JP2012168105A - Four wire temperature measuring resistor input circuit - Google Patents

Four wire temperature measuring resistor input circuit Download PDF

Info

Publication number
JP2012168105A
JP2012168105A JP2011030879A JP2011030879A JP2012168105A JP 2012168105 A JP2012168105 A JP 2012168105A JP 2011030879 A JP2011030879 A JP 2011030879A JP 2011030879 A JP2011030879 A JP 2011030879A JP 2012168105 A JP2012168105 A JP 2012168105A
Authority
JP
Japan
Prior art keywords
constant current
constant
temperature
resistance
input circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011030879A
Other languages
Japanese (ja)
Other versions
JP5523370B2 (en
Inventor
Maki Mitsui
真樹 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2011030879A priority Critical patent/JP5523370B2/en
Publication of JP2012168105A publication Critical patent/JP2012168105A/en
Application granted granted Critical
Publication of JP5523370B2 publication Critical patent/JP5523370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a four wire temperature measuring resistor input circuit which, in spite of having a simple structure, can accurately measure the temperature, also has a disconnection detection function, and is highly accurate without having errors due to the ambient environment and secular change and then without having errors due to disconnection detection.SOLUTION: In spite of having the simple structure in which two constant current sources for temperature measurement are provided, two constant resistances for reference are connected in series, a switch for switching constant current for temperature measurement is provided, and furthermore three constant current sources for disconnection detection are provided, a highly accurate resistance value (measured value of a temperature sensor) with small errors can be measured and the disconnection detection can also be performed in consideration of the ambient environment, the secular change and the error difference of the constant current for the disconnection detection or the like.

Description

この発明は、高精度に温度を測定することができる4線式測温抵抗体を用いた4線式測温抵抗体入力回路の断線検出に関するものである。   The present invention relates to disconnection detection of a 4-wire resistance thermometer input circuit using a 4-wire resistance thermometer that can measure temperature with high accuracy.

例えば、工場やプラント等において温度を測定する必要がある場合、通常、温度センサとして白金測温抵抗体やサーミスタを用いて温度に対応する増幅器出力電圧を得ることにより温度を測定する温度測定回路が使用される。   For example, when it is necessary to measure temperature in a factory, plant, etc., a temperature measuring circuit for measuring temperature is usually obtained by obtaining an amplifier output voltage corresponding to temperature using a platinum resistance thermometer or thermistor as a temperature sensor. used.

この際、化学プラント等の、温度を高精度、高速で測定することが必要とされる現場においては、通常、温度センサとして測温抵抗体が用いられる。測温抵抗体は周囲の温度に相応する抵抗値を示す。したがって、この抵抗値は、前記測温抵抗体に定電流源から一定の電流を供給することにより、前記抵抗の値が電圧に変換され、これが演算回路に入力される。演算回路は測温抵抗体による電圧を増幅して出力する。このため、演算回路の出力電圧は前記測温抵抗体の周囲の温度に対応した値になる。   At this time, a resistance temperature detector is usually used as a temperature sensor in a field where a temperature needs to be measured with high accuracy and high speed, such as a chemical plant. The resistance temperature detector shows a resistance value corresponding to the ambient temperature. Therefore, the resistance value is converted into a voltage by supplying a constant current from a constant current source to the resistance temperature detector, and this value is input to the arithmetic circuit. The arithmetic circuit amplifies the voltage by the resistance temperature detector and outputs it. For this reason, the output voltage of the arithmetic circuit becomes a value corresponding to the temperature around the resistance temperature detector.

この測温抵抗体には、2線式、3線式、4線式といった種類があるが、温度センサのリード線の抵抗による誤差と定電流の変動による誤差を取り除くために、特に高精度な測定が必要とされる現場では、4線式測温抵抗体入力回路が使用されている。   There are two types of resistance temperature detectors, such as 2-wire, 3-wire, and 4-wire types. However, in order to eliminate errors due to temperature sensor lead wire resistance and constant current fluctuations, it is particularly highly accurate. In the field where measurement is required, a 4-wire RTD input circuit is used.

図1は、一般的な4線式測温抵抗体入力回路の構成を示す概略図である。ここで、定電流源1は外部端子21を介して温度測定用抵抗であるPt100センサ(RTD)3に接続されており、定電流源1からの定電流をRTD3に供給する。また、RTD3はその両端が外部端子22及び23を介して増幅加算回路5に接続されており、そのRTD3の抵抗変化に対応した電圧を読み取って増幅加算回路5で増幅し、A/Dコンバータ(図示せず)で変換して出力する。なお、RTD3は外部端子24を介してオフセット用の抵抗4に接続され、接地されている。しかしながら、このような従来の4線式測温抵抗体入力回路(例えば、特許文献1等)では、断線を検知することができないという問題があった。   FIG. 1 is a schematic diagram showing a configuration of a general four-wire RTD input circuit. Here, the constant current source 1 is connected to a Pt100 sensor (RTD) 3 that is a resistance for temperature measurement via an external terminal 21, and supplies a constant current from the constant current source 1 to the RTD 3. The RTD 3 has both ends connected to the amplifying and adding circuit 5 via the external terminals 22 and 23. The voltage corresponding to the resistance change of the RTD 3 is read and amplified by the amplifying and adding circuit 5, and the A / D converter ( (Not shown) for conversion. The RTD 3 is connected to the offset resistor 4 via the external terminal 24 and grounded. However, such a conventional 4-wire resistance thermometer input circuit (for example, Patent Document 1) has a problem that it cannot detect disconnection.

