JP2012165287A - Optical signal quality monitoring apparatus and method - Google Patents

Optical signal quality monitoring apparatus and method Download PDF

Info

Publication number
JP2012165287A
JP2012165287A JP2011025446A JP2011025446A JP2012165287A JP 2012165287 A JP2012165287 A JP 2012165287A JP 2011025446 A JP2011025446 A JP 2011025446A JP 2011025446 A JP2011025446 A JP 2011025446A JP 2012165287 A JP2012165287 A JP 2012165287A
Authority
JP
Japan
Prior art keywords
polarization
signal
power
optical
quality monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011025446A
Other languages
Japanese (ja)
Other versions
JP5635923B2 (en
Inventor
Masahiro Suzuki
昌弘 鈴木
Kosicky Bartolomeu
コッシツキ バルトロメル
Hidehiko Takara
秀彦 高良
Kunihiko Mori
邦彦 森
Ayako Iwaki
亜弥子 岩城
Takuya Ohara
拓也 大原
Shigeki Aizawa
茂樹 相澤
Masato Tomizawa
将人 富沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011025446A priority Critical patent/JP5635923B2/en
Publication of JP2012165287A publication Critical patent/JP2012165287A/en
Application granted granted Critical
Publication of JP5635923B2 publication Critical patent/JP5635923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide monitoring of optical signal quality by measuring the quality of each polarization signal against a signal with the same frequency and using a simple configuration without need of an external modulator.SOLUTION: The present invention includes: training signal generation means that generates a different periodic training signal at each polarization and transmission means that transmits a polarization multiplexed signal with a training signal given, which are installed on the transmission side. The present invention further includes: polarization separation means that separates the signal received from the transmission means into specific polarization and first and second power measurement means that measures the power of the polarization-separated signal, which are installed on the reception side.

Description

本発明は、偏波多重された光信号の品質管理を行うための光信号品質監視装置及び方法に係り、特に、X及びY偏波のOSNR(Optical Signal Noise Ratio)またはX−Y偏波間のPDL(Polarization Dependent Loss)をモニタするための光信号品質監視装置及び方法に関する。   The present invention relates to an optical signal quality monitoring apparatus and method for performing quality control of polarization multiplexed optical signals, and in particular, between OSNR (Optical Signal Noise Ratio) or X-Y polarization of X and Y polarization. The present invention relates to an optical signal quality monitoring apparatus and method for monitoring PDL (Polarization Dependent Loss).

近年マルチメディアサービスの普及とICT (Information and Communication Technology)サービスの利用拡大に伴って基幹ネットワークを流れるトラフィックは年々増加の一途をたどっている。増加し続けるトラフィックをドライブする次世代の光通信技術としてデジタルコヒーレント技術が現在注目を浴びている。すでに商用化されている40 Gbps WDM (Wavelength Division Multiplexing)システムでは伝送路中に発生する光信号の歪みを補正するため、分散マネージメントや分散補償器などが広く用いられている。しかしながら100 Gbps超級のシステムではタイムスロットが狭くなり相対的な影響が大きくなるため、従来の分散補償技術では補償量及び補償精度に限界があった。そのため前記デジタルコヒーレント技術を導入することで、デジタル信号処理による伝送路中の歪みを推定及び補正することで高精度かつ広範囲の分散補償を行うことが可能になった。また前記デジタルコヒーレント技術を用いることで位相推定、偏波分離を信号処理により行うことが可能になったため、従来実現が困難であった多値変調や偏波多重などといった技術が広く用いられるようになった。次期100 GbpsシステムではDP-QPSK (Dual Polarization Quadrature Phase Shift Keying)やDP-DQPSK (Dual Polarization Differential Quadrature Phase Shift Keying)といった多値変調と偏波多重の組み合わせを用いることにより、シンボルレートを抑えつつ100 Gbpsクラスの伝送を可能にしている。DP-QPSKの場合、4相の位相状態によって示される2ビットの情報を直交する偏波に載せて伝送するため、シンボルレートは25 Gbpsとなり、光及び電気部品に必要な帯域を低減し、波長分散、偏波モード分散等の各種伝送制限要因に対する耐力を向上させることが可能である。   In recent years, with the spread of multimedia services and the expansion of the use of ICT (Information and Communication Technology) services, traffic flowing through backbone networks has been increasing year by year. Digital coherent technology is currently attracting attention as the next generation optical communication technology that drives the ever-increasing traffic. In a 40 Gbps WDM (Wavelength Division Multiplexing) system that has already been commercialized, dispersion management, a dispersion compensator, and the like are widely used to correct distortion of an optical signal generated in a transmission path. However, since the time slot becomes narrow and the relative influence becomes large in a system exceeding 100 Gbps, the conventional dispersion compensation technique has a limit in the compensation amount and the compensation accuracy. Therefore, by introducing the digital coherent technology, it is possible to perform dispersion compensation with high accuracy and wide range by estimating and correcting distortion in the transmission path due to digital signal processing. In addition, phase estimation and polarization separation can be performed by signal processing by using the digital coherent technology, so that technologies such as multilevel modulation and polarization multiplexing, which have been difficult to realize in the past, are widely used. became. The next 100 Gbps system uses a combination of multi-level modulation and polarization multiplexing, such as DP-QPSK (Dual Polarization Quadrature Phase Shift Keying) and DP-DQPSK (Dual Polarization Differential Quadrature Phase Shift Keying), to reduce the symbol rate. Gbps class transmission is possible. In the case of DP-QPSK, since the 2-bit information indicated by the four-phase phase state is transmitted on orthogonal polarization, the symbol rate is 25 Gbps, reducing the bandwidth required for optical and electrical components, and reducing the wavelength It is possible to improve the tolerance to various transmission limiting factors such as dispersion and polarization mode dispersion.

