JP2012170132A - Radio transmitter - Google Patents
Radio transmitter Download PDFInfo
- Publication number
- JP2012170132A JP2012170132A JP2012100996A JP2012100996A JP2012170132A JP 2012170132 A JP2012170132 A JP 2012170132A JP 2012100996 A JP2012100996 A JP 2012100996A JP 2012100996 A JP2012100996 A JP 2012100996A JP 2012170132 A JP2012170132 A JP 2012170132A
- Authority
- JP
- Japan
- Prior art keywords
- amplifier
- gain
- power
- transmission
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Amplification And Gain Control (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
Abstract
Description
この発明は、無線信号を所定のタイムスロットに送信するように構成された無線送信機に関する。 The present invention relates to a wireless transmitter configured to transmit a wireless signal to a predetermined time slot.
無線送信機においては、一般に、アンテナから無線信号を送信するのに複数段のアンプを備えるものがある。また、無線信号の送信パワーを制御することも一般に行われている。 Some wireless transmitters generally include a multi-stage amplifier for transmitting a wireless signal from an antenna. In general, the transmission power of radio signals is also controlled.
例えば、特許文献1には、出力段の増幅器の送信パワーを検出しながら、その前段の増幅器のゲインを調整して無線信号の送信パワーを制御する技術が開示されている。また、特許文献2には、APC(オートパワー制御)回路によって出力段のファイナルアンプとその前段のドライブアンプの両方のゲインを同時に調整することで、無線信号の送信パワーを制御する技術が開示されている。
For example,
近年、無線信号を大出力で送信する例えば業務用無線機の分野において、TDMA(時分割多重アクセス)方式で通信を行う無線装置の開発が進められている。また、このような無線装置においては、基地局からのパワー制御要求等に従って、送信パワーを、例えば定格パワー、定格パワーから−3dB、9dB、15dBなど、複数段階に切り換え可能としたり、或いはもっと多段階に調整できたりするように要求されることがある。 In recent years, in the field of, for example, commercial radios that transmit radio signals with a high output, development of radio apparatuses that perform communication using a TDMA (Time Division Multiple Access) system has been advanced. Further, in such a wireless device, the transmission power can be switched in a plurality of stages such as a rated power, a rated power from −3 dB, 9 dB, 15 dB, or the like according to a power control request from the base station or the like. It may be required to be able to adjust to the stage.
また、TDMA方式の通信では、予め割り当てられたタイムスロットに無線信号を送信し、他のタイムスロットでは無線信号の送信を停止する必要がある。さらに、隣接するタイムスロットとの電波干渉を避けるために、各タイムスロットの前後に設けられた短いガードタイムの期間に、所定の傾斜パターンで、無線信号の送信パワーを立ち上げたり立ち下げたりしなければならないという制約もある。 Further, in the TDMA communication, it is necessary to transmit a radio signal in a pre-assigned time slot and to stop transmitting a radio signal in other time slots. Furthermore, in order to avoid radio wave interference with adjacent time slots, the transmission power of the radio signal is raised or lowered with a predetermined inclination pattern during the short guard time period provided before and after each time slot. There is also a restriction that it must be.
上記のように、大出力の送信が可能で、且つ、送信パワーを切り換え可能とした無線装置においては、その出力段に大きなパワー出力が可能で且つゲイン可変幅の大きなアンプを設ける必要がある。しかしながら、ゲイン可変幅の大きな大出力アンプでは、例えば、内部に複数段のFET(電界効果トランジスタ)増幅回路を有する構成となるため、図8の“四角”プロット線に示すように、ゲイン制御電圧(ゲートバイアス電圧)対出力送信パワーの特性はリニアにならない。 As described above, in a radio apparatus capable of transmitting a large output and switching transmission power, it is necessary to provide an amplifier capable of large power output and a large gain variable width at the output stage. However, since a large output amplifier with a large gain variable width has, for example, a configuration including a plurality of FET (field effect transistor) amplifier circuits therein, as indicated by a “square” plot line in FIG. The characteristic of (gate bias voltage) versus output transmission power is not linear.
そのため、ガードタイム中に所定の傾斜パターンで送信パワーを立ち上げたり立ち下げたりする制御を、出力段の大出力アンプのゲイン制御によって実現するには、この所定の傾斜パターンを実現するゲイン制御電圧の波形を、様々な送信パワーのレベルに対応させて幾つも用意しておかなければならないという課題が生じる。 Therefore, in order to realize the control to increase or decrease the transmission power with a predetermined inclination pattern during the guard time by the gain control of the large output amplifier in the output stage, the gain control voltage that realizes this predetermined inclination pattern There arises a problem that several waveforms must be prepared corresponding to various transmission power levels.
また、ゲイン可変型の大出力アンプでは、図8の“ダイヤ印”プロット線に示すように、そのゲインに応じて消費電流が大きく変化する。従って、出力段の大出力アンプのゲイン制御により送信パワーの立ち上げと立ち下げの制御を行った場合、短い期間(例えば1ms)に大きな電流変動(例えば0A−9Aなど)が生じることとなる。そして、この急激な電流変動により、例えば、搬送波を生成するVCO(電圧制御発振器)などの動作に摂動が生じるなどして、送信信号の変調精度が悪化するという課題を生じる。 Further, in the variable gain type high output amplifier, as indicated by the “diamond” plot line in FIG. 8, the current consumption greatly varies depending on the gain. Therefore, when the rise and fall control of the transmission power is performed by the gain control of the large output amplifier in the output stage, a large current fluctuation (for example, 0A-9A) occurs in a short period (for example, 1 ms). This sudden current fluctuation causes a problem that the modulation accuracy of the transmission signal deteriorates due to, for example, perturbation in the operation of a VCO (voltage controlled oscillator) that generates a carrier wave.
一方、特許文献1に示すように、出力段の大出力アンプのゲインを一定とし、ドライブ段など前段のアンプのゲイン制御を行うことで、ガードタイムにおける送信パワーの立ち上げと立ち下げ、並びに、パワー制御要求等に基づく送信パワーの段階的な切り換えを行う構成を適用することも可能である。
On the other hand, as shown in
しかしながら、このような構成では、出力段のアンプが常に大きなゲインのままとなって大電流を流し続けるため、例えばパワー制御要求等により低い送信パワーで動作する場合でも、無線装置全体の消費電流を低くすることができないという課題が生じる。 However, in such a configuration, since the amplifier in the output stage always keeps a large gain and continues to flow a large current, for example, even when operating at a low transmission power due to a power control request or the like, the current consumption of the entire wireless device is reduced. The problem that it cannot be lowered arises.
例えば、図9には、出力段のアンプのゲインを35dB固定とした構成において、出力段のアンプの入力パワーPin対出力パワーPout、ならびに、入力パワーPin対アンプの消費電流Iddを表わした特性図を示すが、出力段のアンプを常に大きなゲインとしたままでは、図9の“四角”プロット線に示すように、送信パワーが30dB以下の領域ではアンプの消費電流は下げ止まりとなるため、送信パワーが低く設定されたときでも消費電流の低減を図ることができない。 For example, FIG. 9 is a characteristic diagram showing the input power Pin vs. output power Pout of the output stage amplifier and the input power Pin vs. current consumption Idd of the amplifier in a configuration in which the gain of the output stage amplifier is fixed at 35 dB. However, if the amplifier at the output stage is always kept at a large gain, as shown by the “square” plot line in FIG. 9, the current consumption of the amplifier stops decreasing when the transmission power is 30 dB or less. The current consumption cannot be reduced even when is set to be low.
