JP2012163806A - Near-infrared ray shielding filter for display and image display apparatus - Google Patents

Near-infrared ray shielding filter for display and image display apparatus Download PDF

Info

Publication number
JP2012163806A
JP2012163806A JP2011024762A JP2011024762A JP2012163806A JP 2012163806 A JP2012163806 A JP 2012163806A JP 2011024762 A JP2011024762 A JP 2011024762A JP 2011024762 A JP2011024762 A JP 2011024762A JP 2012163806 A JP2012163806 A JP 2012163806A
Authority
JP
Japan
Prior art keywords
layer
infrared
circularly polarized
polarized light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011024762A
Other languages
Japanese (ja)
Inventor
Yuka Murakami
由夏 村上
Yuichi Miyazaki
祐一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011024762A priority Critical patent/JP2012163806A/en
Publication of JP2012163806A publication Critical patent/JP2012163806A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a near-infrared ray shielding filter for a display which is arranged on the front surface of a display panel and shields near-infrared rays emitted from the display panel, the filter efficiently shielding the near-infrared rays while suppressing lowering of transmittance in a visible light region.SOLUTION: In a near-infrared ray shielding filter 10 for the display which has a near-infrared ray reflection layer 1 that makes visible light rays transmit therethrough and reflects near-infrared rays, and a near-infrared ray absorption layer 2 which makes the visible light rays transmit therethrough and absorbs the near-infrared rays in this order, in order from an observer V side, the near-infrared ray reflection layer has a first layer 1a which selectively reflects one circularly polarized light of right-handed circularly polarized light and left-handed circularly polarized light, and makes the other circularly polarized light transmit therethrough, and a second layer 1b which has an opposite rotational direction to that of the first layer that reflects circularly polarized light opposite to that of the first layer and makes the circularly polarized light opposite to that of the first layer transmit therethrough. And further, an electromagnetic wave shielding layer 4 may be provided in the side of a display panel 3 close to the near-infrared ray absorption layer. An image display apparatus 20 is structured so that the near-infrared ray shielding filter for the display is arranged on the front surface of the plasma display panel.

Description

本発明はディスプレイの前面に配置して、ディスプレイから出る赤外線、特に近赤外線を遮蔽するフィルタに関し、特に可視光線の透過率はなるべく高く保ちつつ近赤外線を効率的に遮蔽できるフィルタに関する。また、当該フィルタを用いた画像表示装置に関する。   The present invention relates to a filter that is disposed in front of a display and shields infrared rays emitted from the display, particularly near infrared rays, and more particularly to a filter that can efficiently shield near infrared rays while keeping the transmittance of visible light as high as possible. The present invention also relates to an image display device using the filter.

近年、液晶ディスプレイ(LCD)、プラズマディスプレイ(以後PDPとも言う)などの各種薄型ディスプレイが普及してきており、また、最近では低消費電力化の流れが強まっている。
また、プラズマディスプレイは、ディスプレイパネルの前面(画面)に光学フィルタを配置し、光学フィルタにより、電磁波遮蔽機能、近赤外線遮蔽機能、ネオン光遮蔽機能、調色機能、コントラスト向上機能、反射防止機能等の光学フィルタ機能、及び必要に応じて更に、帯電防止機能、耐衝撃機能などの各種機能を実現している。これら機能のうち、近赤外線をカットする近赤外線遮蔽機能を実現する光学フィルタでは、リモートコントローラが使用する波長域と干渉する近赤外線領域の光をカットする近赤外線吸収色素(以下、NIRA色素とも言う)が広く使われている(特許文献1、特許文献2)。
In recent years, various thin displays such as a liquid crystal display (LCD) and a plasma display (hereinafter also referred to as PDP) have become widespread, and recently, the trend toward lower power consumption has increased.
In addition, an optical filter is disposed on the front surface (screen) of the display panel, and the optical filter allows the electromagnetic wave shielding function, the near infrared shielding function, the neon light shielding function, the toning function, the contrast improving function, the antireflection function, etc. In addition, various functions such as an antistatic function and an impact resistance function are realized. Among these functions, an optical filter that realizes a near-infrared shielding function that cuts off near-infrared rays is a near-infrared absorbing dye (hereinafter also referred to as a NIRA dye) that cuts light in the near-infrared region that interferes with the wavelength range used by the remote controller. ) Is widely used (Patent Document 1, Patent Document 2).

特許文献1及び特許文献2に記載の近赤外線遮蔽フィルタは、樹脂シート中に、フタロシアニン系化合物、ベンゾピラン系化合物、ジイモニウム系化合物、フッ化アンチモン系有機化合物等の近外線吸収色素について、1種単独で用いるのでなく、2種以上を用いている。これにより、吸収帯域を広くして、PDPの前面から放出される近赤外線の波長帯域800〜1100nmの一部又は全部の波長域に於いて近赤外線を吸収させている。   The near-infrared shielding filter described in Patent Document 1 and Patent Document 2 is a single type of near-infrared absorbing dye such as a phthalocyanine compound, a benzopyran compound, a diimonium compound, and an antimony fluoride organic compound in a resin sheet. 2 or more types are used. Thereby, the absorption band is widened, and the near infrared ray is absorbed in a part or all of the wavelength band 800 to 1100 nm of the near infrared ray emitted from the front surface of the PDP.

また、近外線吸収色素(略して、NIRA(Near InfraRed Absoubing)色素とも呼称する)を用いて近赤外線を吸収するのではなく、ディスプレイパネルから放出された近赤外線を、前面に設けたフィルタで反射して元の方向に戻すことで観察者に届く近赤外線をカットする、近赤外線遮蔽フィルタも提案されている(特許文献3)。特許文献3記載の近赤外線遮蔽フィルタは、コレステリック液晶を固化させたコレステリック液晶固化層が、コレステリック液晶の螺旋軸の回転方向によって、右(又は左)円偏光を反射する一方、回転方向が逆向きの左(又は右)円偏光は透過する性質を利用することで、近赤外線を元の方向に反射するものである。   Also, near infrared rays are not absorbed using near-field absorption dyes (abbreviated as NIRA (Near Infrared Absorbing) dyes), but near infrared rays emitted from the display panel are reflected by a filter provided on the front surface. And the near-infrared shielding filter which cuts the near-infrared rays which reach | attain an observer by returning to the original direction is also proposed (patent document 3). In the near-infrared shielding filter described in Patent Document 3, the cholesteric liquid crystal solidified layer obtained by solidifying cholesteric liquid crystal reflects right (or left) circularly polarized light according to the rotational direction of the helical axis of the cholesteric liquid crystal, but the rotational direction is reverse. The left (or right) circularly polarized light of FIG. 1 reflects near infrared rays in the original direction by utilizing the transmitting property.

なお、PDPに対する電磁波遮蔽機能として、銀やITO(インジウム錫酸化物)などの導電材料を多層スパッタした導電体層を設けた部材を使う場合は、導電体層に近赤外線吸収機能を持たせることが一般的である。しかしながら、スパッタ形成した導電体層の場合は、電磁波遮蔽性能が通常用いられている金属メッシュによる導電体層に比べて劣るため、適用できる機種が限られるという問題がある。そこで、電磁波遮蔽性能を上げるためには、スパッタによる薄膜積層回数を増やせばよいが、その場合、可視光領域の透過率も低下し、且つ製造コストも高くなり、実用的ではない。   In addition, when using a member provided with a conductor layer obtained by sputtering a conductive material such as silver or ITO (indium tin oxide) as an electromagnetic wave shielding function for PDP, the conductor layer should have a near infrared absorption function. Is common. However, in the case of a conductor layer formed by sputtering, the electromagnetic wave shielding performance is inferior to that of a conductor layer made of a metal mesh that is usually used, so that there is a problem that applicable models are limited. Therefore, in order to improve the electromagnetic wave shielding performance, the number of thin film laminations by sputtering may be increased. However, in that case, the transmittance in the visible light region is reduced and the manufacturing cost is increased, which is not practical.

特許第3457132号公報Japanese Patent No. 3457132 特許第3689998号公報Japanese Patent No. 3689998 特開2000−28827号公報JP 2000-28827 A

ところが、特許文献1、特許文献2に記載の様な、NIRA色素を用いる近赤外線遮蔽フィルタは、該NIRA色素が可視光領域に於いて完全に透明ではなく、可視光領域にも吸収がある。これは、実在のNIRA色素の中には、可視光線領域の長波長端側(大体680〜780nm帯域)と近赤外線領域の短波長端側(大体780〜900nm帯域)との境界(780nm)で透過率が急峻に立ち上がる(乃至は吸収率が急峻に降下する)理想的な特性の透過スペクトル(乃至は吸収スペクトル)を持つものがない為である。このため、吸収すべき近赤外線の帯域の最低波長近傍(780nm近傍)が、可視光領域の最大波長近傍(780nm近傍)と近接する為、近赤外線領域のカット率を高く(透過率を低く)しようとすると、これに合わせて可視光領域の一部で透過率も下がってしまい、表示画像の明るさが低下したり、画像の色相が設計値からシフトしたりするといった、問題がある。また、画像の明るさ低下、画像の色相シフトを防ごうとすると、今度は、近赤外線領域の透過率が上がって吸収率が低下する問題がある。しかも、可視光領域の透過率が高いNIRA色素は限られており、価格や信頼性などの点で未だ課題が多い。そのため、NIRA色素を用いて近赤外線を吸収するタイプの近赤外線遮蔽フィルタは、ディスプレイパネルの発光を効率良く利用できているとは言いがたく、低消費電力化の観点に於いて発光エネルギーが無駄に使われていた。   However, the near-infrared shielding filters using NIRA dyes as described in Patent Document 1 and Patent Document 2 are not completely transparent in the visible light region and absorb in the visible light region. This is because the actual NIRA dye has a boundary (780 nm) between the long wavelength end side of the visible light region (approximately 680 to 780 nm band) and the short wavelength end side of the near infrared region (approximately 780 to 900 nm band). This is because there is no transmission spectrum (or absorption spectrum) with an ideal characteristic in which the transmittance rises sharply (or the absorption rate drops sharply). For this reason, since the vicinity of the lowest wavelength (near 780 nm) in the near-infrared band to be absorbed is close to the vicinity of the maximum wavelength (near 780 nm) in the visible light region, the near-infrared region has a high cut rate (low transmittance). When trying to do so, the transmittance also decreases in part of the visible light region, and there is a problem that the brightness of the display image is lowered and the hue of the image is shifted from the design value. Further, if it is attempted to prevent a decrease in image brightness and a hue shift in the image, there is a problem in that the transmittance in the near infrared region increases and the absorption rate decreases. Moreover, NIRA dyes with high transmittance in the visible light region are limited, and there are still many problems in terms of price and reliability. For this reason, it is difficult to say that a near-infrared shielding filter that absorbs near-infrared rays using NIRA dyes can efficiently use the light emission of the display panel, and the emission energy is wasted from the viewpoint of reducing power consumption. It was used for.

一方、特許文献3に記載の様な、コレステリック液晶固化層を用いた近赤外線遮蔽フィルタは、円偏光の特性によって選択反射する波長帯域がNIRA色素に比べて狭い為に、NIRA色素を複数種用いる場合よりも、より多くの種類の、選択反射する波長帯域を変えた複数種類のコレステリック液晶固化層を積層する必要がある。従って、近赤外線遮蔽フィルタの全体の厚みが厚くなり嵩高となり、また、積層工程も増える為、更にはコレステリック液晶自体の単価が高い為、コレステリック液晶固化層によるフィルタはNIRA色素によるフィルタよりも高価となる問題もある。
そこで、この点を改善する為に、本出願人は、本願出願時に未公開である特願2009−260920号にて、コレステリック液晶固化層による近赤外線反射層と、NIRA色素による近赤外線吸収層とを組み合わせたディスプレイ用赤外線遮蔽フィルタを提案した。ただ、この形態でも近赤外線遮蔽性能は完全ではなく、近赤外線吸収層で吸収後に設けた近赤外線反射層での遮蔽率は最大でも50%であり、より効率的に近赤外線を遮蔽できるディスプレイ用赤外線遮蔽フィルタが望まれた。
On the other hand, a near-infrared shielding filter using a cholesteric liquid crystal solidified layer as described in Patent Document 3 uses a plurality of types of NIRA dyes because the wavelength band selectively reflected by the characteristics of circularly polarized light is narrower than that of NIRA dyes. It is necessary to stack a plurality of types of cholesteric liquid crystal solidified layers having different types of wavelength bands for selective reflection, rather than the case. Accordingly, the entire thickness of the near-infrared shielding filter becomes thick and bulky, and the number of lamination processes increases. Further, the unit price of the cholesteric liquid crystal itself is high, so that the filter using the cholesteric liquid crystal solidified layer is more expensive than the filter using the NIRA dye. There is also a problem.
Therefore, in order to improve this point, the present applicant, in Japanese Patent Application No. 2009-260920, which has not been published at the time of filing the present application, a near-infrared reflective layer composed of a cholesteric liquid crystal solidified layer, a near-infrared absorbing layer composed of a NIRA dye, We proposed an infrared shielding filter for displays combined with the above. However, even in this form, the near-infrared shielding performance is not perfect, and the shielding rate at the near-infrared reflecting layer provided after absorption by the near-infrared absorbing layer is 50% at the maximum, for displays that can shield near-infrared more efficiently. An infrared shielding filter was desired.

すなわち、本発明の課題は、可視光領域、特にその長波長端側での透過率の低下を抑制しつつ且つ効率的に近赤外線領域、特にその短波長端側を遮蔽できる、ディスプレイ用近赤外線遮蔽フィルタを提供することである。また、この様なディスプレイ用近赤外線遮蔽フィルタを用いた画像表示装置を提供することである。   That is, an object of the present invention is to provide a near-infrared ray for a display that can efficiently block the near-infrared region, particularly the short wavelength end side, while suppressing a decrease in transmittance in the visible light region, particularly the long wavelength end side. It is to provide a shielding filter. It is another object of the present invention to provide an image display device using such a near-infrared shielding filter for display.