一方、例えば特許文献2には、断線検出も可能な3線式温度測定回路が開示されている。図2は、この3線式温度測定回路の構成を示す概略図である。この回路は、2個の定電流源61,62が、それぞれ外部端子22及び23を介して温度測定用抵抗であるPt100センサ(RTD)3に接続されており、その2個の定電流回路が配線抵抗をキャンセルするのと同時に、断線も検出できるものであるが、測定電流の値が大きいために配線抵抗に現れる抵抗差をキャンセルできないため、高精度な測定が難しいという問題があった。   On the other hand, for example, Patent Document 2 discloses a three-wire temperature measurement circuit capable of detecting disconnection. FIG. 2 is a schematic diagram showing the configuration of this three-wire temperature measurement circuit. In this circuit, two constant current sources 61 and 62 are connected to a Pt100 sensor (RTD) 3 which is a resistance for temperature measurement via external terminals 22 and 23, respectively. Although the disconnection can be detected simultaneously with canceling the wiring resistance, there is a problem that it is difficult to perform high-precision measurement because the resistance difference appearing in the wiring resistance cannot be canceled because the value of the measurement current is large.

そこで、図1に示すような一般的な4線式測温抵抗体入力回路において、断線検出用の定電流源を別途備え、Pt100センサ(RTD)3の配線(外部端子22及び23の配線)に接続する構成が考えられる。図3は、そのような断線検出機能付き4線式測温抵抗体入力回路の構成を示す概略図である。この回路は、温度測定のための定電流源1とは別に、断線検出用の定電流源71,72を備えるものである。   Therefore, in the general four-wire RTD input circuit as shown in FIG. 1, a constant current source for detecting disconnection is separately provided, and wiring of the Pt100 sensor (RTD) 3 (wiring of the external terminals 22 and 23). A configuration for connecting to the terminal is conceivable. FIG. 3 is a schematic diagram showing the configuration of such a 4-wire RTD input circuit with a disconnection detection function. This circuit includes constant current sources 71 and 72 for detecting disconnection separately from the constant current source 1 for temperature measurement.

特開2002−257877号公報JP 2002-257877 A 特開平9−105681号公報JP-A-9-105681

しかしながら、従来のような4線式測温抵抗体入力回路においては、温度特性による抵抗の誤差やダイオードの誤差、回路のオフセット、基準電圧の誤差など、周囲の温度変化や部品の経年変化などにより種々の誤差が生じてしまい、本来期待されていたような高精度かつ安定した状態で温度を測定することができない、という課題に加え、断線を検出できないという課題があった。また、断線検出機能を付けた場合には、3線式測温抵抗体入力回路の場合とは異なり、断線検出用定電流が温度測定用定電流に合成され、温度測定の際に誤差を生じてしまうという課題があった。   However, in a conventional 4-wire RTD input circuit, resistance error due to temperature characteristics, diode error, circuit offset, reference voltage error, etc., due to ambient temperature changes and component aging In addition to the problem that various errors occur and the temperature cannot be measured in a highly accurate and stable state as originally expected, there is a problem that a disconnection cannot be detected. When the disconnection detection function is added, unlike the case of the 3-wire RTD input circuit, the disconnection detection constant current is combined with the temperature measurement constant current, resulting in an error in temperature measurement. There was a problem that it would end up.

この発明は、上記のような課題を解決するためになされたものであり、簡単な構造でありながら精度よく温度を測定することができ、かつ、断線検出機能も備えた上で、周囲環境や経年変化による誤差がなく、かつ、断線検出による誤差もない高精度な4線式測温抵抗体入力回路を提供することを目的としている。   The present invention has been made to solve the above-described problems, and can measure temperature with high accuracy while having a simple structure, and also has a disconnection detection function. An object of the present invention is to provide a highly accurate 4-wire resistance thermometer input circuit that is free from errors due to secular change and free from errors due to disconnection detection.

上記目的を達成するため、この発明は、温度測定用の測温抵抗体に接続される4線式測温抵抗体入力回路において、少なくとも2個のレファレンス用の定抵抗と、前記測温抵抗体及び前記レファレンス用の定抵抗に定電流を供給する少なくとも2個の温度測定用の定電流源と、前記少なくとも2個の温度測定用の定電流源の接続を前記測温抵抗体側又は前記レファレンス用の定抵抗側に切り換えるクロススイッチと、を備えた4線式測温抵抗体入力回路であって、さらに少なくとも3個の断線検出用の定電流源を備えることを特徴とする。   To achieve the above object, the present invention provides a four-wire resistance thermometer input circuit connected to a temperature measuring resistor for temperature measurement, and includes at least two constant resistors for reference, and the temperature measuring resistor. And at least two temperature measuring constant current sources for supplying a constant current to the reference constant resistance, and the connection of the at least two temperature measuring constant current sources to the temperature measuring resistor side or the reference And a cross switch for switching to the constant resistance side of the four-wire temperature measuring resistor input circuit, further comprising at least three constant current sources for detecting disconnection.

