JP2012170438A - Beans for food, method for producing the same, and food using the same - Google Patents

Beans for food, method for producing the same, and food using the same Download PDF

Info

Publication number
JP2012170438A
JP2012170438A JP2011038215A JP2011038215A JP2012170438A JP 2012170438 A JP2012170438 A JP 2012170438A JP 2011038215 A JP2011038215 A JP 2011038215A JP 2011038215 A JP2011038215 A JP 2011038215A JP 2012170438 A JP2012170438 A JP 2012170438A
Authority
JP
Japan
Prior art keywords
beans
food
enzyme
peptide
peptide bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011038215A
Other languages
Japanese (ja)
Other versions
JP5906560B2 (en
Inventor
Koji Sakamoto
宏司 坂本
Ryo Kajiwara
良 梶原
Masaya Shibata
賢哉 柴田
Sayaka Nakatsu
沙弥香 中津
Toshiro Matsui
利郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Kyushu University NUC
Original Assignee
Hiroshima Prefecture
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture, Kyushu University NUC filed Critical Hiroshima Prefecture
Priority to JP2011038215A priority Critical patent/JP5906560B2/en
Publication of JP2012170438A publication Critical patent/JP2012170438A/en
Application granted granted Critical
Publication of JP5906560B2 publication Critical patent/JP5906560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing beans for food having excellent ACE inhibiting activity, high in safety with no risk of a side effect and toxicity, holding the shape of beans as they are, high in digestion absorbability so as to be ingestible as a daily meal and to enable an ingesting person to obtain an antihypertensive effect without being burdened with further ingesting something other than the meal, utilizing the whole edible parts without producing waste to effectively utilize resources in conformity with zero emission, and attaining mass production.SOLUTION: The beans for food contain a peptide that contains Ile-Tyr produced by the action of a peptide bond hydrolase introduced inside. The total content of the peptide composed of 2-20 amino acid is twice or more of the content of the peptide before introducing the peptide bond hydrolase, and the shape before introducing the peptide bond hydrolase is maintained.

Description

本発明は、内部にペプチド結合加水分解酵素を導入し、本来の形状を保持したままペプチド結合を加水分解することによりペプチドを高濃度で含有し、優れた抗高血圧作用を有する食品用豆類や、その製造方法、これを用いた食品に関する。更に、ペプチド結合加水分解酵素作用による苦味成分の形成を抑制させ、日常の食事として抗高血圧成分を効率的に摂取可能な食品用豆類や、その製造方法、これを用いた食品に関する。   The present invention introduces a peptide bond hydrolase inside, contains a high concentration of peptides by hydrolyzing peptide bonds while maintaining the original shape, food beans having excellent antihypertensive action, The production method and a food using the same. Furthermore, the present invention relates to food beans that can inhibit the formation of a bitter component due to the action of a peptide bond hydrolase and can efficiently take an antihypertensive component as a daily meal, a production method thereof, and a food using the same.

高血圧自体の自覚症状はあまり明確ではないが、日本人の死亡原因の上位に挙げられる心臓病や脳卒中の主要な危険因子は高血圧であると言われている。日本の高血圧患者は推定で4,000万人以上、高齢者では半数以上が高血圧であると言われており、今後高齢化社会を迎えるに当り、より一層の血圧コントロールの必要性が求められ、高血圧の予防効果を持つ食品素材やその抽出物に期待が寄せられている。   Although the subjective symptoms of high blood pressure itself are not so clear, it is said that high blood pressure is the main risk factor for heart disease and stroke, which is one of the top causes of death in Japanese people. It is said that there are an estimated 40 million or more hypertensive patients in Japan, and more than half of the elderly are hypertensive. As we enter an aging society in the future, there is a need for further blood pressure control, There are high expectations for food materials and their extracts that have an effect of preventing hypertension.

血圧の調節において、重要な役割を果たしている酵素の一つはアンジオテンシンI変換酵素(ACE)である。血圧の調節系は、昇圧に関するレニン・アンジオテンシン系と降圧に関するカリクレイン・キニン系とが重要な役割を果たしている。レニン・アンジオテンシン系では、肝臓から分泌されるアンジオテンシノーゲンが、腎臓から分泌されるレニンによってアンジオテンシンIに変換され、更にアンジオテンシンIはACEによってアンジオテンシンIIに変換される。アンジオテンシンIIは血管を収縮して、血圧を上昇させる。降圧に関するカリクレイン・キニン系では、カリクレインがキニノーゲンに作用して生成されるブラジキニンが、血管を弛緩させて血圧を降下させるが、ブラジキニンはACEにより分解されるため、このブラジキニンの分解によっても結果的に血圧が上昇する。従って、ACEの酵素活性を阻害若しくは抑制する物質であるACE阻害物質は、有効な抗高血圧作用成分として着目されている。   One enzyme that plays an important role in the regulation of blood pressure is angiotensin I converting enzyme (ACE). The renin / angiotensin system for pressurization and the kallikrein / kinin system for hypotension play important roles in the blood pressure regulation system. In the renin-angiotensin system, angiotensinogen secreted from the liver is converted into angiotensin I by renin secreted from the kidney, and angiotensin I is further converted into angiotensin II by ACE. Angiotensin II contracts blood vessels to increase blood pressure. In the kallikrein-kinin system related to hypotension, bradykinin produced by kallikrein acting on kininogen relaxes blood vessels and lowers blood pressure, but bradykinin is degraded by ACE. Blood pressure rises. Therefore, an ACE inhibitor, which is a substance that inhibits or suppresses ACE enzyme activity, has attracted attention as an effective antihypertensive component.

食品素材からのACE阻害物質の利用としては、特に食品素材中のタンパク質の酵素分解物であるペプチドについて、ACE阻害活性があることが知られている。含有するタンパク質の酵素分解物がACE阻害活性を有する食品素材として、イワシ(例えば、特許文献1および非特許文献1)、カツオ(特許文献2、非特許文献2、3)、牛乳カゼイン(特許文献3、非特許文献4)、トウモロコシ(特許文献4、非特許文献5)、大豆(特許文献5、非特許文献6)等が報告されている。   As for the use of ACE inhibitory substances from food materials, it is known that peptides, which are enzyme degradation products of proteins in food materials, have ACE inhibitory activity. As a food material in which the enzyme degradation product of the protein contained has ACE inhibitory activity, sardines (for example, Patent Document 1 and Non-Patent Document 1), Skipjack (Patent Document 2, Non-Patent Documents 2 and 3), Milk Casein (Patent Document) 3, Non-Patent Literature 4), corn (Patent Literature 4, Non-Patent Literature 5), soybean (Patent Literature 5, Non-Patent Literature 6) and the like have been reported.

ACE阻害ペプチドは、食品素材に含まれるタンパク質をタンパク質分解酵素で加水分解して調製することが可能で、ACE阻害ペプチドの製造に当たり、原料のタンパク質に効率的に酵素を反応させるため、食品素材を粉砕する、食品素材からタンパク質を抽出する等の前処理を行うか、若しくは液状の食品素材が利用されている。更に、タンパク質を分解後、目的のACE阻害ペプチドの抽出、濃縮などの処理工程を経て、最終的には、日々の摂取に必要な量を含んだ摂取しやすい形状のドリンクや錠菓等の形で提供されている。   ACE-inhibiting peptides can be prepared by hydrolyzing proteins contained in food materials with proteolytic enzymes. In producing ACE-inhibiting peptides, the food materials are used in order to efficiently react the raw material proteins with the enzymes. A pretreatment such as pulverization, protein extraction from a food material, or a liquid food material is used. Furthermore, after degrading the protein, it goes through processing steps such as extraction and concentration of the target ACE-inhibiting peptide. Finally, it is in the form of drinks and tablet confections that are easy to ingest, including the amount necessary for daily intake. Is provided by.

しかしこれらの製法においては、目的成分の抽出に用いる溶媒や目的成分以外の成分の廃棄処分が必要であり、処理コストが増加し、資源を無駄に消費することになる。更に、ACE阻害ペプチドはドリンク剤や錠菓として提供されているため、これらを毎日摂取するためには、食事とは別に摂取しなければならない。   However, in these production methods, it is necessary to dispose of the solvent used for extraction of the target component and components other than the target component, which increases the processing cost and wastes resources. Furthermore, since ACE inhibitory peptides are provided as drinks and tablet confections, in order to take them daily, they must be taken separately from the meal.

本発明者らは、既に、食材内部にペプチドを生成させる機能性食品(特許文献6)を開発しているが、抗高血圧作用を有する食品への言及はない。   The present inventors have already developed a functional food (Patent Document 6) that generates a peptide inside a food material, but there is no mention of a food having an antihypertensive action.

特開2003−192607JP 2003-192607 A 特開2001−112470JP2001-112470 WO95/28425WO95 / 28425 特開平06−087886JP 06-087886 A 特開2002−053595JP 2002-053595 A 特開2008−187908JP2008-187908

日本栄養・食糧学会誌, 52, 271-277.(1999)Japanese Journal of Nutrition and Food, 52, 271-277. (1999) Bioscience Biotechnology and Biochemistry, 56, 1541-1545.(1992)Bioscience Biotechnology and Biochemistry, 56, 1541-1545. (1992) Bioscience Biotechnology and Biochemistry, 57, 695-697.(1993)Bioscience Biotechnology and Biochemistry, 57, 695-697. (1993) Agricultural and Biological Chemistry, 51, 1581-1586.(1987)Agricultural and Biological Chemistry, 51, 1581-1586. (1987) Agricultural and Biological Chemistry, 55, 1313-1318.(1991)Agricultural and Biological Chemistry, 55, 1313-1318. (1991) 大豆たん白質研究, 6, 73-77.(2003)Soy Protein Research, 6, 73-77. (2003)

本発明の課題は、優れたACE阻害活性を有し、副作用・毒性などのおそれがなく、安全性が高く、かつ、豆類の形状をそのまま保持するにも拘らず、消化吸収性が高く、日常の食事として摂取可能であって、摂取者は食事以外のものを改めて摂取するという負担を負うことがなく、抗高血圧効果を得ることができる食品用豆類や食品を提供することにある。また、廃棄物を生じさせることなく、可食部を総て利用し資源の有効利用を図ることができ、近年のゼロエミッションに即し、簡便で安価な食品用豆類を得ることができ、しかも、大量生産を可能とする食品用豆類の製造方法を提供することにある。更に、タンパク質を酵素分解すると苦味成分も生じるが、苦味成分の発生を抑制し、本来の形状のみでなく味も損ねず、違和感なく摂取することができる商品価値の高い食品用豆類や食品を提供することにある。   The problem of the present invention is that it has excellent ACE inhibitory activity, has no risk of side effects and toxicity, is highly safe, and has high digestibility and absorbability despite maintaining the shape of beans. Therefore, it is possible to provide food beans and foods that can obtain an antihypertensive effect without incurring the burden of ingesting anything other than meals. In addition, the entire edible portion can be used without any waste to effectively use resources, and simple and inexpensive food beans can be obtained in line with recent zero emissions. Another object of the present invention is to provide a method for producing food beans that enables mass production. Furthermore, when protein is enzymatically decomposed, bitterness components are also produced, but the generation of bitterness components is suppressed, and not only the original shape but also the taste is not impaired, providing high-product-value beans and foods that can be ingested without discomfort There is to do.