一方で直交する2つの偏波に信号を乗せ伝送させた場合、偏波状態に依存する損失(PDL : Polarization Dependent Loss)が伝送路内で生じる。直交する同一周波数のキャリア光に信号を重畳し伝送するため、各偏波が受けるPDLを光の領域で測定すること困難である。しかしながら今後100 Gbpsシステムの実用化に向け、PDLに起因する伝送品質の劣化や故障の切り分けを行う必要がある。   On the other hand, when signals are transmitted with two orthogonal polarizations, a loss (PDL: Polarization Dependent Loss) depending on the polarization state occurs in the transmission path. Since signals are superimposed on the orthogonal carrier light having the same frequency and transmitted, it is difficult to measure the PDL received by each polarization in the light region. However, it is necessary to isolate transmission quality degradation and failure caused by PDL for practical application of 100 Gbps systems in the future.

従来技術では、キャリア光の周波数を偏波チャンネルごとに異なる周波数で変調することにより、受信側にてデータ変調光信号の変調帯域幅内の全域にわたって、単位光周波数ごとの強度を抽出することによって各偏波の品質をモニタリングしている。また、各偏波に異なる周波数でトーン変調をかけ、受信装置にてO/E変換後トーン変調の周波数に対応したスペクトル成分をフィルタ等で切り出すことにより各偏波の強度をそれぞれ測定する方法がある(例えば、特許文献1参照)。   In the prior art, by modulating the frequency of the carrier light at a different frequency for each polarization channel, the receiving side extracts the intensity for each unit optical frequency over the entire area within the modulation bandwidth of the data modulated optical signal. The quality of each polarization is monitored. Also, there is a method of measuring the intensity of each polarization by applying tone modulation to each polarization at a different frequency and cutting out the spectrum component corresponding to the frequency of tone modulation after O / E conversion by a receiving device. Yes (see, for example, Patent Document 1).

特開2010-135937号公報JP 2010-135937 JP

従来技術ではキャリア光の周波数を偏波チャンネルごとに異なる周波数で変調しているため、偏波チャネルごとに異なる周波数で変調が可能な変調器が必要になる。また通常の偏波多重信号は同一周波数でそれぞれの偏波チャネルが変調されるため、提案されている構成をそのまま通常のシステムに適用することはできない。また前記特許文献1の技術では送信側にて伝送する信号にトーン変調を重畳するため伝送信号にペナルティが発生してしまう。ここで、ペナルティとは、Back-to-Back信号と比べてトーン変調後の信号がどれだけ劣化しているのかを示すものである。また、上記の特許文献1の光信号品質モニタはトーン変調用の変調器を別途各偏波に対して備える必要があるため、小型化及び省電力化といった点で課題が残る。   In the prior art, since the frequency of the carrier light is modulated with a different frequency for each polarization channel, a modulator capable of modulating with a different frequency for each polarization channel is required. Further, since each polarization channel is modulated at the same frequency in a normal polarization multiplexed signal, the proposed configuration cannot be applied to a normal system as it is. Further, in the technique disclosed in Patent Document 1, since the tone modulation is superimposed on the signal transmitted on the transmission side, a penalty occurs in the transmission signal. Here, the penalty indicates how much the signal after tone modulation is degraded as compared with the Back-to-Back signal. Further, since the optical signal quality monitor of Patent Document 1 described above needs to be provided with a modulator for tone modulation separately for each polarization, problems remain in terms of miniaturization and power saving.

本発明は、上記の点に鑑みてなされたものであり、同一周波数のキャリア光及び同一のシンボルレートをもつ信号に対して各偏波信号の品質を測定し、かつ、外部変調器を必要としない簡易な構成で上記光信号品質のモニタリングを行うことが可能な光信号品質監視装置及び方法を提供することを目的とする。   The present invention has been made in view of the above points, measures the quality of each polarization signal for signals having the same frequency carrier light and the same symbol rate, and requires an external modulator. It is an object of the present invention to provide an optical signal quality monitoring apparatus and method capable of monitoring the optical signal quality with a simple configuration.

上記の課題を解決するため、本発明は、偏波多重された信号の品質を監視する光信号品質監視装置であって、
送信側に、
各々の偏波に異なる周期的なトレーニング信号を生成するトレーニング信号生成手段と、
前記トレーニング信号が付与された偏波多重信号を送出する送信手段と、
を有し、
受信側に、
前記送信手段から受信した信号を特定の偏波に分離する偏波分離手段と、
偏波分離された信号のパワーを測定する第1及び第2のパワー測定手段と、
を有する。
In order to solve the above problems, the present invention is an optical signal quality monitoring apparatus for monitoring the quality of a polarization multiplexed signal,
On the sending side,
Training signal generating means for generating different periodic training signals for each polarization;
Transmitting means for transmitting a polarization multiplexed signal to which the training signal is attached;
Have
On the receiving side,
Polarization separation means for separating the signal received from the transmission means into a specific polarization;
First and second power measuring means for measuring the power of the polarization separated signal;
Have

上記のような構成とすることにより、同一周波数のキャリア光及び同一のシンボルレートをもつ信号に対して、各偏波信号の品質を測定し、かつ、外部変調器を必要としないため、簡易な構成で光信号の品質を監視することが可能となる。   With the above configuration, the quality of each polarization signal is measured for signals having the same frequency carrier light and the same symbol rate, and no external modulator is required. The quality of the optical signal can be monitored by the configuration.