また、この発明は、前記少なくとも2個のレファレンス用の定抵抗は、直列に接続されていることを特徴とする。   Further, the present invention is characterized in that the at least two reference constant resistors are connected in series.

この発明によれば、2個の温度測定用の定電流源を備え、2個のレファレンス用の定抵抗を直列に接続するとともに、温度測定用の定電流を切り換えるスイッチを設け、さらに3個の断線検出用の定電流源を備えたという簡単な構造でありながら、周囲環境や経年変化、及び、断線検出用定電流の誤差分なども考慮して、誤差の少ない高精度な抵抗値(温度センサの測定値)を計測することができるとともに、断線検出も行うことができる。   According to the present invention, two constant current sources for temperature measurement are provided, two constant resistors for reference are connected in series, a switch for switching the constant current for temperature measurement is provided, and three further constant current sources are provided. Although it has a simple structure with a constant current source for disconnection detection, it takes into account the surrounding environment, changes over time, and errors in the constant current for disconnection detection. Sensor measurement value) can be measured, and disconnection detection can also be performed.

従来の一般的な4線式測温抵抗体入力回路の構成を示す概略図である。It is the schematic which shows the structure of the conventional general 4-wire type resistance temperature detector input circuit. 従来の断線検出機能付き3線式測温抵抗体入力回路の構成を示す概略図である。It is the schematic which shows the structure of the conventional 3 wire type resistance temperature detector input circuit with a disconnection detection function. 従来の断線検出機能付き4線式測温抵抗体入力回路の構成を示す概略図である。It is the schematic which shows the structure of the conventional 4-wire type resistance temperature detector input circuit with a disconnection detection function. この発明における断線検出機能付き4線式測温抵抗体入力回路の構成を示す概略図である。It is the schematic which shows the structure of the 4-wire type resistance temperature detector input circuit with a disconnection detection function in this invention. 工場での出荷検査時の処理を示すフローチャートである。It is a flowchart which shows the process at the time of the shipping inspection in a factory. 現場での通常処理を示すフローチャートである。It is a flowchart which shows the normal process on the spot. 断線箇所と断線判断条件を示す対応テーブルである。It is a correspondence table which shows a disconnection location and a disconnection judgment condition.

実施の形態1.
図4は、この発明における断線検出機能付き4線式測温抵抗体入力回路の構成を示す概略図である。この入力回路は、内部に回路誤差補正用の2個のレファレンス用の定抵抗81,82(R1,R2)を直列に接続し、2個の温度測定用の定電流源11,12と、定電流源11からの定電流1を外部に接続した温度測定用抵抗であるPt100センサ3側に流すか、内部に直列に接続された2個のレファレンス用の定抵抗81,82(R1,R2)側に流すかを切り換えることができるクロススイッチ9とを備えている。定電流1をPt100センサ3側に流すように(すなわち外部に)クロススイッチ9を設定した場合には、定電流1は外部端子21を介してPt100センサ3に流れ、外部端子24を介してオフセット用抵抗4を介しグランドに流れる。また、定電流2は2個のレファレンス用の定抵抗81,82(R1,R2)に流れ、オフセット用抵抗4を介しグランドに流れる。
Embodiment 1 FIG.
FIG. 4 is a schematic diagram showing the configuration of a four-wire RTD input circuit with a disconnection detection function in the present invention. In this input circuit, two reference constant resistors 81 and 82 (R1, R2) for circuit error correction are connected in series, two constant current sources 11 and 12 for temperature measurement, and a constant current source. The constant current 1 from the current source 11 is supplied to the Pt100 sensor 3 which is a temperature measurement resistor connected to the outside, or two constant resistors 81 and 82 (R1, R2) for reference connected in series inside. And a cross switch 9 that can switch the flow to the side. When the cross switch 9 is set so that the constant current 1 flows to the Pt100 sensor 3 side (that is, externally), the constant current 1 flows to the Pt100 sensor 3 via the external terminal 21 and is offset via the external terminal 24. It flows to the ground through the resistor 4 for use. The constant current 2 flows through the two constant resistors 81 and 82 (R1, R2) for reference, and flows to the ground via the offset resistor 4.

また、Pt100センサ3の両端にあらわれる電圧をチャンネル0(CH0)、2個のレファレンス用の定抵抗81,82によるHigh側基準抵抗R1+R2の両端にあらわれる電圧をチャンネル1(CH1)、レファレンス用の定抵抗81によるLow側基準抵抗R1の両端にあらわれる電圧をチャンネル2(CH2)により読み取るマルチプレクサ10を備え、それぞれの抵抗の両端にあらわれる電圧を増幅加算回路5で取り込み、レファレンス用の基準電圧(図示せず)が接続されているA/Dコンバータ(図示せず)に入力して変換する。なお、Pt100センサ3の両端は外部端子22及び23を介してマルチプレクサ10に接続されている。   Further, the voltage appearing at both ends of the Pt100 sensor 3 is channel 0 (CH0), the voltage appearing at both ends of the high-side reference resistance R1 + R2 by the two constant resistances 81 and 82 for reference is channel 1 (CH1), and the constant for reference is used. A multiplexer 10 is provided for reading the voltage appearing at both ends of the low-side reference resistor R1 by the resistor 81 through the channel 2 (CH2), and the voltage appearing at both ends of each resistor is taken in by the amplifying / adding circuit 5, and a reference voltage for reference (not shown) Are input to an A / D converter (not shown) to which the device is connected. Note that both ends of the Pt100 sensor 3 are connected to the multiplexer 10 via external terminals 22 and 23.