本発明者らは、かかる課題を解決すべく、豆類の本来の形状を維持して、ペプチド結合加水分解酵素を豆類の内部へ導入し、酵素反応を促進させ得る方法について、研究を重ねた。その結果、酵素を内部へ導入する前に、豆類の種皮に微細な傷を付けることにより、ペプチド結合加水分解酵素が豆類の種皮を容易に通過することの知見を得た。そして、豆類の内部でペプチド結合加水分解酵素の作用により生成されたIle−Tyrを含む2〜20のアミノ酸で構成されたペプチドの含有量が、ペプチド結合加水分解酵素の導入前の2〜20のアミノ酸で構成されたペプチドの含有量の2倍以上になるようにペプチド結合加水分解酵素反応を促進させることにより、優れたACE阻害活性作用を有する食品用豆類が得られることを見出した。更に、食塩やグルタミン酸ナトリウムなどのナトリウム塩またはホスファチジン酸またはリゾホスファチジン酸またはエキソペプチダーゼを、ペプチド結合加水分解酵素と共に、豆類の内部へ導入することにより、ペプチド結合加水分解酵素反応による苦味成分の発生を抑制することができ、形状のみでなく、味についても豆類本来の味が損なわれない食品用豆類が得られることを見出し、本発明を完成させるに至った。   In order to solve such problems, the present inventors have conducted research on a method capable of promoting the enzymatic reaction by maintaining the original shape of beans and introducing a peptide bond hydrolase into the beans. As a result, it was found that the peptide-bonded hydrolase easily passes through the seed coat of beans by introducing fine scratches on the seed coat of beans before introducing the enzyme into the inside. And the content of the peptide comprised by 2-20 amino acids containing Ile-Tyr produced | generated by the effect | action of a peptide bond hydrolase in the beans is 2-20 before the introduction of a peptide bond hydrolase. It has been found that food beans having an excellent ACE inhibitory activity can be obtained by accelerating the peptide bond hydrolase reaction so that the content of the peptide composed of amino acids is twice or more. Furthermore, sodium salts such as sodium chloride and sodium glutamate, phosphatidic acid, lysophosphatidic acid, or exopeptidase are introduced into the beans together with the peptide bond hydrolase, thereby generating a bitter component due to the peptide bond hydrolase reaction. The present inventors have found that food-grade beans that can be suppressed and that the original taste of beans is not impaired in terms of not only the shape but also the taste, and the present invention has been completed.

即ち、本発明は、内部に導入されたペプチド結合加水分解酵素の作用により生成されたIle−Tyrを含むペプチドを含有し、2〜20のアミノ酸で構成されたペプチドの総含有量が、ペプチド結合加水分解酵素導入前のペプチドの含有量の2倍以上であり、且つ、ペプチド結合加水分解酵素導入前の形状を保持していることを特徴とする食品用豆類に関する。   That is, the present invention contains a peptide containing Ile-Tyr produced by the action of a peptide bond hydrolase introduced therein, and the total content of peptides composed of 2 to 20 amino acids is peptide bond The present invention relates to a food legume characterized by being at least twice the content of a peptide before introduction of a hydrolase and having a shape before introduction of a peptide bond hydrolase.

また、本発明は、上記食品用豆類の製造方法であって、豆類の種皮を損傷する種皮損傷工程、種皮を損傷した豆類にペプチド結合加水分解酵素を接触させる酵素接触工程、減圧または加圧処理によりペプチド結合加水分解酵素を内部に導入する酵素導入工程、内部に導入したペプチド結合加水分解酵素により、2〜20のアミノ酸で構成されたペプチドの含有量が2倍以上になるようにペプチド結合を分解する酵素反応工程、ペプチド結合加水分解酵素を加熱により失活させる酵素失活工程を含むことを特徴とする食用豆類の製造方法に関する。   The present invention also relates to a method for producing the above-mentioned food beans, a seed coat damage process for damaging the seed coat of beans, an enzyme contact process for contacting a peptide bond hydrolase with beans damaged in the seed coat, reduced pressure or pressure treatment Step of introducing a peptide bond hydrolase into the inside, and the peptide bond hydrolase introduced inside the peptide bond so that the content of peptides composed of 2 to 20 amino acids is more than doubled The present invention relates to a method for producing edible beans, comprising an enzyme reaction step for decomposing and an enzyme deactivation step for deactivating peptide bond hydrolase by heating.

また、本発明は、上記食品用豆類を乾燥又は冷凍して得られることを特徴とする食品に関する。   The present invention also relates to a food product obtained by drying or freezing the food beans.

本発明の食品用豆類やこれを用いて得られる食品は、優れたACE阻害活性を有し、副作用・毒性などのおそれがなく、安全性が高く、かつ、豆類の形状をそのまま保持するにも拘らず、消化吸収性が高く、日常の食事として摂取可能であって、摂取者は食事以外のものを改めて摂取するという負担を負うことがなく、抗高血圧効果を得ることができる。また、本発明の食品用豆類の製造方法は、廃棄物を生じさせることなく、近年のゼロエミッションに即し、可食部を総て利用し資源の有効利用を図り、簡便で安価な食品用豆類を得ることができ、且つ大量生産を可能とする。更に、本発明の食品用豆類や食品は、タンパク質を酵素分解すると生じる苦味成分の発生を抑制し、本来の形状のみでなく味も損ねず、摂取者が違和感なく摂取することができ、商品価値が高い。   The food beans of the present invention and foods obtained using the same have excellent ACE inhibitory activity, have no risk of side effects and toxicity, are highly safe, and retain the shape of the beans as they are. Regardless, it is highly digestible and absorbable and can be ingested as a daily meal, and the ingestor does not bear the burden of ingesting anything other than meals, and can obtain an antihypertensive effect. In addition, the method for producing food beans of the present invention is based on the recent zero emission without producing waste, and by using all edible parts for effective use of resources, it is simple and inexpensive for food use. Beans can be obtained and mass production is possible. Furthermore, the food beans and foods of the present invention suppress the occurrence of bitter components that occur when proteins are enzymatically decomposed, do not impair the taste as well as the original shape, and can be ingested by consumers without discomfort. Is expensive.

本発明の食品用豆類の一例において、Ile−Tyrを単離した際のクロマトグラム及びMSクロマトグラムを示す図である。In an example of the food beans of this invention, it is a figure which shows the chromatogram at the time of isolating Ile-Tyr, and MS chromatogram. 本発明の食品用豆類の一例において、Ile−Tyrを同定した際のMSスペクトルを示す図である。In an example of the beans for foodstuffs of this invention, it is a figure which shows MS spectrum at the time of identifying Ile-Tyr. 本発明の食品用豆類の一例において、Ile−Tyrを同定した際のクロマトグラム及びMSクロマトグラムを示す図である。In an example of the food beans of this invention, it is a figure which shows the chromatogram at the time of identifying Ile-Tyr, and MS chromatogram. 本発明の食品用豆類の一例を長期投与したラットの血圧変化を示す図である。It is a figure which shows the blood pressure change of the rat which administered long-term example of the food beans of this invention.

本発明の食品用豆類に適用する豆類としては、豆科植物の種子で食用に適するものであれば、大豆、小豆、インゲン、ライマメ、エンドウ、ベニバナインゲン、ソラマメ、ササゲ、ヒヨコマメ、緑豆、レンズマメ、ラッカセイ等いずれであってもよい。これらのうち、大豆は、良質なタンパク質の含量が多く、食経験が豊富で、分解後の組成物の呈味が良好であって、栽培量が多く安価であるという点から、好ましい。大豆の種類としては、黄大豆、赤大豆、黒大豆などが挙げられるが、特に黄大豆が好ましい。   As the beans to be applied to the food beans of the present invention, soy beans, red beans, green beans, lima beans, peas, safflower beans, broad beans, cowpeas, chickpeas, mung beans, lentils, Any of peanuts and the like may be used. Of these, soybean is preferable because it has a high protein content, abundant food experience, good taste of the composition after decomposition, a large amount of cultivation, and a low price. Examples of soybeans include yellow soybeans, red soybeans, and black soybeans, with yellow soybeans being particularly preferable.

これらの大豆は吸水させて用いることができる。吸水量としては、例えば、大豆の質量に対して、0〜130質量%であることが好ましい。   These soybeans can be used after absorbing water. As a water absorption amount, it is preferable that it is 0-130 mass% with respect to the mass of soybean, for example.