また、前段のドライブアンプのみでゲイン制御を行う構成では、送信パワーのダイナミックレンジは、ドライブアンプ自体のダイナミックレンジにより決定されてしまう。そのため、例えば、送信パワーが最大のときには、ドライブアンプのダイナミックレンジを最大幅に使って、所定の傾斜パターンで送信パワーの立ち上げや立ち下げを行うことができても、パワー制御要求等により送信パワーが低く設定されたときには、ドライブアンプのダイナミックレンジの一部の範囲しか使うことができないことから、例えば、送信パワーのレベルが頭打ちとなって所定の傾斜パターンで送信パワーの立ち上げや立ち下げを行うことが困難になる場合が生じる。 Further, in a configuration in which gain control is performed using only the preceding drive amplifier, the dynamic range of transmission power is determined by the dynamic range of the drive amplifier itself. Therefore, for example, when the transmission power is maximum, even if the dynamic range of the drive amplifier is used as the maximum width and the transmission power can be raised or lowered with a predetermined inclination pattern, it can be transmitted in response to a power control request or the like. When the power is set low, only a part of the dynamic range of the drive amplifier can be used. For example, when the transmission power level reaches its peak, the transmission power rises or falls with a predetermined slope pattern. It may be difficult to perform.
また、特許文献2に示すように、出力段のファイナルアンプとドライブ段のアンプとの両方のゲインを同時に制御して送信パワーを変化させる構成を適用することも可能である。しかしながら、このような構成においても、短いガードタイムの期間中に、大出力のファイナルアンプのゲインを立ち上げたり立ち下げたりする必要があるため、タイムスロットの前後で急激な電流変動が生じることとなって、それにより送信信号の変調精度が悪化するといった課題が生じる。 Further, as shown in Patent Document 2, it is also possible to apply a configuration in which the transmission power is changed by simultaneously controlling the gains of both the output stage final amplifier and the drive stage amplifier. However, even in such a configuration, it is necessary to raise or lower the gain of the high-power final amplifier during a short guard time period, which causes rapid current fluctuation before and after the time slot. As a result, there arises a problem that the modulation accuracy of the transmission signal deteriorates.
また、ゲイン制御電圧対出力送信パワーの特性がリニアにならないことから、ガードタイム中に所定の傾斜パターンで送信パワーの立ち上げや立ち下げを行うために、様々な送信パワーのレベルに対応させて、ゲイン制御電圧の波形を幾つも用意しなければならないという課題が生じる。 In addition, since the characteristic of gain control voltage versus output transmission power is not linear, in order to raise or lower the transmission power with a predetermined slope pattern during the guard time, it is necessary to correspond to various transmission power levels. There arises a problem that a number of gain control voltage waveforms must be prepared.
この発明の目的は、所定のタイムスロットで無線信号の送信を行う無線送信機において、送信パワーの立ち上げや立ち下げ時に急激な電流変動が発生するのを回避でき、且つ、送信パワーが低く設定された場合には送信パワーに応じて消費電流の低減を図ることのできる無線送信機を提供することにある。 An object of the present invention is to avoid a sudden current fluctuation at the time of rising or falling of transmission power in a wireless transmitter that transmits a radio signal in a predetermined time slot, and set the transmission power to be low. In such a case, an object of the present invention is to provide a radio transmitter capable of reducing current consumption in accordance with transmission power.
上記目的を達成するため、請求項1記載の発明は、
無線信号を所定のタイムスロットで送信するように構成された無線送信機において、
送信信号をアンテナに出力するゲイン可変型の第1アンプと、
この第1アンプより前段に設けられ送信信号を前記第1アンプへ送るゲイン可変型の第2アンプと、
前記第1アンプと前記第2アンプのゲイン制御を行う制御手段と、
を備え、
前記制御手段は、
前記タイムスロットの開始の際は、先ず、前記第1アンプのゲインを上昇させ、その後、前記第2アンプのゲインを上昇させて、無線信号を送信させ、
前記タイムスロットの終了の際は、先ず、前記第2アンプのゲインを下降させ、その後、前記第1アンプのゲインを下降させて、無線信号の送信を停止させ、
前記タイムスロットの終端側のガードタイム中に、前記第2アンプのゲインを送信時のレベルから非送信時のレベルまで下降させ、
前記第2アンプのゲインを非送信時のレベルまで下降させた後の期間に、前記第1アンプのゲインを送信時のレベルから非送信時のレベルまで下降させる構成であることを特徴としている。
In order to achieve the above object, the invention according to
In a wireless transmitter configured to transmit a wireless signal in a predetermined time slot,
A variable gain first amplifier for outputting a transmission signal to an antenna;
A variable gain second amplifier that is provided before the first amplifier and transmits a transmission signal to the first amplifier;
Control means for performing gain control of the first amplifier and the second amplifier;
With
The control means includes
At the start of the time slot, first increase the gain of the first amplifier, and then increase the gain of the second amplifier to transmit a radio signal,
At the end of the time slot, first, the gain of the second amplifier is lowered, and then the gain of the first amplifier is lowered to stop transmission of radio signals,
During the guard time on the terminal side of the time slot, the gain of the second amplifier is decreased from the transmission level to the non-transmission level,
The gain of the first amplifier is decreased from the transmission level to the non-transmission level in a period after the gain of the second amplifier is decreased to the non-transmission level.
請求項2記載の発明は、請求項1記載の無線送信機において、
前記制御手段は、
前記第2アンプのゲインを設定された傾斜パターンで変化させる構成であり、
この制御手段による前記第2アンプのゲイン制御によって、前記タイムスロットの始端或いは終端に設けられたガードタイムに無線送信パワーが所定の傾斜パターンで立ち上げ或いは立ち下げられることを特徴としている。
The invention according to claim 2 is the wireless transmitter according to
The control means includes
The gain of the second amplifier is changed with a set inclination pattern,
According to the gain control of the second amplifier by the control means, the radio transmission power is raised or lowered in a predetermined inclination pattern at the guard time provided at the start or end of the time slot.
請求項3記載の発明は、請求項1記載の無線送信機において、
前記制御手段は、
前記第1アンプのゲインを予め設定された複数段階の何れかのゲインに切り換える構成であり、
この制御手段による前記第1アンプのゲイン制御によって無線送信パワーが段階的に切り換え可能になっていることを特徴としている。
A third aspect of the present invention provides the wireless transmitter according to the first aspect,
The control means includes
The gain of the first amplifier is switched to any one of a plurality of preset gains,
The wireless transmission power can be switched in stages by gain control of the first amplifier by the control means.
請求項4記載の発明は、請求項1記載の無線送信機において、
前記アンテナに出力される送信信号のパワーを検出するパワー検出部を備え、
前記制御手段は、
前記パワー検出部の検出出力に基づいて該検出出力が所定の値になるように前記第2アンプの送信時のゲイン調整を行う構成であることを特徴としている。
According to a fourth aspect of the present invention, in the wireless transmitter according to the first aspect,
A power detection unit for detecting the power of the transmission signal output to the antenna;
The control means includes
The gain adjustment at the time of transmission of the second amplifier is performed based on the detection output of the power detection unit so that the detection output becomes a predetermined value.
請求項5記載の発明は、請求項1記載の無線送信機において、
前記アンテナに出力される送信信号のパワーを検出するとともに検出感度が可変にされたパワー検出部と、
前記パワー検出部の検出信号と参照信号とがつり合うように前記第2アンプのゲインを自動的に調整する自動パワー制御部と、
を備え、
前記制御手段は、
前記第1アンプの送信時のゲインの変化に伴って当該ゲインの変化と逆行するように前記パワー検出部の検出感度を変化させるとともに、
前記オートパワー制御部の参照信号を変化させることで前記第2アンプのゲイン制御を行う構成であることを特徴としている。
The invention according to claim 5 is the radio transmitter according to
A power detector that detects the power of the transmission signal output to the antenna and has a variable detection sensitivity;
An automatic power control unit that automatically adjusts the gain of the second amplifier so that a detection signal of the power detection unit and a reference signal are balanced;
With
The control means includes
While changing the detection sensitivity of the power detection unit so as to go against the change of the gain in accordance with the change of the gain at the time of transmission of the first amplifier,
The gain control of the second amplifier is performed by changing the reference signal of the auto power control unit.