さらに、断線検出用の定電流源71,72,73を、マイナス電圧入力線(外部端子23の配線)上、プラス電圧入力線(外部端子22の配線)上、及び、レファレンス用の定抵抗82へ温度測定用の定電流を供給する配線上に接続する。なお、定電流源71,72から流す断線検出用定電流i1,i2は、配線抵抗による測定誤差をキャンセルするとともに、断線時には電圧を上昇させるものであり、定電流源73から流す断線検出用定電流i3は、定電流i2がPt100センサ3に流れて誤差になる分を補正するためのものである。また、これらの断線検出用定電流i1〜i3は、配線抵抗(電線の精度)のバラツキによる影響をおさえるために、温度測定用定電流1,2に比べて非常に小さい微弱電流であり(定電流1,2の1/10や1/100などの値であり)、かつ、i1=i2=i3であるものとする。   Furthermore, the constant current sources 71, 72, 73 for detecting disconnection are connected to a negative voltage input line (wiring for the external terminal 23), a positive voltage input line (wiring for the external terminal 22), and a constant resistance 82 for reference. Connect to the wiring that supplies a constant current for temperature measurement. The disconnection detection constant currents i1 and i2 flowing from the constant current sources 71 and 72 cancel the measurement error due to the wiring resistance and increase the voltage when the disconnection occurs. The current i3 is for correcting the amount of error caused by the constant current i2 flowing through the Pt100 sensor 3. In addition, these disconnection detection constant currents i1 to i3 are very small currents (constant currents) compared to the temperature measurement constant currents 1 and 2 in order to suppress the influence of variations in wiring resistance (wire accuracy). It is assumed that i1 = i2 = i3).

次に、工場での出荷検査時の処理について、図5のフローチャートにしたがって説明する。図5は、工場での出荷検査時に、温度一定のもとでレファレンス用の定抵抗81,82の抵抗値R1,R2を求める処理を示すフローチャートである。   Next, processing at the time of shipping inspection in a factory will be described with reference to the flowchart of FIG. FIG. 5 is a flowchart showing a process for obtaining the resistance values R1 and R2 of the reference constant resistances 81 and 82 at a constant temperature at the time of shipping inspection in a factory.

まず最初に、定電流源11が外部端子21に接続される側にクロススイッチ9を(定電流1を外部に)設定する(ステップST31)。この際、通常では温度測定用抵抗であるPt100センサ3が接続される箇所に、抵抗値が既知の検査用抵抗Raを接続する(ステップST32)。そして、その検査用抵抗Raの両端にあらわれる電圧をマルチプレクサのCH0に切り替えて増幅加算回路5で増幅し、A/D変換して読み取る(ステップST33)。なお、この電圧を読み取る作業は、十分熱平衡がとれるまで待ってから行うものとする。その後、検査用抵抗Raに代えて、Raとは抵抗値が異なる既知の検査用抵抗Rbを接続し(ステップST34)、前述と同様の処理を行う(ステップST35)。   First, the cross switch 9 is set on the side where the constant current source 11 is connected to the external terminal 21 (the constant current 1 is set to the outside) (step ST31). At this time, an inspection resistor Ra having a known resistance value is connected to a location to which the Pt100 sensor 3 that is a temperature measurement resistor is normally connected (step ST32). Then, the voltage appearing at both ends of the inspection resistor Ra is switched to CH0 of the multiplexer, amplified by the amplifying and adding circuit 5, and A / D converted and read (step ST33). Note that this voltage reading operation is performed after a sufficient thermal equilibrium is achieved. Thereafter, instead of the inspection resistor Ra, a known inspection resistor Rb having a resistance value different from Ra is connected (step ST34), and the same processing as described above is performed (step ST35).

この結果、回路補正の一次式:Y=aX+b(Yは抵抗Rの値、Xは抵抗Rの両端にあらわれる電圧をA/D変換した後の値、aは傾き、bはオフセット)について、検査用抵抗Raを用いた場合と検査用抵抗Rbを用いた場合の2つの式が得られるため、未知数であるa及びbを求めることができる(ステップST36)。なお、ここで求められたa,bはそれぞれ、断線検出用定電流i1〜i3の誤差分を考慮した上での値となる。   As a result, a linear expression of circuit correction: Y = aX + b (Y is a value of the resistor R, X is a value after A / D conversion of a voltage appearing at both ends of the resistor R, a is a slope, and b is an offset) is inspected. Since two equations are obtained when the use resistor Ra is used and when the inspection resistor Rb is used, the unknown numbers a and b can be obtained (step ST36). In addition, a and b calculated | required here become a value after considering the error part of the constant currents i1-i3 for disconnection detection, respectively.