本発明の第1の実施の形態における光信号品質監視装置の構成図である。It is a block diagram of the optical signal quality monitoring apparatus in the 1st Embodiment of this invention. 本発明の第1の実施の形態における10G NRZ変調信号のスペクトルを示す図である。It is a figure which shows the spectrum of the 10G NRZ modulation signal in the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるCSRのビット数依存性を示す図である。It is a figure which shows the bit number dependence of CSR in the 1st Embodiment of this invention. 本発明の第1の実施の形態における伝送路前後の偏波常態とパワーの関係を示す図である。It is a figure which shows the polarization normal state before and behind the transmission line in the 1st Embodiment of this invention, and the relationship of power. 本発明の第2の実施の形態における光信号品質監視装置の構成図(受信側)である。It is a block diagram (reception side) of the optical signal quality monitoring apparatus in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における光信号品質監視装置の構成図(受信側)である。It is a block diagram (reception side) of the optical signal quality monitoring apparatus in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における光信号品質監視装置の構成図(受信側)である。It is a block diagram (reception side) of the optical signal quality monitoring apparatus in the 4th Embodiment of this invention. 本発明の第5の実施の形態における光信号品質監視装置の構成図(受信側)である。It is a block diagram (reception side) of the optical signal quality monitoring apparatus in the 5th Embodiment of this invention. 本発明の第6の実施の形態における光信号品質監視装置の構成図(受信側)である。It is a block diagram (reception side) of the optical signal quality monitoring apparatus in the 6th Embodiment of this invention. 本発明の第7の実施の形態における光信号品質監視装置の構成図(受信側)である。It is a block diagram (reception side) of the optical signal quality monitoring apparatus in the 7th Embodiment of this invention.

以下図面と共に、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第1の実施の形態]
図1は、本発明の第1の実施の形態における光品質監視装置の構成を示す。
[First Embodiment]
FIG. 1 shows a configuration of a light quality monitoring apparatus according to the first embodiment of the present invention.

同図に示す光品質監視装置は、送信側にトレーニング信号生成部10、送信部20が、受信側に偏波分離部30、第1のパワー測定部41、第2のパワー測定部42が備えられている。   The optical quality monitoring apparatus shown in the figure includes a training signal generation unit 10 and a transmission unit 20 on the transmission side, and a polarization separation unit 30, a first power measurement unit 41, and a second power measurement unit 42 on the reception side. It has been.

送信側のトレーニング信号生成部10では偏波多重される信号にそれぞれ異なる周期のトレーニング信号を生成する。送信部20にて前記トレーニング信号を偏波多重される信号に付与し、光信号を送出する。モニタを行う受信側では、偏波多重された光信号を偏波分離部30にて特定の偏波成分に分離し、分離された偏波成分のパワーをそれぞれ第1及び第2のパワー測定部41、42にて測定する。トレーニング信号はX偏波、Y偏波で異なる周期のパターンを持つため、特定の周波数帯域のパワーを観測することにより各偏波のOSNRをリアルタイムに測定することが可能である。   The transmission-side training signal generation unit 10 generates a training signal having a different period for each signal that is polarization multiplexed. The transmission unit 20 adds the training signal to the polarization multiplexed signal, and transmits an optical signal. On the receiving side that performs monitoring, the polarization multiplexed optical signal is separated into specific polarization components by the polarization separation unit 30, and the power of the separated polarization components is first and second power measurement units, respectively. Measured at 41 and 42. Since the training signal has patterns with different periods for the X polarization and the Y polarization, the OSNR of each polarization can be measured in real time by observing the power in a specific frequency band.

原理の詳細について説明する。   Details of the principle will be described.

図2は、本発明の一実施の形態における10G NRZ信号のスペクトルを示す。同図では、10G NRZ信号を80 GS/sでフーリエ変換した時の信号スペクトルを示している。   FIG. 2 shows the spectrum of a 10G NRZ signal in one embodiment of the present invention. In the figure, the signal spectrum when the 10G NRZ signal is Fourier-transformed at 80 GS / s is shown.

トレーニング信号生成部10は、トレーニング信号に001100110011…及び000111000111…の繰り返しビットパターン512ビットを挿入し、ペイロードはPN11段の擬似ランダム信号を挿入している。第1、第2のパワー測定部41、42では、前記001100110011…の繰り返し周期をもつ信号はシンボルレートの1/4 周期のスペクトル成分を含むため、シンボルレートが10 Gbpsの場合 2.5 GHzのスペクトル成分が検出される(図2のa)。またトレーニング信号の繰り返しパターンが000111000111…の場合、シンボルレートの1/6 周期のスペクトル成分を含むため1.67 GHzのスペクトル成分が検出される(図2のb)。   The training signal generator 10 inserts 512 bits of a repeated bit pattern of 001100110011... And 000011000111... Into the training signal, and a PN11 stage pseudo-random signal is inserted into the payload. In the first and second power measuring units 41 and 42, since the signal having the repetition period of 001100110011... Includes a spectral component having a quarter period of the symbol rate, a spectral component of 2.5 GHz when the symbol rate is 10 Gbps. Is detected (a in FIG. 2). Further, when the repetition pattern of the training signal is 000011000111..., A spectral component of 1.67 GHz is detected because it includes a spectral component of 1/6 period of the symbol rate (b in FIG. 2).

図3は、本発明の第1の実施の形態におけるCSR (Carrier to Signal Ratio : キャリア信号比)のビット数依存性を示す図である。   FIG. 3 is a diagram showing the bit number dependency of CSR (Carrier to Signal Ratio) in the first embodiment of the present invention.

横軸がペイロードのビット数2nであり、縦軸がCSRである。トレーニング信号には前記001100110011…と000111000111…の繰り返しパターン512ビットを用いペイロードはPN n段の擬似ランダム信号を用いている。CSRとはキャリア光のパワー(Pc)に対する信号パワー(Ps)の比 The horizontal axis is the number of payload bits 2 n , and the vertical axis is CSR. The training signal uses 512 bits of the repeating pattern of 001100110011... And 000011000111... And the payload uses a PNn-stage pseudo-random signal. CSR is the ratio of signal power (P s ) to carrier light power (P c )

Figure 2012165287
を表したものである。ペイロード長がトレーニング信号長に対して長くなるにつれCSRは低下していく。これは、トレーニング信号による特定の周波数成分がキャリアのパワーに埋もれてしまうためである。しかしながら512ビットのトレーニング信号に対して215ビット (32768ビット)のペイロード信号を用いた場合で約5 dBのCSRが得られており、ペイロードに対して1〜2パーセントのトレーニング信号を用いることで特定周波数帯域の信号光パワーをキャリア光成分と分離して、第1、第2のパワー測定部41,42で測定することは可能である。
Figure 2012165287
It represents. CSR decreases as the payload length becomes longer than the training signal length. This is because a specific frequency component due to the training signal is buried in the power of the carrier. However, when using a 15- bit (32768-bit) payload signal for a 512-bit training signal, a CSR of about 5 dB has been obtained. By using 1-2% of the training signal for the payload, It is possible to separate the signal light power in the specific frequency band from the carrier light component and measure it with the first and second power measuring units 41 and 42.