本発明に従うと、例えば大出力の無線送信が可能な無線送信機であっても、送信パワーが低く設定された場合には送信パワーに応じて消費電流の低減が図れるとともに、タイムスロット始端や終端で送信パワーを立ち上げたり立ち下げたりする際に急激な電流変動が発生するのを回避できるという効果がある。 According to the present invention, for example, even in a wireless transmitter capable of high-power wireless transmission, when the transmission power is set low, current consumption can be reduced according to the transmission power, and the beginning and end of the time slot Thus, it is possible to avoid sudden current fluctuations when the transmission power is raised or lowered.
以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
図1は、本発明の第1実施形態の無線装置の送信処理に関わる構成を示したブロック図である。
[First Embodiment]
FIG. 1 is a block diagram showing a configuration related to transmission processing of a wireless device according to the first embodiment of the present invention.
第1実施形態の無線装置1は、TDMA(時分割多重アクセス)方式で通信を行うとともに、例えば業務用無線機の分野で使用される大出力(例えば20〜40dBm)の無線送信を可能とするものである。また、この無線装置1は、例えば、通信規格P25_Phase2に準拠した通信動作を行うように構成されたものである。
The
通信規格P25_Phase2は、1つの周波数チャンネルに2つのタイムスロットを設定してTDMA方式で通信を行う規格であり、1つのタイムスロットが例えば30msに設定され、各タイムスロットの始端側の短い期間(例えば1ms)に、隣接するタイムスロットとの干渉を避けるためのガードタイムが設定されている。また、ACPR(隣接チャンネル漏洩電力比)が悪化しないように、ガードタイム中における送信パワーの立ち上げ或いは立ち下げの傾斜パターンについても所定の範囲に収まるように規定されている。さらに、無線基地局からのパワー制御要求に基づいて、送信パワーを複数段階(例えば定格パワーPc、Pc−3dB、9dB、15dB)に切り換え可能としたり、或いは、もっと多段に送信パワーを切り換え可能としたり要求されることもある。 The communication standard P25_Phase2 is a standard in which two time slots are set for one frequency channel and communication is performed by the TDMA system. One time slot is set to 30 ms, for example, and a short period (for example, the start side of each time slot (for example, 1 ms), a guard time for avoiding interference with adjacent time slots is set. Further, in order to prevent ACPR (adjacent channel leakage power ratio) from deteriorating, the transmission power rise or fall gradient pattern during the guard time is also defined to fall within a predetermined range. Furthermore, based on the power control request from the radio base station, the transmission power can be switched to a plurality of stages (for example, rated power Pc, Pc-3 dB, 9 dB, 15 dB), or the transmission power can be switched in more stages. Or may be required.
この無線装置1は、図1に示すように、特定周波数の搬送波を生成するための発振器(例えば、TCXO:温度補償型水晶発振器)11、PLL(Phase Locked
Loop)回路12およびVCO(電圧制御発振器)13と、発振器11やVCO13に対して情報信号により変調作用を及ぼす変調回路14と、搬送波が変調されてなる送信信号を増幅してアンテナANへ出力する複数段構成のアンプ15,16,17と、アンテナANの接続を送信側と受信側とに切り換えるスイッチ18と、通信周波数帯から外れた信号を除去するアンテナフィルタ19と、送受信動作の全体的な制御を行う制御手段としてのCPU(中央演算処理装置)20と、CPU20からのゲイン制御信号をアナログ電圧に変換するD/Aコンバータ21と、例えばアンテナフィルタ19の出力を導いて送信信号のパワーを検出するパワー検出部23と、パワー検出部23からの検出信号をデジタル値に変換してCPU20に送るA/Dコンバータ22と、制御プログラムや各種の設定データを格納する不揮発性メモリ24と、無線送信する音声信号を入力するマイクロフォン25およびA/Dコンバータ26等を備えている。なお、受信に関わる構成については図示および説明を省略する。
As shown in FIG. 1, the
Loop)
送信信号を増幅する複数段の増幅回路15〜17は、送信パワーの自動的な利得制御が行われる第2アンプとしてのAGC(自動利得制御)アンプ15と、2段目に縦続接続されたバッファアンプ16と、3段目に縦続接続されアンテナANへ送信信号を出力する第1アンプとしてのファイナルアンプ17とから構成される。
A plurality of
AGCアンプ15は、ゲイン可変型のアンプであり、CPU20からD/Aコンバータ21を介して入力されるパワー制御信号やランプ制御信号(例えば内部のFET増幅回路に供給されるゲートバイアス電圧など)によって、その利得が制御される。ランプ制御信号は、タイムスロットの開始や終了の際に送信パワーを所定の傾斜(ramp)パターンで立ち上げたり立ち下げたりするための制御信号、パワー制御信号は、無線信号の送信バースト期間中における送信パワーの制御信号である。これらはともに1本の制御線を介して出力されるゲイン制御電圧である。
The
AGCアンプ15は、その出力は通常の大きさのものでよく、そのため、ゲイン制御電圧対利得の特性はリニアな特性とすることができる。また、その消費電流はファイナルアンプ17の消費電流と比較して無視できる程度のものである。
The output of the
ファイナルアンプ17は、ゲイン可変型の大出力アンプであり、CPU20からD/Aコンバータ21を介して入力されるゲイン制御信号によって、その利得が制御される。ファイナルアンプ17は、大きな送信パワーを実現するため、例えば50dBm近くまでの出力が可能なものである。
The
ファイナルアンプ17は、上記のような大出力特性を有しているため、ゲイン制御電圧対利得の特性は、リニアな特性とすることは難しく、非線形の特性となっている。また、ファイナルアンプ17は、大きな消費電流を流して、大出力の特性を得る構成であるため、ゲインを低下させたときには、消費電流は小さくなるが、ゲインを上昇させたときには、入出力がなくても大きな消費電流が生じるという性質を有している。
Since the
不揮発性メモリ24には、ファイナルアンプ17のゲイン制御信号の値として複数段階の送信パワーにそれぞれ対応する複数の設定値と、ガードタイム中に送信パワーを所定の傾斜パターンで立ち上げおよび立ち下げるためにAGCアンプ15に出力するランプ制御信号の波形データと、無線基地局からの細かいパワー制御要求があった場合にAGCアンプ15の利得制御により対応させるためにAGCアンプ15のパワー制御の設定値を算出する演算プログラムなどが含まれている。
The
次に、この実施形態の無線装置1の動作について説明する。無線装置1は、無線信号を送信する送信動作期間と、無線信号を受信する受信動作期間とをスイッチ18により切り換える。ここでは受信動作についての説明は省略し、送信動作についてのみ説明する。
Next, the operation of the
[送信動作の概要]
無線信号の送信動作期間においては、発振器11、PLL回路12およびVCO13が動作して常に特定周波数の搬送波が生成されている。また、CPU20は、予め自己に割り当てられたタイムスロットの期間ごとにファイナルアンプ17とAGCアンプ15のゲインを送信時のレベルまで上げることで、送信信号をアンテナANに出力して無線信号を送信させる。一方、自己に割り当てられていないタイムスロットの期間にはファイナルアンプ17とAGCアンプ15のゲインを非送信時のレベルまで下げることで、アンテナANから送信される無線信号をほぼ停止させる。
[Outline of transmission operation]