次に、2個のレファレンス用の定抵抗81,82の抵抗値R1,R2を測定するために、定電流源11がレファレンス用の定抵抗82に接続される側にクロススイッチ9を(定電流1を内部に)切り換える(ステップST37)。このとき、Y=aX+bの係数a及びbは先ほど求めた値を用いることができるので、Low側基準抵抗R1の両端にあらわれる電圧をマルチプレクサ10のCH2に切り替えて増幅し、A/D変換する(ステップST38)。そして、一次式:Y=aX+bから、R1の値を求めることができる(ステップST39)。また、同様にしてHigh側基準抵抗R1+R2の両端にあらわれる電圧をマルチプレクサ10のCH1に切り替えて増幅し、A/D変換する(ステップST40)ことによって、R1+R2の値を求めることができるので、レファレンス用の定抵抗82の値R2も算出することができる(ステップST41)。   Next, in order to measure the resistance values R1 and R2 of the two constant resistances 81 and 82 for reference, the cross switch 9 is connected to the side where the constant current source 11 is connected to the constant resistance 82 for reference (constant current). 1 is switched to the inside (step ST37). At this time, since the coefficients a and b of Y = aX + b can use the values obtained earlier, the voltage appearing at both ends of the low-side reference resistor R1 is switched to CH2 of the multiplexer 10 to be amplified and A / D converted ( Step ST38). And the value of R1 can be calculated | required from primary expression: Y = aX + b (step ST39). Similarly, the voltage appearing at both ends of the high-side reference resistor R1 + R2 is switched to CH1 of the multiplexer 10 and amplified and A / D converted (step ST40), so that the value of R1 + R2 can be obtained. The value R2 of the constant resistance 82 can also be calculated (step ST41).

これらレファレンス用の定抵抗81,82(R1,R2)は、高精度な精密抵抗であって、周囲温度の変化によって値が変わってしまうことがない(変化が十分小さい)ものを使用しているので、この時点で測定されたR1及びR2の値を不揮発性メモリに記録しておく(ステップST42)。なお、前述の一次式:Y=aX+bの係数a及びbについては、周囲温度などによって変化する値であるため、現場ではその都度測定する必要があるので、出荷検査時に求めたa及びbは現場での温度測定時には使用しない。   These constant resistances 81 and 82 (R1, R2) for reference are high-precision precision resistors that do not change in value due to changes in ambient temperature (changes are sufficiently small). Therefore, the values of R1 and R2 measured at this time are recorded in the nonvolatile memory (step ST42). Note that the coefficients a and b of the above-mentioned primary expression: Y = aX + b are values that change depending on the ambient temperature and the like, and therefore need to be measured each time at the site. Do not use when measuring temperature in

次に、現場における通常処理について、図6のフローチャートにしたがって説明する。図6は、レファレンス用の定抵抗81,82の抵抗値R1,R2は正確な値がわかっているという前提のもとで、現場において、一次式:Y=aX+bの傾きaとオフセットbとを求め、温度測定用抵抗であるPt100センサ3の抵抗値から温度を測定するための処理及び断線検出のための処理を示すフローチャートである。   Next, normal processing in the field will be described with reference to the flowchart of FIG. FIG. 6 shows the assumption that the resistance values R1 and R2 of the reference constant resistors 81 and 82 are accurate, and the linear expression Y = aX + b slope a and offset b are calculated on site. It is the flowchart which shows the process for calculating | requiring and measuring temperature from the resistance value of Pt100 sensor 3 which is calculated | required and resistance for temperature measurement, and the process for disconnection detection.

まず最初に、前述のステップST42で不揮発性メモリに記録しておいたレファレンス用の定抵抗81,82の抵抗値R1,R2を読み込む(ステップST43)。そして、定電流源11がレファレンス用の定抵抗82に接続される側にクロススイッチ9を(定電流1を内部に)切り換える(ステップST44)。この状態で、Low側基準抵抗R1及びHigh側基準抵抗R1+R2の両端にあらわれる電圧をそれぞれ読み取って増幅し、A/D変換する(ステップST45,46)。そして、それらの値及びR1,R2を使って一次式:Y=aX+bの未知数a及びbを求める(ステップST47)。なお、ここで求める未知数は2つあるため、レファレンス用の定抵抗が1つだけでは2つの未知数a及びbを求めることはできないので、レファレンス用の定抵抗は必ず2つ以上必要である。   First, the resistance values R1 and R2 of the reference constant resistors 81 and 82 recorded in the nonvolatile memory in the above-described step ST42 are read (step ST43). Then, the cross switch 9 is switched (the constant current 1 is inside) to the side where the constant current source 11 is connected to the reference constant resistor 82 (step ST44). In this state, the voltages appearing at both ends of the low-side reference resistor R1 and the high-side reference resistor R1 + R2 are read and amplified, respectively, and A / D converted (steps ST45 and 46). Then, using these values and R1 and R2, the unknowns a and b of the primary expression: Y = aX + b are obtained (step ST47). Since there are two unknowns to be obtained here, it is impossible to obtain the two unknowns a and b with only one constant resistance for reference. Therefore, two or more constant resistances for reference are necessary.

その後、温度測定用抵抗であるPt100センサ3の抵抗値から温度を測定するために、定電流源11が外部端子21に接続される側にクロススイッチ9を(定電流1を外部に)切り換える(ステップST48)。その後、Pt100センサ3の両端にあらわれる電圧をマルチプレクサ10のCH0により読み取ることにより測定する(ステップST49)。   Thereafter, in order to measure the temperature from the resistance value of the Pt100 sensor 3 which is a temperature measurement resistor, the cross switch 9 is switched to the side where the constant current source 11 is connected to the external terminal 21 (the constant current 1 is set to the outside). Step ST48). Thereafter, the voltage appearing at both ends of the Pt100 sensor 3 is measured by reading CH0 of the multiplexer 10 (step ST49).