図4は、本発明の第1の実施の形態における伝送路前後の偏波状態とパワーの関係を示す。   FIG. 4 shows the relationship between the polarization state before and after the transmission line and the power in the first embodiment of the present invention.

伝送前は図4(a)に示すように、X偏波及びY偏波ともに直交しパワーは同一である。伝送路中に偏波に依存した損失及び屈折率差を受け、偏波分離部30に入力されるX偏波及びY偏波の偏波状態は互いに直交しているとは限らず、またパワーもそれぞれ異なる(図4(b))。例えば、偏波分離部30に偏波ビームスプリッタを用いた場合、偏波ビームスプリッタ通過後は図4(c)に示すようにX偏波及びY偏波は偏波ビームスプリッタの光軸上にX軸成分及びY軸成分に分離される。偏波ビームスプリッタの光軸に対してX偏波のなす角をθ、パワーをXO、Y偏波のなす角をγ、パワーをYOとし、偏波ビームスプリッタ直後のX偏波のX軸成分のパワーをXO_X、Y軸成分のパワーをXO_X、Y偏波のX軸成分のパワーをYO_X、Y軸成分のパワーをYO_Yとすると以下の関係式が成り立つ。 Before transmission, as shown in FIG. 4A, both the X polarization and the Y polarization are orthogonal and the power is the same. Due to the loss and refractive index difference depending on the polarization in the transmission path, the polarization states of the X polarization and the Y polarization input to the polarization separation unit 30 are not always orthogonal to each other, and power Are also different (FIG. 4B). For example, when a polarization beam splitter is used for the polarization separation unit 30, after passing through the polarization beam splitter, the X polarization and the Y polarization are on the optical axis of the polarization beam splitter as shown in FIG. Separated into an X-axis component and a Y-axis component. The angle formed by the X polarization with respect to the optical axis of the polarization beam splitter is θ, the power is X O , the angle formed by the Y polarization is γ, the power is Y O, and the X polarization X immediately after the polarization beam splitter If the power of the axial component is X O_X , the power of the Y-axis component is X O_X , the power of the X-axis component of the Y polarization is Y O_X , and the power of the Y-axis component is Y O_Y , the following relational expression is established.

Figure 2012165287
XO_X、XO_Y、YO_X 、YO_Yは既知であるため直交性を示すθ及びγは算出可能であり、また各偏波のパワーXO 、YOも算出することが可能である。
Figure 2012165287
Since X O_X , X O_Y , Y O_X , and Y O_Y are known, θ and γ indicating orthogonality can be calculated, and the powers X O and Y O of each polarization can also be calculated.

なおトレーニング信号に用いるビットパターンは説明したパターンのみに限らず周期性を持っていれば他のビットパターンでも構わない。また偏波分離部30は前記偏波ビームスプリッタや偏波分離ファイバなど、特定の偏波に分離できるものであればこの限りではない。   The bit pattern used for the training signal is not limited to the described pattern, and other bit patterns may be used as long as they have periodicity. The polarization separation unit 30 is not limited to this as long as it can be separated into a specific polarization, such as the polarization beam splitter or the polarization separation fiber.

[第2の実施の形態]
図5は、本発明の第2の実施の形態における光信号監視装置の構成図(受信側)である。
[Second Embodiment]
FIG. 5 is a configuration diagram (receiving side) of the optical signal monitoring apparatus according to the second embodiment of the present invention.

同図に示す光信号監視装置の受信側には、偏波分離部30、第1の分岐部51、第2の分岐部52、第1のフィルタ61、第2のフィルタ62、第3のフィルタ63、第4のフィルタ64、第1のパワー測定部71、第2のパワー測定部72、第3のパワー測定部73、第4のパワー測定部75が備えられている。   On the receiving side of the optical signal monitoring apparatus shown in the figure, the polarization separation unit 30, the first branching unit 51, the second branching unit 52, the first filter 61, the second filter 62, and the third filter 63, a fourth filter 64, a first power measurement unit 71, a second power measurement unit 72, a third power measurement unit 73, and a fourth power measurement unit 75 are provided.

偏波多重された信号を偏波分離部30で特定の偏波成分に分離した後、第1、第二の分岐部51、52で分岐されたX偏波が持つ特定周波数帯域Fxのスペクトルを切り出すため第1のフィルタ61及び第3のフィルタ63を用いる。第2のフィルタ62及び第4のフィルタ64は、Y偏波がもつ特定周波数帯域FYのスペクトルを切り出すために用いる。それぞれのフィルタで特定の周波数帯域のみを切り出したのち第1、第2、第3、第4のパワー測定部71〜74にてパワー測定することで各偏波のX成分及びY成分のパワーXO_X、XO_Y、YO_X 、YO_Yを求めることが可能である。 After the polarization-multiplexed signal is separated into a specific polarization component by the polarization separating section 30, first, the spectrum of a specific frequency band F x where X polarized wave branched by the second branching unit 51 has The first filter 61 and the third filter 63 are used to cut out. The second filter 62 and the fourth filter 64 are used to cut out the spectrum of the specific frequency band F Y that Y polarization has. After cutting out only a specific frequency band with each filter, the power measurement is performed by the first, second, third, and fourth power measuring units 71 to 74, thereby the power X of each polarization and the power X of the Y component. O_X , X O_Y , Y O_X , and Y O_Y can be obtained.

