面および負レンズL134の結像面IMG側面には、それぞれ非球面が形成されている。この第3レンズ群G13も固定されており、フォーカシング時に移動しない。 The third lens group G 13 includes, in order from the object side, a positive lens L 131, a negative lens L 132, a positive lens L 133, a negative lens L 134, is formed are disposed. The positive lens L 131 and the negative lens L 132 are cemented. An aspheric surface is formed on each of the object side surface of the positive lens L 131 and the image forming surface IMG side surface of the negative lens L 134 . The third lens group G 13 also is fixed and does not move during focusing.

以下、実施例1にかかる固定焦点レンズに関する各種数値データを示す。   Various numerical data relating to the fixed focus lens according to Example 1 will be described below.

(レンズデータ)
0=∞(物体面)
0=D(0)
1=42.314
1=1.100 nd1=1.61881 νd1=63.9
2=8.370(非球面)
2=4.555
3=13.531
3=1.761 nd2=1.90366 νd2=31.3
4=23.616
4=D(4)
5=-12.500
5=0.800 nd3=1.49700 νd3=81.6
6=-215.596
6=D(6)
7=∞(開口絞り)
7=1.100
8=20.299(非球面)
8=4.833 nd4=1.49700 νd4=81.6
9=-8.778
9=0.800 nd5=1.67270 νd5=32.2
10=-18.840
10=0.300
11=13.379
11=3.741 nd6=1.48749 νd6=70.4
12=-134.098
12=5.836
13=-27.220
13=0.800 nd7=1.77250 νd7=49.6
14=-38.344(非球面)
14=FB
15=∞(結像面)
(Lens data)
r 0 = ∞ (object surface)
d 0 = D (0)
r 1 = 42.314
d 1 = 1.100 nd 1 = 1.61881 νd 1 = 63.9
r 2 = 8.370 (aspherical surface)
d 2 = 4.555
r 3 = 13.531
d 3 = 1.761 nd 2 = 1.90366 νd 2 = 31.3
r 4 = 23.616
d 4 = D (4)
r 5 = -12.500
d 5 = 0.800 nd 3 = 1.49700 νd 3 = 81.6
r 6 = -215.596
d 6 = D (6)
r 7 = ∞ (aperture stop)
d 7 = 1.100
r 8 = 20.299 (aspherical surface)
d 8 = 4.833 nd 4 = 1.49700 νd 4 = 81.6
r 9 = -8.778
d 9 = 0.800 nd 5 = 1.67270 νd 5 = 32.2
r 10 = -18.840
d 10 = 0.300
r 11 = 13.379
d 11 = 3.741 nd 6 = 1.48749 νd 6 = 70.4
r 12 = -134.098
d 12 = 5.836
r 13 = -27.220
d 13 = 0.800 nd 7 = 1.77250 νd 7 = 49.6
r 14 = -38.344 (aspherical surface)
d 14 = FB
r 15 = ∞ (imaging plane)

(円錐係数(k)および非球面係数(A4,A6,A8,A10))
(第2面)
k=0,
4=-8.09890×10-5, A6=-2.92652×10-6,
8=4.36492×10-8, A10=-9.92044×10-10
(第8面)
k=0,
4=7.71954×10-6, A6=2.59802×10-7,
8=5.30322×10-9, A10=-1.50109×10-10
(第14面)
k=0,
4=1.68091×10-4, A6=8.18365×10-7,
8=7.01745×10-9, A10=-3.48873×10-11
(Cone coefficient (k) and aspherical coefficient (A 4 , A 6 , A 8 , A 10 ))
(Second side)
k = 0,
A 4 = -8.09890 × 10 -5 , A 6 = -2.92652 × 10 -6 ,
A 8 = 4.36492 × 10 -8 , A 10 = -9.92044 × 10 -10
(8th page)
k = 0,
A 4 = 7.71954 × 10 −6 , A 6 = 2.59802 × 10 −7 ,
A 8 = 5.30322 × 10 -9 , A 10 = -1.50109 × 10 -10
(14th page)
k = 0,
A 4 = 1.68091 × 10 -4 , A 6 = 8.18365 × 10 -7 ,
A 8 = 7.01745 × 10 -9 , A 10 = -3.48873 × 10 -11

(各合焦状態の数値データ)
無限遠 0.025倍 最至近距離
全系の焦点距離 20.0 19.7 18.5
Fno. 3.6 3.6 3.6
半画角(ω) 36.2 36.5 37.6
像高 14.2 14.2 14.2
光学系全長 55.4 55.4 55.4
D(0) ∞ 994 194
D(4) 4.76 4.55 3.79
D(6) 1.20 1.41 2.18
FB(バックフォーカス) 23.7 23.7 23.7
第1レンズ群G11の焦点距離(F1) -43.456
(Numeric data for each in-focus state)
Infinity 0.025x Focal length of the closest system 20.0 19.7 18.5
Fno. 3.6 3.6 3.6
Half angle of view (ω) 36.2 36.5 37.6
Image height 14.2 14.2 14.2
Total length of optical system 55.4 55.4 55.4
D (0) ∞ 994 194
D (4) 4.76 4.55 3.79
D (6) 1.20 1.41 2.18
FB (back focus) 23.7 23.7 23.7
Focal length (F1) of the first lens group G 11 -43.456