そこで、本発明では、ディスプレイ用近赤外線遮蔽フィルタの構成を次の様にした。
(1)ディスプレイパネルの前面に配置してディスプレイパネルから放出される近赤外線を遮蔽するディスプレイ用近赤外線遮蔽フィルタに於いて、
観察者側から順に、可視光線は透過して近赤外線を反射する近赤外線反射層と、可視光線は透過して近赤外線を吸収する近赤外線吸収層とをこの順に少なくとも有し、
前記近赤外線反射層が、右円偏光又は左円偏光の一方の円偏光(特定の円偏光)を選択的に反射し他方の円偏光を透過する第1層と、該第1層とは円偏光の旋回方向が逆向きで左円偏光又は右円偏光の一方の円偏光を選択的に反射し他方の円偏光を透過する第2層とからなる構成とした。
(2)また本発明は上記構成に於いて、更に電磁波遮蔽層を近赤外線吸収層よりもディスプレイパネル側に有する構成とした。
Therefore, in the present invention, the configuration of the near-infrared shielding filter for display is as follows.
(1) In a near-infrared shielding filter for display that is arranged in front of a display panel and shields near-infrared rays emitted from the display panel.
In order from the observer side, it has at least a near-infrared reflective layer that transmits visible light and reflects near-infrared light, and a near-infrared absorption layer that transmits visible light and absorbs near-infrared light in this order,
The near-infrared reflective layer selectively reflects one circularly polarized light (specific circularly polarized light) of right circularly polarized light or left circularly polarized light and transmits the other circularly polarized light, and the first layer is a circle. The rotation direction of the polarization is opposite, and the second circular layer is configured to selectively reflect one of the left circularly polarized light and the right circularly polarized light and transmit the other circularly polarized light.
(2) Further, according to the present invention, in the above configuration, an electromagnetic wave shielding layer is further provided on the display panel side than the near infrared absorption layer.

また、本発明の画像表示装置の構成は、上記いずれかのディスプレイ用近赤外線遮蔽フィルタを、プラズマディスプレイパネルの前面に配置した構成とした。   Further, the image display device of the present invention has a configuration in which any one of the above-described near-infrared shielding filters for display is disposed on the front surface of the plasma display panel.

本発明によれば、可視光領域での透過率の低下を抑制しつつ極めて効率的に近赤外線を遮蔽できる。   According to the present invention, near infrared rays can be shielded extremely efficiently while suppressing a decrease in transmittance in the visible light region.

本発明による、ディスプレイ用近赤外線遮蔽フィルタの一形態(a)と、ディスプレイ用近赤外線遮蔽フィルタをプラズマディスプレイパネルの前面に配置した画像表示装置の2形態(b)及び(c)、を例示する断面図。One example (a) of a near-infrared shielding filter for display according to the present invention and two types (b) and (c) of an image display device in which a near-infrared shielding filter for display is arranged on the front surface of a plasma display panel are illustrated. Sectional drawing. 本発明による、ディスプレイ用近赤外線遮蔽フィルタについて、(透明基材5を明示した)別の形態例を例示する断面図。Sectional drawing which illustrates another form example (clarified the transparent base material 5) about the near-infrared shielding filter for displays by this invention. 本発明によるディスプレイ用近赤外線遮蔽フィルタのメカニズムを説明する説明図。Explanatory drawing explaining the mechanism of the near-infrared shielding filter for displays by this invention. 近赤外線反射層のみの場合の近赤外線遮蔽フィルタのメカニズムを説明する説明図。Explanatory drawing explaining the mechanism of the near-infrared shielding filter in the case of only a near-infrared reflective layer. 近赤外線反射層(第1層のみの単層)の透過率と反射率のスペクトルの一例を示す図。The figure which shows an example of the spectrum of the transmittance | permeability and reflectance of a near-infrared reflective layer (single layer only of a 1st layer).

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[要旨]
本発明のディスプレイ用近赤外線遮蔽フィルタは、図1(a)にその一形態を例示するディスプレイ用近赤外線遮蔽フィルタ10の様に、観察者V側から順に、可視光線は透過し近赤外線を反射する近赤外線反射層1と、可視光線は透過し近赤外線を吸収する近赤外線吸収層2とを、この順に、少なくとも有し、しかも前記近赤外線反射層1が右円偏光又は左円偏光の一方の円偏光を選択的に反射し他方の円偏光を透過する第1層1aと、該第1層とは円偏光の旋回方向が逆向きで左円偏光又は右円偏光の一方の円偏光を選択的に反射し他方の円偏光を透過する第2層1bとの2層からなる構成のフィルタである。
以下、本明細書では、第1層1aは第2層1bよりも、近赤外線吸収層2側に位置する層として説明する。
[Summary]
The near-infrared shielding filter for display of the present invention, like the near-infrared shielding filter for display 10 whose form is illustrated in FIG. 1A, sequentially transmits visible light and reflects near-infrared from the viewer V side. The near-infrared reflecting layer 1 and the near-infrared absorbing layer 2 that transmits visible light and absorbs near-infrared light in this order, and the near-infrared reflecting layer 1 is one of right circularly polarized light and left circularly polarized light. A first layer 1a that selectively reflects one circularly polarized light and transmits the other circularly polarized light, and the first layer is a circularly polarized light whose direction of rotation is opposite to one of the left circularly polarized light and the right circularly polarized light. It is a filter composed of two layers, the second layer 1b that selectively reflects and transmits the other circularly polarized light.
Hereinafter, in this specification, the 1st layer 1a is demonstrated as a layer located in the near-infrared absorption layer 2 side rather than the 2nd layer 1b.

そして、本発明の画像表示装置20は、図1(b)の様に、上記の様なディスプレイ用近赤外線遮蔽フィルタ10をディスプレイパネル3としてプラズマディスプレイパネルの前面に配置した構成とする。
その結果、ディスプレイパネル3から近赤外線が観察者側に放出されても、画像を構成する可視光領域の透過率はなるべく落とさずに、近赤外線を極めて効率的に遮蔽することができる。従って、可視光線の透過率低下によって画面が暗くなるのを防げることになる。また、同じ明るさであれば、低消費電力にできることになる。
The image display device 20 of the present invention has a configuration in which the display near-infrared shielding filter 10 as described above is disposed as the display panel 3 on the front surface of the plasma display panel as shown in FIG.
As a result, even if near-infrared rays are emitted from the display panel 3 to the viewer side, the near-infrared rays can be shielded very efficiently without reducing the transmittance in the visible light region constituting the image as much as possible. Therefore, it is possible to prevent the screen from becoming dark due to a decrease in the transmittance of visible light. If the brightness is the same, low power consumption can be achieved.

なお、「可視光線は透過し近赤外線を反射する」、「可視光線は透過し近赤外線を吸収する」とは、可視光線と近赤外線とに対する吸収・反射特性を相対的に示したものであり、必ずしも可視光線は全て透過し近赤外線は全て反射乃至は吸収することを意味するものではない。   “Visible light transmits and reflects near infrared light” and “Visible light transmits and absorbs near infrared light” are relative absorption and reflection characteristics of visible light and near infrared light. It does not necessarily mean that all visible rays are transmitted and all near infrared rays are reflected or absorbed.

また、図1(b)では、ディスプレイ用近赤外線遮蔽フィルタ10とディスプレイパネル3とは間に空間(空気層)を空けずに密着配置してあるが、間に空間を空けて配置してもよい。例えば、下記する図1(c)の画像表示装置20である。
図1(c)に例示する画像表示装置20は、ディスプレイ用近赤外線遮蔽フィルタ10が、更に電磁波遮蔽層4もディスプレイパネル3側に有する構成のものであるが、ここでのディスプレイ用近赤外線遮蔽フィルタ10は、空間を空けて間に空気層を設けてディスプレイパネル3の前面に配置してある。
In FIG. 1B, the near-infrared shielding filter for display 10 and the display panel 3 are arranged in close contact with no space (air layer) between them, but may be arranged with a space in between. Good. For example, the image display device 20 shown in FIG.
The image display device 20 illustrated in FIG. 1C has a configuration in which the display near-infrared shielding filter 10 further includes an electromagnetic wave shielding layer 4 on the display panel 3 side. The filter 10 is disposed on the front surface of the display panel 3 with an air space provided between them.

また、ディスプレイ用近赤外線遮蔽フィルタ10は、透明基材を有するものでも良く、この場合、透明基材は、近赤外線反射層1にも近赤外線吸収層2にも属さない別の層として、或いは属する層として、或いは属する上兼用する層として有するものでも良い。
例えば、図2(a)に例示のディスプレイ用近赤外線遮蔽フィルタ10は、第1層1aと第2層1bとからなる近赤外線反射層1と、近赤外線吸収層2との間に、これらに属さない支持体として透明基材5を有する構成である。
また、図2(b)に例示のディスプレイ用近赤外線遮蔽フィルタ10は、近赤外線反射層1が第1層1aと第2層1bとの間に更に透明基材5aを備えた構成であり、近赤外線吸収層2が観察者V側から近赤外線吸収層2aと透明基材5bとからなり、近赤外線反射層1のうち近赤外線吸収層2側に面する第1層1aが、近赤外線吸収層2aと接している構成である。
なお、透明基材を用いる構成は、この図2の層構成に限定されるものではない。
Further, the near-infrared shielding filter 10 for display may have a transparent base material, and in this case, the transparent base material is a separate layer that does not belong to the near-infrared reflective layer 1 or the near-infrared absorption layer 2 or It may be provided as a layer to which it belongs or as a layer to which it belongs.
For example, the near-infrared shielding filter for display 10 illustrated in FIG. 2A includes a near-infrared reflective layer 1 composed of a first layer 1a and a second layer 1b, and a near-infrared absorbing layer 2. It is the structure which has the transparent base material 5 as a support body which does not belong.
Moreover, the near-infrared shielding filter for display 10 illustrated in FIG. 2B has a configuration in which the near-infrared reflective layer 1 further includes a transparent substrate 5a between the first layer 1a and the second layer 1b. The near-infrared absorbing layer 2 comprises a near-infrared absorbing layer 2a and a transparent substrate 5b from the viewer V side, and the first layer 1a facing the near-infrared absorbing layer 2 side of the near-infrared reflecting layer 1 is absorbing near-infrared rays. The structure is in contact with the layer 2a.
In addition, the structure using a transparent base material is not limited to the layer structure of this FIG.

以下、更に本発明を詳述する。   The present invention will be further described in detail below.

[近赤外線を遮蔽するメカニズム]
本発明は、鋭意研究の結果、近赤外線吸収層2と共に、反射する円偏光の旋回方向が互いに異なる第1層1aと第2層1bからなる近赤外線反射層1とを、近赤外線吸収層2と近赤外線反射層1との両方を所定の位置関係で組み合わせることによって、可視光透過率を落とさず極めて効率的に近赤外線を遮蔽出来ることを見出したものであり、そのメカニズムについて図3を参照して説明する。
先ず、本発明では上記所定の位置関係として、図3に示すとおり、近赤外線を放射するディスプレイパネル3と、近赤外線反射層1との間に、近赤外線吸収層2を配置することに特徴を有する。
[Mechanism for shielding near infrared rays]
As a result of intensive studies, the present invention has shown that the near-infrared absorbing layer 2 includes the near-infrared absorbing layer 2 and the near-infrared reflecting layer 1 composed of the first layer 1a and the second layer 1b having different turning directions of the circularly polarized light to be reflected. And near-infrared reflective layer 1 are combined in a predetermined positional relationship, and it has been found that near-infrared rays can be shielded extremely efficiently without reducing visible light transmittance. See FIG. 3 for the mechanism. To explain.
First, in the present invention, as the predetermined positional relationship, as shown in FIG. 3, the near infrared absorbing layer 2 is disposed between the display panel 3 that emits near infrared rays and the near infrared reflecting layer 1. Have.

図3の説明では、近赤外線反射層1は、円偏光として近赤外線を反射し、その円偏光の旋回方向が互いに異なる第1層1aと第2層1bからなり、第1層1aの反射光の円偏光は、旋回方向が光の進行方向に向かって右回り(時計回り)の右円偏光Rで、第2層1bの反射光の円偏光は、この逆で旋回方向が光の進行方向に向かって左回り(反時計回り)の左円偏光Lであるとして説明する。
また、図3の説明では、ディスプレイパネル3に近い近赤外線源側の層を第1層1aと呼び、ディスプレイパネル3に遠い側の層を第2層1bと呼ぶことにする。
また、第1層1aで反射前の偏光分離されていない光は左円偏光Lと右円偏光Rとが混合された光と捉えることができるので、円偏光の旋回方向として「L+R」で示す。
なお、第1層1aとして、その反射光を右円偏光Rの層で形成するか、逆に左円偏光Lの層で形成するかは、いずれでも良い。
また、第1層1aと第2層1bとは、円偏光の旋回方向が互いに逆回りの層であるので、本質的には、このうちどちらの層を近赤外線吸収層2側としても良いが、前記したとおり、本明細書では第1層1aの方を近赤外線吸収層2側の層として統一して扱う。
In the description of FIG. 3, the near-infrared reflective layer 1 includes a first layer 1a and a second layer 1b that reflect near-infrared light as circularly polarized light, and the rotational directions of the circularly polarized light are different from each other, and reflected light from the first layer 1a. The circularly polarized light is right-handed circularly-polarized light R whose turning direction is clockwise (clockwise) toward the traveling direction of light, and the circularly polarized light of the reflected light of the second layer 1b is the opposite, and the turning direction is the traveling direction of light. It is assumed that the left circularly polarized light L is counterclockwise (counterclockwise).
In the description of FIG. 3, the near infrared source side layer close to the display panel 3 is called a first layer 1a, and the layer far from the display panel 3 is called a second layer 1b.
In addition, since the light that has not been polarized and separated before being reflected by the first layer 1a can be regarded as light in which the left circularly polarized light L and the right circularly polarized light R are mixed, the rotation direction of the circularly polarized light is indicated by “L + R”. .
It should be noted that the first layer 1a may be formed with either the right circularly polarized light R layer or the left circularly polarized light L layer.
In addition, the first layer 1a and the second layer 1b are layers in which the rotational directions of the circularly polarized light are opposite to each other. Therefore, either of these layers may be essentially the near infrared absorption layer 2 side. As described above, in the present specification, the first layer 1a is treated as a layer on the near infrared absorption layer 2 side.