During the radio signal transmission operation period, the
音声信号を無線送信する場合、CPU20は、マイクロフォン25から入力した音声信号をA/Dコンバータ26を介してサンプリングすることで音声データとして取り込み、そして、自己に割り当てられたタイムスロット期間に、この音声データを変調回路14に送る。すると、変調回路14により搬送波が変調されて変調後の送信信号がAGCアンプ15に送られる。このとき、AGCアンプ15とファイナルアンプ17のゲインは送信時のレベルになっているので、この送信信号がアンテナANから無線送信されることとなる。音声信号以外の様々なデータ送信を行う場合も、同様に、自己に割り当てられたタイムスロット期間に変調回路14に送信データが送られることで、この送信データにより変調された送信信号がAGCアンプ15とファイナルアンプ17により増幅されて無線送信されることとなる。
When the audio signal is wirelessly transmitted, the
[タイムスロットの開始時の制御動作]
図2には、無線装置1の送信時における制御内容を説明するタイムチャートを示す。同図(a)はタイムスロット、(b)はファイナルアンプ17のゲイン制御信号、(c)はAGCアンプ15のゲイン制御信号、(d)はファイナルアンプ17の出力パワーPo、(e)はファイナルアンプ17の消費電流Idd、それぞれの時間変化を示している。同図においてゲイン制御信号をより具体的にゲイン制御電圧と記している。
[Control action at time slot start]
In FIG. 2, the time chart explaining the control content at the time of transmission of the radio |
図2(a)に示すように、無線装置1には30msごとに30msのタイムスロットSaが割り当てられる。また、各タイムスロットSa,Sbの始端には、隣接するタイムスロットとの干渉を避けるために1msのガードタイムGs,Geが設けられている。無線装置1は自己に割り当てられたタイムスロットSaの始端側のガードタイムGsで送信パワーを非送信時のレベルから送信時のレベルまで立ち上げ、終端側のガードタイムGe(=次のタイムスロットSbの始端側のガードタイムGe)で送信パワーを送信時のレベルから非送信時のレベルまで立ち下げるよう規定されている。また、この送信パワーの立ち上げと立ち下げ時には、傾斜パターンが所定範囲に収まるように規定されている。
As shown in FIG. 2A, the
図2(b)に示すように、送信パワーの立ち上げ時において、CPU20は、先ず、始端側のガードタイムGsの直前の期間に、ファイナルアンプ17のゲインを非送信時のレベルから送信時のレベルまで上昇させる。
As shown in FIG. 2B, when the transmission power is raised, the
このとき、ファイナルアンプ17への入力信号のレベルはほぼゼロであるので、図2(d)に示すように、ファイナルアンプ17の出力パワーPoはほぼゼロのままである。また、ファイナルアンプ17は、大出力のアンプであり、出力パワーPoがゼロであっても、ゲインを上げることに伴って比較的大きな消費電流が生じるので、図2(e)に示すように、消費電流Iddが増加する。例えば、消費電流Iddは信号の入出力があるときの8割前後まで増加する。
At this time, since the level of the input signal to the
上記のようにファイナルアンプ17のゲインを上昇させたら、次に、CPUは、ガードタイムGsの期間中に、AGCアンプ15のゲインを所定の傾斜パターンで非送信時のレベルから送信時のレベルまで上昇させる。
When the gain of the
これにより、AGCアンプ15から送信信号が出力されるとともに、その出力レベルが所定の傾斜パターンで立ち上がる。また、このとき、ファイナルアンプ17のゲインは送信時の設定レベルにあるので、AGCアンプ15から出力された送信信号はアンプ16を介してファイナルアンプ17で一律に増幅されてアンテナANへ出力される。従って、図2(d)に示すように、ファイナルアンプ17の出力パワーPoはガードタイムGsの期間中に所定の傾斜パターンで立ち上がって、非送信時のレベルから送信時のレベルまで上昇する。
As a result, a transmission signal is output from the
また、ファイナルアンプ17の出力パワーPoが上昇することで、ファイナルアンプ17の消費電流IddもガードタイムGsの期間中に僅かに上昇する。
Further, as the output power Po of the
このようなAGCアンプ15とファイナルアンプ17のゲイン制御によって、送信バースト期間(ガードタイム後の送信期間)の直前に急激な電流変動が生じることが回避され、それにより、急激な電流変動に起因して送信バースト期間に変調精度等が悪化するといった不都合を回避することができる。
By such gain control of the
図10には、比較のために、ファイナルアンプ17のゲイン制御によって送信パワーの立ち上げや立ち下げを行った場合のタイムチャートを示す。
FIG. 10 shows a time chart when the transmission power is raised or lowered by gain control of the
図10に示すように、ガードタイムGs中にファイナルアンプ17のゲインを上昇させて送信パワーを立ち上げた場合、この短いガードタイムGsの期間中に大出力のファイナルアンプ17で大きな消費電流Iddの変動が生じる。従って、この急激な電流変動により、ガードタイムGs直後の送信バースト期間等において、他の回路に影響が生じて例えば変調精度が悪化するなどの不具合が生じる。このような不具合は、AGCアンプ15のゲインを一定にしてファイナルアンプ17のみゲイン制御して送信パワーを立ち上げた場合だけでなく、ファイナルアンプ17とAGCアンプ15とを同時にゲイン制御して送信パワーを立ち上げた場合でも、同様に生じる。
As shown in FIG. 10, when the transmission power is raised by increasing the gain of the
図2に示した、本実施形態のAGCアンプ15とファイナルアンプ17のゲイン制御処理によれば、上記の不具合を回避することができる。
According to the gain control processing of the
[タイムスロットの終了時の制御動作]
図2に示すように、自己に割り当てられたタイムスロットSaの終了の際には、先ず、CPU20は、その終端側のガードタイムGeの期間中にAGCアンプ15のゲインを所定の傾斜パターンで送信時のレベルから非送信時のレベルまで下降させる。
[Control action when time slot ends]
As shown in FIG. 2, at the end of the time slot Sa allocated to itself, first, the
これにより、AGCアンプ15の出力パワーが所定の傾斜パターンで下降する。そして、この出力がファイナルアンプ17で一律に増幅されることで、ファイナルアンプ17の出力パワーPoも上記所定の傾斜パターンで下降する。このとき、ファイナルアンプ17のゲインは変化しないが、出力パワーPoが低下することで、ファイナルアンプ17の消費電流Iddは僅かに減少する。例えば図2の例では、消費電流Iddが2割前後減少している。
As a result, the output power of the
その後、CPU20は、ガードタイムGeの直後に、ファイナルアンプ17のゲインを送信時のレベルから非送信時のレベルまで下降させる。このとき、既に、出力パワーPoはほぼゼロになっているので出力パワーPoの変化はほぼ生じないが、大出力のファイナルアンプ17のゲインが下げられることで、この期間に消費電流Iddが大きく低下する。
Thereafter, immediately after the guard time Ge, the
図10の比較例に示すように、ガードタイムGeの期間中にファイナルアンプ17のゲインを下降させて送信パワーを立ち下げた場合には、ガードタイムGeの期間中に急激な電流変動が生じてしまい、この急激な電流変動により他の回路に悪影響を及ぼしてしまうことが考えられる。一方、図2に示した本実施形態のゲイン制御処理では、送信パワー立ち下げ時の消費電流Iddの変動期間を長くとることができるため、急激な電流変動による他の回路への影響が低減される。
As shown in the comparative example of FIG. 10, when the transmission power is lowered by lowering the gain of the
[複数段階のパワー制御要求に対する制御動作]
次に、無線基地局から予め定められている複数段階のパワー制御要求があった場合の制御動作について説明する。
[Control action for multiple levels of power control requirements]
Next, a description will be given of the control operation when there are a plurality of predetermined power control requests from the radio base station.