(条件式(1)に関する数値)
第2レンズ群G12の最も物体側面の曲率半径(R1)=-12.500
第2レンズ群G12の最も結像面IMG側面の曲率半径(R2)=-215.596
(R1+R2)/(R1−R2)=-1.12
(Numerical values related to conditional expression (1))
Curvature of the most object side surface of the second lens group G 12 radius (R1) = - 12.500
The curvature of the most image plane IMG side of the second lens group G 12 radius (R2) = - 215.596
(R1 + R2) / (R1-R2) =-1.12

(条件式(2)に関する数値)
無限遠合焦状態における第2レンズ群G12の近軸結像倍率(β2G)=0.33
無限遠合焦状態における第3レンズ群G13の近軸結像倍率(β3G)=-1.42
|(1−β2G)×β3G|=1.0
(Numerical value related to conditional expression (2))
Paraxial imaging magnification of the second lens group G 12 in focus at infinity (β2G) = 0.33
Paraxial imaging magnification of the third lens group G 13 in focus at infinity (β3G) = - 1.42
| (1-β2G) × β3G | = 1.0

(条件式(3)に関する数値)
|F1/F|=2.29
(Numerical values related to conditional expression (3))
| F1 / F | = 2.29

また、図2は、実施例1にかかる固定焦点レンズの無限遠合焦状態における諸収差図である。図3は、実施例1にかかる固定焦点レンズの撮影倍率0.025倍合焦状態における諸収差図である。図4は、実施例1にかかる固定焦点レンズの最至近距離合焦状態における諸収差図である。図中、gはg線(λ=435.83nm)、dはd線(λ=587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるs,mは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 2 is a diagram illustrating various aberrations of the fixed focus lens according to Example 1 in an infinitely focused state. FIG. 3 is a diagram illustrating various aberrations of the fixed focus lens according to Example 1 in a focusing state of 0.025 times the shooting magnification. FIG. 4 is a diagram of various aberrations of the fixed focus lens according to Example 1 in the closest focus state. In the figure, g represents an aberration with a wavelength corresponding to the g-line (λ = 435.83 nm), and d represents a wavelength corresponding to the d-line (λ = 587.56 nm). In the astigmatism diagrams, s and m represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

図5は、実施例2にかかる固定焦点レンズの構成を示す光軸に沿う断面図である。この固定焦点レンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G21と、負の屈折力を有する第2レンズ群G22と、正の屈折力を有する第3レンズ群G23と、が配置されて構成される。また、第2レンズ群G22と第3レンズ群G23との間には、所定の口径を規定する開口絞りSTが配置されている。 FIG. 5 is a cross-sectional view along the optical axis showing the configuration of the fixed focus lens according to the second example. The fixed focus lens includes a first lens group G 21 having a negative refractive power, a second lens group G 22 having a negative refractive power, and a third lens having a positive refractive power in order from an object side (not shown). a group G 23, is formed are disposed. An aperture stop ST that defines a predetermined aperture is disposed between the second lens group G 22 and the third lens group G 23 .

第1レンズ群G21は、前記物体側から順に、負レンズL211と、正レンズL212と、が配置されて構成される。負レンズL211の結像面IMG側面には、非球面が形成されている。なお、第1レンズ群G21は固定されており、フォーカシング時に移動しない。 The first lens group G 21 includes a negative lens L 211 and a positive lens L 212 arranged in order from the object side. The imaging plane IMG side of the negative lens L 211, aspheric surface is formed. Incidentally, The first lens group G 21 includes is fixed and does not move during focusing.

第2レンズ群G22は、負レンズL221により構成される。第2レンズ群G22は、光軸に沿って結像面IMG側から前記物体側へ移動することにより、無限遠合焦状態から最至近距離合焦状態までのフォーカシングを行う。 The second lens group G 22 includes, formed by a negative lens L 221. The second lens group G 22 includes, by moving to the object side from the image plane IMG side along the optical axis to perform focusing from an infinity in-focus state to a closest distance in-focus state.

第3レンズ群G23は、前記物体側から順に、正レンズL231と、負レンズL232と、正レンズL233と、負レンズL234と、が配置されて構成される。正レンズL231と負レンズL232とは接合されている。また、正レンズL231の前記物体側面および負レンズL234の結像面IMG側面には、それぞれ非球面が形成されている。この第3レンズ群G23も固定されており、フォーカシング時に移動しない。 The third lens group G 23 includes, in order from the object side, a positive lens L 231, a negative lens L 232, a positive lens L 233, a negative lens L 234, is formed are disposed. The positive lens L 231 and the negative lens L 232 are cemented. An aspheric surface is formed on each of the object side surface of the positive lens L 231 and the image forming surface IMG side surface of the negative lens L 234 . The third lens group G 23 also is fixed and does not move during focusing.