[第3の実施の形態]
図6は、本発明の第3の実施の形態における光信号監視装置の構成図(受信側)である。
[Third Embodiment]
FIG. 6 is a configuration diagram (receiving side) of the optical signal monitoring apparatus according to the third embodiment of the present invention.

同図に示す光信号監視装置の受信側には、偏波分離部30、第1の光スペクトル測定部81、第2の光スペクトル測定部82が備えられている。   On the receiving side of the optical signal monitoring apparatus shown in the figure, a polarization separation unit 30, a first optical spectrum measurement unit 81, and a second optical spectrum measurement unit 82 are provided.

第2の実施の形態との違いは、光信号品質監視装置の受信側に光スペクトル測定部81、82を用いている点である。   The difference from the second embodiment is that optical spectrum measuring units 81 and 82 are used on the receiving side of the optical signal quality monitoring apparatus.

第2の実施の形態同様に、偏波多重された信号を偏波分離部30で特定の偏波成分に分離した後、光スペクトル測定部81、82にて各偏波が持つ特定周波数帯域Fx及びFYのパワーを観測する。Fx≠Fxであるため光スペクトル測定部81、82上で各偏波のX成分及びY成分のパワーXO_X、XO_Y、YO_X 、YO_Yを求めることが可能である。 Similarly to the second embodiment, after the polarization multiplexed signal is separated into specific polarization components by the polarization separation unit 30, the optical spectrum measurement units 81 and 82 each have a specific frequency band F that each polarization has. Observe the power of x and F Y. Since F x ≠ F x , the power X O_X , X O_Y , Y O_X , and Y O_Y of the X component and Y component of each polarization can be obtained on the optical spectrum measurement units 81 and 82.

[第4の実施の形態]
図7は、本発明の第4の実施の形態における光信号監視装置の構成図(受信側)である。
[Fourth Embodiment]
FIG. 7 is a configuration diagram (receiving side) of the optical signal monitoring apparatus according to the fourth embodiment of the present invention.

同図に示す光信号監視装置の受信側には、偏波分離部30、第1の光・電気変換部91、第2の光・電気変換部92、第1の電気スペクトル測定部101、第2の電気スペクトル測定部102が備えられている。   On the receiving side of the optical signal monitoring apparatus shown in the figure, the polarization separation unit 30, the first optical / electrical conversion unit 91, the second optical / electrical conversion unit 92, the first electrical spectrum measurement unit 101, the first Two electrical spectrum measuring units 102 are provided.

第2、第3の実施の形態との違いは、電気信号に変換後のスペクトルを測定している点である。   The difference from the second and third embodiments is that the spectrum after conversion into an electric signal is measured.

第2、第3の実施の形態と同様に、偏波多重された信号を偏波分離部30で特定の偏波成分に分離した後、本実施の形態では第1及び第2の光・電気変換部91、92にて光信号を電気信号に変換し、変換後の電気信号を電気スペクトル測定部101、102により観測する。   As in the second and third embodiments, after the polarization multiplexed signal is separated into specific polarization components by the polarization separation unit 30, in this embodiment, the first and second optical / electrical components are used. The optical signals are converted into electric signals by the converters 91 and 92, and the converted electric signals are observed by the electric spectrum measuring units 101 and 102.

一般的に電気スペクトル測定部は光スペクトル測定部に比べダイナミックレンジが広く周波数分解能が高いため、X偏波が持つ特定周波数のスペクトルとY偏波が持つ特定周波数のスペクトルを容易に分離することが可能である。第1の電気スペクトル測定部101にてX偏波及びY偏波のX軸成分のパワーXO_X、YO_Xを測定し、第2の電気スペクトル測定部102にてX偏波及びY偏波のY軸成分のパワーXO_Y、YO_Yを測定することで各偏波のパワー及び直交性を算出することが可能である。 Generally, the electrical spectrum measurement unit has a wider dynamic range and higher frequency resolution than the optical spectrum measurement unit, so it is easy to separate the spectrum of the specific frequency of the X polarization and the spectrum of the specific frequency of the Y polarization. Is possible. The first electric spectrum measuring unit 101 measures the X-axis component power X O_X and Y O_X of the X polarization and Y polarization, and the second electric spectrum measurement unit 102 measures the X polarization and Y polarization. By measuring the powers X O_Y and Y O_Y of the Y-axis component, it is possible to calculate the power and orthogonality of each polarization.

[第5の実施の形態]
図8は、本発明の第5の実施の形態における光信号品質監視装置の構成図(受信側)である。
[Fifth Embodiment]
FIG. 8 is a configuration diagram (reception side) of the optical signal quality monitoring apparatus according to the fifth embodiment of the present invention.

同図に示す光信号品質監視装置の受信側には、偏波分離部30、第1の遅延干渉系111、第2の遅延干渉系112、第1のフィルタ61、第2のフィルタ62、第1のパワー測定部71、第2のパワー測定部72、第3のパワー測定部73、第4のパワー測定部74が備えられている。   On the receiving side of the optical signal quality monitoring apparatus shown in the figure, the polarization separation unit 30, the first delay interference system 111, the second delay interference system 112, the first filter 61, the second filter 62, the first 1 power measurement unit 71, second power measurement unit 72, third power measurement unit 73, and fourth power measurement unit 74 are provided.