ここで、ステップST49により読み取った電圧の値により、4線式測温抵抗体入力回路の断線検出を行う(ステップST50)。図7は、回路の各線が断線した場合の、断線箇所と、電圧の測定値による断線判断条件を示す対応テーブルである。ここで、説明の便宜上、図4における電流供給線(外部端子21の配線)をA線、プラス電圧入力線(外部端子22の配線)をB線、マイナス電圧入力線(外部端子24の配線)をC線、及び、グランド線(外部端子24の配線)をD線と呼ぶこととし、入力レンジは100〜150オーム間であることとし、定電流1,2を1mAであるものとする。このとき、温度測定用抵抗であるPt100センサ3の両端にあらわれる電圧の測定値は、正常な状態であれば100〜150mVである。   Here, the disconnection of the 4-wire RTD input circuit is detected based on the voltage value read in step ST49 (step ST50). FIG. 7 is a correspondence table showing the disconnection location and the disconnection determination condition based on the measured voltage value when each line of the circuit is disconnected. Here, for convenience of explanation, the current supply line (wiring of the external terminal 21) in FIG. 4 is A line, the positive voltage input line (wiring of the external terminal 22) is B line, and the negative voltage input line (wiring of the external terminal 24) in FIG. Are referred to as C line and ground line (wiring of external terminal 24) as D line, the input range is between 100 to 150 ohms, and constant currents 1 and 2 are 1 mA. At this time, the measured value of the voltage appearing at both ends of the Pt100 sensor 3 which is a temperature measurement resistor is 100 to 150 mV in a normal state.

そして、A線が断線した場合には、0mVが検出されるので、アンダーレンジ(100mVより下)となる。また、B線が断線した場合には、150mVよりもかなり高い値となり、プラスオーバーレンジ(150mVより上)となる。逆に、C線が断線した場合には、0mVよりもかなり低い値となり、アンダーレンジ(100mVより下)となる。また、D線が断線した場合には、0mVが検出されるので、アンダーレンジ(100mVより下)となる。その他、いろいろな組み合わせが考えられるが、例えば、B線とC線とが同時に断線した場合には、0mVが検出されるので、アンダーレンジ(100mVより下)となる。   When the A line is disconnected, 0 mV is detected, so that the underrange (below 100 mV) is reached. Further, when the B line is disconnected, the value is considerably higher than 150 mV, and a plus overrange (above 150 mV) is obtained. On the contrary, when the C line is disconnected, the value is considerably lower than 0 mV, which is an underrange (below 100 mV). Further, when the D line is disconnected, 0 mV is detected, so that the underrange (below 100 mV) is obtained. In addition, various combinations are conceivable. For example, when the B line and the C line are disconnected at the same time, 0 mV is detected, which results in an underrange (below 100 mV).

すなわち、ステップST49により読み取った電圧の測定値が、アンダーレンジ(100mVよりも小さい値)またはプラスオーバーレンジ(150mVよりも大きい値)である場合には、いずれかの線が断線していることが検出できるのである。   That is, if the measured voltage value read in step ST49 is underrange (a value smaller than 100 mV) or plus overrange (a value larger than 150 mV), one of the wires may be disconnected. It can be detected.

一方、抵抗値の算出のためには、ステップST49で読み取った電圧値を増幅し、A/D変換する(ステップST51)。そして、ステップST47で求めたa,bを使った一次式:Y=aX+bに入力することにより、Pt100センサ3の抵抗値を算出する(ステップST52)。   On the other hand, in order to calculate the resistance value, the voltage value read in step ST49 is amplified and A / D converted (step ST51). Then, the resistance value of the Pt100 sensor 3 is calculated by inputting the linear expression Y = aX + b using a and b obtained in step ST47 (step ST52).

なお、一次式:Y=aX+bの傾きaとオフセットbは、周囲温度などの変化及び断線検出用定電流i1〜i3の誤差分に応じて変化してしまう値であるため、高精度な温度測定が求められる4線式測温抵抗体入力回路における温度測定の誤差をなくすために、前述のステップST44〜ST52の処理は、温度測定の度に毎回行われるものである。ただし、上記a及びbの算出回数については、所定の周期ごとに行うようにしてもよいし、使用される環境等を考慮してある程度間引くことができる。   In addition, since the slope a and the offset b of the primary equation: Y = aX + b are values that change according to changes in the ambient temperature and the errors of the disconnection detection constant currents i1 to i3, highly accurate temperature measurement In order to eliminate the temperature measurement error in the four-wire RTD input circuit that requires the above, the processes in steps ST44 to ST52 described above are performed each time the temperature is measured. However, the number of times a and b are calculated may be determined every predetermined period, or may be thinned out to some extent in consideration of the environment used.