上記ペプチド結合加水分解酵素は、タンパク質やペプチドのペプチド結合を加水分解する酵素であれば特に制限なく用いることができ、タンパク質、ペプチドの末端から1〜2のアミノ酸を切り取るエキソペプチダーゼ、中央部分を切断するエンドペプチダーゼいずれであってもよく、また、精製されていてもされていなくてもよい。ペプチド結合加水分解酵素としては、例えば、狭義のペプチダーゼ、ペプシン、トリプシン、キモトリプシン、エラスターゼ等の動物消化器系由来のタンパク質分解酵素(消化酵素)、コウジカビ(Aspergillus)属由来のタンパク質分解酵素、バチルス(Bacillus)属由来のタンパク質分解酵素、クモノスカビ(Rhizopus)属由来のタンパク質分解酵素、アオカビ(Penicillium)属由来のタンパク質分解酵素、ケカビ(Mucor)属由来のタンパク質分解酵素等の微生物由来のタンパク質分解酵素、パパイン、ブロメライン、フィシン等の植物由来のタンパク質分解酵素等が挙げられる。ペプチド結合加水分解酵素としては微生物由来のタンパク質分解酵素、植物由来のタンパク質分解酵素が好ましく、バチルス属由来のタンパク質分解酵素がより好ましい。   The peptide bond hydrolase can be used without particular limitation as long as it is an enzyme that hydrolyzes peptide bonds of proteins and peptides. Exopeptidase that cuts 1-2 amino acids from the ends of proteins and peptides, and cleaves the central part. Any endopeptidase may be used and may or may not be purified. Examples of peptide bond hydrolases include proteolytic enzymes (digestive enzymes) derived from animal digestive systems such as peptidase, pepsin, trypsin, chymotrypsin, and elastase in the narrow sense, proteolytic enzymes derived from the genus Aspergillus, and Bacillus ( Proteolytic enzymes derived from the genus Bacillus, proteolytic enzymes derived from the genus Rhizopus, proteolytic enzymes derived from the genus Penicillium, proteolytic enzymes derived from microorganisms such as the proteolytic enzymes derived from the genus Mucor, Examples include plant-derived proteolytic enzymes such as papain, bromelain and ficin. As the peptide bond hydrolase, a proteolytic enzyme derived from a microorganism and a proteolytic enzyme derived from a plant are preferable, and a proteolytic enzyme derived from the genus Bacillus is more preferable.

上記ペプチド結合加水分解酵素の豆類内部に導入される量は、豆類100gに対して、0.001〜2.0gを挙げることができ、好ましくは、0.01〜0.5gである。また、酵素液に調味料、食塩、有機酸、ビタミン、ミネラル等の栄養成分を含有させることもできる。   The amount of the peptide bond hydrolase introduced into the beans may be 0.001 to 2.0 g, preferably 0.01 to 0.5 g, per 100 g of beans. Moreover, nutrient components, such as a seasoning, salt, an organic acid, a vitamin, and a mineral, can also be contained in an enzyme liquid.

また、ペプチド結合加水分解酵素の基質への接触効率を上昇させるために、ペプチド結合加水分解酵素以外の酵素を、ペプチド結合加水分解酵素の機能を阻害しない範囲で併用してもよい。例えば、セルラーゼ、ヘミセルラーゼ、ペクチナーゼ等の植物組織崩壊酵素、リパーゼ等の脂質分解酵素、アミラーゼ等のデンプン分解酵素が挙げられる。これらの酵素は精製されていてもいなくてもよい。   In order to increase the contact efficiency of the peptide bond hydrolase to the substrate, an enzyme other than the peptide bond hydrolase may be used in combination as long as the function of the peptide bond hydrolase is not inhibited. Examples thereof include plant tissue degrading enzymes such as cellulase, hemicellulase and pectinase, lipolytic enzymes such as lipase, and amylolytic enzymes such as amylase. These enzymes may or may not be purified.

また、β−グルコシダーゼを用い、豆類に含まれる配糖体を分解してアグリコンを生成し、イソフラボン等の含有量を増加させ、抗酸化作用等を発現させることもできる。β−グルコシダーゼとして、セルラーゼ、アミラーゼ、ペクチナーゼ、ヘミセルラーゼ、サイクロデキストリン生成酵素等を挙げることができる。豆類内部へ導入するβ−グルコシダーゼの量としては、豆類100gに対して、0.01〜0.5gであることが好ましい。   In addition, β-glucosidase can be used to decompose glycosides contained in beans to produce aglycone, increase the content of isoflavones, etc., and develop an antioxidant effect or the like. Examples of β-glucosidase include cellulase, amylase, pectinase, hemicellulase, and cyclodextrin producing enzyme. The amount of β-glucosidase introduced into the beans is preferably 0.01 to 0.5 g with respect to 100 g of beans.

上記ペプチド結合加水分解酵素の作用により生成されたペプチドは、ジペプチドのIle−Tyrを含み、2〜20のアミノ酸で構成されたペプチドであり、ACE阻害機能を有し、抗高血圧効果を有する(以下、抗高血圧ペプチドともいう。)。これらの抗高血圧ペプチドとしては、具体的には、Ile−Tyr、Pro−Trp、Tyr−Thr、Leu−Ala−Pro、Leu−Glu−Phe、Leu−Lys−Tyr、Tyr−Pro−Ser、Val−Ala−Trp、Val−Lys−Pro、Asp−Thr−Lys−Phe、Gln−Val−Val−Phe、Ile−Thr−Pro−Leu、Leu−Glu−Phe−Leu、Pro−Ala−Gly−Tyr、Pro−Arg−Val−Phe、Val−Val−Phe−Asp、Gly−Asp−Ala−Pro−Asn、Gly−Glu−Leu−Phe−Glu、Ile−Val−Phe−Asp−Ala、Pro−Ala−Gly−Tyr−Leu、Pro−Arg−Val−Phe−Leu、Val−Gln−Val−Val−Phe、Val−Thr−Val−Pro−Gln等を挙げることができる。これらのうち特に、イソロイシンとチロシンとからなるジペプチドIle−TyrはACE阻害活性が極めて高く、抗高血圧効果が得られることから好ましい。   The peptide produced by the action of the peptide bond hydrolase is a peptide composed of 2 to 20 amino acids, including the dipeptide Ile-Tyr, has an ACE inhibitory function, and has an antihypertensive effect (hereinafter referred to as “hypertensive effect”). Also called anti-hypertensive peptide.) Specific examples of these antihypertensive peptides include Ile-Tyr, Pro-Trp, Tyr-Thr, Leu-Ala-Pro, Leu-Glu-Phe, Leu-Lys-Tyr, Tyr-Pro-Ser, Val. -Ala-Trp, Val-Lys-Pro, Asp-Thr-Lys-Phe, Gln-Val-Val-Phe, Ile-Thr-Pro-Leu, Leu-Glu-Phe-Leu, Pro-Ala-Gly-Tyr Pro-Arg-Val-Phe, Val-Val-Phe-Asp, Gly-Asp-Ala-Pro-Asn, Gly-Glu-Leu-Phe-Glu, Ile-Val-Phe-Asp-Ala, Pro-Ala -Gly-Tyr-Leu, Pro-Arg-Val-Phe-Leu, Va -Gln-Val-Val-Phe, mention may be made of the Val-Thr-Val-Pro-Gln and the like. Of these, dipeptide Ile-Tyr composed of isoleucine and tyrosine is particularly preferable because it has an extremely high ACE inhibitory activity and an antihypertensive effect.

本発明の食品用豆類は、ジペプチドのIle−Tyrを含み、酵素作用により生成された抗高血圧ペプチドが、豆類本来に含有される抗高血圧ペプチドと同量以上、即ち、豆類本来に含有される抗高血圧ペプチドと、酵素作用により生成された抗高血圧ペプチドの合計の含有量が、豆類本来に含有される抗高血圧ペプチドの2倍以上である。抗高血圧ペプチドの総含有量は、具体的には、豆類100g中の抗高血圧ペプチド含有量として、0.001〜100mgを挙げることができ、優れた抗高血圧効果が得られることから、0.1〜100mgが好ましい。   The food legumes of the present invention contain the dipeptide Ile-Tyr, and the antihypertensive peptide produced by the enzymatic action is equal to or more than the antihypertensive peptide originally contained in the beans, that is, the antihypertensive peptide originally contained in the beans. The total content of the hypertensive peptide and the antihypertensive peptide produced by the enzyme action is more than twice that of the antihypertensive peptide originally contained in beans. Specifically, the total content of antihypertensive peptides can be 0.001 to 100 mg as the antihypertensive peptide content in 100 g of beans, and an excellent antihypertensive effect can be obtained. ~ 100 mg is preferred.

豆類中の抗高血圧ペプチドの含有量は、高速クロマトグラフィーによる測定値を採用することができる。   As the content of the antihypertensive peptide in the beans, a value measured by high-speed chromatography can be adopted.

また、上記ペプチド結合加水分解酵素の作用により得られるペプチドには、これらの抗高血圧ペプチドの他、副次的に形成される抗コレステロール作用、抗酸化、抗ストレス作用などを有するペプチドが含まれ、本発明の食品用豆類においては、抗コレステロール作用、抗酸化、抗ストレス作用も得られる。   In addition to these antihypertensive peptides, peptides obtained by the action of the above peptide bond hydrolase include peptides having secondary anti-cholesterol action, antioxidant, anti-stress action, etc. In the food beans of the present invention, anticholesterol action, antioxidant and antistress action are also obtained.

本発明の食品用豆類は、食塩、アミノ酸のナトリウム塩、ホスファチジン酸、リゾホスファチジン酸、及びエキソペプチダーゼから選ばれる何れか1種又は2種以上を含有することが好ましい。これらの物質は、上記ペプチド結合加水分解酵素作用による苦味成分の生成を抑制することができる。これらは、1種又は2種以上を組み合わせて用いることができる。これらは、ペプチド結合加水分解酵素を豆類内部に導入する際に同時に豆類内部に導入することが好ましい。これらの物質は、豆類内部に導入されるペプチド結合加水分解酵素に対して、0.05質量%以上導入することが好ましく、100質量%以下であることが好ましい。   The food beans of the present invention preferably contain one or more selected from sodium chloride, sodium salt of amino acid, phosphatidic acid, lysophosphatidic acid, and exopeptidase. These substances can suppress the production of bitter components due to the action of the peptide bond hydrolase. These can be used alone or in combination of two or more. These are preferably introduced into the beans at the same time when the peptide bond hydrolase is introduced into the beans. These substances are preferably introduced in an amount of 0.05% by mass or more, and preferably 100% by mass or less, with respect to the peptide bond hydrolase introduced into the beans.

上記食品用豆類の製造方法としては、豆類の種皮を損傷する種皮損傷工程、種皮を損傷した豆類にペプチド結合加水分解酵素を接触させる酵素接触工程、減圧または加圧処理によりペプチド結合加水分解酵素を内部に導入する酵素導入工程、内部に導入したペプチド結合加水分解酵素により、2〜20のアミノ酸で構成されたペプチドの含有量が2倍になるまでペプチド結合を分解する酵素反応工程、酵素を加熱により失活させる酵素失活工程を含む方法を挙げることができる。   Examples of the method for producing food beans include a seed coat damage process for damaging the seed coat of beans, an enzyme contact process for contacting a peptide bond hydrolase with beans damaged in seed coat, and a peptide bond hydrolase by depressurization or pressure treatment. Enzyme introduction step to be introduced inside, enzyme reaction step to break the peptide bond until the content of the peptide composed of 2 to 20 amino acids is doubled by the peptide bond hydrolase introduced inside, heating the enzyme And a method including an enzyme deactivation step for deactivation.