第2、第3、第4の実施の形態との違いは偏波多重された信号が位相変調である場合の光信号品質監視装置である。前記実施の形態と同様に、偏波多重された信号を偏波分離部30で特定の偏波成分に分離した後、本実施の形態では第1及び第2の遅延干渉系111、112を用いて位相変調信号を強度変調信号に変換する。強度変調に変換後は特定の周波数帯域のパワーを観測するためフィルタ61〜64及びパワー測定部71〜74にて各偏波のX成分及びY成分のパワーを計測する。なお位相変調に限らず変調フォーマットはASK (Amplitude Shift Keying)、PSK (Phase Shift Keying)、QPSK (Quadrature Phase Shift Keying)、QAM (Quadrature Amplitude Modulation)等いずれの変調フォーマットにも対応可能で、この限りではない。また、フィルタ61〜64及びパワー測定部71〜74ではなく、遅延干渉系と光スペクトル測定部、または遅延干渉系と電気スペクトル測定部と組み合わせて各偏波のパワーを観測することが可能であり、組み合わせはこの限りではない。   The difference from the second, third, and fourth embodiments is an optical signal quality monitoring apparatus when the polarization multiplexed signal is phase modulated. As in the previous embodiment, after the polarization multiplexed signal is separated into specific polarization components by the polarization separator 30, the first and second delay interference systems 111 and 112 are used in this embodiment. The phase modulation signal is converted into an intensity modulation signal. After conversion to intensity modulation, the power of the X component and Y component of each polarization is measured by the filters 61 to 64 and the power measuring units 71 to 74 in order to observe the power in a specific frequency band. The modulation format is not limited to phase modulation, and can be any ASK (Amplitude Shift Keying), PSK (Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), or QAM (Quadrature Amplitude Modulation) modulation format. is not. Further, instead of the filters 61 to 64 and the power measuring units 71 to 74, it is possible to observe the power of each polarization in combination with the delay interference system and the optical spectrum measurement unit, or the delay interference system and the electric spectrum measurement unit. The combination is not limited to this.

[第6の実施の形態]
図9は、本発明の第6の実施の形態における光信号品質監視装置の構成図(受信側)である。
[Sixth Embodiment]
FIG. 9 is a configuration diagram (reception side) of the optical signal quality monitoring apparatus according to the sixth embodiment of the present invention.

同図に示す光信号品質監視装置の受信側には、偏波分離部30、第1の増幅部121、第2の増幅部122、第1のパワー測定部71、第2のパワー測定部72、制御部130が備えられている。   On the receiving side of the optical signal quality monitoring apparatus shown in the figure, the polarization separation unit 30, the first amplification unit 121, the second amplification unit 122, the first power measurement unit 71, and the second power measurement unit 72 are provided. A control unit 130 is provided.

前記の実施の形態との違いはX偏波及びY偏波の信号光パワーを補償できる点である。各偏波の信号光は伝送路中に受けるPDLにより受信側に到達した時点でパワーがそれぞれ異なる。本実施の形態では前記第1〜第5の実施の形態に記載の方法で各偏波のパワー検出し、検出したパワーを制御部130に通知する。制御部130では通知された各偏波のパワーをもとに第1の増幅部121及び第2の増幅部122の増幅率を決定する。第1の増幅部121の増幅率を   The difference from the above-described embodiment is that the signal light power of the X polarization and the Y polarization can be compensated. The signal light of each polarization has different power when it reaches the receiving side due to PDL received in the transmission path. In the present embodiment, the power of each polarization is detected by the method described in the first to fifth embodiments, and the detected power is notified to the control unit 130. The control unit 130 determines the amplification factors of the first amplification unit 121 and the second amplification unit 122 based on the notified power of each polarization. The amplification factor of the first amplification unit 121 is

Figure 2012165287
として表すことができるため、下記の式が成り立つよう前記増幅率を制御する。
Figure 2012165287
Therefore, the amplification factor is controlled so that the following equation is established.

Figure 2012165287
前記増幅部121、122にはファイバ増幅器、半導体光増幅器などを用いることができるが、これらに限定されるものではない。
[第7の実施の形態]
図10は、本発明の第7の実施の形態における光信号品質監視装置の構成図(受信側)である。
Figure 2012165287
The amplifiers 121 and 122 may be fiber amplifiers or semiconductor optical amplifiers, but are not limited thereto.
[Seventh Embodiment]
FIG. 10 is a configuration diagram (reception side) of the optical signal quality monitoring apparatus according to the seventh embodiment of the present invention.

同図に示す光信号品質監視装置の受信側には、偏波分離部30、第1のパワー測定部71、第2のパワー測定部72、偏波状態通知部150、信号処理部141を有する信号受信部140が備えられている。   The receiving side of the optical signal quality monitoring apparatus shown in the figure has a polarization separation unit 30, a first power measurement unit 71, a second power measurement unit 72, a polarization state notification unit 150, and a signal processing unit 141. A signal receiving unit 140 is provided.

前記の実施の形態との違いは、偏波状態通知部150が、X偏波及びY偏波の信号光パワー及び偏波状態を信号受信部140の信号処理部141に通知し、信号処理部141のパラメータ設定に反映できる点である。   The difference from the above-described embodiment is that the polarization state notifying unit 150 notifies the signal processing unit 141 of the signal receiving unit 140 of the signal light power and the polarization state of the X polarization and the Y polarization. This is a point that can be reflected in the parameter setting 141.

100 Gb/s級の大容量光通信システムでは、伝送路中に受けた分散並びに位相変動を信号処理部141内で補償している。信号処理部141では適応等化器を用いて信号の補償を行うが、各偏波の位相並びに偏波状態に応じて補償の最適化を行うため、適応等化器のタップ数並びにタップ係数を適宜更新する必要がある。そのため本実施の形態では適応等化器のパラメータ更新時に各偏波のパワー及び偏波状態を通知し適応等化器の補償精度を向上させることが可能である。またシステム立ち上げ時に適応等化器の初期値を設定する必要があるが、通知される各偏波の偏波状態及びパワーをもとに初期値を設定することで、信号処理部141の収束時間を短縮することも可能である。   In a 100 Gb / s class large-capacity optical communication system, dispersion and phase fluctuation received in the transmission path are compensated in the signal processing unit 141. The signal processing unit 141 performs signal compensation using an adaptive equalizer, but in order to optimize the compensation according to the phase and polarization state of each polarization, the number of taps and tap coefficients of the adaptive equalizer are set. It is necessary to update accordingly. Therefore, in the present embodiment, it is possible to notify the power and polarization state of each polarization when updating the parameters of the adaptive equalizer, thereby improving the compensation accuracy of the adaptive equalizer. Moreover, it is necessary to set the initial value of the adaptive equalizer at the time of starting the system. By setting the initial value based on the polarization state and power of each polarization signal notified, the convergence of the signal processing unit 141 is set. It is also possible to shorten the time.