以下、実施例2にかかる固定焦点レンズに関する各種数値データを示す。   Various numerical data relating to the fixed focus lens according to Example 2 will be described below.

(レンズデータ)
0=∞(物体面)
0=D(0)
1=60.565
1=1.100 nd1=1.61881 νd1=63.9
2=8.914(非球面)
2=5.053
3=14.455
3=1.803 nd2=1.90366 νd2=31.3
4=25.530
4=D(4)
5=-13.100
5=0.800 nd3=1.49700 νd3=81.6
6=-128.373
6=D(6)
7=∞(開口絞り)
7=1.100
8=19.077(非球面)
8=4.468 nd4=1.49700 νd4=81.6
9=-9.794
9=0.800 nd5=1.67270 νd5=32.2
10=-22.731
10=0.300
11=13.295
11=3.674 nd6=1.48749 νd6=70.4
12=-111.586
12=5.699
13=-31.568
13=0.800 nd7=1.77250 νd7=49.6
14=-52.153(非球面)
14=FB
15=∞(結像面)
(Lens data)
r 0 = ∞ (object surface)
d 0 = D (0)
r 1 = 60.565
d 1 = 1.100 nd 1 = 1.61881 νd 1 = 63.9
r 2 = 8.914 (aspherical surface)
d 2 = 5.053
r 3 = 14.455
d 3 = 1.803 nd 2 = 1.90366 νd 2 = 31.3
r 4 = 25.530
d 4 = D (4)
r 5 = -13.100
d 5 = 0.800 nd 3 = 1.49700 νd 3 = 81.6
r 6 = -128.373
d 6 = D (6)
r 7 = ∞ (aperture stop)
d 7 = 1.100
r 8 = 19.077 (aspherical surface)
d 8 = 4.468 nd 4 = 1.49700 νd 4 = 81.6
r 9 = -9.794
d 9 = 0.800 nd 5 = 1.67270 νd 5 = 32.2
r 10 = -22.731
d 10 = 0.300
r 11 = 13.295
d 11 = 3.674 nd 6 = 1.48749 νd 6 = 70.4
r 12 = -111.586
d 12 = 5.699
r 13 = −31.568
d 13 = 0.800 nd 7 = 1.77250 νd 7 = 49.6
r 14 = -52.153 (aspherical surface)
d 14 = FB
r 15 = ∞ (imaging plane)

(円錐係数(k)および非球面係数(A4,A6,A8,A10))
(第2面)
k=0,
4=-7.06503×10-5, A6=-2.39334×10-6,
8=3.10569×10-8, A10=-5.80198×10-10
(第8面)
k=0,
4=-7.02444×10-6, A6=6.70051×10-7,
8=-1.82054×10-8, A10=2.46248×10-10
(第14面)
k=0,
4=1.75449×10-4, A6=1.10046×10-6,
8=1.92052×10-9, A10=3.40618×10-11
(Cone coefficient (k) and aspherical coefficient (A 4 , A 6 , A 8 , A 10 ))
(Second side)
k = 0,
A 4 = -7.06503 × 10 -5 , A 6 = -2.39334 × 10 -6 ,
A 8 = 3.10569 × 10 -8 , A 10 = -5.80198 × 10 -10
(8th page)
k = 0,
A 4 = -7.02444 × 10 -6 , A 6 = 6.70051 × 10 -7 ,
A 8 = -1.82054 × 10 -8 , A 10 = 2.46248 × 10 -10
(14th page)
k = 0,
A 4 = 1.75449 × 10 -4 , A 6 = 1.10046 × 10 -6 ,
A 8 = 1.92052 × 10 -9 , A 10 = 3.40618 × 10 -11

(各合焦状態の数値データ)
無限遠 0.025倍 最至近距離
全系の焦点距離 20.0 19.7 18.5
Fno. 2.9 2.9 2.9
半画角(ω) 36.1 36.3 37.4
像高 14.2 14.2 14.2
光学系全長 57.4 57.4 57.4
D(0) ∞ 942 192
D(4) 6.05 5.83 5.01
D(6) 1.20 1.43 2.24
FB(バックフォーカス) 24.5 24.5 24.5
第1レンズ群G21の焦点距離(F1) -45.81
(Numeric data for each in-focus state)
Infinity 0.025x Focal length of the closest system 20.0 19.7 18.5
Fno. 2.9 2.9 2.9
Half angle of view (ω) 36.1 36.3 37.4
Image height 14.2 14.2 14.2
Total length of optical system 57.4 57.4 57.4
D (0) ∞ 942 192
D (4) 6.05 5.83 5.01
D (6) 1.20 1.43 2.24
FB (back focus) 24.5 24.5 24.5
Focal length (F1) of first lens group G 21 -45.81