豆類の種皮を損傷する種皮損傷工程は、豆類の形状を損なわない程度に、豆類の種皮に微細な傷を形成し、豆類の内部へのペプチド結合加水分解酵素の導入を容易にするために行う工程である。豆類の種皮に微細な傷を形成する方法としては、例えば、100℃以上で加熱する方法が好ましく、より好ましくは、120℃以上である。このような加熱により、豆類の種皮を均一に損傷させることができ、酵素を内部へ均一に導入することができる。加熱時間は、豆の種類、温度との関連で適宜選択することができ、例えば、大豆であれば、100℃以上で1〜60分、120℃以上で20分等とすることができる。種皮の厚さや、柔軟性等により、加熱温度、時間は調整することが好ましい。このような加熱は、豆類に内在する酵素の失活を図り、後工程の酵素反応の制御を容易にすることができ、変色を防止することができる。豆類が乾燥状態のものの場合や、含水量が少ないものの場合は、水蒸気又は水中での加熱が好ましい。   The seed coat damage process that damages the seed coat of beans is performed to form fine scratches on the seed coat of beans to the extent that the shape of the beans is not impaired, and to facilitate the introduction of peptide-bond hydrolase into the beans. It is a process. As a method of forming fine scratches on the seed coat of beans, for example, a method of heating at 100 ° C. or higher is preferable, and a temperature of 120 ° C. or higher is more preferable. By such heating, the seed coat of beans can be uniformly damaged, and the enzyme can be uniformly introduced into the inside. The heating time can be appropriately selected in relation to the type of beans and the temperature. For example, in the case of soybeans, it can be 1 to 60 minutes at 100 ° C. or higher, 20 minutes at 120 ° C. or higher, and the like. It is preferable to adjust the heating temperature and time depending on the thickness of the seed coat and flexibility. Such heating can inactivate the enzymes inherent in the beans, facilitate control of the enzyme reaction in the subsequent process, and prevent discoloration. When the beans are in a dry state or have a low water content, heating in steam or water is preferred.

種皮損傷工程においては、上記加熱処理後、又は上記加熱処理に変えて100Pa以下の減圧下で10分〜3時間の表面乾燥処理を行なうことが好ましい。表面乾燥処理により、豆類の形状を維持し、内部の空気とペプチド結合加水分解酵素との置換を効果的に行うことができる傷を、種皮に形成することができる。表面乾燥処理は、−1〜−40℃の温度下で行なうことが好ましい。   In the seed coat damage process, it is preferable to perform a surface drying treatment for 10 minutes to 3 hours after the heat treatment or in place of the heat treatment under a reduced pressure of 100 Pa or less. By the surface drying treatment, it is possible to form a wound on the seed coat that maintains the shape of the beans and can effectively replace the air inside and the peptide bond hydrolase. The surface drying treatment is preferably performed at a temperature of -1 to -40 ° C.

種皮損傷工程には、その他、豆類を攪拌して相互に衝突させる等、機械的な作用により種皮を損傷させる方法等を採用することもできる。   In the seed coat damaging step, a method of damaging the seed coat by a mechanical action such as stirring beans and causing them to collide with each other can also be adopted.

種皮損傷工程は、上記100℃以上1分以上の加熱処理の前工程、又は後工程として、豆類を凍結し、解凍する凍結・解凍工程を行うことが好ましい。上記過熱処理工程と共に、豆類の凍結・解凍工程を行なうことにより、豆類の種皮に傷を効果的に形成することができる。   In the seed coat damage process, it is preferable to perform a freeze / thaw process in which beans are frozen and thawed as a pre-process or post-process of the heat treatment at 100 ° C. or higher for 1 minute or longer. By performing the beans freezing and thawing step together with the superheat treatment step, it is possible to effectively form a wound on the seed coat of the beans.

以上に記載した種皮損傷工程は、その後の工程を経て得られる、内部にペプチドを生成させた豆類の形状、見た目を大きく損なわない程度の処理工程であることが好ましい。   It is preferable that the seed coat damage process described above is a treatment process that is obtained through the subsequent processes and that does not greatly impair the shape and appearance of the beans having peptides generated therein.

豆類の凍結工程は、内部に含有する水分を凍結させ得る方法であれば、いずれであってもよい。凍結温度としては、−1〜−40℃を挙げることができる。更に、凍結した豆類に対し、乾燥を行うことが、種皮の硬い豆類には、内部への酵素の導入を容易にすることから、好ましい。凍結した豆類の乾燥方法としては、豆類の水蒸気加熱等を挙げることができる。これらの処理は凍結乾燥装置を用いて行うことができ、具体的には10分〜3時間の表面乾燥を挙げることができる。   The freezing process for beans may be any method as long as it can freeze water contained therein. Examples of the freezing temperature include -1 to -40 ° C. Furthermore, it is preferable to dry the frozen beans because the enzyme is easily introduced into the beans having a hard seed coat. Examples of the method for drying frozen beans include steam heating of beans. These treatments can be performed using a freeze-drying apparatus, and specifically include surface drying for 10 minutes to 3 hours.

凍結した豆類の解凍方法は、0℃以上の温度下に放置すればよく、例えば、0〜50℃を挙げることができ、冷蔵庫内で、4〜10℃での低温による緩慢解凍が好ましい。解凍は、凍結状態の豆類は品質を保持して保存可能なことから、使用直前に行うことが好ましい。また流水中や電子レンジを用いて解凍することもできる。   A method for thawing frozen beans may be left at a temperature of 0 ° C. or higher, for example, 0 to 50 ° C., and slow thawing at a low temperature of 4 to 10 ° C. in a refrigerator is preferable. Thawing is preferably performed immediately before use, since frozen beans can be stored with quality preserved. It can also be thawed using running water or a microwave oven.

種皮を損傷した豆類にペプチド結合加水分解酵素を接触させる酵素接触工程は、内部へ導入するペプチド結合加水分解酵素を、先ず豆類の表面に接触させる工程であり、液体又は粉末のペプチド結合加水分解酵素を、水、調味液、緩衝液、アルコール、増粘多糖類等の液体に溶解あるいは分散させて調製した酵素液、若しくは液体酵素を直接用いて、それらに浸漬し、浸漬した状態で後工程の酵素導入工程に用いる方法、又は酵素液に浸漬して取り出す漬けあげでもよく、また酵素液を塗布、噴霧する方法であってもよい。粉末酵素の場合は、豆類に粉末酵素をそのままふりかける、又は噴霧する方法も使用できる。   The enzyme contact step of contacting a bean with damaged seed coat with a peptide bond hydrolase is a step of bringing a peptide bond hydrolase introduced into the bean into contact with the surface of the bean first, and is a liquid or powdered peptide bond hydrolase. Is directly immersed in an enzyme solution prepared by dissolving or dispersing in water, seasoning liquid, buffer solution, alcohol, thickening polysaccharide or the like, or liquid enzyme. It may be a method used in the enzyme introduction step, a pick-up dipped in the enzyme solution, or a method of applying and spraying the enzyme solution. In the case of a powder enzyme, a method in which the powder enzyme is directly sprinkled or sprayed on beans can also be used.

使用する酵素量は適宜選択することができ、液体酵素を直接使用する場合、豆類100gに対して、例えば、0.001〜1.0gの範囲を挙げることができる。酵素液は、例えば、溶媒液に対して0.01〜3.0質量%の範囲で酵素を溶解あるいは分散させて調製することができる。酵素液のpHは4〜10であることが好ましい。このpHの調整には、有機酸類とその塩類やリン酸塩等のpH調整剤などを用いることができ、またpH調整された調味液等を使うこともできる。   The amount of enzyme to be used can be selected as appropriate. When a liquid enzyme is used directly, for example, a range of 0.001 to 1.0 g can be given with respect to 100 g of beans. The enzyme solution can be prepared, for example, by dissolving or dispersing the enzyme in the range of 0.01 to 3.0% by mass with respect to the solvent solution. The pH of the enzyme solution is preferably 4-10. For the pH adjustment, pH adjusting agents such as organic acids and their salts and phosphates can be used, and a pH-adjusted seasoning liquid or the like can also be used.

酵素接触工程において、苦味成分の苦味ペプチドの生成を抑えるため、食塩、アミノ酸のナトリウム塩、ホスファチジン酸、リゾホスファチジン酸、及びエキソペプチダーゼから選ばれる何れか1種又は2種以上を含む苦味成分抑制剤を豆類に接触させることが好ましい。これらの苦味成分抑制剤は、酵素液に含有させる、又は、酵素と共に振りかけることができる。苦味成分抑制剤の使用量は、ペプチド結合加水分解酵素に対し、0.05質量%以上であることが好ましく、100質量%以下であることが好ましい。   In the enzyme contact step, a bitter component inhibitor comprising any one or more selected from sodium chloride, amino acid sodium salt, phosphatidic acid, lysophosphatidic acid, and exopeptidase, in order to suppress the formation of a bitter component of the bitter component. Is preferably brought into contact with beans. These bitter component inhibitors can be contained in the enzyme solution or sprinkled with the enzyme. The amount of the bitter component inhibitor used is preferably 0.05% by mass or more, and preferably 100% by mass or less, based on the peptide bond hydrolase.