ここで、図4における定電流源12及び定電流2の働きについて説明する。前述の工場での出荷検査時の処理(図5参照)や現場での通常処理(図6参照)において、もし仮に、温度測定用の定電流源としては定電流源11のみであり、定電流1のみを温度測定用抵抗であるPt100センサ3側に(外部に)接続するか、レファレンス用の定抵抗81,82側に(内部に)接続するかを切り換えて使用するとしたら、その切り換えの際に毎回、定常状態になるまで待つ必要性が生じてしまう。すなわち、定電流源12からの定電流2は、定電流1が接続されていない側にもいつも電流を流しておくことにより、ウォーミングアップのための時間を短縮するとともに、安定した電流供給を行うことを目的とするものである。   Here, functions of the constant current source 12 and the constant current 2 in FIG. 4 will be described. In the above-described processing at the time of shipping inspection at the factory (see FIG. 5) and normal processing at the site (see FIG. 6), the constant current source 11 is the only constant current source for temperature measurement. If only 1 is connected to the Pt100 sensor 3 side which is a temperature measuring resistor (externally) or connected to the constant resistances 81 and 82 side for reference (internally) Every time, it becomes necessary to wait until a steady state is reached. In other words, the constant current 2 from the constant current source 12 is always supplied to the side to which the constant current 1 is not connected, thereby shortening the warm-up time and supplying a stable current. It is intended.

より具体的に説明すると、自己発熱はQ=IRであるが、例えば、定電流源が1つ(定電流源11のみ)であり、Pt100センサ3の熱放散定数が2mW/°Cで、測定電流が0.001A、100オームの場合、温度に換算すると自己発熱により上昇する温度は50mKである。数十mKという精度の高精度な温度測定の場合に、このように熱平衡が不安定な状態での検出温度は、誤差そのものであり使用することができないものである。 More specifically, although self-heating is Q = I 2 R, for example, there is one constant current source (only the constant current source 11), and the heat dissipation constant of the Pt100 sensor 3 is 2 mW / ° C. When the measurement current is 0.001 A and 100 ohms, the temperature that rises due to self-heating when converted to temperature is 50 mK. In the case of high-precision temperature measurement with an accuracy of several tens of mK, the detected temperature in such a state where the thermal equilibrium is unstable is an error itself and cannot be used.

一方、この発明のように、2個の温度測定用の定電流源11及び12を使用する場合、それぞれの差であるマッチングは当然精度に影響するものの、一般的なあまり精度の高くない部品を定電流源に用いたとしても、定電流源11及び12のマッチング誤差は3%程度であり問題とはならない。そして、Pt100センサ3の熱放散定数が2mW/°Cで、計測電流が1mAの場合、温度誤差量は0.045mKとなる。この値は非常に小さいため、無視できる値である。このように2個の温度測定用の定電流源11及び12を用いることにより、ウォーミングアップできているためにすぐに測定を開始することができ、安定して高精度な温度測定を行うことができるのである。   On the other hand, when two constant current sources 11 and 12 for temperature measurement are used as in the present invention, the matching which is the difference between them naturally affects the accuracy, but a general non-accurate component is required. Even if it is used as a constant current source, the matching error between the constant current sources 11 and 12 is about 3%, which is not a problem. When the heat dissipation constant of the Pt100 sensor 3 is 2 mW / ° C and the measurement current is 1 mA, the temperature error amount is 0.045 mK. This value is very small and can be ignored. Thus, by using the two constant current sources 11 and 12 for temperature measurement, since warming up is possible, the measurement can be started immediately, and stable and highly accurate temperature measurement can be performed. It is.

以上のように、この発明によれば、2つの温度測定用の定電流源とスイッチとにより安定した電流供給状態を保ちつつ、一次式:Y=aX+bの傾きaとオフセットbとを毎回求めているために、その測定時の周囲温度や部品の経年変化などの影響、及び、断線検出用定電流i1〜i3の誤差分も考慮したa及びbを用いて温度測定を行うことができるので、2個の温度測定用の定電流源を備え、2個のレファレンス用の定抵抗を直列に接続するとともに、定電流を切り換えるスイッチを設け、さらに3個の断線検出用の定電流源を備えたという簡単な構造でありながら、周囲環境や経年変化、及び、断線検出用定電流の誤差分なども考慮して、誤差の少ない高精度な抵抗値(温度センサの測定値)を計測することができるとともに、断線検出も行うことができる。   As described above, according to the present invention, while maintaining a stable current supply state by the two constant current sources for temperature measurement and the switch, the linear equation: Y = aX + b slope a and offset b are obtained every time. Therefore, it is possible to perform temperature measurement using a and b taking into account the influence of ambient temperature at the time of measurement, aging of parts, and errors of disconnection detection constant currents i1 to i3. Two constant current sources for temperature measurement are provided, two constant resistors for reference are connected in series, a switch for switching the constant current is provided, and three constant current sources for detecting disconnection are further provided. It is possible to measure highly accurate resistance values (temperature sensor measurement values) with few errors in consideration of the surrounding environment, secular change, and errors in constant current for disconnection detection. Able to detect disconnection It can be also carried out.