ディスプレイパネル3から観察者V側に放射された近赤外線(1)は、先ずは、近赤外線吸収層2で吸収される。近赤外線吸収層2で吸収されずに通過した近赤外線(2)は、近赤外線反射層1の第1層1aによって、左右円偏光のうち片方の円偏光として右円偏光Rが反射され、全体では最大50%が反射し残りの回転方向が逆の左偏光Lの近赤外線(3)が、次の第2層1bに到達する。すると今度は、第2層1bによって、左右円偏光のうち片方の円偏光として左円偏光Lが反射され、第2層1bに近赤外線源から到達した近赤外線の全体では最大100%が反射する。第2層1bでは、第1層1aの場合とは異なり、第2層1bに到達した近赤外線(3)には、右円偏光R成分が存在しないから、第2層1bにおいては、全体では最大100%が反射することになる。また、第2層1bは、そこでの反射光とは逆回りの円偏光、つまり右円偏光Rを透過する性質を有するが、第2層1bに到達した近赤外線は右円偏光Rの成分光が存在せず左円偏光Lの成分光のみであるから、左円偏光Lの近赤外線は透過光として第2層1bから放出されない。このため、第2層1bから、左円偏光Lの近赤外線(4)が観察者Vの目に届くことはない。   The near infrared ray (1) emitted from the display panel 3 to the viewer V side is first absorbed by the near infrared absorption layer 2. The near-infrared ray (2) that has passed without being absorbed by the near-infrared absorbing layer 2 is reflected by the first layer 1a of the near-infrared reflecting layer 1 as right circularly polarized light R as one of the left and right circularly polarized light. Then, the near-infrared ray (3) of the left polarized light L having a maximum of 50% reflected and the reverse rotation direction reaches the next second layer 1b. Then, this time, the second layer 1b reflects the left circularly polarized light L as one of the left and right circularly polarized light, and the entire near infrared light reaching the second layer 1b from the near infrared light source reflects a maximum of 100%. . In the second layer 1b, unlike the case of the first layer 1a, the near-infrared ray (3) reaching the second layer 1b has no right circularly polarized R component. A maximum of 100% will be reflected. The second layer 1b has a property of transmitting circularly polarized light that is reverse to the reflected light there, that is, the right circularly polarized light R, but the near infrared light that has reached the second layer 1b is component light of the right circularly polarized light R. Therefore, the near-infrared light of the left circularly polarized light L is not emitted from the second layer 1b as transmitted light. For this reason, the near infrared ray (4) of the left circularly polarized light L does not reach the eyes of the observer V from the second layer 1b.

一方、近赤外線反射層1の第1層1aで反射された右円偏光Rの近赤外線(5)は、再度、近赤外線吸収層2に進みこれを透過するときに再吸収される。また、第1層1aを透過し第2層1bで反射された左円偏光Lの近赤外線(6)は、再度、第1層1aに進む。第1層1aは、左円偏光Lの近赤外線(6)を透過する性質を有していたので、左円偏光Lの近赤外線(6)は、そのまま吸収されずに第1層1aを透過して、結局、第2層1bで反射した近赤外線(6)も再度、近赤外線吸収層2に進みこれを透過するときに再吸収される。
したがって、近赤外線吸収層2に、画像観察者V側から、第1層1aからの反射光の右円偏光Rの近赤外線(5)と、第2層1bからの反射光の左円偏光Lの近赤外線(6)との両方が進むことになる。そして、これらの近赤外線(5)及び近赤外線(6)が近赤外線吸収層2によって再度吸収されることになり、吸収しきれずに残った左円偏光Lと右円偏光Rの両方を含む近赤外線(7)が、ディスプレイパネル3に向かう。次いで、ディスプレイパネル3で反射し再度観察者V方向に向かい、繰り返し近赤外線吸収層2を通過し、更に減衰することになる。
なお、概念図である図3では、各部材間には空間があるように見えるが、通常は、粘着層や他の部材、透明基材などが存在するのが普通である。但し、本発明としては空間が存在しても良く、存在しなくても良い。
On the other hand, the near-infrared ray (5) of the right circularly polarized light R reflected by the first layer 1a of the near-infrared reflecting layer 1 is again absorbed when it travels to the near-infrared absorbing layer 2 and is transmitted therethrough. Further, the near-infrared ray (6) of the left circularly polarized light L transmitted through the first layer 1a and reflected by the second layer 1b travels again to the first layer 1a. Since the first layer 1a has the property of transmitting the near-infrared ray (6) of the left circularly polarized light L, the near-infrared ray (6) of the left circularly polarized light L passes through the first layer 1a without being absorbed as it is. Eventually, the near-infrared ray (6) reflected by the second layer 1b is again re-absorbed when it passes through the near-infrared absorbing layer 2 and passes through it.
Therefore, the near-infrared absorbing layer 2 has the near-infrared ray (5) of the right circularly polarized light R reflected from the first layer 1a and the left circularly-polarized light L of the reflected light from the second layer 1b from the image observer V side. Both near-infrared (6) and will proceed. These near-infrared rays (5) and near-infrared rays (6) are absorbed again by the near-infrared absorption layer 2, and the near-infrared light L and the right-hand circularly polarized light R that are left unabsorbed are included. Infrared rays (7) are directed to the display panel 3. Next, the light is reflected by the display panel 3 and travels again in the direction of the viewer V, repeatedly passes through the near-infrared absorbing layer 2 and further attenuates.
In FIG. 3, which is a conceptual diagram, it seems that there is a space between each member, but usually there are usually an adhesive layer, other members, a transparent substrate, and the like. However, in the present invention, a space may or may not exist.

また、ディスプレイパネル3に戻った近赤外線(7)は、右円偏光Rと左円偏光Lとが混合した光となるが、これらが当量混合した場合では自然光として捉えることができるが、当量でなくいずれかの円偏光成分が残った場合でも右円偏光Rと左円偏光Lとに区別して挙動を考察すると、極めて効率的に近赤外線を遮蔽できる。
すなわち、ディスプレイパネル3に戻った近赤外線(7)は、その面で正反射した場合、その反射した近赤外線の円偏光の向きは逆向きになる。従って、近赤外線反射層1の第1層1aで反射された右円偏光Rの近赤外線は、ディスプレイパネル3で反射されて再度、近赤外線反射層1の第1層1aに来たときは、左円偏光Lになっている。そして、この左円偏光Lの近赤外線は近赤外線反射層1の第1層1aを透過してしまうが、ディスプレイパネル3と近赤外線反射層1との間には近赤外線吸収層2が存在するから、近赤外線反射層1まで戻るまで往復で2回も通過して減衰しているので、近赤外線反射層1の第1層1aのみの場合に比べて、より効率的に近赤外線を遮蔽できることになる。さらに、近赤外線反射層1の第1層1aの次には反射する円偏光の旋回方向が逆回りの第2層1bが待ち構えており、左円偏光Lを反射するので、第2層1bで左円偏光Lは反射して元の来た方向に戻して透過させないので、極めて効率的に近赤外線を遮断できることになる。
次に、第2層1bで反射された左円偏光Lの近赤外線について考察する。左円偏光Lの近赤外線は、左円偏光Lは第1層1bは透過しディスプレイパネル2で反射されて再度、近赤外線反射層1の第1層1aに来たときは、右円偏光Rになっている。そして、この右円偏光Rの近赤外線は近赤外線反射層1の第1層1aで反射する。そして、上記した第1層1aで反射した右円偏光Rと同様に減衰、消滅していくので、極めて効率的に近赤外線を遮断できることになる。
Further, the near-infrared ray (7) returned to the display panel 3 becomes light in which the right circularly polarized light R and the left circularly polarized light L are mixed, but when these are mixed in an equivalent amount, it can be regarded as natural light. Even if any of the circularly polarized light components remain, if the behavior is considered by distinguishing between the right circularly polarized light R and the left circularly polarized light L, the near infrared light can be shielded very efficiently.
That is, when the near infrared ray (7) returned to the display panel 3 is regularly reflected on the surface, the direction of the circularly polarized light of the reflected near infrared ray is reversed. Accordingly, when the near-infrared light of the right circularly polarized light R reflected by the first layer 1a of the near-infrared reflective layer 1 is reflected by the display panel 3 and again comes to the first layer 1a of the near-infrared reflective layer 1, Left circularly polarized light L is obtained. The near-infrared light of the left circularly polarized light L passes through the first layer 1a of the near-infrared reflection layer 1, but the near-infrared absorption layer 2 exists between the display panel 3 and the near-infrared reflection layer 1. Since the light passes through and reciprocates twice until it returns to the near-infrared reflective layer 1, the near-infrared can be shielded more efficiently than in the case of the first layer 1a of the near-infrared reflective layer 1 alone. become. Further, next to the first layer 1a of the near-infrared reflective layer 1, the second layer 1b having a reverse rotation direction of the circularly polarized light to be reflected is waiting, and reflects the left circularly polarized light L. Since the left circularly polarized light L is reflected and returned to the original direction and is not transmitted, the near-infrared light can be blocked very efficiently.
Next, the near infrared ray of the left circularly polarized light L reflected by the second layer 1b will be considered. The near-infrared light of the left circularly polarized light L is transmitted through the first layer 1b and reflected by the display panel 2 and then comes to the first layer 1a of the near-infrared reflective layer 1 again. It has become. The near infrared light of the right circularly polarized light R is reflected by the first layer 1 a of the near infrared reflection layer 1. And since it attenuate | damps and extinguishes similarly to the right circularly polarized light R reflected by the above-mentioned 1st layer 1a, a near infrared ray can be interrupted | blocked very efficiently.

なお、近赤外線吸収層2と、第1層1a及び第2層1bからなる近赤外線反射層1との近赤外線源に対する位置関係が逆の場合には、近赤外線反射層1で反射させても、近赤外線は近赤外線反射層1を透過した光として近赤外線吸収層2を一回しか通らないので、上記の様には効率的に近赤外線を遮蔽できない。   If the near-infrared absorbing layer 2 and the near-infrared reflecting layer 1 composed of the first layer 1a and the second layer 1b have the opposite positional relationship to the near-infrared source, the near-infrared reflecting layer 1 may reflect the light. Since near-infrared light passes through the near-infrared absorbing layer 2 only once as light transmitted through the near-infrared reflecting layer 1, the near-infrared light cannot be effectively shielded as described above.

以上の様な構成によって、近赤外線吸収層2だけを使用する構成と比較して、ディスプレイパネル3から放出され近赤外線を単純計算で更に0(ゼロ)近くまで減衰させることができる。逆に、目的とする近赤外線遮蔽性能を上げずに一定のままで良い場合では、近赤外線吸収層の近赤外線吸収性能を0(ゼロ)まで落としても、所定の近赤外線遮蔽性能が確保できる。そしてこの場合、可視光領域のうち長波長端側に於いて、近赤外線吸収層によって吸収されていた可視光の吸収量も0(ゼロ)まで減衰する。こうなると、近赤外線吸収層自体を設ける意味が存在しないことになるが、これは単純計算の理想的な話であり、現実の近赤外線反射層1の第1層1a及び第2層1bに於ける特定円偏光成分(L又はR)の反射率は100%ではなく、多少は透過する成分も存在する。この為、近赤外線反射層1の第1層1a及び第2層1bを透過する近赤外線をより完全に遮蔽する為に、図3の如く近赤外線吸収層2を設ける。また、近赤外線吸収層2の観点から見ても、現実の近赤外線吸収色素の最大吸収波長及び吸収波長帯域などを考慮したときには、近赤外線反射層1と近赤外線吸収層2との組み合わせが、実用上は意味を持ってくる。この為、近赤外線吸収層2の吸収量は0(ゼロ)ではなく或る程度の吸収量を確保する際に、近赤外線吸収層中での近赤外線吸収色素の濃度を落として、可視光透過率を上げることができる。また、近赤外線吸収層に添加する高価な近赤外線吸収色素の使用量を減らすことができるので、コスト低減効果も期待できることなる。   With the configuration as described above, compared to a configuration using only the near-infrared absorbing layer 2, the near-infrared light emitted from the display panel 3 can be further attenuated to near zero by simple calculation. On the other hand, when the target near-infrared shielding performance can be kept constant without increasing the target, the predetermined near-infrared shielding performance can be secured even if the near-infrared absorbing performance of the near-infrared absorbing layer is reduced to 0 (zero). . In this case, the absorption amount of visible light absorbed by the near-infrared absorbing layer on the long wavelength end side in the visible light region is also attenuated to 0 (zero). In this case, the meaning of providing the near-infrared absorbing layer itself does not exist, but this is an ideal story of simple calculation, and the actual near-infrared reflecting layer 1 has a first layer 1a and a second layer 1b. The reflectance of the specific circularly polarized light component (L or R) is not 100%, and there is a component that transmits a little. For this reason, a near-infrared absorbing layer 2 is provided as shown in FIG. 3 in order to more completely shield the near-infrared rays that pass through the first layer 1a and the second layer 1b of the near-infrared reflecting layer 1. In view of the near-infrared absorbing layer 2, when considering the maximum absorption wavelength and absorption wavelength band of an actual near-infrared absorbing dye, the combination of the near-infrared reflecting layer 1 and the near-infrared absorbing layer 2 is In practice, it makes sense. For this reason, when the absorption amount of the near-infrared absorbing layer 2 is not 0 (zero), but a certain amount of absorption is ensured, the concentration of the near-infrared absorbing dye in the near-infrared absorbing layer is reduced to transmit visible light. You can raise the rate. Moreover, since the usage-amount of the expensive near-infrared absorption pigment | dye added to a near-infrared absorption layer can be reduced, the cost reduction effect can also be anticipated.