酵素導入工程は、上記酵素接触工程において、酵素を接触させた豆類を減圧又は加圧処理により、ペプチド結合加水分解酵素を豆類内部に導入する。減圧処理は、耐圧性密封容器と真空ポンプを有する装置を使用することができ、酵素液に浸漬した豆類又は表面に酵素を付着させた豆類を耐圧性密閉容器に入れ、減圧下に放置する。減圧は、0.01MPa以下、又は豆類に含まれる水分が沸騰する圧力下で行うことが好ましい。このような減圧下では豆類が、常圧下における体積に対し、1.01〜1.10倍程度膨張し、豆類の内部に存在する空気とその表面に存在するペプチド結合加水分解酵素とが種皮に形成された損傷部を通って容易に置換され、豆類内部へ均一に酵素を導入することができる。減圧下に放置する時間は、豆類の品質低下を回避するように、豆類の種類、大きさ等、状況に応じて選択することが好ましく、例えば、30秒〜30分程度とすることができる。減圧保持状態の解除は、常圧に戻すことで行うことができる。減圧処理は、常温で行うこともでき、品質を損なわないように10℃前後の低温で行うこともできる。   In the enzyme introduction step, the peptide-bond hydrolase is introduced into the beans by depressurizing or pressurizing the beans contacted with the enzyme in the enzyme contact step. For the depressurization treatment, an apparatus having a pressure-resistant sealed container and a vacuum pump can be used. Beans immersed in an enzyme solution or beans having an enzyme attached to the surface are placed in a pressure-resistant sealed container and left under reduced pressure. The decompression is preferably performed under 0.01 MPa or less or a pressure at which moisture contained in the beans boils. Under such a reduced pressure, the beans expand about 1.01-1.10 times the volume under normal pressure, and the air present inside the beans and the peptide bond hydrolase present on the surface of the beans are in the seed coat. It is easily replaced through the formed damaged part, and the enzyme can be uniformly introduced into the beans. The time of leaving under reduced pressure is preferably selected according to the situation such as the type and size of the beans so as to avoid the deterioration of the quality of the beans, and can be, for example, about 30 seconds to 30 minutes. Release of the reduced pressure holding state can be performed by returning to the normal pressure. The decompression treatment can be performed at room temperature, and can be performed at a low temperature of about 10 ° C. so as not to impair the quality.

酵素導入工程における加圧処理は、耐圧性密封容器とガス供給装置等を有する装置を使用し、酵素液に浸漬した豆類又は表面に酵素を付着させた豆類を耐圧性密閉容器に入れ、これに所望の圧力下になるまでガスを供給し所定の時間放置する等の方法により行うことができる。加圧は、50〜400MPaで行うことが好ましい。このような加圧下では豆類が、常圧下における体積に対し、0.90〜0.99倍程度収縮し、豆類の内部に存在する空気とその表面に存在するペプチド結合加水分解酵素とが種皮に形成された損傷部を通って置換され、豆類内部へ均一に酵素を導入することができる。加圧下に放置する時間は、豆類の種類、大きさ等、状況に応じて選択することが好ましい。加圧処理は、常温で行うこともでき、品質を損なわないように10℃前後の低温で行うこともできる。また、耐圧性密封容器として柔軟なプラスチックフィルムのレトルト用包装袋を用いることもでき、包装袋を吸引により減圧し、ヒートシールし、フィルムを豆類に密着させ加圧状態を形成することも可能である。   The pressure treatment in the enzyme introduction step uses a pressure-resistant sealed container and a device having a gas supply device, etc., and the beans immersed in the enzyme solution or the beans with the enzyme attached to the surface are placed in the pressure-resistant sealed container. It can be carried out by a method such as supplying a gas until it is under a desired pressure and leaving it for a predetermined time. The pressurization is preferably performed at 50 to 400 MPa. Under such pressure, the beans contract about 0.90 to 0.99 times the volume under normal pressure, and the air present inside the beans and the peptide bond hydrolase present on the surface of the beans are in the seed coat. The enzyme can be uniformly introduced into the beans by being replaced through the damaged portion formed. The time for leaving under pressure is preferably selected according to the situation, such as the type and size of the beans. The pressure treatment can be performed at room temperature, and can be performed at a low temperature of about 10 ° C. so as not to deteriorate the quality. A flexible plastic film retort packaging bag can also be used as a pressure-resistant sealed container, and the packaging bag can be decompressed by suction, heat sealed, and the film can be in close contact with beans to form a pressurized state. is there.

酵素導入工程により内部に導入したペプチド結合加水分解酵素によりペプチド結合を分解する酵素反応工程は、酵素液に浸漬して減圧又は加圧処理を行った場合は、浸漬状態で行うこともできるが、酵素液から取り出して行うことが、表面と内部の酵素反応を均一に進行させ、酵素導入工程前の豆類の形状を保持できることから、好ましい。酵素反応は、ペプチド結合加水分解酵素の至適温度が30℃を超える場合であっても、長時間、例えば、4時間を超えて酵素反応を行なう場合、豆類の劣化を抑制するために30℃以下が好ましく、10℃以下の低温で行うことがより好ましい。また、酵素反応は、酵素導入工程前に豆類に含有される抗高血圧ペプチドの含有量に対し、抗高血圧ペプチドの含有量が2倍以上になるまで行なう。酵素反応は、豆類の種類、大きさ、苦味成分の生成の抑制等から、処理時間を選択することが好ましく、大豆の場合、例えば、1時間から24時間程度を挙げることができる。   The enzyme reaction step of degrading peptide bonds by the peptide bond hydrolase introduced inside by the enzyme introduction step can be performed in an immersed state when it is immersed in an enzyme solution and subjected to reduced pressure or pressure treatment, It is preferable to take out from the enzyme solution because the enzyme reaction between the surface and the inside can proceed uniformly and the shape of the beans before the enzyme introduction step can be maintained. Even when the optimum temperature of the peptide bond hydrolase exceeds 30 ° C., the enzyme reaction is performed at 30 ° C. to suppress the deterioration of beans when the enzyme reaction is performed for a long time, for example, more than 4 hours. The following is preferable, and it is more preferable to carry out at a low temperature of 10 ° C. or lower. In addition, the enzyme reaction is performed until the content of the antihypertensive peptide is more than twice the content of the antihypertensive peptide contained in the beans before the enzyme introduction step. In the enzyme reaction, it is preferable to select the treatment time from the kind and size of beans, the suppression of the production of bitter components, and in the case of soybean, for example, about 1 to 24 hours can be mentioned.

酵素失活工程は、酵素反応を停止させ、酵素導入前の豆類の形状を保持させるために、過度の酵素反応を抑制する工程である。酵素失活は、65℃以上の加熱によることが好ましく、より好ましくは100℃で1分以上又はこれと同等の加熱を挙げることができる。レトルト用包装袋を用いた場合は、120℃で5〜60分の加熱を行うことによりそのまま商品として常温流通を行うことができる。   The enzyme deactivation step is a step of suppressing an excessive enzyme reaction in order to stop the enzyme reaction and maintain the shape of the beans before the introduction of the enzyme. Enzyme deactivation is preferably by heating at 65 ° C. or higher, more preferably at 100 ° C. for 1 minute or longer or equivalent heating. When the retort packaging bag is used, it can be distributed at room temperature as it is by heating at 120 ° C. for 5 to 60 minutes.

上記方法により得られた食品用豆類は、製造前の豆類の形状が保持され、苦味が少なく、通常の豆類と同様の方法で調理することができる。   The beans for food obtained by the above method retain the shape of the beans before production, have little bitterness, and can be cooked in the same manner as ordinary beans.

また、本発明の食品は、上記食品用豆類を乾燥又は冷凍して得られ、食品加工素材として用いて、惣菜、レトルト食品、冷凍食品、真空調理食品、缶詰食品等、種々の加工食品に応用することができ、抗高血圧ペプチドを食事として摂取することができる食品を提供することができる。   Further, the food of the present invention is obtained by drying or freezing the above-mentioned food beans, and used as a food processing material and applied to various processed foods such as sugar beet, retort food, frozen food, vacuum cooked food, canned food, etc. The foodstuff which can be taken and can take an antihypertensive peptide as a meal can be provided.

以下、本発明の食品用豆類について実施例により詳細に説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。また、以下の実施例では、より多くのACE阻害活性ペプチドを生成させるために、種皮損傷工程において、100℃での加熱工程と凍結工程及び乾燥工程を組み合わせているが、100℃で1分以上の加熱のみの種皮損傷工程を実施してもACE阻害活性を有するペプチドが生成することを確認しており、当該大豆の1日当たりの摂食量を増やすことで抗高血圧作用を発現させる量のACE阻害活性ペプチドを摂取することは可能である。
[実施例1]
乾燥大豆を16時間以上水に浸漬し、大豆質量が約2.2倍となり安定するまで吸水させた。吸水した大豆を1分間に4℃の昇温速度で水蒸気または湯中加熱し、100℃に達してから1時間加熱した。加熱終了後直ちに冷水を加えて冷却し、−30℃の冷凍庫で凍結後、3時間凍結乾燥し再び凍結保存した。リン酸緩衝液(pH7.0)を用いて2.0質量%に調製したタンパク質分解酵素溶液(プロテアーゼN「アマノ」G、天野エンザイム社製)に、凍結した大豆を浸漬して50℃で10分間解凍した。酵素液に浸漬したまま、0.01MPaになるまで減圧し、そのまま減圧状態を5分間保持した。減圧操作を行った大豆を酵素液から取り出し、50℃で4時間酵素反応を行ってから10分間蒸煮し、酵素を失活させ、食品用大豆を得た。得られた食品用大豆を−30℃で凍結した後、真空度10Pa以下、30℃加温で48時間乾燥した。乾燥後の質量は乾燥前の質量に対し、35%であった。乾燥大豆を電動ミルを用いて粉砕し大豆粉とし、真空パックして−30℃の冷凍庫で保管した。
Hereinafter, although the Example for food beans of this invention is demonstrated in detail by an Example, the technical scope of this invention is not limited to these Examples. Moreover, in the following examples, in order to produce more ACE inhibitory active peptides, a heating step at 100 ° C., a freezing step, and a drying step are combined in the seed coat damage step, but at 100 ° C. for 1 minute or longer. It has been confirmed that a peptide having an ACE inhibitory activity is produced even when the seed coat damage process of only heating is carried out, and an amount of ACE that causes an antihypertensive action by increasing the amount of intake per day of the soybean is increased. It is possible to take active peptides.
[Example 1]
The dried soybeans were soaked in water for 16 hours or longer and absorbed until the soybean mass became about 2.2 times and stabilized. The absorbed soybean was heated in steam or hot water at a rate of 4 ° C. per minute, and heated for 1 hour after reaching 100 ° C. Immediately after the heating was completed, cold water was added for cooling, frozen in a freezer at −30 ° C., freeze-dried for 3 hours, and stored again frozen. Frozen soybeans were immersed in a proteolytic enzyme solution (Protease N “Amano” G, Amano Enzyme) adjusted to 2.0% by mass using a phosphate buffer (pH 7.0) at 50 ° C. Thawed for minutes. While immersed in the enzyme solution, the pressure was reduced to 0.01 MPa, and the reduced pressure state was maintained for 5 minutes. The soybean which had been subjected to the decompression operation was taken out from the enzyme solution, subjected to an enzyme reaction at 50 ° C. for 4 hours and then steamed for 10 minutes to deactivate the enzyme to obtain food-grade soybean. The obtained soybean for food was frozen at −30 ° C. and then dried for 48 hours at a temperature of vacuum of 10 Pa or less and 30 ° C. heating. The mass after drying was 35% with respect to the mass before drying. The dried soybeans were pulverized using an electric mill to obtain soybean powder, vacuum-packed, and stored in a −30 ° C. freezer.