無線基地局から複数段階のパワー制御要求がなされた場合、CPU20は、AGCアンプ15のゲイン制御の処理動作は変更せずに、ファイナルアンプ17のゲイン設定値を複数段階に切り換えることによって対応する。
When a multiple-stage power control request is made from the radio base station, the
具体的には、図2(b)に示すように、ファイナルアンプのゲイン制御信号(電圧)のハイレベル値V1を、不揮発性メモリ24に格納されている複数種類の設定値のうち、パワー制御要求に対応するものに切り換える。例えば、定格パワーPc、Pc−3dB、9dB、15dBなど、4段階のパワー制御要求がある場合、これらの各送信パワーに対応する複数種類のゲイン設定値を不揮発性メモリ24に格納しておき、これらのうちパワー制御要求の対応する設定値を読み出して、ファイナルアンプ17のゲインを制御する。
Specifically, as shown in FIG. 2B, the high level value V1 of the gain control signal (voltage) of the final amplifier is set to the power control among a plurality of types of set values stored in the
なお、複数段階のパワー制御要求に対応したファイナルアンプ17のゲイン設定値は、例えば工場出荷前の調整工程の際などに、不揮発性メモリ24に書き込んでおくことができる。調整工程においては、例えば、AGCアンプ15のゲインを通常仕様範囲の最大値とした状態で、アンテナANから送信される無線信号の送信パワーを測定しながら、ファイナルアンプ17のゲインを変化させる。そして、上記各段階のパワー制御要求に応じた送信パワーが得られたときのゲイン制御信号の値を求め、この値をゲイン設定値として不揮発性メモリ24に書き込んでおくことで、上記構成を実現することができる。
Note that the gain setting value of the
図3には、二種類の送信パワー設定時におけるファイナルアンプ17の出力パワーPoと消費電流Iddの特性を表わしたグラフを示す。同図において、“ダイヤ印”プロット線は、最大送信パワー設定時におけるファイナルアンプ17の入力パワーPin対出力パワーPoの関係を示すもの、“四角”プロット線は送信パワー−10dB設定時におけるファイナルアンプ17の入力パワーPin対出力パワーPoの関係を示すもの、“三角”プロット線は最大送信パワー設定時におけるファイナルアンプ17の入力パワーPin対消費電流Iddの関係を示すもの、“×”プロット線は送信パワー−10dB設定時におけるファイナルアンプ17の入力パワーPin対消費電流Iddの関係を示すものである。
FIG. 3 is a graph showing the characteristics of the output power Po and the current consumption Idd of the
図3の“三角”プロット線と“×”プロット線との比較から分かるように、ファイナルアンプ17のゲインを低くすると、ファイナルアンプ17の消費電流Iddは大きく減少する。一方、ファイナルアンプ17のゲインを一定としたまま入力パワーPinを低くした場合には、入力パワーPinが最大レベルの近傍では消費電流Iddも減少するが、入力パワーPinが最大レベル近傍より低い範囲では消費電流Iddは飽和してほとんど減少しない。
As can be seen from the comparison between the “triangle” plot line and the “x” plot line in FIG. 3, when the gain of the
従って、パワー制御要求により低い送信パワーで送信動作を行った場合に、この実施形態のゲイン制御のようにファイナルアンプ17のゲインを低くして対応することで、送信期間中の消費電力が送信パワーに応じて低減されるようになっている。例えば、パワー制御要求が最大パワー(例えば45dB)のときに、“ダイヤ印”プロット線や“三角”プロット線に示す特性で送信動作した場合、送信バースト期間中の消費電流は8.6Aとなる。そして、パワー制御要求により送信パワーが、例えば35dBなどに一段下げられたときには、“四角”プロット線や“×”プロット線に示す特性で送信動作させることで、送信バースト期間中の消費電流は3.0Aまで低減する。
Therefore, when a transmission operation is performed with a low transmission power in response to a power control request, the gain of the
一方、パワー制御要求により低い送信パワーで動作させる場合に、この実施形態の方式とは別に、ファイナルアンプ17を最大ゲインとしたまま、AGCアンプ15のゲインを低下させて対応させた場合、図3の“三角”プロット線に示すように、ファイナルアンプ17の消費電流Iddは入力パワーPinを低下させても途中で飽和してしまうため、消費電流は5.0A弱にしか低下しない。従って、これと比較して、本実施形態のゲイン制御の方が、送信パワーが低いときにその送信パワーに応じて消費電力が大きく低減されるのが分かる。
On the other hand, in the case of operating with low transmission power in response to a power control request, when the gain of the
[ランプ制御動作]
次に、タイムスロットの前後に送信パワーを所定の傾斜パターンで立ち上げおよび立ち下げる際のランプ制御の動作について説明する。
[Lamp control operation]
Next, the operation of lamp control when the transmission power is raised and lowered with a predetermined inclination pattern before and after the time slot will be described.
図4には、二種類の送信パワー設定(最大定格“Pc”と“Pc−15dB”)のときの送信パワーの立ち上がり波形とランプ規格を表わした波形図を示す。図5には、同設定時の送信パワーの立下り波形とランプ規格を表わした波形図を示す。 FIG. 4 is a waveform diagram showing the rising waveform of the transmission power and the lamp standard when the two types of transmission power settings (maximum ratings “Pc” and “Pc-15 dB”) are used. FIG. 5 is a waveform diagram showing the falling waveform of the transmission power and the lamp standard at the same setting.
本実施形態の通信規格においては、ACPR(隣接チャンネル漏洩電力比)が悪化しないように、ガードタイム中における送信パワーの立ち上がりや立ち下りの波形が規定されている。例えば、図4や図5の点線や実線に示すように、1msのガードタイム中にこの点線や実線より出力パワーが低くなければならないというように規定されている。また、送信パワーが複数段階に切り換えられる場合、送信パワーが大きいときには立ち上がり波形や立下り波形のレベルも全体的に高く、送信パワーが小さいときには立ち上がり波形や立下り波形のレベルも全体的に低くなるように規定されている。 In the communication standard of this embodiment, rising and falling waveforms of transmission power during the guard time are defined so that ACPR (adjacent channel leakage power ratio) does not deteriorate. For example, as shown by the dotted line and the solid line in FIGS. 4 and 5, the output power must be lower than the dotted line and the solid line during the guard time of 1 ms. Also, when the transmission power is switched to multiple levels, the rising waveform and falling waveform levels are generally high when the transmission power is high, and the rising waveform and falling waveform levels are generally low when the transmission power is low. It is prescribed as follows.
この実施形態のランプ制御処理においては、図2のタイムチャートにも示したように、ガードタイム中にファイナルアンプ17のゲインは送信時のレベルとしたまま、AGCアンプ15のゲインを所定の傾斜パターンで立ち上げおよび立ち下げることで実現している。
In the lamp control process of this embodiment, as shown in the time chart of FIG. 2, the gain of the
具体的には、図4や図5の立ち上がり波形や立下り波形に示すように、ガードタイム中にAGCアンプ15のランプ制御信号をレイズドコサイン(Raised
Cosine)波形で立ち上げ並びに立ち下げるようにすることで、送信パワーが同波形で立ち上げ並びに立ち下げられるように構成している。
Specifically, as shown in the rising waveform and the falling waveform of FIGS. 4 and 5, the ramp control signal of the
The transmission power is configured to rise and fall with the same waveform by raising and lowering with the (Cosine) waveform.