一方、近赤外線吸収層2に続く近赤外線反射層1が第1層1a(又は第2層1bでも良いが)のみで、左右円偏光のいずれか片方した反射しない場合では、これも図3を流用して説明すれば、次の様になり、それほど近赤外線遮蔽性能は高められない。
すなわち、ディスプレイパネル3から観察者V側に放射された近赤外線(1)は近赤外線吸収層2で吸収され、残りの透過した近赤外線(2)が近赤外線反射層1の第1層1aで右円偏光Rの近赤外線(5)が反射される。したがって、近赤外線吸収層2で吸収された残りの透過した近赤外線(2)について最大50%が反射し残り50%の左円偏光Lの近赤外線(3)は、第2層1bが存在しないのであるから、そのまま観察者Vの目に届いてしまう。
On the other hand, when the near-infrared reflecting layer 1 following the near-infrared absorbing layer 2 is only the first layer 1a (or the second layer 1b) and either one of the left and right circularly polarized light is not reflected, this is also shown in FIG. If diverted and explained, it becomes as follows, and the near-infrared shielding performance cannot be improved so much.
That is, the near infrared ray (1) radiated from the display panel 3 to the viewer V side is absorbed by the near infrared ray absorbing layer 2, and the remaining transmitted near infrared ray (2) is caused by the first layer 1a of the near infrared ray reflecting layer 1. Near infrared (5) of right circularly polarized light R is reflected. Therefore, the remaining near infrared ray (2) absorbed by the near infrared absorption layer 2 reflects up to 50%, and the remaining 50% of the near infrared ray (3) of the left circularly polarized light L has no second layer 1b. Therefore, it reaches the eyes of the observer V as it is.

また、図4に示す様に、近赤外線反射層1の第1層1aのみで近赤外線吸収層2も省略した場合では次の様になり、それほど近赤外線遮蔽性能は期待できない。すなわち、ディスプレイパネル3から観察者V側に放射された近赤外線(1)は、近赤外線反射層1の第1層1aで左右円偏光のうち片方の円偏光が反射され全体では最大50%が反射し残り50%の近赤外線(3)が観察者Vの目に届く。この時点で既に、ディスプレイパネル3が放射する近赤外線の50%は透過を許すことになる。一方、近赤外線反射層1で反射された近赤外線(2)は、ディスプレイパネルに戻りそこで反射した近赤外線(4)が再度、近赤外線反射層1に向かいそこで再度反射することを繰り返し、そのうちの円偏光の旋回方向が反転した一部の近赤外線(5)が近赤外線吸収層1を透過して観察者Vの目に届く。従って、両者の透過近赤外線(3)及び(5)を合計すると、図4の形態に於いては、ディスプレイパネル3が放射する近赤外線の50%超は透過してしまい、近赤外線の遮蔽性能はあまり高くない。   Further, as shown in FIG. 4, when only the first layer 1a of the near-infrared reflecting layer 1 is omitted and the near-infrared absorbing layer 2 is omitted, it becomes as follows, and so near-infrared shielding performance cannot be expected. That is, the near infrared ray (1) radiated from the display panel 3 to the viewer V side is reflected by one of the left and right circularly polarized light at the first layer 1a of the near infrared reflecting layer 1 and the maximum is 50% in total. Reflected and the remaining 50% of near infrared rays (3) reach the eyes of the observer V. Already at this point, 50% of the near infrared rays emitted by the display panel 3 will allow transmission. On the other hand, the near infrared ray (2) reflected by the near infrared reflecting layer 1 returns to the display panel and the near infrared ray (4) reflected there repeats again toward the near infrared reflecting layer 1 and is reflected again there, A part of the near-infrared ray (5) in which the turning direction of the circularly polarized light is reversed passes through the near-infrared absorbing layer 1 and reaches the eyes of the observer V. Therefore, when the transmitted near infrared rays (3) and (5) of both are added, in the form of FIG. 4, more than 50% of the near infrared rays emitted from the display panel 3 are transmitted, and the near infrared shielding performance. Is not so expensive.

また、図4に示す様に、近赤外線反射層1は第1層1a及び第2層1bの2層を備えるが、近赤外線吸収層2を省略し、近赤外線反射層1のみとした場合では次の様になり、近赤外線遮蔽性能が落ちる。
すなわち、ディスプレイパネル3から観察者V側に放射された近赤外線(1)は、近赤外線反射層1の第1層1aで左右円偏光のうち片方の円偏光として右円偏光Rの近赤外線(4)が反射され、ここで全体では最大50%が反射し残り50%の左円偏光Lの近赤外線(2)が次の第2層1bに進む。第2層1bでは、左円偏光Lの近赤外線(5)が反射され、第2層1bに到達する左円偏光Lの近赤外線(3)は、全体で最大100%が反射し、第2層1bを透過可能な左円偏光L成分は0%である。このため、第2層1bから、左円偏光Lの近赤外線(3)が観察者Vの目に届くことはない。また、近赤外線反射層1で反射した、右円偏光Rの近赤外線(4)及び左円偏光Lの近赤外線(5)は混合され、ディスプレイパネル3に戻りそこで反射して再度、画像観察者側に進む近赤外線(6)となる。この時、近赤外線反射層1とディスプレイパネル3との間には、近赤外線吸収層2が存在しないから、近赤外線吸収層2の透過を繰り替えことによる、近赤外線の減衰は期待できない。
従って、近赤外線反射層1の第1層1a及び第2層1bに於いて、特定の一方の円偏光成分の反射率が理想的に100%のときのみ、上記の如き機構で完全な近赤外線遮蔽が可能となる。
As shown in FIG. 4, the near-infrared reflective layer 1 includes two layers, a first layer 1a and a second layer 1b, but the near-infrared absorbing layer 2 is omitted and only the near-infrared reflective layer 1 is used. The near-infrared shielding performance is reduced as follows.
That is, the near infrared ray (1) radiated from the display panel 3 to the observer V side is the near infrared ray of the right circularly polarized light R as one circularly polarized light of the left and right circularly polarized light in the first layer 1a of the near infrared reflective layer 1. 4) is reflected. Here, 50% of the total is reflected, and the remaining 50% of the near-infrared ray (2) of the left circularly polarized light L proceeds to the next second layer 1b. In the second layer 1b, the near-infrared ray (5) of the left circularly polarized light L is reflected, and the near-infrared ray (3) of the left circularly polarized light L reaching the second layer 1b reflects a maximum of 100% as a whole. The left circularly polarized light L component that can be transmitted through the layer 1b is 0%. For this reason, the near infrared ray (3) of the left circularly polarized light L does not reach the eyes of the observer V from the second layer 1b. Further, the near infrared (4) of the right circularly polarized light R and the near infrared (5) of the left circularly polarized light L reflected by the near infrared reflecting layer 1 are mixed and returned to the display panel 3 to be reflected there again to be an image observer. Near infrared rays (6) traveling to the side. At this time, since the near-infrared absorbing layer 2 does not exist between the near-infrared reflecting layer 1 and the display panel 3, the near-infrared attenuation due to repeated transmission of the near-infrared absorbing layer 2 cannot be expected.
Therefore, in the first layer 1a and the second layer 1b of the near-infrared reflection layer 1, only when the reflectance of one specific circularly polarized light component is ideally 100%, a complete near-infrared ray is obtained by the above-described mechanism. Shielding is possible.

ところで、今までの図3及び図4を参照した説明は、基本的性能を説明する為に、遮断が必要な近赤外線領域の全波長帯域において、近赤外線反射層1の第1層1a及び第2層1bが共に、特定の一方の円偏光成分(L又はR)に対して、その100%の反射機能及び100%の透過機能を発揮することを前提としたものである。
しかし、実際には、コレステリック液晶固化層は、後述する様に、円偏光選択反射の生じる波長帯域幅Δλが存在し、また、選択反射の反射率が最大を示す波長λ0も存在する。又、該波長帯域内に於いても特定の一方の円偏光成分の反射率は完全に100%にはならない。この為、一部の左円偏光L或いは右円偏光Rが、近赤外線反射層1が第1層1aとこれとは旋回方向が逆方向の第2層1bとの両層から構成されていても、観察者Vの目に届き得る。そこで、必要とされる全波長帯域で完全に反射させ、また完全に片方の円偏光成分を完全に透過させるよりは、その不完全な部分は認めて、その不完全さを補う為に、近赤外線吸収層と組み合わせることで、全体として要求される近赤外線遮蔽性能を出した方が実用的である。そして、従来になく可視光の透過率は落とさずに極めて効率的に、近赤外線を遮蔽できることになる。
By the way, in the description with reference to FIGS. 3 and 4 so far, the first layer 1a and the first layer 1a of the near-infrared reflective layer 1 and the first layer in all wavelength bands of the near-infrared region that need to be cut off in order to explain basic performance. It is assumed that both the two layers 1b exhibit a 100% reflection function and a 100% transmission function with respect to one specific circularly polarized light component (L or R).
However, in reality, the cholesteric liquid crystal solidified layer has a wavelength bandwidth Δλ in which circularly polarized selective reflection occurs, and also has a wavelength λ 0 in which the reflectance of selective reflection is maximum, as will be described later. Even within the wavelength band, the reflectance of one specific circularly polarized light component does not become 100% completely. For this reason, a part of the left circularly polarized light L or the right circularly polarized light R is composed of both the near-infrared reflective layer 1 and the first layer 1a and the second layer 1b whose direction of rotation is opposite to that of the first layer 1a. Can reach the eyes of the observer V. Therefore, rather than completely reflecting in all the required wavelength bands and completely transmitting one circularly polarized light component completely, the incomplete part is recognized, and in order to compensate for the incompleteness, It is more practical to achieve the near infrared shielding performance required as a whole by combining with an infrared absorbing layer. And, near infrared rays can be shielded extremely efficiently without decreasing the transmittance of visible light.

次に、各層、各部材について更に詳述する。   Next, each layer and each member will be described in detail.

[近赤外線反射層]
近赤外線反射層1には、可視光を透過するが近赤外線は反射する層を第1層1aと第2層1bとの2層を有し、2層が反射する特定の円偏光(及び透過する特定の円偏光)の旋回方向が互いに逆向きになる層であれば特に制限はなく、公知の層を利用できる。例えば、コレステリック液晶固化層を用いることができる。
[Near-infrared reflective layer]
The near-infrared reflective layer 1 has two layers, a first layer 1a and a second layer 1b, that transmit visible light but reflect near-infrared light, and have a specific circularly polarized light (and transmitted light) reflected by the two layers. There is no particular limitation as long as the turning directions of the specific circularly polarized light are opposite to each other, and a known layer can be used. For example, a cholesteric liquid crystal solidified layer can be used.

コレステリック液晶固化層の例としては、例えば、特開2002−357717号公報等に開示されるような物である。これは、コレステリック液晶層を架橋反応、冷却固化等によって固化させた層から成る。コレステリック液晶層は、該液晶分子の分子軸の配向方向が、該層の表裏面に平行な面内の特定方向を向き、しかも該層の厚み方向の裏面から表面に進むに従って、該液晶分子の配向方向が連続的に一方向に回転する結果、厚み方向の裏面から表面に進むに従って、該液晶分子軸が螺旋階段の踏板の如く配向した構造(helix(立体螺旋)構造)を有する。そして、該コレステリック液晶固化層は、この様な螺旋的分子配向状態を維持したままで固化されている。この様なコレステリック液晶固化層は、該層の表(乃至裏)面に入射した光のうち、該液晶分子軸螺旋の回転方向と同じ向きに回転する円偏光成分は選択的に反射される。一方、該液晶分子軸螺旋の回転方向と逆きに回転する特定の円偏光成分は選択的に透過する。
この様な円偏光の選択反射の反射率は、次の〔式1〕の波長λ0で最大値を示す。
λ0=nav・p 〔式1〕
なお、ここで、pは螺旋ピッチ(Herical Pitch;ヘリカルピッチとも言う)、navは螺旋軸に直交する平面内の平均屈折率である。これを選択反射波長とも呼称する。
このときの円偏光選択反射の生じる波長帯域幅Δλは、次の〔式2〕で示される。
Δλ=Δn・p 〔式2〕
なお、ここで、Δn=n(平行)−n(直角)であり、n(平行)は螺旋軸に直交する面内における最大の屈折率、n(直角)は螺旋軸に平行な面内における最大の屈折率である。
Examples of the cholesteric liquid crystal solidified layer include those disclosed in JP-A-2002-357717. This consists of a layer obtained by solidifying a cholesteric liquid crystal layer by a crosslinking reaction, cooling solidification or the like. In the cholesteric liquid crystal layer, the alignment direction of the molecular axes of the liquid crystal molecules is directed in a specific direction in a plane parallel to the front and back surfaces of the layer, and further proceeds from the back surface to the surface in the thickness direction of the layer. As a result of the orientation direction continuously rotating in one direction, the liquid crystal molecular axes have a structure (helix (three-dimensional helix) structure) in which the liquid crystal molecular axes are oriented like a tread of a spiral staircase as the thickness advances from the back surface to the front surface. The cholesteric liquid crystal solidified layer is solidified while maintaining such a helical molecular alignment state. In such a cholesteric liquid crystal solidified layer, circularly polarized light components rotating in the same direction as the rotation direction of the liquid crystal molecular axis spiral among the light incident on the front (or back) surface of the layer are selectively reflected. On the other hand, a specific circularly polarized light component rotating in the direction opposite to the rotation direction of the liquid crystal molecular axis spiral is selectively transmitted.
The reflectance of such selective reflection of circularly polarized light shows a maximum value at the wavelength λ 0 of the following [Equation 1].
λ 0 = nav · p [Formula 1]
Here, p is a helical pitch (also referred to as a helical pitch), and nav is an average refractive index in a plane perpendicular to the helical axis. This is also called a selective reflection wavelength.
The wavelength bandwidth Δλ in which circularly polarized light selective reflection occurs at this time is expressed by the following [Equation 2].
Δλ = Δn · p [Formula 2]
Here, Δn = n (parallel) −n (right angle), where n (parallel) is the maximum refractive index in the plane perpendicular to the helical axis, and n (right angle) is in the plane parallel to the helical axis. The maximum refractive index.