[ACE阻害活性]
作製した大豆粉に20倍量の精製水を加えて1時間撹拌抽出し、ACE阻害活性測定用の試料液とした。50mMリン酸カリウム緩衝液−300mM NaCl(pH8.5)200μl、50mM基質溶液(Hippuril−Histidyl−Leucine、ナカライテスク社製)25μl、試料溶液5μl、37.5mU/mlアンジオテンシン変換酵素液(ACE、シグマ社製)20μlを混合し、37℃で1時間反応させた後、1N塩酸250μlを添加混合して酵素反応を止めた。この液に酢酸エチル1.5mlを加えてよく撹拌後静置し、酢酸エチル1mlを抽出し蒸発乾固させてから精製水を加え、233nmにおける吸光度(As)を測定した。試料溶液に替えて蒸留水を基質溶液及び酵素液に添加した吸光度(Ac)、試料溶液及び酵素液を蒸留水30μmに替えて基質溶液に添加した吸光度(Ab)、酵素液に替えて蒸留水20μlを試料溶液及び基質溶液に添加した吸光度(Asb)をそれぞれ測定し、ACE阻害率(%)を求めた。
ACE阻害率(%)=((Ac−Ab)−(As−Asb))/(Ac−Ab)×100
[成分分析1]
作製した大豆粉に、10倍量の精製水を加えて1時間撹拌してタンパク質分解物を水抽出し、6000rpm、4℃、15分の遠心分離を行い、上清を得た。上清にヘキサンを加えて激しく撹拌し、6000rpm、4℃、15分の遠心分離操作後水層を抽出し再びヘキサンを加える操作を数度繰り返して油脂を除去した。水層を抽出し、減圧乾燥によりタンパク質分解物を得た。タンパク質分解物5mg/1mlとなるように精製水に溶解し、0.45μmセルロースアセテートフィルター処理により試料溶液とした。試料溶液100μlを高速液体クロマトグラフィー(HPLC)により分画した。カラムとしてはCOSMOSIL 5C18−MS−II(250mm×4.6mm I.D.、ナカライテスク製)を使用し、移動相としては(A液):アセトニトリル/水=10/90(v/v)、(B液):アセトニトリル/水=70/30(v/v)を用い、A液中のB液濃度を0〜1分まで0%、1〜45分まで0〜50%、45〜50分まで50〜100%、50〜55分まで100%、55〜60分まで100〜0%、の濃度勾配をかけながら、流速0.5ml/min、検出波長220nmで行った。ピーク毎に分取を行いACE阻害活性を測定した。溶出時間15.0分の画分に強い活性が見られた。
[ACE inhibitory activity]
A 20-fold amount of purified water was added to the produced soybean flour, and the mixture was stirred and extracted for 1 hour to obtain a sample solution for measuring ACE inhibitory activity. 50 mM potassium phosphate buffer-300 mM NaCl (pH 8.5) 200 μl, 50 mM substrate solution (Hippuril-Histidyl-Leucine, manufactured by Nacalai Tesque) 25 μl, sample solution 5 μl, 37.5 mU / ml angiotensin converting enzyme solution (ACE, Sigma) 20 μl) was mixed and reacted at 37 ° C. for 1 hour, and then 250 μl of 1N hydrochloric acid was added and mixed to stop the enzyme reaction. To this solution was added 1.5 ml of ethyl acetate and the mixture was stirred well and allowed to stand. After extracting 1 ml of ethyl acetate and evaporating to dryness, purified water was added and the absorbance (As) at 233 nm was measured. Absorbance (Ac) in which distilled water was added to the substrate solution and enzyme solution instead of the sample solution, Absorbance (Ab) added to the substrate solution in which the sample solution and enzyme solution were changed to 30 μm distilled water, distilled water instead of the enzyme solution Absorbance (Asb) obtained by adding 20 μl to the sample solution and the substrate solution was measured, and the ACE inhibition rate (%) was determined.
ACE inhibition rate (%) = ((Ac−Ab) − (As−Asb)) / (Ac−Ab) × 100
[Component Analysis 1]
To the produced soybean powder, 10 times the amount of purified water was added and stirred for 1 hour to extract the protein degradation product in water, followed by centrifugation at 6000 rpm, 4 ° C. for 15 minutes to obtain a supernatant. Hexane was added to the supernatant and stirred vigorously, and after centrifuging at 6000 rpm, 4 ° C. for 15 minutes, the aqueous layer was extracted and hexane was added again several times to remove oils and fats. The aqueous layer was extracted, and a protein degradation product was obtained by drying under reduced pressure. The protein degradation product was dissolved in purified water to 5 mg / 1 ml, and a sample solution was prepared by 0.45 μm cellulose acetate filter treatment. 100 μl of the sample solution was fractionated by high performance liquid chromatography (HPLC). COSMOSIL 5C18-MS-II (250 mm × 4.6 mm ID, manufactured by Nacalai Tesque) was used as the column, and (A solution) as the mobile phase: acetonitrile / water = 10/90 (v / v), (Liquid B): Using acetonitrile / water = 70/30 (v / v), the concentration of liquid B in liquid A was 0% to 0 to 1 minute, 0 to 50% to 1 to 45 minutes, 45 to 50 minutes. The flow rate was 0.5 ml / min and the detection wavelength was 220 nm while applying a concentration gradient of 50 to 100%, 50 to 55 minutes, 100%, and 55 to 60 minutes, 100 to 0%. Fractionation was performed for each peak, and ACE inhibitory activity was measured. Strong activity was observed in the fraction with an elution time of 15.0 minutes.

この画分を分画操作を繰り返して、得られた画分を減圧濃縮し、40サイクル画分/1mlとなるように精製水に溶解して試料調整した。条件を変えて再びHPLCにより分画を行った。カラムとしてはCOSMOSIL 5C18−AR−II(250mm×4.6mm I.D.、ナカライテスク製)を使用し、移動相としては(A液):アセトニトリル/水/トリフルオロ酢酸=5/95/0.1(v/v)、(B液):アセトニトリル/水/トリフルオロ酢酸=35/65/0.1(v/v)を用い、A液中のB液濃度を0〜45分まで0〜100%、45〜50分まで100%、50〜55分まで100〜0%の濃度勾配をかけながら、流速0.5ml/min、検出波長220nmで行った。ピーク毎に分取を行いACE阻害活性測定を行ったところ、溶出時間46.1分の画分に強い活性が見られた。クロマトグラムを図1(a)に示す。   The fractionation operation was repeated for this fraction, and the obtained fraction was concentrated under reduced pressure, and dissolved in purified water to give a sample of 40 cycle fraction / 1 ml to prepare a sample. Fractionation was performed again by HPLC under different conditions. COSMOSIL 5C18-AR-II (250 mm × 4.6 mm ID, manufactured by Nacalai Tesque) was used as a column, and (A solution) as a mobile phase: acetonitrile / water / trifluoroacetic acid = 5/95/0. 0.1 (v / v), (Liquid B): acetonitrile / water / trifluoroacetic acid = 35/65 / 0.1 (v / v), and the concentration of liquid B in liquid A was 0 until 0 to 45 minutes. It was carried out at a flow rate of 0.5 ml / min and a detection wavelength of 220 nm while applying a concentration gradient of -100%, 100% up to 45-50 minutes, and 100-0% up to 50-55 minutes. When fractionation was performed for each peak and ACE inhibitory activity was measured, strong activity was observed in the fraction with an elution time of 46.1 minutes. The chromatogram is shown in FIG.

この画分を再び分画操作を繰り返し、得られた画分を減圧濃縮し、10サイクル画分/100μlとなるように精製水に溶解して試料調製した。この試料溶液について高速液体クロマトグラフ/タンデム四重極質量分析計(LC/MS/MS、Quattro micro API(Waters製))により分析を行った。カラムとしてはCOSMOSIL 5C18−AR−300(250mm×4.6mm I.D.、ナカライテスク製)を使用し、移動相としては(A液):アセトニトリル/水/トリフルオロ酢酸=5/95/0.1(v/v)、(B液):アセトニトリル/水/トリフルオロ酢酸=35/65/0.1(v/v)を用い、A液中のB液濃度を0〜30分まで0〜30%、30〜40分まで30〜100%、40〜60分まで100%、60〜61分まで100〜0%の濃度勾配をかけながら、流速0.5ml/min、検出波長220nm、MSはIon Mode:Electrospray+、Scan Type:MS Scan、MS Range:100−1000に設定して行った。クロマトグラムを図1(b)に示す。   Fractionation of this fraction was repeated again, and the obtained fraction was concentrated under reduced pressure and dissolved in purified water to give a sample of 10 cycle fraction / 100 μl to prepare a sample. This sample solution was analyzed by a high performance liquid chromatograph / tandem quadrupole mass spectrometer (LC / MS / MS, Quattro micro API (manufactured by Waters)). COSMOSIL 5C18-AR-300 (250 mm × 4.6 mm ID, manufactured by Nacalai Tesque) was used as a column, and (A solution) as a mobile phase: acetonitrile / water / trifluoroacetic acid = 5/95/0. 0.1 (v / v), (Liquid B): acetonitrile / water / trifluoroacetic acid = 35/65 / 0.1 (v / v), and the concentration of liquid B in liquid A is 0 to 0 to 30 minutes. While applying a concentration gradient of -30%, 30-100% for 30-40 minutes, 100% for 40-60 minutes, 100-0% for 60-61 minutes, flow rate 0.5 ml / min, detection wavelength 220 nm, MS Was performed by setting Ion Mode: Electrospray +, Scan Type: MS Scan, and MS Range: 100-1000. The chromatogram is shown in FIG.