なお、この発明の実施の形態においては、レファレンス用の定抵抗を直列に2つ接続し、温度測定用の定電流源も2つとしたが、レファレンス用の定抵抗を並列に接続する場合には、温度測定用の定電流源を3つにすることにより、同様の効果を得ることができる。しかしながら、その場合には断線検出用の定電流源は4つ必要となる。また、レファレンス用の定抵抗の数は2つ以上であればいくつでもよいが、それに応じて定電流源の数も増やす必要が生じるため、部品点数やコストの観点から、この発明の実施の形態のようにレファレンス用の定抵抗を2つ、温度測定用の定電流源も2つ、断線検出用の定電流源は3つとするのが最適である。   In the embodiment of the present invention, two constant resistances for reference are connected in series and two constant current sources for temperature measurement are used. However, when the constant resistance for reference is connected in parallel, The same effect can be obtained by using three constant current sources for temperature measurement. However, in that case, four constant current sources for detecting disconnection are required. Further, the number of reference constant resistors may be any number as long as it is two or more. However, since the number of constant current sources needs to be increased accordingly, from the viewpoint of the number of parts and cost, the embodiment of the present invention. As described above, it is optimal to use two constant resistors for reference, two constant current sources for temperature measurement, and three constant current sources for disconnection detection.

また、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。   Further, in the present invention, any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted within the scope of the invention.

1,11,12,61,62 定電流源(温度測定用の定電流源)
21,22,23,24 外部端子
3 測定用のPt100センサ
4 オフセット用の抵抗
5 増幅加算回路
71,72,73 断線検出用の定電流源
81,82 レファレンス用の定抵抗
9 クロススイッチ
10 マルチプレクサ
1, 11, 12, 61, 62 Constant current source (constant current source for temperature measurement)
21, 22, 23, 24 External terminal 3 Pt100 sensor for measurement 4 Resistor for offset 5 Amplifying and adding circuit 71, 72, 73 Constant current source for disconnection detection 81, 82 Constant resistance for reference 9 Cross switch 10 Multiplexer

Claims (2)

温度測定用の測温抵抗体に接続される4線式測温抵抗体入力回路において、
少なくとも2個のレファレンス用の定抵抗と、
前記測温抵抗体及び前記レファレンス用の定抵抗に定電流を供給する少なくとも2個の温度測定用の定電流源と、
前記少なくとも2個の温度測定用の定電流源の接続を前記測温抵抗体側又は前記レファレンス用の定抵抗側に切り換えるクロススイッチと、
を備えた4線式測温抵抗体入力回路であって、
さらに少なくとも3個の断線検出用の定電流源を備えることを特徴とする4線式測温抵抗体入力回路。
In the 4-wire RTD input circuit connected to the RTD for temperature measurement,
At least two constant resistors for reference;
At least two temperature measuring constant current sources for supplying a constant current to the resistance temperature detector and the reference constant resistance;
A cross switch for switching connection of the at least two constant current sources for temperature measurement to the resistance temperature detector side or the reference constant resistance side;
A four-wire RTD input circuit comprising:
A four-wire resistance thermometer input circuit further comprising at least three constant current sources for detecting disconnection.
前記少なくとも2個のレファレンス用の定抵抗は、直列に接続されていることを特徴とする請求項1記載の4線式測温抵抗体入力回路。   The four-wire RTD input circuit according to claim 1, wherein the at least two reference constant resistors are connected in series.
JP2011030879A 2011-02-16 2011-02-16 4-wire RTD input circuit Active JP5523370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030879A JP5523370B2 (en) 2011-02-16 2011-02-16 4-wire RTD input circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011030879A JP5523370B2 (en) 2011-02-16 2011-02-16 4-wire RTD input circuit

Publications (2)

Publication Number Publication Date
JP2012168105A true JP2012168105A (en) 2012-09-06
JP5523370B2 JP5523370B2 (en) 2014-06-18

Family

ID=46972402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030879A Active JP5523370B2 (en) 2011-02-16 2011-02-16 4-wire RTD input circuit

Country Status (1)

Country Link
JP (1) JP5523370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169568A (en) * 2018-01-31 2018-06-15 淮安信息职业技术学院 Milliohm resistance measuring circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169568A (en) * 2018-01-31 2018-06-15 淮安信息职业技术学院 Milliohm resistance measuring circuit

Also Published As

Publication number Publication date
JP5523370B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
Rudtsch et al. Calibration and self-validation of thermistors for high-precision temperature measurements
ES2705433T3 (en) Method for temperature drift compensation of temperature measurement device using thermocouple
US10209143B2 (en) Thermo wire testing circuit
JP6344101B2 (en) Gas detector
CN110006554B (en) Thermometer calibration device and method
CN113503988B (en) Temperature sensor calibration method and system and temperature sensor
JP5523371B2 (en) 4-wire RTD input circuit
JP2016161276A (en) Current sensor circuit
JP5523370B2 (en) 4-wire RTD input circuit
JP2007527990A (en) Method and configuration for temperature calibration
CN103592056A (en) Temperature calibration instrument based on temperature differences
JP5579097B2 (en) 4-wire RTD input circuit
JP5437654B2 (en) Temperature measuring device
JP2012198037A (en) Temperature drift correction device
US9074943B2 (en) Production-test die temperature measurement
JPH09203667A (en) Temperature detecting circuit
JPH102807A (en) Thermocouple measuring device
JP2021092487A (en) Gas sensor
JP2006105870A (en) Temperature sensor and method of compensating temperature sensor
JP7306259B2 (en) gas sensor
JP5511120B2 (en) Gas concentration detector
JP3210222B2 (en) Temperature measuring device
CN117091712A (en) Manganese copper temperature testing method and device for IR46 Internet of things meter
Walker Recent advances in resistance thermometry readouts
JP2004257790A (en) Measuring method of gas physical property value

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150