コレステリック液晶固化層は、コレステリック液晶を架橋反応、重合反応等によって固化させて液晶状態を固定した層であり、前記のように、該層の一方の面から入射する光線のうち、右円偏光成分(又は左円偏光成分、即ち特定の円偏光成分)を選択的に反射し、残りの成分である円偏光の向きが逆向きの左円偏光成分(又は右円偏光成分)を透過する光学特性を有する。この様な光学特性は、層がコレステリック構造を有し、該コレステリック構造の螺旋構造に於ける旋回方向を適宜設定することで、その旋回方向と同一の旋光方向を有する円偏光が選択的に反射されるので、旋回方向の設定によって反射する光線を右円偏光又は左円偏光にすることができることが知られている。反射光線の波長、つまり選択反射波長は、螺旋構造のヘリカルピッチに等しく、また、反射光線の選択反射波長に対するバンド幅は層の複屈折率が関係する。この為、コレステリック液晶固化層は一般に狭い波長域の波長帯域(バンド)幅で近赤外線を反射し、また透過する。また、選択反射波長を中心としたバンド幅の範囲外の光線は、反射せずに透過する。   A cholesteric liquid crystal solidified layer is a layer in which a cholesteric liquid crystal is solidified by a crosslinking reaction, a polymerization reaction or the like to fix a liquid crystal state, and as described above, of the light incident from one surface of the layer, a right circularly polarized light component (Or left circularly polarized light component, that is, a specific circularly polarized light component) is selectively reflected and the remaining component is an optical characteristic that transmits the left circularly polarized light component (or right circularly polarized light component) having the opposite direction of circularly polarized light. Have Such optical characteristics are that the layer has a cholesteric structure, and the circularly polarized light having the same optical rotation direction as that of the rotational direction is selectively reflected by appropriately setting the rotational direction in the spiral structure of the cholesteric structure. Therefore, it is known that the light beam reflected by the setting of the turning direction can be changed to right circularly polarized light or left circularly polarized light. The wavelength of the reflected light beam, that is, the selective reflection wavelength is equal to the helical pitch of the spiral structure, and the bandwidth of the reflected light beam with respect to the selective reflection wavelength is related to the birefringence of the layer. For this reason, the cholesteric liquid crystal solidified layer generally reflects and transmits near-infrared rays in a narrow wavelength band. Light rays outside the bandwidth range centered on the selective reflection wavelength are transmitted without being reflected.

従って、コレステリック液晶固化層のみを用いて、ディスプレイから放出される近赤外線をカットしようとすると、異なる複数の選択反射波長に対応して、ヘリカルピッチの異なるコレステリック液晶固化層を複数層、重ねて使用しないと実用的でないことは、既に前記〔発明が解決しようとする課題〕で述べた通りである。しかし、本発明では、このコレステリック液晶固化層による近赤外線反射層と近赤外線吸収層の両方の層を所定の配置で用いることで、可視光線は透過しつつ効率的に近赤外線を遮蔽したものであるので、例えば、近赤外線吸収層と近赤外線反射層の両方で最終的な遮蔽性能を出せればよいことになる。
また、バンド幅が狭い光学特性を利用して、近赤外線領域に選択反射波長を持ってくれば、可視光領域での(反射による)透過率低下も効率的に回避できることになる。
Therefore, using only the solidified cholesteric liquid crystal layer to cut the near-infrared rays emitted from the display, a plurality of solidified cholesteric liquid crystal layers with different helical pitches are used, corresponding to multiple different selective reflection wavelengths. If it is not, it is not practical as described above in [Problems to be solved by the invention]. However, in the present invention, by using both the near-infrared reflective layer and the near-infrared absorbing layer by the cholesteric liquid crystal solidified layer in a predetermined arrangement, visible light is transmitted and the near-infrared is efficiently shielded. Therefore, for example, it is only necessary to obtain the final shielding performance with both the near-infrared absorbing layer and the near-infrared reflecting layer.
Further, if the selective reflection wavelength is brought to the near infrared region by utilizing the optical characteristics having a narrow bandwidth, it is possible to efficiently avoid a decrease in transmittance (due to reflection) in the visible light region.

ここで、図5は、コレステリック液晶固化層を用いた近赤外線反射層の一方の円偏光のみを反射する第1層の層についての反射スペトクル及び透過スペクトルの一例を示す図であり、同図では大よそ1000nmを中心とした反射及び透過スペクトルを示す。
なお、このスペクトルを示す近赤外線反射層の第1層はコレステリック液晶固化層が単層で、実施例1の近赤外線反射層のうちの第1層1aに相当するものである。
Here, FIG. 5 is a diagram showing an example of a reflection spectrum and a transmission spectrum of the first layer that reflects only one circularly polarized light of the near-infrared reflective layer using the cholesteric liquid crystal solidified layer. A reflection and transmission spectrum centered around 1000 nm is shown.
The first layer of the near-infrared reflective layer exhibiting this spectrum is a single cholesteric liquid crystal solidified layer, and corresponds to the first layer 1a of the near-infrared reflective layer of Example 1.

ところで、選択反射波長は、要求性能に応じて設定すれば良く、特に限定されるものではないが、リモートコントローラの誤動作を効率的に抑制する観点から、リモートコントローラの受光器の感度特性を考慮するのが好ましい。従って、選択反射波長は850〜1100nmの範囲とするのが好ましい。また、近赤外線反射層の第1層又は第2層に於ける、選択反射波長に於ける光線(近赤外線)の反射率は、なるべく大きい方が好ましいが、円偏光の選択反射特性を利用する点では、右又は左円偏光の一方が反射し他方が透過するのであるから、理想的には半分の50%が最大であるので(この最大値を更に上げられる点については更に後で詳述する)、40%以上あることが好ましい。   By the way, the selective reflection wavelength may be set according to the required performance, and is not particularly limited. However, from the viewpoint of efficiently suppressing the malfunction of the remote controller, the sensitivity characteristic of the receiver of the remote controller is considered. Is preferred. Therefore, the selective reflection wavelength is preferably in the range of 850 to 1100 nm. Further, the reflectance of light rays (near infrared rays) at the selective reflection wavelength in the first layer or the second layer of the near infrared reflection layer is preferably as large as possible, but the selective reflection characteristic of circularly polarized light is used. In terms of points, one of the right and left circularly polarized light is reflected and the other is transmitted, so ideally 50% of the half is the maximum (this point can be further increased in more detail later). ), And preferably 40% or more.

なお、コレステリック液晶固化層に用いるコレステリック液晶材料としては、公知のものを適宜使用すれば良く、例えば、重合性モノマー化合物、重合性オリゴマー化合物等の重合性液晶化合物、液晶ポリマーなどの液晶化合物を使用することができる。なお、重合性液晶化合物に於いて重合性を発現する重合性官能基としては、代表的にはアクリレート基、つまり、アクリロイルオキシ基乃至アクリロイル基、などであるが、特に制限はない。この様な重合性官能基は液晶分子の通常、片末端又は両末端に有する。また、コレステリック液晶材料としては、1種又は2種以上の液晶化合物が使用される。
また、コレステリック液晶材料としては、ネマテック液晶性を呈する化合物と、カイラル剤とを併用した液晶材料も好適である。カイラル剤としては、公知の化合物を適宜使用することができる。
In addition, what is necessary is just to use a well-known thing suitably as a cholesteric liquid crystal material used for a cholesteric liquid crystal solidification layer, for example, liquid crystal compounds, such as polymerizable liquid crystal compounds, such as a polymerizable monomer compound and a polymerizable oligomer compound, and a liquid crystal polymer are used. can do. The polymerizable functional group exhibiting polymerizability in the polymerizable liquid crystal compound is typically an acrylate group, that is, an acryloyloxy group to an acryloyl group, but is not particularly limited. Such a polymerizable functional group usually has one end or both ends of the liquid crystal molecule. Moreover, as a cholesteric liquid crystal material, 1 type, or 2 or more types of liquid crystal compounds are used.
Further, as the cholesteric liquid crystal material, a liquid crystal material in which a compound exhibiting nematic liquid crystal properties and a chiral agent are used in combination is also suitable. As the chiral agent, known compounds can be used as appropriate.

コレステリック液晶固化層の厚みは、液晶材料、必要な反射特性等に応じて適宜に設定すれば良く特に限定されないが、例えば0.5〜100μm、より好ましくは1〜10μmである。   The thickness of the cholesteric liquid crystal solidified layer is not particularly limited as long as it is appropriately set according to the liquid crystal material, necessary reflection characteristics, and the like, but is, for example, 0.5 to 100 μm, and more preferably 1 to 10 μm.

コレステリック液晶固化層は、その層単独で近赤外線反射層の第1層又は第2層の各々としても良いが、任意の基材に積層したもの、つまり該基材とコレステリック液晶固化層とから、近赤外線反射層の第1層、第2層を構成してもよい。また、基材は、近赤外線吸収層、電磁波遮蔽層などの他の層と共有しても良い。
一例を例示すれば、図2(a)は、近赤外線反射層1と近赤外線吸収層2との間にこれら2層に共に属さない層として透明基材5を有し、これらの層が密接して積層された構成である。
なお、基材としては基本的には透明な透明基材5が好ましいが、透明基材は、例えば、色素添加で調色機能を持たせた着色された透明基材でもよい。
The cholesteric liquid crystal solidified layer may be the first layer or the second layer of the near-infrared reflective layer by itself, but is laminated on an arbitrary base material, that is, from the base material and the cholesteric liquid crystal solidified layer, You may comprise the 1st layer of a near-infrared reflective layer, and a 2nd layer. Moreover, you may share a base material with other layers, such as a near-infrared absorption layer and an electromagnetic wave shielding layer.
For example, FIG. 2A shows a transparent substrate 5 between the near-infrared reflecting layer 1 and the near-infrared absorbing layer 2 as a layer that does not belong to these two layers. Thus, the laminated structure.
In addition, as a base material, although the transparent transparent base material 5 is fundamentally preferable, the colored transparent base material which gave the color-adjustment function by pigment | dye addition may be sufficient as a transparent base material, for example.

この他、各種機能層(後述する)の面にコレステリック液晶固化層を積層しても良い。例えば、コレステリック液晶固化層を反射防止層が備える基材の裏面に積層したり、コントラスト向上層が備える基材の裏面に積層したり、電磁波遮蔽層が備える基材の裏面に積層したり、塗工形成した近赤外線吸収層が備える基材の裏面に積層したり、しても良い。なお、ここで「裏面」とは該基材に反射防止層等の機能層が積層された側とは反対側の面を意味し、ディスプレイ側、観察者側とは別の概念である。
或いはまた、機能層の上にコレステリック液晶固化層を積層しても良い。また、コレステリック液晶固化層の上に、各種機能層を積層しても良く、例えば、コレステリック液晶固化層の上に近赤外線吸収層を塗工形成しても良い。
なお、コレステリック液晶固化層の形成は、公知の形成方法、例えば上記の様なコレステリック液晶材料を含む組成物をロールコート、グラビアロールコート、バーコート等の公知の塗工法等によって形成することができる。また、転写法を利用して積層しても良い。
また、近赤外線反射層1は、その第1層1aと第2層1bとを、図2(b)の様に間に透明基材5を介するなど互いに分離して積層する以外に、図2(a)の様に透明基材5のの一方の面上に互いに接触させて積層しても良い。
In addition, a cholesteric liquid crystal solidified layer may be laminated on the surfaces of various functional layers (described later). For example, the cholesteric liquid crystal solidified layer is laminated on the back surface of the base material provided in the antireflection layer, the back surface of the base material provided in the contrast enhancement layer, the back surface of the base material provided in the electromagnetic wave shielding layer, You may laminate | stack on the back surface of the base material with which the near-infrared absorption layer formed by construction is equipped. Here, the “back surface” means a surface opposite to the side where a functional layer such as an antireflection layer is laminated on the base material, and is a concept different from the display side and the viewer side.
Alternatively, a cholesteric liquid crystal solidified layer may be laminated on the functional layer. Various functional layers may be laminated on the cholesteric liquid crystal solidified layer. For example, a near infrared absorbing layer may be formed on the cholesteric liquid crystal solidified layer by coating.
The cholesteric liquid crystal solidified layer can be formed by a known forming method, for example, a composition containing a cholesteric liquid crystal material as described above by a known coating method such as roll coating, gravure roll coating, bar coating or the like. . Alternatively, lamination may be performed using a transfer method.
Further, the near-infrared reflective layer 1 has a structure in which the first layer 1a and the second layer 1b are laminated separately from each other, for example, with a transparent substrate 5 interposed therebetween as shown in FIG. As in (a), they may be laminated on one surface of the transparent substrate 5 while being in contact with each other.

そして、コレステリック液晶固化層を用いて第1層1aと第1層1aとは円偏光の旋回方向が逆向きの第2層1bを形成し、この第1層1a及び第2層1bの両方で近赤外線反射層を構成することで、第1層1aで右(又は左)円偏光を反射させ、当該第1層1aを通過した左(又は右)円偏光は、第2層1bで反射させることで、近赤外線反射層1の体としては、右(又は左)円偏光の一方の円偏光のみではなく、右及び左の両方の円偏光を反射させることが可能となる。つまり全反射型の近赤外線選択反射層である。   Then, using the cholesteric liquid crystal solidified layer, the first layer 1a and the first layer 1a form a second layer 1b in which the rotational direction of the circularly polarized light is opposite, and both the first layer 1a and the second layer 1b By constituting the near-infrared reflective layer, the right (or left) circularly polarized light is reflected by the first layer 1a, and the left (or right) circularly polarized light that has passed through the first layer 1a is reflected by the second layer 1b. Thus, the near-infrared reflective layer 1 can reflect not only one circularly polarized light of right (or left) circularly polarized light but also both right and left circularly polarized light. That is, it is a total reflection type near infrared selective reflection layer.