(条件式(1)に関する数値)
第2レンズ群G22の最も物体側面の曲率半径(R1)=-13.100
第2レンズ群G22の最も結像面IMG側面の曲率半径(R2)=-128.373
(R1+R2)/(R1−R2)=-1.23
(Numerical values related to conditional expression (1))
Curvature of the most object side surface of the second lens group G 22 radius (R1) = - 13.100
The radius of curvature (R2) of the second lens group G 22 closest to the imaging plane IMG side = −128.373
(R1 + R2) / (R1-R2) =-1.23

(条件式(2)に関する数値)
無限遠合焦状態における第2レンズ群G22の近軸結像倍率(β2G)=0.33
無限遠合焦状態における第3レンズ群G23の近軸結像倍率(β3G)=-1.42
|(1−β2G)×β3G|=0.96
(Numerical value related to conditional expression (2))
Paraxial imaging magnification of the second lens group G 22 in focus at infinity (β2G) = 0.33
Paraxial imaging magnification of the third lens group G 23 in focus at infinity (β3G) = - 1.42
| (1-β2G) × β3G | = 0.96

(条件式(3)に関する数値)
|F1/F|=2.17
(Numerical values related to conditional expression (3))
| F1 / F | = 2.17

また、図6は、実施例2にかかる固定焦点レンズの無限遠合焦状態における諸収差図である。図7は、実施例2にかかる固定焦点レンズの撮影倍率0.025倍合焦状態における諸収差図である。図8は、実施例2にかかる固定焦点レンズの最至近距離合焦状態における諸収差図である。図中、gはg線(λ=435.83nm)、dはd線(λ=587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるs,mは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 6 is a diagram illustrating various aberrations of the fixed focus lens according to Example 2 in an infinitely focused state. FIG. 7 is a diagram illustrating various aberrations of the fixed focus lens according to Example 2 when the photographing magnification is 0.025. FIG. 8 is a diagram of various types of aberration when the fixed focus lens according to Example 2 is in the closest focus state. In the figure, g represents an aberration with a wavelength corresponding to the g-line (λ = 435.83 nm), and d represents a wavelength corresponding to the d-line (λ = 587.56 nm). In the astigmatism diagrams, s and m represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

図9は、実施例3にかかる固定焦点レンズの構成を示す光軸に沿う断面図である。この固定焦点レンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G31と、負の屈折力を有する第2レンズ群G32と、正の屈折力を有する第3レンズ群G33と、が配置されて構成される。また、第2レンズ群G32と第3レンズ群G33との間には、所定の口径を規定する開口絞りSTが配置されている。 FIG. 9 is a cross-sectional view along the optical axis showing the configuration of the fixed focus lens according to the third example. The fixed focus lens includes a first lens group G 31 having a negative refractive power, a second lens group G 32 having a negative refractive power, and a third lens having a positive refractive power in order from the object side (not shown). a group G 33, is formed are disposed. An aperture stop ST that defines a predetermined aperture is disposed between the second lens group G 32 and the third lens group G 33 .

第1レンズ群G31は、前記物体側から順に、負レンズL311と、正レンズL312と、が配置されて構成される。負レンズL311の結像面IMG側面には、非球面が形成されている。なお、第1レンズ群G31は固定されており、フォーカシング時に移動しない。 The first lens group G 31 includes a negative lens L 311 and a positive lens L 312 arranged in order from the object side. An aspherical surface is formed on the side of the imaging surface IMG of the negative lens L 311 . The first lens group G 31 is fixed and does not move during focusing.

第2レンズ群G32は、負レンズL321により構成される。第2レンズ群G32は、光軸に沿って結像面IMG側から前記物体側へ移動することにより、無限遠合焦状態から最至近距離合焦状態までのフォーカシングを行う。 The second lens group G 32 is constituted by a negative lens L 321. The second lens group G 32 is, by moving to the object side from the image plane IMG side along the optical axis to perform focusing from an infinity in-focus state to a closest distance in-focus state.

第3レンズ群G33は、前記物体側から順に、正レンズL331と、負レンズL332と、正レンズL333と、負レンズL334と、が配置されて構成される。正レンズL331と負レンズL332とは接合されている。また、正レンズL331の前記物体側面および負レンズL334の結像面IMG側面には、それぞれ非球面が形成されている。この第3レンズ群G33も固定されており、フォーカシング時に移動しない。 The third lens group G 33 includes a positive lens L 331 , a negative lens L 332 , a positive lens L 333, and a negative lens L 334 arranged in this order from the object side. The positive lens L 331 and the negative lens L 332 are cemented. An aspheric surface is formed on each of the object side surface of the positive lens L 331 and the imaging surface IMG side surface of the negative lens L 334 . The third lens group G 33 also is fixed and does not move during focusing.