以上、本発明の実施の形態について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形および変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments described above, and various modifications can be made within the scope of the gist of the present invention described in the claims. Variations and changes are possible.

10 トレーニング信号生成部
20 送信部
30 偏波分離部
41 第1のパワー測定部
42 第2のパワー測定部
51 第1の分岐部
52 第2の分岐部
61 第1のフィルタ
62 第2のフィルタ
63 第3のフィルタ
64 第4のフィルタ
71 第1のパワー測定部
72 第2のパワー測定部
73 第3のパワー測定部
74 第4のパワー測定部
81 第1の光スペクトル測定部
82 第2の光スペクトル測定部
91 第1の光・電気変換部
92 第2の光・電気変換部
101 第1の電気スペクトル測定部
102 第2の電気スペクトル測定部
111 第1の遅延干渉系
112 第2の遅延干渉系
121 第1の増幅部
122 第2の増幅部
130 制御部
140 信号受信部
141 信号処理部
150 偏波状態通知部
DESCRIPTION OF SYMBOLS 10 Training signal production | generation part 20 Transmission part 30 Polarization separation part 41 1st power measurement part 42 2nd power measurement part 51 1st branch part 52 2nd branch part 61 1st filter 62 2nd filter 63 3rd filter 64 4th filter 71 1st power measurement part 72 2nd power measurement part 73 3rd power measurement part 74 4th power measurement part 81 1st optical spectrum measurement part 82 2nd light Spectrum measurement unit 91 First optical / electrical conversion unit 92 Second optical / electrical conversion unit 101 First electrical spectrum measurement unit 102 Second electrical spectrum measurement unit 111 First delay interference system 112 Second delay interference System 121 First amplification unit 122 Second amplification unit 130 Control unit 140 Signal reception unit 141 Signal processing unit 150 Polarization state notification unit

Claims (9)

偏波多重された信号の品質を監視する光信号品質監視装置であって、
送信側に、
各々の偏波に異なる周期的なトレーニング信号を生成するトレーニング信号生成手段と、
前記トレーニング信号が付与された偏波多重信号を送出する送信手段と、
を有することを特徴とする光信号品質監視装置。
An optical signal quality monitoring device for monitoring the quality of a polarization multiplexed signal,
On the sending side,
Training signal generating means for generating different periodic training signals for each polarization;
Transmitting means for transmitting a polarization multiplexed signal to which the training signal is attached;
An optical signal quality monitoring device comprising:
受信側に、
前記送信手段から受信した信号を特定の偏波に分離する偏波分離手段と、
偏波分離された信号のパワーを測定する第1及び第2のパワー測定手段と、
を有する請求項1記載の光信号品質監視装置。
On the receiving side,
Polarization separation means for separating the signal received from the transmission means into a specific polarization;
First and second power measuring means for measuring the power of the polarization separated signal;
The optical signal quality monitoring apparatus according to claim 1, comprising:
前記第1及び第2のパワー測定手段は、
信号光パワーを分岐する第1、第2の分岐手段と、
特定帯域の周波数のみを通過させる第1、第2、第3、第4のフィルタと、
を有する請求項2記載の光信号品質監視装置。
The first and second power measuring means include
First and second branching means for branching the signal light power;
First, second, third, and fourth filters that pass only frequencies in a specific band;
The optical signal quality monitoring apparatus according to claim 2, comprising:
前記第1及び第2のパワー測定手段は、
信号光の特定の周波数帯域のスペクトルを測定する光スペクトル測定手段を
有する請求項2に記載の光信号品質監視装置。
The first and second power measuring means include
The optical signal quality monitoring apparatus according to claim 2, further comprising an optical spectrum measuring unit that measures a spectrum of a specific frequency band of the signal light.
前記第1及び第2のパワー測定手段は、
信号光を光から電気に変換する第1及び第2の光・電気変換手段と、
変換された電気信号の特定の周波数帯域のスペクトルを測定する電気スペクトル測定手段と、
を有する請求項2に記載の光信号品質監視装置。
The first and second power measuring means include
First and second optical / electrical conversion means for converting signal light from light to electricity;
Electrical spectrum measurement means for measuring a spectrum of a specific frequency band of the converted electrical signal;
The optical signal quality monitoring apparatus according to claim 2, comprising:
前記第1及び第2のパワー測定手段は、
位相変調された信号を強度変調に変換する第1及び第2の遅延干渉計を有する
請求項2乃至5のいずれか1項に記載の光信号品質監視装置。
The first and second power measuring means include
6. The optical signal quality monitoring apparatus according to claim 2, further comprising first and second delay interferometers that convert the phase-modulated signal into intensity modulation.
前記偏波分離手段で偏波分離された光信号の増幅を行う光増幅手段と、
前記光増幅手段の増幅率を決定する制御手段と、
を更に有する請求項2乃至6のいずれか1項に記載の光信号品質監視装置。
An optical amplification means for amplifying the optical signal polarized by the polarization separation means;
Control means for determining an amplification factor of the optical amplification means;
The optical signal quality monitoring apparatus according to any one of claims 2 to 6, further comprising:
受信側に、測定された各偏波のパワーから各偏波の偏波状態を算出し、各偏波の偏波状態及び各偏波のパワーを通知する偏波状態通知手段と、
前記通知された偏波状態及びパワーをもとに受信した信号の補償を行う信号処理手段と、
を更に有する請求項2乃至7のいずれか1項に記載の光信号品質監視装置。
Polarization state notifying means for calculating the polarization state of each polarization from the measured power of each polarization on the receiving side, and notifying the polarization state of each polarization and the power of each polarization;
Signal processing means for compensating a received signal based on the notified polarization state and power;
The optical signal quality monitoring apparatus according to any one of claims 2 to 7, further comprising:
偏波多重された信号の品質を監視する光信号品質監視方法であって、
送信側において、
トレーニング信号生成手段が、各々の偏波に異なる周期的なトレーニング信号を付与するステップと、
送信手段が、前記トレーニング信号が付与された偏波多重信号を送出するステップと、
受信側において、
偏波分離手段が、受信した信号を特定の偏波に分離するステップと、
パワー測定手段が、偏波分離された各信号のパワーを測定するステップと、
を行うことを特徴とする光信号品質監視方法。
An optical signal quality monitoring method for monitoring the quality of a polarization multiplexed signal,
On the sending side,
Training signal generating means for applying a different periodic training signal to each polarization;
Transmitting means for transmitting a polarization multiplexed signal to which the training signal is attached;
On the receiving side,
A step of polarization separating means for separating the received signal into a specific polarization;
A power measuring means measuring the power of each of the polarization separated signals;
An optical signal quality monitoring method comprising:
JP2011025446A 2011-02-08 2011-02-08 Optical signal quality monitoring apparatus and method Expired - Fee Related JP5635923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025446A JP5635923B2 (en) 2011-02-08 2011-02-08 Optical signal quality monitoring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025446A JP5635923B2 (en) 2011-02-08 2011-02-08 Optical signal quality monitoring apparatus and method