また、上述したように、この実施形態のゲイン制御では、パワー制御要求に応じて送信パワーが段階的に切り換えられる場合があるが、この段階的な送信パワーの切り換えはファイナルアンプ17のゲインを複数段階に切り換えることで対応している。このとき、AGCアンプ15のゲインは通常仕様範囲の最大ゲインのときに、パワー制御要求に応じた送信パワーが得られるように、ファイナルアンプ17の複数段階のゲインが設定されている。
Further, as described above, in the gain control of this embodiment, there is a case where the transmission power is switched in a stepwise manner according to the power control request. It corresponds by switching to the stage. At this time, when the gain of the
そのため、パワー制御要求に応じて送信パワーが切り換えられた場合でも、この実施形態のランプ制御処理では、AGCアンプ15に同一レベルで且つ同一の傾斜パターンのランプ制御信号が出力されることで、各段階の送信パワーに応じた出力パワーPoの立ち上げならびに立ち下げが実現されるようになっている。さらに、AGCアンプ15をランプ制御する際には、どの段階の送信パワーに設定されていても、AGCアンプ15のダイナミックレンジを最大幅で使用して送信パワーの立ち上げ並びに立ち下げを行うことができるようになっている。
Therefore, even when the transmission power is switched in response to the power control request, in the lamp control processing of this embodiment, the lamp control signals having the same level and the same inclination pattern are output to the
例えば、図4,図5に示すように、定格パワー“Pc”時を基準としたときに、AGCアンプ15のダイナミックレンジを最大幅に使用して、定格パワー“Pc”時のランプ規格(図4,図5の点線)を満たす出力パワーの立ち上がり(図4の“四角”プロット線)と立下り(図5の“四角”プロット線)が実現されるよう、AGCアンプ15を構成したとする。この構成で、送信パワーが“Pc−15dB”に下げられたとする。このとき、ファイナルアンプ17のゲインは同量(15dB)だけ下げられるので、AGCアンプ15に基準時と同一波形のランプ制御信号を出力することで、AGCアンプ15のダイナミックレンジを最大幅に使用して、“Pc−15dB”時の出力パワーの立ち上がりと立下り(図4,図5の“ダイヤ印”プロット線)を得ることができる。
For example, as shown in FIGS. 4 and 5, when the rated power “Pc” is used as a reference, the dynamic range of the
図11と図12には、比較のために、AGCアンプ15のみで送信パワーの切換制御とランプ制御とを行った場合の波形図を示す。
For comparison, FIGS. 11 and 12 show waveform diagrams when the transmission power switching control and the lamp control are performed only by the
図11,図12に示すように、AGCアンプ15のゲイン制御によって送信パワーの切換制御も行う構成とした場合、例えば、定格パワー“Pc”時にはランプ規格を満たすランプ制御が可能であっても、パワー制御要求に応じて送信パワーが切り換わった場合に、ランプ制御のためにAGCアンプ15のダイナミックレンジを最大幅で使用することができなくなる。そのため、図11,図12の“ダイヤ印”プロット線に示すように、送信パワーが“Pc−15dB”に下げられた場合には、ランプ制御に使用できるAGCアンプ15のダイナミックレンジは25dB分となり、出力パワーを−40dBより低くできなくなるなど、“Pc−15dB”時のランプ規格を満たすことができなくなる。
As shown in FIGS. 11 and 12, when the transmission power switching control is also performed by the gain control of the
本実施形態のランプ制御によれば、このような不都合は回避され、複数段階の送信パワーに切り換えられた場合でも、リニア特性を有するAGCアンプ15のダイナミックレンジを最大幅に使用して、各送信パワーに対応したランプ規格を満たすように、送信パワーの立ち上げと立ち下げ制御を行うことができる。
According to the lamp control of the present embodiment, such inconvenience is avoided, and even when the transmission power is switched to a plurality of stages, the dynamic range of the
[多段階のパワー制御要求に対する制御動作]
通信規格によっては、予め定められた複数段階のパワー制御要求だけでなく、これら各段階の中間の送信パワーを実現するよう、パワー制御要求がなされる場合もありえる。このような場合、ファイナルアンプ17のゲイン制御信号対利得の特性は非線形特性になっているため、ファイナルアンプ17のゲイン制御によって即座に対応するのはやや困難である。
[Control action for multi-stage power control requirements]
Depending on the communication standard, there may be a case where a power control request is made so as to realize not only a plurality of predetermined power control requests but also an intermediate transmission power between these steps. In such a case, since the gain control signal to gain characteristic of the
本実施形態のゲイン制御では、このような場合を想定して、予め定められた複数段階の送信パワーの中間にパワー制御要求がなされた場合、ファイナルアンプ17の複数段階のゲイン制御に、AGCアンプ15のリニア制御を併合させることで、このパワー制御要求に応えるように構成されている。
In the gain control of the present embodiment, assuming such a case, when a power control request is made in the middle of a predetermined plurality of transmission powers, the AGC amplifier is used for the multiple amplifier gain control of the
ここで、AGCアンプ15のリニア制御とは、この中間のパワー制御要求を満たすためにAGCアンプ15に必要とされる利得の低減を、CPU20がパワー制御信号の値をこの利得低減量の割合分だけ低く設定しなおすことにより、実現するものである。AGCアンプ15のパワー制御信号対利得の特性はリニア特性であるので、必要な利得低減量の割合がわかれば、最大ゲインを得るパワー制御信号の値にこの割合を乗算することで、必要な利得低減が得られるパワー制御信号の値を算出することができる。CPU20は、無線基地局から送られてきたパワー制御要求の値と、予め設定されている複数段階の送信パワーのうち大きい方で一番近い送信パワーの値とから、パワー制御要求に応じるAGCアンプ15のパワー制御信号の値を算出することができる。
Here, the linear control of the
そして、ファイナルアンプ17に対しては、予め設定された複数段階の送信パワーのうち、パワー制御要求の値に一番近い大きい方の送信パワーに対応したゲイン制御信号を出力する一方、AGCアンプ15に対しては、上記演算により求められたパワー制御信号の値に対応させたランプ制御信号やパワー制御信号を出力することで、両者のゲイン制御が併合されて、上記複数段階の中間にあるパワー制御要求に応じた送信パワーを実現することが可能になっている。
The
また、上記のように多段階のパワー制御要求に対応する場合には、パワー検出部23の検出信号をCPU20が読み込むことで、実際の送信パワーがパワー制御要求の値からずれていないかソフトウェア的な比較処理が行われる。そして、実際の送信パワーにずれがある場合には、CPU20がこのずれがなくなるようにAGCアンプ15のリニア制御により補正処理を行って、例えば、次のスロットからパワー制御要求に正確に対応した送信パワーを出力することが可能になっている。
Further, in the case of responding to the multi-level power control request as described above, the
以上のように、この実施形態の無線装置1によれば、TDMA方式の無線送信を、業務用無線で用いられるような大出力の送信パワーにより行う場合でも、自己に割り当てられたタイムスロットの直前直後に急激な電流変動が生じてしまうのを回避でき、それにより、他の回路の動作が乱されて例えば変調精度が悪化してしまうといった不都合を防ぐことができる。
As described above, according to the
また、パワー制御要求等により送信パワーを複数段階に切り換える場合には、大出力のファイナルアンプ17のゲイン制御によって送信パワーが複数段階に切り換えられる構成なので、送信パワーが低く設定されているときには送信パワーに応じて無線装置1全体の消費電流を低減することが可能になっている。
In addition, when the transmission power is switched to a plurality of stages in response to a power control request or the like, the transmission power is switched to a plurality of stages by the gain control of the high-
また、予め定められている複数段階の送信パワーの切換はファイナルアンプ17のゲイン制御により行い、ガードタイムGs,Geにおける送信パワーの立ち上げおよび立ち下げはAGCアンプ15のランプ制御により行う構成なので、AGCアンプ15のダイナミックレンジを最大幅で使用して所定の傾斜パターンで送信パワーの立ち上げおよび立ち下げを実現できるといった効果や、送信パワーの段階的な切換えに関係なく、同一レベルで且つ同一波形のランプ制御信号により、通信規格を満たす送信パワー立ち上げおよび立ち下げを実現できるという効果が得られる。
In addition, since the transmission power is switched in a plurality of stages determined by the gain control of the