以下、実施例3にかかる固定焦点レンズに関する各種数値データを示す。   Various numerical data relating to the fixed focus lens according to Example 3 will be described below.

(レンズデータ)
0=∞(物体面)
0=D(0)
1=50.739
1=1.100 nd1=1.72916 νd1=54.7
2=8.504(非球面)
2=6.121
3=29.528
3=1.991 nd2=1.84666 νd2=23.8
4=-126.700
4=D(4)
5=-17.281
5=0.800 nd3=1.61800 νd3=63.4
6=-1116.807
6=D(6)
7=∞(開口絞り)
7=1.100
8=22.865(非球面)
8=3.844 nd4=1.49700 νd4=81.6
9=-8.627
9=0.800 nd5=1.64769 νd5=33.8
10=-31.391
10=1.160
11=20.082
11=3.308 nd6=1.49700 νd6=81.6
12=-17.997
12=8.061
13=-16.701
13=1.000 nd7=1.77250 νd7=49.6
14=-18.424(非球面)
14=FB
15=∞(結像面)
(Lens data)
r 0 = ∞ (object surface)
d 0 = D (0)
r 1 = 50.739
d 1 = 1.100 nd 1 = 1.72916 νd 1 = 54.7
r 2 = 8.504 (aspherical surface)
d 2 = 6.121
r 3 = 29.528
d 3 = 1.991 nd 2 = 1.84666 νd 2 = 23.8
r 4 = -126.700
d 4 = D (4)
r 5 = -17.281
d 5 = 0.800 nd 3 = 1.61800 νd 3 = 63.4
r 6 = -1116.807
d 6 = D (6)
r 7 = ∞ (aperture stop)
d 7 = 1.100
r 8 = 22.865 (aspherical surface)
d 8 = 3.844 nd 4 = 1.49700 νd 4 = 81.6
r 9 = -8.627
d 9 = 0.800 nd 5 = 1.64769 νd 5 = 33.8
r 10 = -31.391
d 10 = 1.160
r 11 = 20.082
d 11 = 3.308 nd 6 = 1.49700 νd 6 = 81.6
r 12 = -17.997
d 12 = 8.061
r 13 = -16.701
d 13 = 1.000 nd 7 = 1.77250 νd 7 = 49.6
r 14 = -18.424 (aspherical surface)
d 14 = FB
r 15 = ∞ (imaging plane)

(円錐係数(k)および非球面係数(A4,A6,A8,A10))
(第2面)
k=0,
4=-7.50069×10-5, A6=-4.43622×10-6,
8=7.95093×10-8, A10=-1.17518×10-9
(第8面)
k=0,
4=-3.90349×10-5, A6=4.97007×10-7,
8=-2.87913×10-8, A10=2.46882×10-10
(第14面)
k=0,
4=1.34544×10-4, A6=7.70023×10-7,
8=5.67370×10-9, A10=-2.02389×10-11
(Cone coefficient (k) and aspherical coefficient (A 4 , A 6 , A 8 , A 10 ))
(Second side)
k = 0,
A 4 = -7.50069 × 10 -5 , A 6 = -4.43622 × 10 -6 ,
A 8 = 7.95093 × 10 -8 , A 10 = -1.17518 × 10 -9
(8th page)
k = 0,
A 4 = -3.90349 × 10 −5 , A 6 = 4.97007 × 10 −7 ,
A 8 = -2.87913 × 10 -8 , A 10 = 2.46882 × 10 -10
(14th page)
k = 0,
A 4 = 1.34544 × 10 −4 , A 6 = 7.70023 × 10 −7 ,
A 8 = 5.67370 × 10 -9 , A 10 = −2.02389 × 10 -11

(各合焦状態の数値データ)
無限遠 0.025倍 最至近距離
全系の焦点距離 16.0 15.8 15.2
Fno. 3.0 3.0 3.0
半画角(ω) 42.4 42.7 43.7
像高 14.2 14.2 14.2
光学系全長 54.7 54.7 54.7
D(0) ∞ 944 195
D(4) 3.46 3.33 2.62
D(6) 1.20 1.38 2.04
FB(バックフォーカス) 20.8 20.8 20.8
第1レンズ群G31の焦点距離(F1) -49.828
(Numeric data for each in-focus state)
Infinity 0.025x Focal length of the closest lens system 16.0 15.8 15.2
Fno. 3.0 3.0 3.0
Half angle of view (ω) 42.4 42.7 43.7
Image height 14.2 14.2 14.2
Total length of optical system 54.7 54.7 54.7
D (0) ∞ 944 195
D (4) 3.46 3.33 2.62
D (6) 1.20 1.38 2.04
FB (back focus) 20.8 20.8 20.8
Focal length (F1) of first lens group G 31 -49.828