28分近辺に見られたピークについてDaughter Ion Scan解析を行った。解析結果を図2(c)に示す。図2(a)に示すLeu−Tyrのパターン、図2(b)に示すIle−Tyrのパターンから、図2(c)のパターンを有する試料は、Ile−Tyr又はLeu−Tyrであると推察された。LC/MS/MS分析と同様の条件でIle−Tyr及びLeu−Tyrについて分析したところ、溶出時間およびMS/MSパターンからこの成分はIle−Tyrであった。分析結果を図3に示す。(a)は、Ile−TyrとLeu−Tyrの混合物のクロマトグラム、(b)は、Ile−TyrとLeu−Tyrの混合物のMSクロマトグラム、(c)は、試料溶液のクロマトグラム、(d)は、試料溶液のMSクロマトグラムを示す。   Daugher Ion Scan analysis was performed on the peak observed around 28 minutes. The analysis result is shown in FIG. From the Leu-Tyr pattern shown in FIG. 2 (a) and the Ile-Tyr pattern shown in FIG. 2 (b), it is inferred that the sample having the pattern of FIG. 2 (c) is Ile-Tyr or Leu-Tyr. It was done. Analysis for Ile-Tyr and Leu-Tyr under the same conditions as in LC / MS / MS analysis revealed that this component was Ile-Tyr from the elution time and MS / MS pattern. The analysis results are shown in FIG. (A) is a chromatogram of a mixture of Ile-Tyr and Leu-Tyr, (b) is an MS chromatogram of a mixture of Ile-Tyr and Leu-Tyr, (c) is a chromatogram of a sample solution, (d ) Shows the MS chromatogram of the sample solution.

[成分分析2]
作製した大豆粉に、10倍量の精製水を加えて1時間撹拌してタンパク質分解物を水抽出し、6000rpm、4℃、15分の遠心分離を行い、上清を得た。油脂を除去し、0.45μmセルロースアセテートフィルター処理した試料溶液をLC/MS/MSで分析し、大豆粉砕物中のIle−Tyr量の測定を行った。カラムとしてはCOSMOSIL 5C18−AR−300(250mm×4.6mm I.D.、ナカライテスク製)を使用し、移動相としては(A液):アセトニトリル/水/トリフルオロ酢酸=5/95/0.1(v/v)、(B液):アセトニトリル/水/トリフルオロ酢酸=35/65/0.1(v/v)を用い、A液中のB液濃度を0〜30分まで0〜30%、30〜40分まで30〜100%、40〜60分まで100%、60〜61分まで100〜0%の濃度勾配をかけながら、流速0.5ml/min、検出波長220nm、MSはIon Mode:Electrospray+、Scan Type:MRM、Parent Ion:m/z=295.2、Daughter Ion:m/z=182.2に設定して定量を行った。検量線作成は0.010〜0.100mg/mlのIle−Tyr標準液を用いた。
[Component Analysis 2]
To the produced soybean powder, 10 times the amount of purified water was added and stirred for 1 hour to extract the protein degradation product in water, followed by centrifugation at 6000 rpm, 4 ° C. for 15 minutes to obtain a supernatant. The sample solution which removed the fats and oils and was treated with the 0.45 μm cellulose acetate filter was analyzed by LC / MS / MS, and the amount of Ile-Tyr in the soybean ground was measured. COSMOSIL 5C18-AR-300 (250 mm × 4.6 mm ID, manufactured by Nacalai Tesque) was used as a column, and (A solution) as a mobile phase: acetonitrile / water / trifluoroacetic acid = 5/95/0. 0.1 (v / v), (Liquid B): acetonitrile / water / trifluoroacetic acid = 35/65 / 0.1 (v / v), and the concentration of liquid B in liquid A is 0 to 0 to 30 minutes. While applying a concentration gradient of -30%, 30-100% for 30-40 minutes, 100% for 40-60 minutes, 100-0% for 60-61 minutes, flow rate 0.5 ml / min, detection wavelength 220 nm, MS Is determined by setting Ion Mode: Electrospray +, Scan Type: MRM, Parent Ion: m / z = 295.2, Daughter Ion: m / z = 182.2. It was. A calibration curve was prepared using a standard solution of Ile-Tyr of 0.010 to 0.100 mg / ml.

試料溶液中のIle−Tyr量は0.031mg/mlであった。よって、大豆粉中及び酵素反応後の蒸煮大豆中のIle−Tyr量はそれぞれ、0.31mg/大豆粉1g、0.11mg/大豆1gであった。   The amount of Ile-Tyr in the sample solution was 0.031 mg / ml. Therefore, the amounts of Ile-Tyr in the soybean powder and the steamed soybean after the enzyme reaction were 0.31 mg / soybean powder 1 g and 0.11 mg / soybean 1 g, respectively.

[動物試験]
7週齢の雄性高血圧自然発症ラット(SHR/Izm、清水実験材料)を1週間の予備飼育の後、1週間血圧を測定し、12匹を4匹づつ以下の3群に分け、9週齢から45日間に以下に示す飼料を投与した。試験期間中、飼料は自由摂取としたが、摂餌量は各群間でほぼ同じであった。
第1群(比較例1):大豆粉を含まない飼料摂取群
第2群大豆粉混合飼料(比較例2):酵素反応を行っていない大豆粉の1日あたりの摂取量が5g/kg体重となるように添加した飼料摂取群
第3群酵素処理大豆粉混合飼料:作製した大豆粉の1日あたりの摂取量が5g/kg体重となるように添加した飼料摂取群
試験開始時から2回/週の頻度で、非観血式血圧計Softron BP−98Aを用い収縮期血圧の測定を行った。結果を図4に示す。Dunnetの多重比較検定により統計処理を行った。
[Animal test]
Seven weeks old male spontaneously hypertensive rats (SHR / Izm, Shimizu experimental material) were preliminarily kept for one week, blood pressure was measured for one week, 12 were divided into 3 groups of 4 animals, and 9 weeks old The following feeds were administered for 45 days from During the test period, the food was freely consumed, but the amount of food consumed was almost the same between the groups.
Group 1 (Comparative Example 1): Feed intake group containing no soy flour Group 2 soy flour mixed feed (Comparative Example 2): Daily intake of soy flour without enzyme reaction is 5 g / kg body weight Group 3 enzyme-treated soy flour mixed feed added so as to be: 2 times from the start of the feed intake group test added so that the daily intake of the prepared soy flour was 5 g / kg body weight The systolic blood pressure was measured using a non-invasive sphygmomanometer Softron BP-98A at a frequency of / week. The results are shown in FIG. Statistical processing was performed by Dunnet's multiple comparison test.

結果から、Ile−Tyrを含む大豆粉は、血圧上昇を有意に抑制する作用を有することが明らかである。   From the results, it is clear that soybean powder containing Ile-Tyr has an action of significantly suppressing an increase in blood pressure.

本発明の食品用豆類はACE阻害活性を有し、ペプチドは、少量の摂取でACEを有効に阻害し、かつ副作用の心配がなく、高血圧者が日常生活の中で容易に経口摂取できる。また、該ペプチドを含み、風味に優れ、安全性が高く、食品としての摂取が容易な組成物の製造法を提起したことにより、高血圧者の生活の質の向上に大きく貢献することが可能となる。   The food beans of the present invention have ACE inhibitory activity, and the peptide effectively inhibits ACE when ingested in a small amount and is free from side effects, and can be easily taken orally by hypertensives in daily life. In addition, by proposing a method for producing a composition containing the peptide, excellent in flavor, high in safety, and easy to ingest as a food, it can greatly contribute to the improvement of the quality of life of hypertensives. Become.

[実施例2]
タンパク質分解酵素溶液に用いたタンパク質分解酵素として、プロテアーゼN「アマノ」Gに替えて、表1に示すタンパク質分解酵素と緩衝液を用い、酵素反応温度を変更した他は、実施例1と同様に食用品大豆を調製し、ACE阻害活性を求めた。結果を表1に示す。
[Example 2]
As the proteolytic enzyme used in the proteolytic enzyme solution, in place of protease N “Amano” G, the proteolytic enzyme and buffer shown in Table 1 were used, and the enzyme reaction temperature was changed and the same as in Example 1. Food soy was prepared and ACE inhibitory activity was determined. The results are shown in Table 1.

Figure 2012170438
Figure 2012170438

Claims (11)