この際、第二のコレステリック液晶固化層として、第一のコレステリック液晶固化層と反射する円偏光の向きが同じものを使い、且つこれら第一と第二のコレステリック液晶固化層の間に位相差層を介在させて、位相差層によって円偏光の向きを逆方向にすることでも、同様に全反射型の近赤外線選択反射層とすることができる。
つまり、第1層1aに対して、第1層1aと同じ層と位相差層とから第2層1bを構成することもできる。また、コレステリック液晶材料としては、入手のし易さ、コスト等の観点から、右螺旋方向を有するコレステリック液晶材料を用いるのが一般に好ましいので、こうした構成により、第1層1aと第2層1bとを反射光の円偏光が旋回方向で同種のコレステリック液晶固化層を用いて形成できる利点がある。
この際、位相差層の位相差、平均リタデーションReは半波長の1/2λでも良いが、これに更に1以上の整数を加えた値、つまり1.5λ、2.5λ、3.5λ、4.5λ等のものが、波長による反射率変化が少ない点で好ましい。また、上記1.5λ等の値は±0.2程度ずれていても良い。
つまり、
Re={(2n+1)/2−0.2}×λ〜{(2n+1)/2+0.2}×λ〔式3〕
である。
At this time, as the second cholesteric liquid crystal solidified layer, the first cholesteric liquid crystal solidified layer and the same circularly polarized light reflecting direction are used, and a retardation layer is provided between the first and second cholesteric liquid crystal solidified layers. The total reflection type near-infrared selective reflection layer can be obtained in the same manner by interposing the layer and reversing the direction of the circularly polarized light by the retardation layer.
That is, the second layer 1b can be composed of the same layer as the first layer 1a and the retardation layer with respect to the first layer 1a. In addition, as a cholesteric liquid crystal material, it is generally preferable to use a cholesteric liquid crystal material having a right spiral direction from the viewpoint of availability, cost, and the like. With such a configuration, the first layer 1a and the second layer 1b The circularly polarized light of the reflected light can be formed by using the same kind of cholesteric liquid crystal solidified layer in the turning direction.
At this time, the retardation of the retardation layer and the average retardation Re may be ½λ of a half wavelength, but values obtained by adding an integer of 1 or more to this, that is, 1.5λ, 2.5λ, 3.5λ, 5λ or the like is preferable in that the change in reflectance due to wavelength is small. The value of 1.5λ or the like may be shifted by about ± 0.2.
In other words,
Re = {(2n + 1) /2−0.2} × λ˜ {(2n + 1) /2+0.2} × λ [Formula 3]
It is.

[近赤外線吸収層]
近赤外線吸収層2には、可視光を透過するが近赤外線は吸収する層であれば特に制限はなく、公知の層を利用できる。例えば、近赤外線を吸収する近赤外線吸収色素(NIRA色素)をマトリック中に分散させた層であり、マトリックスとしては樹脂バインダが代表的である。また、スパッタによる多層スパッタ膜等も利用できる。これらの中でも、樹脂バインダ中に近赤外線吸収色素を分散させた層が代表的である。なお、近赤外線吸収色素としては、有機系、無機系などの色素から適宜選択すれば良く、1種単独又は2種併用するが、吸収波長帯域を広くするには2種以上を併用するのが好ましい。
[Near-infrared absorbing layer]
The near-infrared absorbing layer 2 is not particularly limited as long as it is a layer that transmits visible light but absorbs near-infrared light, and a known layer can be used. For example, it is a layer in which a near-infrared absorbing dye (NIRA dye) that absorbs near-infrared is dispersed in a matrix, and a resin binder is a typical matrix. A multilayer sputtered film by sputtering can also be used. Among these, a layer in which a near-infrared absorbing pigment is dispersed in a resin binder is representative. The near-infrared absorbing dye may be appropriately selected from organic and inorganic dyes and used alone or in combination of two or more, but in order to broaden the absorption wavelength band, two or more of them may be used in combination. preferable.

また、近赤外線吸収色素を樹脂バインダ中に分散させた近赤外線吸収層2は、他の機能と複合化した層としても良い。例えば、近赤外線吸収色素を添加する層を、粘着剤層、電磁波遮蔽層として導電性組成物層を後述の引抜プライマ方式凹版印刷で形成する際のプライマ層、コントラスト向上層等として、これらの層と近赤外線吸収層を複合化しても良い。複合化により層数を減らせるので製造工程数が減り、低コスト化に繋がる。或いは、他の機能層と積層しても良く、例えば、反射防止層と積層しても良い。   Moreover, the near-infrared absorbing layer 2 in which the near-infrared absorbing dye is dispersed in the resin binder may be a layer combined with other functions. For example, a layer to which a near infrared absorbing dye is added, a pressure-sensitive adhesive layer, an electromagnetic wave shielding layer, a conductive composition layer as a primer layer, a contrast improving layer, or the like when a conductive primer layer is formed by a drawing primer type intaglio printing described later. And a near-infrared absorbing layer may be combined. Since the number of layers can be reduced by compounding, the number of manufacturing processes is reduced, leading to cost reduction. Or you may laminate | stack with another functional layer, for example, you may laminate | stack with an antireflection layer.

なお、上記した近赤外線吸収色素(NIRA色素)、及び樹脂バインダとしては、公知の材料を適宜選択すればよく、例えば、近赤外線吸収色素としては、有機系化合物としては、アントラキノン系化合物、ナフトキノン系化合物、フタロシアニン系化合物、ジイモニウム系化合物、ジチオニール錯体等が挙げられ、また無機系化合物としては、インジウム錫酸化物、チタン酸化物、特開2006−154516号公報等に開示のセシウム含有タングステン酸化物等が挙げられる。更に、2種以上併用する場合を例示すれば、フタロシアニン系化合物を複数種類併用する以外に、フタロシアニン系化合物とジイモニウム系化合物の併用などは好ましい一例である。フタロシアニン系化合物は吸収帯域が780〜1000nmであり、ジイモニウム系化合物は900〜1100nmでの吸収が大きく可視光透過率も高い為、これらにより、可視光透過率を高くして、効率的に近赤外線を吸収できる。   In addition, what is necessary is just to select a well-known material suitably as an above-mentioned near-infrared absorption pigment | dye (NIRA pigment | dye) and a resin binder, for example, as an near-infrared absorption pigment | dye, an organic compound is an anthraquinone type compound, a naphthoquinone type | system | group. Compounds, phthalocyanine compounds, diimonium compounds, dithioneyl complexes and the like, and as inorganic compounds, indium tin oxide, titanium oxide, cesium-containing tungsten oxide disclosed in JP-A-2006-154516, etc. Is mentioned. Furthermore, if two or more types are used in combination, a combination of a phthalocyanine compound and a diimonium compound is a preferred example in addition to using a plurality of phthalocyanine compounds in combination. The phthalocyanine compound has an absorption band of 780 to 1000 nm, and the diimonium compound has a high absorption at 900 to 1100 nm and a high visible light transmittance. Can be absorbed.

また、樹脂バインダの樹脂としては、粘着剤層とする場合も含めて、アクリル系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂等挙げられる。
なお、近赤外線吸収色素の樹脂バインダ等マトリックス中の割合は、通常0.001〜15質量%である。また、必要に応じて公知の各種添加剤、例えば、酸化防止剤、紫外線吸収剤、光反応防止剤などを添加してもよい。
また、この様な材料からなる近赤外線吸収層の形成は、ロールコート、グラビアロールコート、バーコート等の公知の塗工法によって形成することができる。
Examples of the resin of the resin binder include an acrylic resin, a urethane resin, an epoxy resin, and a polyester resin, including the case where the adhesive layer is used.
In addition, the ratio in a matrix, such as a resin binder, of a near-infrared absorption pigment | dye is 0.001-15 mass% normally. Moreover, you may add various well-known additives, for example, antioxidant, a ultraviolet absorber, a photoreaction inhibitor, etc. as needed.
In addition, the near-infrared absorbing layer made of such a material can be formed by a known coating method such as roll coating, gravure roll coating or bar coating.

[透明基材]
透明基材5は、図2で例示した様に、近赤外線反射層1や、近赤外線吸収層2に含まれる層として、或いは含まれない層として使用することがあり、形状維持の為の支持体としての機能等を有する。
透明基材5としては、特に制限はなく公知のものを適宜選択使用すれば良い。例えば、樹脂フィルム(乃至シート)、樹脂板、或いは無機材料板等が代表的である。樹脂フィルム(乃至シート)の樹脂は例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、シクロオレフィン重合体などのポリオレフィン系樹脂、トリアセチルセルロースなどのセルロース系樹脂、或いは、ポリカーボネート系樹脂、ポリイミド系樹脂、等である。樹脂板の樹脂としては、例えば、前記の樹脂フィルムと同様の樹脂である。無機材料板の材料としては、例えば、硝子、石英、透明セラミックス等である。なかでも、2軸延伸ポリエチレンテレフタレートフィルムはコスト、透明性、機械的強度等の点で好適な材料である。なお、透明基材の厚みは通常12〜5000μm程度である。
[Transparent substrate]
As illustrated in FIG. 2, the transparent substrate 5 may be used as a layer included in the near-infrared reflecting layer 1 or the near-infrared absorbing layer 2 or as a layer that is not included. Functions as a body.
There is no restriction | limiting in particular as the transparent base material 5, What is necessary is just to select and use a well-known thing suitably. For example, a resin film (or sheet), a resin plate, an inorganic material plate, or the like is representative. Examples of the resin of the resin film (or sheet) include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acrylic resins such as polymethyl methacrylate, polyolefin resins such as cycloolefin polymers, and cellulose resins such as triacetyl cellulose. Or polycarbonate resin, polyimide resin, and the like. As resin of a resin board, it is resin similar to the said resin film, for example. Examples of the material for the inorganic material plate include glass, quartz, and transparent ceramics. Among these, a biaxially stretched polyethylene terephthalate film is a suitable material in terms of cost, transparency, mechanical strength, and the like. In addition, the thickness of a transparent base material is about 12-5000 micrometers normally.

[電磁波遮蔽層]
電磁波遮蔽層4としては、公知のものを適宜採用すれば良く特に制限はない。例えば、一般によく使われている銅エッチングメッシュ等の金属メッシュの他、導電ペースト等による印刷メッシュ、或いはメッシュではなく全面形成の多層スパッタ膜等などの導電性層である。
なお、銅エッチングメッシュは例えば銅箔をケミカルエッチングでメッシュ状に加工したものが使用される。なお、銅以外にもアルミニウムなどの金属も使用可能である。また、印刷メッシュは、導電ペースト、例えば、銀等の導電性粒子を樹脂バインダ中に分散させた導電性組成物をメッシュ上に印刷したものが使用される。
多層スパッタ膜には、例えばITO(酸化インジウム錫酸化物)、銀などが使用される。また、電磁波遮蔽性能をあまり重視しない場合、或いは電磁波自体がディスプレイパネルからあまり発生しない場合などでは、電磁波遮蔽層は省略したり、或いは多層スパッタ膜を用い、これを近赤外線吸収層と兼用させたりすることもできる。その場合、スパッタ積層数を減らして低コスト化を図ることもできる。
[Electromagnetic wave shielding layer]
The electromagnetic wave shielding layer 4 is not particularly limited as long as a known material is appropriately employed. For example, in addition to a commonly used metal mesh such as a copper etching mesh, it is a conductive layer such as a printed mesh using a conductive paste or the like, or a multilayer sputtered film formed on the entire surface instead of a mesh.
The copper etching mesh used is, for example, a copper foil processed into a mesh shape by chemical etching. In addition to copper, metals such as aluminum can also be used. The printed mesh is a conductive paste, for example, a conductive composition in which conductive particles such as silver are dispersed in a resin binder and printed on the mesh.
For the multilayer sputtered film, for example, ITO (indium tin oxide), silver or the like is used. Also, when the electromagnetic wave shielding performance is not so important, or when the electromagnetic wave itself is not generated from the display panel, the electromagnetic wave shielding layer is omitted, or a multilayer sputtered film is used and this is also used as a near infrared absorbing layer. You can also In that case, the cost can be reduced by reducing the number of sputtered layers.

なお、印刷メッシュとして導電性組成物層を形成する場合、引抜プライマ方式凹版印刷法によって形成したものは、高精細なメッシュが形成できる点で好ましい。引抜プライマ方式凹版印刷法は、本出願人が、特許第4436441号公報に開示した印刷法であり、凹版版面の凹部内に充填したインキを引き抜いて被印刷物へのインキの転移を促進させる、「転移促進層」とも言える「プライマ層」を、印刷の最中に流動状態で作用させる点に特徴がある凹版印刷法である。なお、プライマ層には紫外線や電子線で硬化させる電離放射線硬化性樹脂が好適には使用される。   In addition, when forming a conductive composition layer as a printing mesh, what was formed by the drawing primer system intaglio printing method is preferable at the point which can form a high-definition mesh. The drawing primer type intaglio printing method is a printing method disclosed by the present applicant in Japanese Patent No. 4436441, and the ink filled in the concave portion of the intaglio plate surface is drawn to promote the transfer of the ink to the printing material. This is an intaglio printing method characterized in that a “primer layer”, which can also be called a “transition promoting layer”, acts in a fluid state during printing. For the primer layer, an ionizing radiation curable resin that is cured by ultraviolet rays or electron beams is preferably used.