さらに、予め定められている複数段階の送信パワーの切り換えだけでなく、これら各段階の中間の送信パワーへパワー制御要求がある場合には、CPU20によるAGCアンプ15のリニア制御やパワー検出に基づくソフトウェア処理による自動的なパワー制御によって、多段のパワー制御要求にも正確に対応することができるという効果も得られる。
Further, in addition to switching of transmission power at a plurality of stages determined in advance, when there is a power control request to transmission power between these stages, software based on linear control and power detection of the
[第2実施形態]
図6には、本発明の第2実施形態の無線装置1Aの送信処理に関わる構成を示したブロック図を、図7には、図6のAPC部28とパワー検出部23aの詳細を表わした回路ブロック図を示す。
[Second Embodiment]
FIG. 6 is a block diagram illustrating a configuration related to transmission processing of the
第2実施形態の無線装置1Aは、パワー検出に基づくAGCアンプ15の自動パワー制御を、第1実施形態のようにCPU20により行うのではなく、APC(自動パワー制御)部28のハードウェア構成によって実現するものである。その他の構成は第1実施形態とほぼ同様であり、1実施形態と同様の構成については説明を省略する。第2実施形態の無線装置1Aは、例えば、搬送波の振幅成分が変化しない変調方式を採用している場合など、送信信号のパワー検出を瞬時に行うことのできる構成に適用できるものである。
The
この実施形態の無線装置1Aにおいては、パワー検出部23aからの検出信号はAPC部28に入力され、また、AGCアンプ15のゲイン制御信号(例えばFET増幅回路のゲートバイアス電圧)はAPC部28から出力されるように構成される。また、CPU20からは、D/Aコンバータ21を介してAPC部28に参照信号が入力されるようになっている。この参照信号は、APC部28内でパワー検出信号の増減を検出するためにパワー検出信号の比較基準として参照される信号である。
In the
また、この実施形態の無線装置1Aにおいては、上記の参照信号のレベルがCPU20の制御によって昇降されることで、APC部28からAGCアンプ15へ出力されるゲイン制御信号のレベルも昇降するようになっている。例えば、ガードタイム期間中にCPU20から特定の傾斜パターンで変化する波形の参照信号がAPC部28に出力されることで、AGCアンプ15のゲインを所定の傾斜パターンで立ち上げおよび立ち下げるランプ制御信号がAPC部28からAGCアンプ15へ出力される。また、送信バースト期間中にCPU20によって参照信号のレベルが制御されることで、AGCアンプ15の送信バースト期間中のゲインを決定するパワー制御信号がAPC部28からAGCアンプ15へ出力されるようになっている。
In the
APC部28は、図7に示すように、D/Aコンバータ21からの参照信号を非反転入力端子に受け、且つ、パワー検出部23aからの検出信号を反転入力端子に受けるオペアンプOP1と、オペアンプOP1の非反転端子に接続されたバイアス抵抗R1、ブリーダ抵抗R2および入力抵抗R3と、オペアンプOP1を反転増幅動作させるための負帰還抵抗R4および入力抵抗R5等から構成される。そして、このオペアンプOP1の出力がAGCアンプ15のゲイン制御信号(例えばパワー制御信号やランプ制御信号)として出力されるように構成されている。
As shown in FIG. 7, the
このような構成のAPC部28によれば、オペアンプOP1が、D/Aコンバータ21からの参照信号とパワー検出信号との差分をとることで、この参照信号とパワー制御信号とが所定比率でつり合うように、AGCアンプ15のゲイン制御電圧が増減される。このような作用によって、D/Aコンバータ21からの参照信号が上昇すればパワー検出信号が所定比率で上昇するようにAGCアンプ15のゲインが増加され、D/Aコンバータ2
1からの参照信号が下降すればパワー検出信号が所定比率で下降するようにAGCアンプ15のゲインが低減されるように動作する。
According to the
When the reference signal from 1 decreases, the gain of the
上記のパワー検出部23aは、ファイナルアンプ17のゲイン制御と連動して、当該ゲインと反比例して検出感度が変化するような構成となっている。検出感度を変化させる構成は、例えば、図7に示すように、パワー検出回路232の前段にアッテネータ231を設け、ファイナルアンプ17のゲイン制御信号により、ファイナルアンプ17のゲインが上昇したときに、それに比例してアッテネータ231の減衰率が上がるように設定することで実現可能とされる。
The
上記のような構成の第2実施形態の無線装置1Aによれば、図2に示したのと同様に、CPU20からファイナルアンプ17へゲイン制御信号の出力が行われるとともに、CPU20からAPC部28へ出力される参照信号のレベルが昇降されることで、APC部28からAGCアンプ15へ第1実施形態と同様のランプ制御信号やパワー制御信号が出力されてガードタイム期間中の送信パワーの立ち上げや立ち下げ、並びに、送信バースト期間中の送信パワーの制御が行われることとなる。
According to the
また、送信パワーの制御は、ハードウェアの帰還動作によって高速に行われるため、何らかの変動によって出力パワーが増減した場合でも、APC部28の作用によって速やかにAGCアンプ15のゲインが調整されて、CPU20からの参照信号に応じた送信パワーが安定的に得られるようになっている。
Further, since the transmission power is controlled at high speed by hardware feedback operation, even when the output power increases or decreases due to some fluctuation, the gain of the
また、ファイナルアンプ17のゲインが段階的に切り換えられたときには、そのゲインの増減に反比例するようにパワー検出部23aの検出感度が変化するので、ファイナルアンプ17の段階的なゲインの切り換えに関係なく、CPU20は同一レベルで且つ同一波形の参照信号を出力することで、AGCアンプ15のゲイン制御を行うことが可能になっている。例えば、送信パワーの立ち上げと立ち下げ時には、同一レベルで且つ同一波形で変化する参照信号を出力することで、複数段階の送信パワーにおける各通信規格に従った送信パワーの立ち上がりと立ち下りを実現できる。また、ファイナルアンプ17のゲインが段階的に切り換えられた場合でも、アッテネータ231の減衰率がゲインの変化を打ち消すように変化するので、パワー検出回路232のダイナミックレンジが狭まったり、D/Aコンバータ21の分解能が低下したりするような影響が生じない。それにより、ノイズに強いパワー制御が可能となる。
Further, when the gain of the
以上のように、第2実施形態の無線装置1Aによれば、第1実施形態の作用効果に加えて、AGCアンプ15のオートパワー制御をハードウェアにより実現しているので、送信パワーに変化を与える何らかの回路変動が生じても、送信パワーを速やかに安定させることができるという効果がある。
As described above, according to the
なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。
例えば、上記実施形態では、特定の通信規格に準拠した無線装置を例示したが、TDMA方式で無線信号を送信するものであればどのような通信規格のものも含まれる。また、ファイナルアンプ(第1アンプ)の出力パワーのレベルも、上記実施形態で示した値は一例に過ぎない。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, in the above-described embodiment, a wireless device conforming to a specific communication standard has been exemplified, but any communication standard may be included as long as a wireless signal is transmitted by the TDMA method. Also, the value of the output power level of the final amplifier (first amplifier) shown in the above embodiment is merely an example.
また、上記実施形態では、ガードタイムGs,Geの直前直後の期間に、ファイナルアンプ(第1アンプ)のゲインを上昇、下降させるゲイン制御方法を示したが、例えば、図4や図5に示したように、ガードタイムの始端や終端の一部期間にAGCアンプ(第2アンプ)のゲインが非送信時のレベルまで低下している期間(例えば図4の“0〜400μ秒”や、図5の“600〜1000μ秒”)がある場合には、この期間を含めた期間にファイナルアンプのゲインを上昇、下降させるようにしても良い。 In the above embodiment, the gain control method for increasing and decreasing the gain of the final amplifier (first amplifier) in the period immediately before and after the guard times Gs and Ge is shown. For example, FIG. 4 and FIG. As described above, a period during which the gain of the AGC amplifier (second amplifier) is reduced to a non-transmission level (for example, “0 to 400 μs” in FIG. 5 ”(600 to 1000 μsec)), the gain of the final amplifier may be increased or decreased during this period.
その他、送信信号の変調方式や具体的な回路構成など、実施の形態に示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。 In addition, the details shown in the embodiment, such as a modulation scheme of a transmission signal and a specific circuit configuration, can be appropriately changed without departing from the gist of the invention.