(条件式(1)に関する数値)
第2レンズ群G32の最も物体側面の曲率半径(R1)=-17.281
第2レンズ群G32の最も結像面IMG側面の曲率半径(R2)=-1116.807
(R1+R2)/(R1−R2)=-1.03
(Numerical values related to conditional expression (1))
Curvature of the most object side surface of the second lens group G 32 radius (R1) = - 17.281
The curvature of the most image plane IMG side of the second lens group G 32 radius (R2) = - 1116.807
(R1 + R2) / (R1-R2) =-1.03

(条件式(2)に関する数値)
無限遠合焦状態における第2レンズ群G32の近軸結像倍率(β2G)=0.27
無限遠合焦状態における第3レンズ群G33の近軸結像倍率(β3G)=-1.18
|(1−β2G)×β3G|=0.86
(Numerical value related to conditional expression (2))
Paraxial imaging magnification of the second lens group G 32 in focus at infinity (β2G) = 0.27
Paraxial imaging magnification of the third lens group G 33 in focus at infinity (β3G) = - 1.18
| (1-β2G) × β3G | = 0.86

(条件式(3)に関する数値)
|F1/F|=3.11
(Numerical values related to conditional expression (3))
| F1 / F | = 3.11

また、図10は、実施例3にかかる固定焦点レンズの無限遠合焦状態における諸収差図である。図11は、実施例3にかかる固定焦点レンズの撮影倍率0.025倍合焦状態における諸収差図である。図12は、実施例3にかかる固定焦点レンズの最至近距離合焦状態における諸収差図である。図中、gはg線(λ=435.83nm)、dはd線(λ=587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるs,mは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 10 is a diagram of various types of aberration when the fixed focus lens according to Example 3 is in focus at infinity. FIG. 11 is a diagram illustrating various aberrations of the fixed focus lens according to Example 3 when the photographing magnification is in the focused state of 0.025. FIG. 12 is a diagram illustrating various aberrations of the fixed focus lens according to Example 3 in the closest focus state. In the figure, g represents an aberration with a wavelength corresponding to the g-line (λ = 435.83 nm), and d represents a wavelength corresponding to the d-line (λ = 587.56 nm). In the astigmatism diagrams, s and m represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

なお、上記各実施例中の数値データにおいて、r1,r2,・・・・は各レンズ、絞り面などの曲率半径、d1,d2,・・・・は各レンズ、絞りなどの肉厚またはそれらの面間隔、nd1,nd2,・・・・は各レンズのd線(λ=587.56nm)における屈折率、νd1,νd2,・・・・は各レンズのd線(λ=587.56nm)におけるアッベ数を示している。そして、長さの単位はすべて「mm」、角度の単位はすべて「°」である。 In the numerical data in each of the above embodiments, r 1 , r 2 ,... Are the curvature radii of the respective lenses and diaphragm surfaces, and d 1 , d 2 ,. thickness or their surface separations, nd 1, nd 2, ···· the d-line of each lens (lambda = 587.56 nm) refractive index in, νd 1, νd 2, ···· are each lens d The Abbe number in the line (λ = 587.56 nm) is shown. The unit of length is all “mm”, and the unit of angle is “°”.

また、上記各非球面形状は、非球面の深さをZ、曲率をc(=1/r:rは曲率半径)、光軸からの高さをhとし、光の進行方向を正とするとき、以下に示す式により表される。   In each of the above aspheric shapes, the depth of the aspheric surface is Z, the curvature is c (= 1 / r: r is the radius of curvature), the height from the optical axis is h, and the light traveling direction is positive. Is represented by the following equation.

Figure 2012173435
Figure 2012173435

ただし、kは円錐係数、A4,A6,A8,A10はそれぞれ4次,6次,8次,10次の非球面係数である。 Here, k is a conical coefficient, and A 4 , A 6 , A 8 , and A 10 are fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients, respectively.

以上説明したように、上記各実施例の固定焦点レンズは、少ないレンズ枚数で構成されているため小型、軽量で、かつ広角化を実現することができる。特に、開口絞りを前記第2レンズ群と前記第3レンズ群との間に配置することで、開口絞りを挟みその前後に正負の屈折力を適切に分散させることができ、諸収差の補正が容易になる。さらに、上記各条件式を満足することにより、より小型で、優れた結像性能を備えたインナーフォーカス式の固定焦点レンズを実現することができる。また、上記各実施例の固定焦点レンズは、適宜非球面が形成されたレンズや接合レンズを用いているため、少ないレンズ枚数で、良好な光学性能を維持することができる。   As described above, the fixed focus lens of each of the above embodiments is configured with a small number of lenses, so that it is small and lightweight, and a wide angle can be realized. In particular, by disposing the aperture stop between the second lens group and the third lens group, the positive and negative refractive powers can be appropriately distributed before and after the aperture stop, and various aberrations can be corrected. It becomes easy. Furthermore, by satisfying the above conditional expressions, it is possible to realize an inner focus type fixed focus lens that is smaller and has excellent imaging performance. In addition, since the fixed focus lens of each of the above-described embodiments uses a lens or a cemented lens in which an aspheric surface is appropriately formed, good optical performance can be maintained with a small number of lenses.