また、電磁波遮蔽層の配置位置は基本的には特に制限はない。例えば、近赤外線吸収層よりもディスプレイパネル側とする。こうすると、電磁波遮蔽層に銅エッチングメッシュや、印刷メッシュ等のメッシュ状のものを用いた場合、そのメッシュ面に透明樹脂層等を積層すること保護せずに、むき出しのままで配置した時に、メッシュをディスプレイパネル側に向けて空間を空けて配置しておけば、不意の外力でメッシュが破損することを防げる。   Moreover, the arrangement position of the electromagnetic wave shielding layer is basically not particularly limited. For example, the display panel side is closer to the near infrared absorption layer. In this way, when using an electromagnetic shielding layer such as a copper etching mesh or a mesh-like one such as a printing mesh, without placing a transparent resin layer on the mesh surface and protecting it, when placed as exposed, If the mesh is placed with the space facing the display panel side, it can be prevented that the mesh is damaged by unexpected external force.

[その他の層]
なお、本発明によるディスプレイ用近赤外線遮蔽フィルタは、本発明の主旨を逸脱しない範囲内であれば、上記した以外のその他の層を含んでもよい。例えば、各種光学フィルタ機能を付与する光学フィルタ層、光学フィルタ機能以外の機能を付与する機能層などである。これらの層には公知の層を適宜採用することができる。
なお、光学フィルタ層としては、紫外線吸収層、PDPのネオン光を吸収するネオン光吸収層、表示画像を好みの色調に補正する色補正層、反射防止層(防眩、反射防止、防眩及び反射防止兼用のいずれか)、明所コンストラストを向上させる特開2007−272161号公報等に記載のコントラスト向上層(微小ルーバ層など)などである。また、光学フィルタ機能以外の機能を付与する機能層としては、防汚層、帯電防止層、ハードコート層、粘着剤層、該粘着剤層を使用時まで保護する離型フイルム、接着剤層、プライマ層、耐衝撃層などである。なお、これらの層は単層で2以上の機能を兼用することもある。
[Other layers]
The near-infrared shielding filter for display according to the present invention may include other layers other than those described above as long as they do not depart from the gist of the present invention. For example, an optical filter layer that provides various optical filter functions, a functional layer that provides functions other than the optical filter function, and the like. As these layers, known layers can be appropriately employed.
The optical filter layer includes an ultraviolet absorbing layer, a neon light absorbing layer that absorbs neon light of the PDP, a color correction layer that corrects a display image to a desired color tone, an antireflection layer (antiglare, antireflection, antiglare and Any of anti-reflection)) and a contrast enhancement layer (such as a fine louver layer) described in Japanese Patent Application Laid-Open No. 2007-272161 for improving bright spot contrast. Moreover, as a functional layer that gives functions other than the optical filter function, an antifouling layer, an antistatic layer, a hard coat layer, a pressure-sensitive adhesive layer, a release film that protects the pressure-sensitive adhesive layer until use, an adhesive layer, For example, a primer layer and an impact resistant layer. In addition, these layers are single layers and may also have two or more functions.

[位置関係]
本発明では、上記した各層は、近赤外線反射層1を近赤外線吸収層2よりも観察者V側に配置する位置関係を必須とするが、これ以外の制限はなく、任意の位置関係で各層を配置することができる。但し、当然であるが、外光反射を抑制する反射防止層は近赤外線反射層よりも観察者側が好ましく、また表面傷付きを防ぐハードコート層は(1層であれば)、これも近赤外線反射層よりも観察者側が好ましい。この様な、従来からディスプレイパネルの前面に配置する部材に於ける好ましい位置関係を採用するのがよいことは言うまでもない。
[Position]
In the present invention, each of the layers described above requires a positional relationship in which the near-infrared reflecting layer 1 is disposed closer to the viewer V than the near-infrared absorbing layer 2, but there is no other limitation, and each layer has an arbitrary positional relationship. Can be arranged. However, as a matter of course, the antireflection layer for suppressing external light reflection is preferably closer to the observer than the near-infrared reflective layer, and the hard coat layer for preventing surface scratches (if it is a single layer) is also near-infrared. The observer side is preferable to the reflective layer. Needless to say, it is preferable to employ such a preferable positional relationship in the members disposed on the front surface of the display panel.

[画像表示装置]
本発明による画像表示装置20は、図1(b)及び(c)などで説明したとおり、上記の様なディスプレイ用近赤外線遮蔽フィルタ10を、ディスプレイパネル3としてプラズマディスプレイパネルの前面に配置した構成である。ディスプレイパネル3としては、特にプラズマディスプレイパネルが、原理的にディスプレイパネル自体からの近赤外線放射が無視できない為、本発明による効果は、プラズマディスプレイパネルに適用する場合に、より顕著である。
なお、近赤外線をディスプレイパネルから観察者側に放出するものであれば、本発明のディスプレイ用近赤外線遮蔽フィルタは有用であり、この様なディスプレイパネルに応用しても良い。
[Image display device]
The image display device 20 according to the present invention has a configuration in which the near-infrared shielding filter for display 10 as described above is arranged as the display panel 3 on the front surface of the plasma display panel, as described with reference to FIGS. 1B and 1C. It is. As the display panel 3, in particular, the plasma display panel, in principle, cannot emit near-infrared radiation from the display panel itself. Therefore, the effect of the present invention is more remarkable when applied to the plasma display panel.
Note that the near-infrared shielding filter for display of the present invention is useful as long as it emits near-infrared rays from the display panel to the viewer side, and may be applied to such a display panel.

[用途]
本発明によるディスプレイ用近赤外線遮蔽フィルタは、各種用途に使用可能である。特に、PDP、LCDなどの各種ディスプレイパネル、なかでも特に近赤外線放射が顕著なPDP用の前面フィルタ用として好適である。また、この様なディスプレイ用近赤外線遮蔽フィルタを、PDPなどディスプレイパネルの前面に配置した画像表示装置は、テレビジョン受像装置、測定機器や計器類、事務用機器、医療機器、電算機器、電話機、電子看板、遊戯機器等の表示部等に用いられる。
[Usage]
The near-infrared shielding filter for display according to the present invention can be used for various applications. In particular, it is suitable for various display panels such as PDP and LCD, and particularly for front filters for PDP that have remarkable near-infrared radiation. In addition, an image display device in which such a near-infrared shielding filter for display is arranged on the front surface of a display panel such as a PDP is a television receiver, a measuring device or instrument, an office device, a medical device, a computer device, a telephone, It is used for display parts of electronic signboards and game machines.

次に、本発明を実施例及び比較例によって更に詳述する。   Next, the present invention will be described in further detail with reference to examples and comparative examples.

[実施例1]
(近赤外線反射層)
近赤外線反射層1として、透明基材5を支持体として、この一方の面に第1層1a、他方の面に第2層1bを、それぞれコレステリック液晶固化層を積層して形成したものを作製した。
透明基材5としては、厚み188μmの二軸延伸ポリエチレンテレフタレートフィルム(ルミラー(登録商標)U35、東レ株式会社製)を用意した。
なお、この透明基材の位相差は、平均リタデーションReが約4083nmであり、近赤外線の波長1200nmに対しては、4083/1200=3.4となり、前記した〔式3〕、つまり、Re={(2n+1)/2±0.2}×λ、を満足する。
但し、後述する選択反射光の反射ピークの波長約1000nmに対しては、4083/1000=4.1となり、前記した〔式3〕、つまり、Re={(2n+1)/2±0.2}×λ、は満足しない。
[Example 1]
(Near-infrared reflective layer)
As the near-infrared reflective layer 1, a transparent substrate 5 is used as a support, and a first layer 1a is formed on one side, a second layer 1b is formed on the other side, and a cholesteric liquid crystal solidified layer is laminated. did.
As the transparent substrate 5, a biaxially stretched polyethylene terephthalate film (Lumirror (registered trademark) U35, manufactured by Toray Industries, Inc.) having a thickness of 188 μm was prepared.
The retardation of the transparent base material has an average retardation Re of about 4083 nm, and for a near infrared wavelength of 1200 nm, 4083/1200 = 3.4, and the above-described [Equation 3], that is, Re = {(2n + 1) /2±0.2} × λ is satisfied.
However, for a wavelength of about 1000 nm of the reflection peak of selective reflected light to be described later, 4083/1000 = 4.1, and the above-described [Expression 3], that is, Re = {(2n + 1) /2±0.2}. Xλ is not satisfied.

コレステリック液晶固化層の作製は、コレステレック液晶材料として、分子の両末端に重合可能なアクリレート(アクリロイルオキシ基、以下同様)を有し中央部にはメソゲンと前記アクリレートとの間にスペーサを有する、液晶性モノマー分子(Paliocolor(登録商標)LC1057(BASF社製))96.95部と、下記の式(1)のカイラル剤;   Preparation of the cholesteric liquid crystal solidified layer, as a Cholesteric liquid crystal material, has a polymerizable acrylate (acryloyloxy group, hereinafter the same) at both ends of the molecule, and has a spacer between the mesogen and the acrylate in the center, 96.95 parts of liquid crystalline monomer molecules (Paliocolor (registered trademark) LC1057 (manufactured by BASF)) and a chiral agent of the following formula (1);

Figure 2012163806
Figure 2012163806

3.05部とを溶解させたシクロヘキサノン溶液を準備した。なお、当該シクロヘキサノン溶液は、前記液晶性モノマー分子に対して2.5重量%の光重合開始剤(物質名;1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、商品名;イルガキュア(登録商標)184、製造元;チバ・スペシャルティ・ケミカルズ社製)を添加した固形分40重量%の溶液である。 A cyclohexanone solution in which 3.05 parts were dissolved was prepared. The cyclohexanone solution contains 2.5% by weight of a photopolymerization initiator (substance name: 1-hydroxy-cyclohexyl-phenyl-ketone, trade name: Irgacure (registered trademark) 184, manufacturer, based on the liquid crystal monomer molecules. A solution having a solid content of 40% by weight added by Ciba Specialty Chemicals).

そして、前記透明基材の一方の面に、配向膜を介さずにバーコーターにて、上記シクロヘキサノン溶液を塗布した後、120℃で2分間加熱し溶液中のシクロヘキサノンを蒸発させて、液晶性モノマー分子を配向させた塗膜を得た。次に、該塗膜に紫外線を照射して、液晶性モノマー分子中のアクリレート及びカイラル剤分子中のアクリレートを3次元架橋してポリマー化し、透明基材上にコレステリック構造を固定化することにより膜厚5μmのコレステリック液晶固化層を形成し、透明基材5とコレステリック液晶固化層とからなる第1層1aが形成された積層シートを作製した。
この第1層1aからなる近赤外線反射層の反射特性(分光光度計で正反射角5°で計測)は、850nm付近から立ち上がり、約1000nm付近に反射ピークを持ち、1200nm付近まで裾野を持つものであり、ピーク反射率45%、又反射率の半値幅として定義した円偏光選択反射の波長帯域幅Δλが167nmである、反射スペクトルが得られ、反射ピークでの反射率は45%、ベース(反射率が大きくなっていない波長領域)の反射率は14%であった。
Then, after applying the cyclohexanone solution on one surface of the transparent substrate with a bar coater without using an alignment film, the cyclohexanone in the solution is evaporated by heating at 120 ° C. for 2 minutes to obtain a liquid crystalline monomer. A coating film with oriented molecules was obtained. Next, the coating film is irradiated with ultraviolet rays, the acrylate in the liquid crystalline monomer molecule and the acrylate in the chiral agent molecule are three-dimensionally cross-linked to polymerize, and the cholesteric structure is fixed on the transparent substrate. A cholesteric liquid crystal solidified layer having a thickness of 5 μm was formed, and a laminated sheet in which the first layer 1 a composed of the transparent substrate 5 and the cholesteric liquid crystal solidified layer was formed was produced.
The reflection characteristic of the near-infrared reflective layer comprising the first layer 1a (measured with a spectrophotometer at a specular reflection angle of 5 °) rises from around 850 nm, has a reflection peak around 1000 nm, and has a base up to around 1200 nm. A reflection spectrum having a peak reflectance of 45% and a circularly polarized light selective reflection wavelength band Δλ defined as a half width of the reflectance of 167 nm is obtained, and the reflectance at the reflection peak is 45% and the base ( The reflectance in the wavelength region where the reflectance is not increased was 14%.

次に、近赤外線反射層1の第2層1bとして、上記透明基材5の第1層1aを形成した面の他方の面上にコレステリック液晶固化層を積層し、第1層1a、透明基材5及び第2層1bからなる、近赤外線反射層1を作製した。
コレステリック液晶固化層の作製は、コレステレック液晶材料として、分子の両末端に重合可能なアクリレート(アクリロイルオキシ基、以下同様)を有し中央部にはメソゲンと前記アクリレートとの間にスペーサを有する、液晶性モノマー分子(Paliocolor(登録商標)LC1057(BASF社製))96.95部と、下記の式(2)のカイラル剤;
Next, as the second layer 1b of the near-infrared reflective layer 1, a cholesteric liquid crystal solidified layer is laminated on the other surface of the transparent substrate 5 on which the first layer 1a is formed. A near-infrared reflective layer 1 composed of the material 5 and the second layer 1b was produced.
Preparation of the cholesteric liquid crystal solidified layer, as a Cholesteric liquid crystal material, has a polymerizable acrylate (acryloyloxy group, hereinafter the same) at both ends of the molecule, and has a spacer between the mesogen and the acrylate in the center, 96.95 parts of liquid crystalline monomer molecules (Paliocolor (registered trademark) LC1057 (manufactured by BASF)) and a chiral agent of the following formula (2);

Figure 2012163806
Figure 2012163806

3.05部とを溶解させたシクロヘキサノン溶液を準備した。なお、当該シクロヘキサノン溶液は、前記液晶性モノマー分子に対して2.5重量%の光重合開始剤(物質名;1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、商品名;イルガキュア(登録商標)184、製造元;チバ・スペシャルティ・ケミカルズ社製)を添加した固形分40重量%の溶液である。
後は、第1層1aと同様にして第2層1bを形成して、これら両層間に透明基材5を備えた近赤外線反射層1を作製した。
A cyclohexanone solution in which 3.05 parts were dissolved was prepared. The cyclohexanone solution contains 2.5% by weight of a photopolymerization initiator (substance name: 1-hydroxy-cyclohexyl-phenyl-ketone, trade name: Irgacure (registered trademark) 184, manufacturer, based on the liquid crystal monomer molecules. A solution having a solid content of 40% by weight added by Ciba Specialty Chemicals).
Thereafter, the second layer 1b was formed in the same manner as the first layer 1a, and the near-infrared reflective layer 1 provided with the transparent substrate 5 between these two layers was produced.