内部に導入されたペプチド結合加水分解酵素の作用により生成されたIle−Tyrを含むペプチドを含有し、2〜20のアミノ酸で構成されたペプチドの総含有量が、ペプチド結合加水分解酵素導入前のペプチドの含有量の2倍以上であり、且つ、ペプチド結合加水分解酵素導入前の形状を保持していることを特徴とする食品用豆類。   It contains a peptide containing Ile-Tyr produced by the action of a peptide bond hydrolase introduced inside, and the total content of peptides composed of 2 to 20 amino acids is before the peptide bond hydrolase introduction. A food legume characterized by being at least twice the content of a peptide and retaining the shape prior to introduction of a peptide bond hydrolase. 2〜20のアミノ酸で構成されたペプチドの総含有量が、食品用豆類100g中に0.001mg〜100mgであることを特徴とする請求項1記載の食品用豆類。   2. The food legume according to claim 1, wherein the total content of the peptide composed of 2 to 20 amino acids is 0.001 mg to 100 mg in 100 g of the food legume. 食塩、アミノ酸のナトリウム塩、ホスファチジン酸、リゾホスファチジン酸、及びエキソペプチダーゼから選ばれる何れか1種又は2種以上を含有することを特徴とする請求項1又は2記載の食品用豆類。   The food legume according to claim 1 or 2, comprising any one or more selected from sodium chloride, amino acid sodium salt, phosphatidic acid, lysophosphatidic acid, and exopeptidase. 食品用豆類が大豆又は吸水させた大豆であることを特徴とする請求項1から3記載の食品用豆類。   4. The food beans according to claim 1, wherein the food beans are soybeans or water-absorbed soybeans. 請求項1から4のいずれかに記載の食品用豆類の製造方法であって、豆類の種皮を損傷する種皮損傷工程、種皮を損傷した豆類にペプチド結合加水分解酵素を接触させる酵素接触工程、減圧または加圧処理によりペプチド結合加水分解酵素を内部に導入する酵素導入工程、内部に導入したペプチド結合加水分解酵素により、2〜20のアミノ酸で構成されたペプチドの含有量が2倍以上になるようにペプチド結合を分解する酵素反応工程、ペプチド結合加水分解酵素を加熱により失活させる酵素失活工程を含むことを特徴とする食用豆類の製造方法。   It is a manufacturing method of the beans for foodstuffs in any one of Claim 1 to 4, Comprising: The seed coat damage process which damages the seed coat of beans, The enzyme contact process which makes a peptide bond hydrolase contact the beans which damaged the seed coat, pressure reduction Alternatively, the content of peptides composed of 2 to 20 amino acids is more than doubled by the enzyme introduction step of introducing peptide bond hydrolase into the interior by pressure treatment, and the peptide bond hydrolase introduced inside. A method for producing edible beans, comprising: an enzyme reaction step for degrading peptide bonds; and an enzyme deactivation step for deactivating peptide bond hydrolases by heating. 種皮損傷工程が、100℃以上1分以上の加熱処理をする工程を含むことを特徴とする請求項5記載の食品用豆類の製造方法。   6. The method for producing food beans according to claim 5, wherein the seed coat damaging step includes a step of heat treatment at 100 ° C. or more for 1 minute or more. 種皮損傷工程が、100Pa以下の減圧下で10分〜3時間の表面乾燥処理を含むことを特徴とする請求項5又は6記載の食品用豆類の製造方法。   The method for producing legumes for food according to claim 5 or 6, wherein the seed coat damage step comprises a surface drying treatment for 10 minutes to 3 hours under a reduced pressure of 100 Pa or less. 種皮損傷工程が、豆類を凍結及び解凍する凍結・解凍工程を有することを特徴とする請求項5から7のいずれか記載の食品用豆類の製造方法。   The method for producing beans for food according to any one of claims 5 to 7, wherein the seed coat damage step comprises a freezing and thawing step for freezing and thawing the beans. 酵素導入工程が、0.01MPa以下又は50MPa以上で行なわれることを特徴とする請求項5から8のいずれか記載の食品用豆類の製造方法。   The method for producing food beans according to any one of claims 5 to 8, wherein the enzyme introduction step is performed at 0.01 MPa or less or 50 MPa or more. 酵素接触工程において、ペプチド結合加水分解酵素と共に、食塩、アミノ酸のナトリウム塩、ホスファチジン酸、リゾホスファチジン酸、及びエキソペプチダーゼから選ばれる何れか1種又は2種以上と接触させ、酵素導入工程において、ペプチド結合加水分解酵素と共に、食塩、アミノ酸のナトリウム塩、ホスファチジン酸、リゾホスファチジン酸、及びエキソペプチダーゼから選ばれる何れか1種又は2種以上を内部に導入することを特徴とする請求項5から9のいずれか記載の食品用豆類の製造方法。   In the enzyme contact step, together with the peptide bond hydrolase, it is brought into contact with any one or more selected from salt, sodium salt of amino acid, phosphatidic acid, lysophosphatidic acid, and exopeptidase. 10. One or more selected from sodium chloride, amino acid sodium salt, phosphatidic acid, lysophosphatidic acid, and exopeptidase are introduced into the inside together with the binding hydrolase. The manufacturing method of the beans for foodstuffs in any one. 請求項1から4の何れか記載の食品用豆類を乾燥又は冷凍して得られることを特徴とする食品。   A food product obtained by drying or freezing the beans for food according to any one of claims 1 to 4.
JP2011038215A 2011-02-24 2011-02-24 Method for producing food beans and food Active JP5906560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038215A JP5906560B2 (en) 2011-02-24 2011-02-24 Method for producing food beans and food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038215A JP5906560B2 (en) 2011-02-24 2011-02-24 Method for producing food beans and food

Publications (2)

Publication Number Publication Date
JP2012170438A true JP2012170438A (en) 2012-09-10
JP5906560B2 JP5906560B2 (en) 2016-04-20

Family

ID=46973943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038215A Active JP5906560B2 (en) 2011-02-24 2011-02-24 Method for producing food beans and food

Country Status (1)

Country Link
JP (1) JP5906560B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103005308A (en) * 2012-11-16 2013-04-03 蚌埠市楠慧川味食品厂 Spicy soybeans
CN103082219A (en) * 2012-11-16 2013-05-08 蚌埠市楠慧川味食品厂 Preparation method of spicy and hot soybeans with stomach invigorating and digestion improving functions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106616377A (en) * 2016-12-20 2017-05-10 青海源兴实业有限公司 Compound broad bean powder and use thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502003A (en) * 1985-12-18 1988-08-11 ポウルセン,オツト− メルヒオル Method for producing heat-resistant, non-bitter, water-soluble peptide products, products produced by the method, and nutrients, drinks, and diets containing the products
JPH03195471A (en) * 1989-12-26 1991-08-27 Pentel Kk Production of natto (fermented soybean)
JPH0767552A (en) * 1993-07-01 1995-03-14 Kao Corp Bitterness reducing agent and method for lowering bitterness
JPH089897A (en) * 1994-07-01 1996-01-16 Kao Corp Coated composition for bitter taste-having substance
JPH08173093A (en) * 1994-12-27 1996-07-09 Kao Corp Food composition, bitter taste reduction and nutrient-enriched food product
JPH0947229A (en) * 1995-06-01 1997-02-18 Oomu Nyugyo Kk Low-bitter and low-allergenic lactic composition and its production
JP2005095156A (en) * 2003-08-21 2005-04-14 Showa Sangyo Co Ltd Soybean extract, method for producing the same and use of the same
JP2006512371A (en) * 2002-12-24 2006-04-13 ハー マジェスティ ザ クイーン イン ライト オブ カナダ アズ リプレゼンティッド バイ ザ ミニスター オブ アグリカルチャー アンド アグリ−フード カナダ ACE inhibitory peptides derived from plant materials
JP2006265139A (en) * 2005-03-23 2006-10-05 Fuji Oil Co Ltd New peptide
JP2008187908A (en) * 2007-02-01 2008-08-21 Hiroshima Pref Gov Method for producing functional food, and functional food

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63502003A (en) * 1985-12-18 1988-08-11 ポウルセン,オツト− メルヒオル Method for producing heat-resistant, non-bitter, water-soluble peptide products, products produced by the method, and nutrients, drinks, and diets containing the products
JPH03195471A (en) * 1989-12-26 1991-08-27 Pentel Kk Production of natto (fermented soybean)
JPH0767552A (en) * 1993-07-01 1995-03-14 Kao Corp Bitterness reducing agent and method for lowering bitterness
JPH089897A (en) * 1994-07-01 1996-01-16 Kao Corp Coated composition for bitter taste-having substance
JPH08173093A (en) * 1994-12-27 1996-07-09 Kao Corp Food composition, bitter taste reduction and nutrient-enriched food product
JPH0947229A (en) * 1995-06-01 1997-02-18 Oomu Nyugyo Kk Low-bitter and low-allergenic lactic composition and its production
JP2006512371A (en) * 2002-12-24 2006-04-13 ハー マジェスティ ザ クイーン イン ライト オブ カナダ アズ リプレゼンティッド バイ ザ ミニスター オブ アグリカルチャー アンド アグリ−フード カナダ ACE inhibitory peptides derived from plant materials
JP2005095156A (en) * 2003-08-21 2005-04-14 Showa Sangyo Co Ltd Soybean extract, method for producing the same and use of the same
JP2006265139A (en) * 2005-03-23 2006-10-05 Fuji Oil Co Ltd New peptide
JP2008187908A (en) * 2007-02-01 2008-08-21 Hiroshima Pref Gov Method for producing functional food, and functional food

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103005308A (en) * 2012-11-16 2013-04-03 蚌埠市楠慧川味食品厂 Spicy soybeans
CN103082219A (en) * 2012-11-16 2013-05-08 蚌埠市楠慧川味食品厂 Preparation method of spicy and hot soybeans with stomach invigorating and digestion improving functions

Also Published As

Publication number Publication date
JP5906560B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
US11382911B2 (en) Plant extract containing diketopiperazine and method for producing same
Ketnawa et al. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability
Kuba et al. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase
Zhang et al. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates
JP5125514B2 (en) Method for producing soy peptide mixture
Girgih et al. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment
US20110045130A1 (en) Bioactive peptide production
US20140011742A1 (en) Bioactive Peptides and Proteins Containing Bioactive Peptides, their Uses and Processes for Making the Same
Akbarbaglu et al. Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases
Ying et al. Manufacturing of plant-based bioactive peptides using enzymatic methods to meet health and sustainability targets of the sustainable development goals
JP5906560B2 (en) Method for producing food beans and food
Varnosfaderani et al. Germination and fermentation of soybeans: Two healthy steps to release angiotensin converting enzyme inhibitory activity compounds
Abd Rashid et al. Evaluation of antioxidant and antibacterial activities of fish protein hydrolysate produced from Malaysian fish sausage (Keropok Lekor) by-products by indigenous Lactobacillus casei fermentation
Gong et al. Investigation of nutritional and functional effects of rice bran protein hydrolysates by using Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines: A review
Daliri et al. A discovery-based metabolomic approach using UHPLC Q-TOF MS/MS unveils a plethora of prospective antihypertensive compounds in Korean fermented soybeans
JP2008187908A (en) Method for producing functional food, and functional food
KR101712492B1 (en) Natural salty taste enhancer and method for preparing the same
Tacias-Pascacio et al. Peptides with biological and technofunctional properties produced by bromelain hydrolysis of proteins from different sources: A review
KR101655540B1 (en) The low sodium fish sauces and method for preparing the same
EP2244583A2 (en) Uses for aqueous streams containing proteins
Feng et al. Preparation and purification of angiotensin‐converting enzyme inhibitory peptides from hydrolysate of shrimp (Litopenaeus vannamei) shell waste
Danial et al. Enrichment of mung bean with L-DOPA, GABA, essential amino acids via controlled biofermentation strategy
Fan et al. Isolation and characterisation of a novel angiotensin I‐converting enzyme‐inhibitory peptide derived from douchi, a traditional Chinese fermented soybean food
KR20120057699A (en) Development of extraction technique for preparation of hydrophilic extracts and biological activities of velvet antler
JP2003210191A (en) Split product with high angiotensin i converting enzyme inhibitory activity and method for producing the same, and functional food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150901

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5906560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250