以上のように、この発明の固定焦点レンズは、35mmカメラ、ビデオカメラ、電子スチルカメラなどに有用であり、特に、バックフォーカスが短いミラーレス一眼カメラに最適である。   As described above, the fixed focus lens of the present invention is useful for a 35 mm camera, a video camera, an electronic still camera, and the like, and particularly suitable for a mirrorless single-lens camera with a short back focus.

11,G21,G31 第1レンズ群
12,G22,G32 第2レンズ群
13,G23,G33 第3レンズ群
111,L121,L132,L134,L211,L221,L232,L234,L311, L321,L332,L334 負レンズ
112,L131,L133,L212,L231,L233,L312,L331,L333 正レンズ
IMG 結像面
ST 開口絞り
G 11 , G 21 , G 31 1st lens group G 12 , G 22 , G 32 2nd lens group G 13 , G 23 , G 33 3rd lens group L 111 , L 121 , L 132 , L 134 , L 211 , L 221 , L 232 , L 234 , L 311 , L 321 , L 332 , L 334 negative lens L 112 , L 131 , L 133 , L 212 , L 231 , L 233 , L 312 , L 331 , L 333 positive Lens IMG Imaging surface ST Aperture stop

Claims (5)

物体側から順に配置された、負の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備え、
前記第2レンズ群は単体のレンズ要素で構成され、
フォーカシング時に、前記第2レンズ群が光軸に沿って移動し、前記第1レンズ群および前記第3レンズ群は結像面に対して固定されることを特徴とする固定焦点レンズ。
A first lens group having a negative refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are arranged in order from the object side,
The second lens group is composed of a single lens element,
The fixed focus lens, wherein the second lens group moves along an optical axis during focusing, and the first lens group and the third lens group are fixed with respect to an image plane.
開口絞りが、前記第2レンズ群と前記第3レンズ群との間に配置されていることを特徴とする請求項1に記載の固定焦点レンズ。   The fixed focus lens according to claim 1, wherein an aperture stop is disposed between the second lens group and the third lens group. 以下の条件式を満足することを特徴とする請求項1または2に記載の固定焦点レンズ。
(1) −3.5≦(R1+R2)/(R1−R2)≦1
ただし、R1は前記第2レンズ群の最も物体側面の曲率半径、R2は前記第2レンズ群の最も像側面の曲率半径を示す。
The fixed focus lens according to claim 1, wherein the following conditional expression is satisfied.
(1) −3.5 ≦ (R1 + R2) / (R1−R2) ≦ 1
Here, R1 represents the radius of curvature of the second lens group closest to the object side, and R2 represents the radius of curvature closest to the image side of the second lens group.
以下の条件式を満足することを特徴とする請求項1〜3のいずれか一つに記載の固定焦点レンズ。
(2) 0.7≦|(1−β2G)×β3G|≦2.5
ただし、β2Gは無限遠合焦状態における前記第2レンズ群の近軸結像倍率、β3Gは無限遠合焦状態における前記第3レンズ群の近軸結像倍率を示す。
The fixed focus lens according to claim 1, wherein the following conditional expression is satisfied.
(2) 0.7 ≦ | (1-β2G) × β3G | ≦ 2.5
Here, β2G represents the paraxial imaging magnification of the second lens group in the infinitely focused state, and β3G represents the paraxial imaging magnification of the third lens group in the infinitely focused state.
以下の条件式を満足することを特徴とする請求項1〜4のいずれか一つに記載の固定焦点レンズ。
(3) 1.5≦|F1/F|≦4.1
ただし、F1は前記第1レンズ群の焦点距離、Fは光学系全系の焦点距離を示す。
The fixed focus lens according to claim 1, wherein the following conditional expression is satisfied.
(3) 1.5 ≦ | F1 / F | ≦ 4.1
Here, F1 represents the focal length of the first lens group, and F represents the focal length of the entire optical system.
JP2011033958A 2011-02-18 2011-02-18 Fixed-focus lens Pending JP2012173435A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011033958A JP2012173435A (en) 2011-02-18 2011-02-18 Fixed-focus lens
CN2011103865334A CN102645726A (en) 2011-02-18 2011-11-29 Prime lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011033958A JP2012173435A (en) 2011-02-18 2011-02-18 Fixed-focus lens

Publications (1)

Publication Number Publication Date
JP2012173435A true JP2012173435A (en) 2012-09-10

Family

ID=46658651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011033958A Pending JP2012173435A (en) 2011-02-18 2011-02-18 Fixed-focus lens

Country Status (2)