(近赤外線吸収層)
近赤外線吸収層2として、NIRA色素(近赤外線吸収色素)を含有する厚み25μmの粘着層を、離型フィルム上に作製した。
(Near-infrared absorbing layer)
As the near-infrared absorbing layer 2, an adhesive layer having a thickness of 25 μm containing a NIRA dye (near-infrared absorbing dye) was prepared on a release film.

粘着層を形成する為の粘着剤組成物には、先ず、アクリル系粘着剤(ヒドロキシルキ基を有しカルボキシル基を実質的に含まないアクリル系共重合体、総研化学株式会社製SK−1811L)100質量部に対して、三種類のNIRA色素(全て株式会社日本触媒製)として、フタロシアニン系化合物(エクスカラー(登録商標)IR−14)0.064質量部、フタロシアニン系化合物(エクスカラー(登録商標)IR12)0.090質量部、フタロシアニン系化合物(エクスカラー(登録商標)IR910)0.162質量部を添加し十分分散した。また、ベンゾフェノン系紫外線吸収剤として2,2’−ジヒドロキシ−4−メトキシベンゾフェノン(CYTEC INDUSTRIES製、サイアソーブ(登録商標)UV24)を3.34質量部と、ヒンダードアミン系光安定剤(チバ・ジャパン株式会社製、TINUVIN(登録商標)144)1.66質量部を添加した。
更に、芳香族系イソシアネート(キシレンジイソアネートとトリメチロールプロパンとのアダクト体)を固形分で2質量部添加し、希釈剤30質量部で希釈して、粘着剤組成物を調製した。
In the pressure-sensitive adhesive composition for forming the pressure-sensitive adhesive layer, first, an acrylic pressure-sensitive adhesive (an acrylic copolymer having a hydroxyl group and substantially free of a carboxyl group, SK-1811L manufactured by Soken Chemical Co., Ltd.) For 100 parts by mass, three types of NIRA dyes (all manufactured by Nippon Shokubai Co., Ltd.), 0.064 parts by mass of a phthalocyanine compound (Excolor (registered trademark) IR-14), and a phthalocyanine compound (Excolor (registered)) (Trademark) IR12) 0.090 parts by mass and phthalocyanine compound (Excolor (registered trademark) IR910) 0.162 parts by mass were added and sufficiently dispersed. Moreover, 3.34 parts by mass of 2,2′-dihydroxy-4-methoxybenzophenone (manufactured by CYTEC INDUSTRIES, Siasorb (registered trademark) UV24) as a benzophenone-based ultraviolet absorber and a hindered amine-based light stabilizer (Ciba Japan Co., Ltd.) 1.66 parts by mass, manufactured by TINUVIN (registered trademark) 144).
Furthermore, 2 mass parts of aromatic isocyanates (adducts of xylene diisocyanate and trimethylolpropane) were added in solid content and diluted with 30 mass parts of a diluent to prepare a pressure-sensitive adhesive composition.

上記粘着剤組成物を、離型フィルムとして厚み100μmの離型処理済みポリエチレンテレフタレートフィルム(東洋紡績株式会社製、E7002)の離型面に、乾燥時膜厚25μmとなるようにアプリケーターにて塗工し、70℃で3分乾燥させた後、塗膜の上から、離型フィルムとして厚み75μmの離型処理済みポリエチレンテレフタレートフィルムをラミネートして、近赤外線吸収層と兼用する粘着層の両面に、離型フィルムを積層した粘着フィルムを得た。
なお、この粘着フィルムの粘着層の可視光透過率は56%、近赤外線領域の850nm〜1000nmの透過率は25%であった。
The above pressure-sensitive adhesive composition is coated on the release surface of a release-treated polyethylene terephthalate film (Toyobo Co., Ltd., E7002) having a thickness of 100 μm as a release film with an applicator so that the film thickness when dried is 25 μm. Then, after drying at 70 ° C. for 3 minutes, a 75 μm-thick polyethylene terephthalate film having a thickness of 75 μm is laminated as a release film on both sides of the adhesive layer that is also used as a near-infrared absorbing layer. An adhesive film laminated with a release film was obtained.
In addition, the visible light transmittance of the adhesive layer of this adhesive film was 56%, and the transmittance from 850 nm to 1000 nm in the near infrared region was 25%.

(ディスプレイ用近赤外線遮蔽フィルタ)
上記で作製した透明基材を備えた近赤外線反射層1と、厚み100μmのポリエチレンテレフタレートフィルム(東洋紡績株式会社製A4300)とを、上記で作製した透明基材を備えた近赤外線吸収層(兼粘着層)2は両面の離型フィルムを剥がして、該近赤外線吸収層(兼粘着層)を介してラミネートすることにより、ディスプレイ用近赤外線遮蔽フィルタ10を作成した。
(Near-infrared shielding filter for display)
The near-infrared reflective layer 1 provided with the transparent substrate prepared above and a polyethylene terephthalate film (A4300 manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm were combined with a near-infrared absorbing layer (also serving as a transparent substrate prepared above). The adhesive layer 2 was peeled off the release films on both sides and laminated via the near-infrared absorbing layer (also the adhesive layer) to produce a near-infrared shielding filter 10 for display.

(近赤外線の遮蔽性能の評価)
市販のプラズマテレビから前面のガラスフィルタを取り外し、そのプラズマディスプレイパネル(PDP)3に画像として白画面を表示させた状態で、上記ディスプレイ用近赤外線遮蔽フィルタ10を近赤外線反射層1側が観察者V側を向くように配置して、可視光領域と近赤外領域の輝度を測定した。なお、輝度測定は可視光領域では分光放射輝度計を使用し、近赤外領域では近赤外分光放射計を使用した。測定は、ディスプレイ用赤外線遮蔽フィルタ10が設置されたときと、設置される前(ブランク)の両方を測定し、設置前後での輝度変化から、所定の波長での透過率を算出した。
その結果、可視光領域の透過率は48%、850〜1000nmの透過率は2%であった。
(Evaluation of near-infrared shielding performance)
With the front glass filter removed from a commercially available plasma television and a white screen displayed as an image on the plasma display panel (PDP) 3, the near-infrared reflective layer 1 side of the display near-infrared shielding filter 10 is the observer V. It arranged so that it might face, and the brightness | luminance of the visible region and the near-infrared region was measured. The luminance measurement was performed using a spectral radiance meter in the visible light region, and a near infrared spectral radiometer in the near infrared region. The measurement was performed both when the infrared shielding filter for display 10 was installed and before (blank), and the transmittance at a predetermined wavelength was calculated from the luminance change before and after the installation.
As a result, the transmittance in the visible light region was 48%, and the transmittance at 850 to 1000 nm was 2%.

[比較例1]
実施例1において、近赤外線反射層1の第1層1aと第2層1bのうち、第2層1bを省略し、第1層1aのみの近赤外線反射層1とした他は、実施例1と同様にして、ディスプレイ用近赤外線遮蔽フィルタを作製した。
その結果、ディスプレイ用近赤外線遮蔽フィルタの可視光透過率は48%、近赤外線領域の850nm〜1000nmの透過率は15%であった。
[Comparative Example 1]
Example 1 is the same as Example 1 except that the second layer 1b is omitted from the first layer 1a and the second layer 1b of the near-infrared reflective layer 1 and only the first layer 1a is used as the near-infrared reflective layer 1. In the same manner as described above, a near-infrared shielding filter for display was produced.
As a result, the visible light transmittance of the near-infrared shielding filter for display was 48%, and the transmittance from 850 nm to 1000 nm in the near-infrared region was 15%.

1 近赤外線反射層
1a 近赤外線反射層の第1層
1b 近赤外線反射層の第2層
2 近赤外線吸収層
3 ディスプレイパネル(プラズマディスプレイパネル)
4 電磁波遮蔽層
5、5a、5b 透明基材
10 ディスプレイ用近赤外線遮蔽フィルタ
20 画像表示装置
L 左円偏光
R 右円偏光
V 観察者












DESCRIPTION OF SYMBOLS 1 Near-infrared reflective layer 1a 1st layer of a near-infrared reflective layer 1b 2nd layer of a near-infrared reflective layer 2 Near-infrared absorption layer 3 Display panel (plasma display panel)
4 Electromagnetic wave shielding layer 5, 5a, 5b Transparent substrate 10 Near-infrared shielding filter for display 20 Image display device L Left circularly polarized light R Right circularly polarized light V Observer












Claims (3)

ディスプレイパネルの前面に配置してディスプレイパネルから放出される赤外線を遮蔽するディスプレイ用赤外線遮蔽フィルタに於いて、
観察者側から順に、可視光線は透過して近赤外線を反射する近赤外線反射層と、可視光線は透過して近赤外線を吸収する近赤外線吸収層とをこの順に少なくとも有し、
前記近赤外線反射層が、右円偏光又は左円偏光の一方の円偏光を選択的に反射し他方の円偏光を透過する第1層と、該第1層とは円偏光の旋回方向が逆向きで左円偏光又は右円偏光の一方の円偏光を選択的に反射し他方の円偏光を透過する第2層とからなる、ディスプレイ用赤外線遮蔽フィルタ。
In an infrared shielding filter for a display which is disposed in front of a display panel and shields infrared rays emitted from the display panel.
In order from the observer side, it has at least a near-infrared reflective layer that transmits visible light and reflects near-infrared light, and a near-infrared absorption layer that transmits visible light and absorbs near-infrared light in this order,
The near-infrared reflective layer selectively reflects one circularly polarized light of right circularly polarized light or left circularly polarized light and transmits the other circularly polarized light, and the rotation direction of the circularly polarized light is opposite to the first layer. An infrared shielding filter for display, comprising a second layer that selectively reflects one circularly polarized light of left circularly polarized light or right circularly polarized light and transmits the other circularly polarized light.
電磁波遮蔽層を近赤外線吸収層よりもディスプレイパネル側に有する請求項1記載のディスプレイ用赤外線遮蔽フィルタ。   The infrared shielding filter for display according to claim 1, further comprising an electromagnetic wave shielding layer closer to the display panel than the near infrared absorbing layer. 請求項1又は2記載のディスプレイ用赤外線遮蔽フィルタを、プラズマディスプレイパネルの前面に配置した画像表示装置。
The image display apparatus which has arrange | positioned the infrared shielding filter for displays of Claim 1 or 2 in the front surface of the plasma display panel.
JP2011024762A 2011-02-08 2011-02-08 Near-infrared ray shielding filter for display and image display apparatus Withdrawn JP2012163806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024762A JP2012163806A (en) 2011-02-08 2011-02-08 Near-infrared ray shielding filter for display and image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024762A JP2012163806A (en) 2011-02-08 2011-02-08 Near-infrared ray shielding filter for display and image display apparatus

Publications (1)

Publication Number Publication Date
JP2012163806A true JP2012163806A (en) 2012-08-30

Family

ID=46843232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024762A Withdrawn JP2012163806A (en) 2011-02-08 2011-02-08 Near-infrared ray shielding filter for display and image display apparatus

Country Status (1)

Country Link
JP (1) JP2012163806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004974A (en) * 2013-05-23 2015-01-08 富士フイルム株式会社 Film and manufacturing method thereof, and display unit having film
CN107076895A (en) * 2015-04-23 2017-08-18 旭硝子株式会社 Optical filter and camera device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004974A (en) * 2013-05-23 2015-01-08 富士フイルム株式会社 Film and manufacturing method thereof, and display unit having film
CN107076895A (en) * 2015-04-23 2017-08-18 旭硝子株式会社 Optical filter and camera device

Similar Documents

Publication Publication Date Title
JP2011107321A (en) Infrared light shielding filter for display and image display apparatus
JP6617082B2 (en) Light reflecting film, and light control film, optical film, functional glass and head-up display using the same
JP6821492B2 (en) Light-reflecting film, and optical film, functional glass and head-up display using it
JP2019105842A (en) Polarizing plate, image display device, and method for improving bright-place contrast in image display device
JP2017187685A (en) Light reflection film having curved surface shape and method for manufacturing the same, and light control film, optical film, functional glass and head-up display using the light reflection film
WO2017175581A1 (en) Light reflecting film, and light control film and mirror display using same
JP5525362B2 (en) Circularly polarizing plate with antireflection layer and image display device
JP2018017839A (en) Functional glass and head-up display using the same
CN109752784A (en) Optical film, polarizer and liquid crystal display
JPWO2018159623A1 (en) Image display device
KR20090115028A (en) Optical multilayer and the display device having the same
JP2005128216A (en) Optical rotation board, optical element, condensing backlight system and liquid crystal display device
JP2012203123A (en) Near-infrared shielding filter and image display device
JP2012163806A (en) Near-infrared ray shielding filter for display and image display apparatus
US20220357494A1 (en) Optical functional film for head-up display, optical laminate, functional glass, and head-up display system
JP2006133385A (en) Light collimating system, condensing backlight system, and liquid crystal display apparatus
CN117916656A (en) Liquid crystal display device having a light shielding layer
WO2017138442A1 (en) Mirror display
JP2006098946A (en) Optical element, polarizing element, lighting device, and liquid crystal display
JP2017097217A (en) Optical film and image display device
JP2004021145A (en) Polarizing plate with antireflection function, and picture display device
JP6521007B2 (en) Polarizing plate, image display device, and method for improving light contrast in image display device
KR102158876B1 (en) Module for liquid crystal display apparatus and liquid crystal display apparatus comprising the same
JP2000098132A (en) Polarizing beam splitter having electromagnetic wave shielding effect
WO2020017544A1 (en) Partial optical rotator, and partial optical rotatory film, intermediate film laminate, functional glass and head-up display each provided with same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130823

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513