1,1A 無線装置
11 TCXO
12 PLL回路
13 VCO
14 変調回路
15 AGCアンプ(第2アンプ)
17 ファイナルアンプ(第1アンプ)
20 CPU(制御手段)
21 D/Aコンバータ
22 A/Dコンバータ
23,23a パワー検出部
24 不揮発性メモリ
28 APC部
231 アッテネータ
232 パワー検出回路
OP1 オペアンプ
AN アンテナ
1,
12
14
17 Final amplifier (first amplifier)
20 CPU (control means)
21 D / A converter 22 A /
Claims (5)
送信信号をアンテナに出力するゲイン可変型の第1アンプと、
この第1アンプより前段に設けられ送信信号を前記第1アンプへ送るゲイン可変型の第2アンプと、
前記第1アンプと前記第2アンプのゲイン制御を行う制御手段と、
を備え、
前記制御手段は、
前記タイムスロットの開始の際は、先ず、前記第1アンプのゲインを上昇させ、その後、前記第2アンプのゲインを上昇させて、無線信号を送信させ、
前記タイムスロットの終了の際は、先ず、前記第2アンプのゲインを下降させ、その後、前記第1アンプのゲインを下降させて、無線信号の送信を停止させ、
前記タイムスロットの終端側のガードタイム中に、前記第2アンプのゲインを送信時のレベルから非送信時のレベルまで下降させ、
前記第2アンプのゲインを非送信時のレベルまで下降させた後の期間に、前記第1アンプのゲインを送信時のレベルから非送信時のレベルまで下降させる構成であることを特徴とする無線送信機。 In a wireless transmitter configured to transmit a wireless signal in a predetermined time slot,
A variable gain first amplifier for outputting a transmission signal to an antenna;
A variable gain second amplifier that is provided before the first amplifier and transmits a transmission signal to the first amplifier;
Control means for performing gain control of the first amplifier and the second amplifier;
With
The control means includes
At the start of the time slot, first increase the gain of the first amplifier, and then increase the gain of the second amplifier to transmit a radio signal,
At the end of the time slot, first, the gain of the second amplifier is lowered, and then the gain of the first amplifier is lowered to stop transmission of radio signals,
During the guard time on the terminal side of the time slot, the gain of the second amplifier is decreased from the transmission level to the non-transmission level,
A radio having a configuration in which the gain of the first amplifier is lowered from the level at the time of transmission to the level at the time of non-transmission in a period after the gain of the second amplifier is lowered to the level at the time of non-transmission. Transmitter.
前記第2アンプのゲインを設定された傾斜パターンで変化させる構成であり、
この制御手段による前記第2アンプのゲイン制御によって、前記タイムスロットの始端或いは終端に設けられたガードタイムに無線信号の送信パワーが所定の傾斜パターンで立ち上げ或いは立ち下げられることを特徴とする請求項1記載の無線送信機。 The control means includes
The gain of the second amplifier is changed with a set inclination pattern,
The transmission power of a radio signal is raised or lowered in a predetermined inclination pattern at a guard time provided at the start or end of the time slot by the gain control of the second amplifier by the control means. Item 2. The wireless transmitter according to Item 1.
前記第1アンプのゲインを予め設定された複数段階の何れかのゲインに切り換える構成であり、
この制御手段による前記第1アンプのゲイン制御によって無線信号の送信パワーが段階的に切り換え可能になっていることを特徴とする請求項1記載の無線送信機。 The control means includes
The gain of the first amplifier is switched to any one of a plurality of preset gains,
2. The radio transmitter according to claim 1, wherein the transmission power of the radio signal can be switched stepwise by gain control of the first amplifier by the control means.
前記制御手段は、
前記パワー検出部の検出出力に基づいて該検出出力が所定の値になるように前記第2アンプの送信時のゲイン調整を行う構成であることを特徴とする請求項1記載の無線送信機。 A power detection unit for detecting the power of the transmission signal output to the antenna;
The control means includes
The radio transmitter according to claim 1, wherein gain adjustment at the time of transmission of the second amplifier is performed based on a detection output of the power detection unit so that the detection output becomes a predetermined value.
前記パワー検出部の検出信号と参照信号とがつり合うように前記第2アンプのゲインを自動的に調整する自動パワー制御部と、
を備え、
前記制御手段は、
前記第1アンプの送信時のゲインの変化に伴って当該ゲインの変化と逆行するように前記パワー検出部の検出感度を変化させるとともに、
前記オートパワー制御部の参照信号を変化させることで前記第2アンプのゲイン制御を行う構成であることを特徴とする請求項1記載の無線送信機。 A power detector that detects the power of the transmission signal output to the antenna and has a variable detection sensitivity;
An automatic power control unit that automatically adjusts the gain of the second amplifier so that a detection signal of the power detection unit and a reference signal are balanced;
With
The control means includes
While changing the detection sensitivity of the power detection unit so as to go against the change of the gain in accordance with the change of the gain at the time of transmission of the first amplifier,
2. The wireless transmitter according to claim 1, wherein gain control of the second amplifier is performed by changing a reference signal of the auto power control unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012100996A JP2012170132A (en) | 2012-04-26 | 2012-04-26 | Radio transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012100996A JP2012170132A (en) | 2012-04-26 | 2012-04-26 | Radio transmitter |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008264089A Division JP5018727B2 (en) | 2008-10-10 | 2008-10-10 | Wireless transmitter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012170132A true JP2012170132A (en) | 2012-09-06 |
Family
ID=46973710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012100996A Pending JP2012170132A (en) | 2012-04-26 | 2012-04-26 | Radio transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012170132A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016082293A (en) * | 2014-10-10 | 2016-05-16 | 株式会社デンソー | Communication apparatus |
JP2016131289A (en) * | 2015-01-13 | 2016-07-21 | 株式会社東芝 | Amplifier circuit |
-
2012
- 2012-04-26 JP JP2012100996A patent/JP2012170132A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016082293A (en) * | 2014-10-10 | 2016-05-16 | 株式会社デンソー | Communication apparatus |
JP2016131289A (en) * | 2015-01-13 | 2016-07-21 | 株式会社東芝 | Amplifier circuit |
US9559655B2 (en) | 2015-01-13 | 2017-01-31 | Kabushiki Kaisha Toshiba | Amplification circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7177607B2 (en) | Controlling transmission mode on basis of power in preceding time slot | |
KR970000157B1 (en) | Power amplifier saturation detection and correction method and apparatus | |
US6463264B1 (en) | Wireless communication apparatus and transmission power control method in wireless communication apparatus | |
US8457570B2 (en) | System and method for power control calibration and a wireless communication device | |
KR101231316B1 (en) | Rf power amplifier system with impedance modulation | |
US8873676B2 (en) | Transmitter gain control and calibration | |
US8841967B2 (en) | Noise optimized envelope tracking system for power amplifiers | |
GB2352896A (en) | Power amplifier with supply adjusted in dependence on peak and mean output to contol adjacent and alternate channel power | |
JP5018727B2 (en) | Wireless transmitter | |
JP2012170132A (en) | Radio transmitter | |
JP2005333674A (en) | Control device of amplifier and control method therefor | |
US8447247B2 (en) | Apparatus and method for compensating Tx gain in wireless communication system | |
JP6204222B2 (en) | Wireless communication device | |
US6904268B2 (en) | Low noise linear transmitter using cartesian feedback | |
JP3197467B2 (en) | Transmission output control device | |
JP5226608B2 (en) | Power adjustment method | |
EP2091144A1 (en) | Transmission method and transmission device | |
JP2010041100A (en) | Distortion compensation device, radio communication device, distortion compensation method, and radio communication method | |
KR20060032287A (en) | Apparatus and method for compensating rf transmission power in the mobile communication terminal | |
JP2018196020A (en) | Power control device and transmitter | |
JP7063191B2 (en) | Wireless transmitter | |
JP3933165B2 (en) | Transmission power control apparatus and method, computer program for transmission power control apparatus, and radio transmitter | |
JP3041149B2 (en) | Power control device | |
KR20010035821A (en) | Apparatus and method for compensating rf module gain using measured rf module noise | |
JP2004282594A (en) | Power controller and power control method |