Country Link
JP (1) JP2012173435A (en)
CN (1) CN102645726A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015041012A (en) * 2013-08-22 2015-03-02 株式会社タムロン Inner focus lens and image capturing device
US9110231B2 (en) 2012-12-27 2015-08-18 Panasonic Intellectual Property Management Co., Ltd. Inner focus lens system, interchangeable lens apparatus and camera system
US9753250B2 (en) 2014-05-26 2017-09-05 Olympus Corporation Wide angle lens and image pickup apparatus using the same
WO2022102299A1 (en) * 2020-11-11 2022-05-19 コニカミノルタ株式会社 Imaging optical system and imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113472977A (en) * 2018-10-16 2021-10-01 华为技术有限公司 Microspur imaging method and terminal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222793A (en) * 2002-01-29 2003-08-08 Fuji Photo Optical Co Ltd Imaging lens and imaging apparatus
JP2003222794A (en) * 2002-01-29 2003-08-08 Fuji Photo Optical Co Ltd Imaging lens and imaging apparatus
JP2008033208A (en) * 2006-06-28 2008-02-14 Sony Corp Zoom lens and imaging device
JP2010072467A (en) * 2008-09-19 2010-04-02 Fujinon Corp Zoom lens and imaging device
WO2011077716A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Image-capturing optical system, interchangeable lens device, and camera system
JP2012037869A (en) * 2010-07-12 2012-02-23 Panasonic Corp Zoom lens system, interchangeable lens device and camera system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161516A (en) * 1980-05-16 1981-12-11 Nippon Kogaku Kk <Nikon> Long working distance projection lens
JPH0660970B2 (en) * 1984-12-27 1994-08-10 株式会社ニコン Rear focus conversion lens for telephoto lens
JPH05150158A (en) * 1991-12-02 1993-06-18 Matsushita Electric Ind Co Ltd Projection lens and projection type display device
CN101354478B (en) * 2007-07-23 2010-06-02 扬明光学股份有限公司 Focus fixing lens
US7944623B2 (en) * 2008-12-24 2011-05-17 Young Optics Inc. Fixed-focus lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222793A (en) * 2002-01-29 2003-08-08 Fuji Photo Optical Co Ltd Imaging lens and imaging apparatus
JP2003222794A (en) * 2002-01-29 2003-08-08 Fuji Photo Optical Co Ltd Imaging lens and imaging apparatus
JP2008033208A (en) * 2006-06-28 2008-02-14 Sony Corp Zoom lens and imaging device
JP2010072467A (en) * 2008-09-19 2010-04-02 Fujinon Corp Zoom lens and imaging device
WO2011077716A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Image-capturing optical system, interchangeable lens device, and camera system
JP2012037869A (en) * 2010-07-12 2012-02-23 Panasonic Corp Zoom lens system, interchangeable lens device and camera system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9110231B2 (en) 2012-12-27 2015-08-18 Panasonic Intellectual Property Management Co., Ltd. Inner focus lens system, interchangeable lens apparatus and camera system
US9213219B2 (en) 2012-12-27 2015-12-15 Panasonic Intellectual Property Management Co., Ltd. Inner focus lens system, interchangeable lens apparatus and camera system
JP2015041012A (en) * 2013-08-22 2015-03-02 株式会社タムロン Inner focus lens and image capturing device
US9753250B2 (en) 2014-05-26 2017-09-05 Olympus Corporation Wide angle lens and image pickup apparatus using the same
WO2022102299A1 (en) * 2020-11-11 2022-05-19 コニカミノルタ株式会社 Imaging optical system and imaging device

Also Published As

Publication number Publication date
CN102645726A (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5379784B2 (en) Fixed focus lens
JP5612515B2 (en) Fixed focus lens
JP5402015B2 (en) Rear focus optical system, imaging apparatus, and focusing method of rear focus optical system
JP5714925B2 (en) Inner focus lens
JP5510770B2 (en) Photographic lens, optical device equipped with this photographic lens
JP5277624B2 (en) Macro lens, optical device, macro lens focusing method
JP2012155223A (en) Wide-angle single-focus lens
JP6061187B2 (en) Imaging optical system, camera device, and portable information terminal device
JP4289958B2 (en) Zoom lens and imaging apparatus having the same
JP5391565B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
JP5315755B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
US8363333B2 (en) Macro lens system
JP2012173435A (en) Fixed-focus lens
JP2005037935A (en) Compact lightweight zoom lens
JP2020030383A (en) Imaging optical system
JP5217694B2 (en) Lens system and optical device
JP2016126085A (en) Zoom lens
JPWO2013031110A1 (en) Zoom lens and imaging device
JP4817551B2 (en) Zoom lens
JP6268792B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
WO2014069077A1 (en) Inner focus type lens
JP2005345891A (en) Zoom lens and imaging apparatus having the same
JP5282399B2 (en) Macro lens, optical device, macro lens focusing method
JP6716215B2 (en) Imaging device
JP5292894B2 (en) Optical system, optical system focusing method, and imaging apparatus having these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930