Publications (2)

Publication Number Publication Date
JP2012165287A true JP2012165287A (en) 2012-08-30
JP5635923B2 JP5635923B2 (en) 2014-12-03

Family

ID=46844226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025446A Expired - Fee Related JP5635923B2 (en) 2011-02-08 2011-02-08 Optical signal quality monitoring apparatus and method

Country Status (1)

Country Link
JP (1) JP5635923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191424A (en) * 2011-03-10 2012-10-04 Anritsu Corp Polarization multiplexed phase modulated light evaluation method and device thereof
JP2018195997A (en) * 2017-05-18 2018-12-06 富士通株式会社 Device and method for measuring optical signal-to-noise ratio

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226254A (en) * 2009-03-19 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> Digital signal processing circuit and optical receiving device
JP2010283509A (en) * 2009-06-03 2010-12-16 Mitsubishi Electric Corp Transmitter for optical communication and receiver for optical communication
WO2011007803A1 (en) * 2009-07-17 2011-01-20 日本電信電話株式会社 Wavelength dispersion amount calculation device, optical signal reception device, optical signal transmission device, and wavelength dispersion amount calculation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226254A (en) * 2009-03-19 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> Digital signal processing circuit and optical receiving device
JP2010283509A (en) * 2009-06-03 2010-12-16 Mitsubishi Electric Corp Transmitter for optical communication and receiver for optical communication
WO2011007803A1 (en) * 2009-07-17 2011-01-20 日本電信電話株式会社 Wavelength dispersion amount calculation device, optical signal reception device, optical signal transmission device, and wavelength dispersion amount calculation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191424A (en) * 2011-03-10 2012-10-04 Anritsu Corp Polarization multiplexed phase modulated light evaluation method and device thereof
JP2018195997A (en) * 2017-05-18 2018-12-06 富士通株式会社 Device and method for measuring optical signal-to-noise ratio

Also Published As

Publication number Publication date
JP5635923B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5712935B2 (en) Method and apparatus for detecting chromatic dispersion and method and apparatus for compensating chromatic dispersion
Raybon et al. Single-carrier 400G interface and 10-channel WDM transmission over 4,800 km using all-ETDM 107-Gbaud PDM-QPSK
US10270537B2 (en) Method and system for nonlinear interference mitigation
US10320478B2 (en) Optical channel sounder
JP5438856B1 (en) Optical transmission / reception system, transmitter, receiver, and optical transmission / reception method
JP5675825B2 (en) Multi-channel nonlinearity compensation in optical communication links
US10439731B2 (en) Method for monitoring and correction of adjacent channel penalty in coherent optical transmission
JP4827672B2 (en) WDM optical transmission system and WDM optical transmission method
JPWO2019004040A1 (en) Optical transmitter, optical receiver, and optical transmission system
US9838117B2 (en) Bias error correction in an optical coherent transponder
Zhao et al. Periodic training sequence aided in-band OSNR monitoring in digital coherent receiver
JP6107815B2 (en) Optical transmission device, optical communication system, optical reception device, optical transmission device adjustment method, optical transmission method, and optical reception method
Xiang et al. A joint OSNR and nonlinear distortions estimation method for optical fiber transmission system
JP5635923B2 (en) Optical signal quality monitoring apparatus and method
JP6319309B2 (en) Optical receiver, optical transmission system, optical reception method, and optical transmission method
WO2014119270A1 (en) Light reception apparatus, light communication system, light reception method, and light reception apparatus control program storage medium
Salgals et al. Research of M-PAM and duobinary modulation formats for use in high-speed WDM-PON systems
EP2725725B1 (en) Optical transmission system and control method
Su et al. DC restoration by data-aided sequence in Kramers-Kronig receiver
Xu et al. Quasi real-time 230-Gbit/s coherent transmission field trial over 820 km SSMF using 57.5-Gbaud dual-polarization QPSK
García-Yañez et al. Technical feasibility of a 400 Gb/s unamplified WDM coherent transmission system for Ethernet over 40 km of single-mode fiber
Kashi Implications of Fiber Nonlinearities on Coherent Optical Fiber Communications
CN102130738B (en) Method and device for processing signals
Abed Design and Analysis of WDM System Using Optilux Simulation Toolbox.
Liu A Joint OSNR and Nonlinear Distortions Estimation Method for Optical Fiber Transmission System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141017

R150 Certificate of patent or registration of utility model

Ref document number: 5635923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees