JP2012163524A - Brick thickness measuring method - Google Patents

Brick thickness measuring method Download PDF

Info

Publication number
JP2012163524A
JP2012163524A JP2011025970A JP2011025970A JP2012163524A JP 2012163524 A JP2012163524 A JP 2012163524A JP 2011025970 A JP2011025970 A JP 2011025970A JP 2011025970 A JP2011025970 A JP 2011025970A JP 2012163524 A JP2012163524 A JP 2012163524A
Authority
JP
Japan
Prior art keywords
brick
thickness
antenna
electromagnetic wave
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011025970A
Other languages
Japanese (ja)
Other versions
JP5659838B2 (en
Inventor
Noriko Kubo
典子 久保
Shunichi Kamezaki
俊一 亀崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011025970A priority Critical patent/JP5659838B2/en
Publication of JP2012163524A publication Critical patent/JP2012163524A/en
Application granted granted Critical
Publication of JP5659838B2 publication Critical patent/JP5659838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a brick thickness measuring method with which the thickness of a high-temperature brick in a coke oven or a finery can be easily and accurately measured.SOLUTION: A brick thickness measuring method is characterized in filling a gap between an antenna 12 and a brick 13 with a heat insulation layer 16 having a thickness of 4 to 300 mm in the method including radiating an electromagnetic wave from the antenna 12 to the brick 13, receiving the reflection of the electromagnetic wave on a boundary surface of materials 14 having different refraction factors by means of the antenna 12, and measuring a brick thickness through hot working from a time (t) from reflecting the electromagnetic wave on the back of the brick 13 to returning to the receiving antenna 12 and an electromagnetic wave propagation velocity (v).

Description

本発明は、コークス炉や精錬炉などにおける高温レンガの厚みを測定する方法に関する。   The present invention relates to a method for measuring the thickness of a high-temperature brick in a coke oven or a refining furnace.

製鉄プロセスで使用される各種の炉では、用いられているレンガの厚みを熱間で測定するニーズは多数ある。例えば、コークス炉の炉壁診断における用途があるので、以下で説明する。   In various furnaces used in the steel making process, there are many needs to measure the thickness of the bricks used hot. For example, there is an application in the diagnosis of a coke oven wall, which will be described below.

図1にコークス炉(ここでは、室炉式コークス炉)の概観斜視図を示す。コークス炉は、装炭車7の石炭を通常炭化室当たり4〜5箇所の装炭孔8から炭化室1内に装入し、燃焼室2内で燃料ガスを燃焼させ、その熱により炭化室1内の石炭を乾留しコークスを生成させる炉である。したがって、コークス炉本体は燃焼室2の熱を炭化室1側に伝える伝熱材となるレンガで構成されている。炭化室1内で生成されたコークスは、押し出し機3のラム3aにより押し出される。押し出し機3がある側をマシンサイド、コークスが出てくる側をコークスサイドと称する。コークスの生成には長時間必要なため、コークス炉では、一般に多数の炭化室1と燃焼室2を交互に配置し、各炭化室1で順次コークスを生成させる連続操業を行っている。   FIG. 1 shows a schematic perspective view of a coke oven (here, a chamber-type coke oven). In the coke oven, the coal in the charcoal vehicle 7 is usually charged into the carbonization chamber 1 from 4 to 5 carbonization holes 8 per carbonization chamber, the fuel gas is combusted in the combustion chamber 2, and the heat is generated in the carbonization chamber 1. It is a furnace that carbonizes the coal inside to produce coke. Therefore, the coke oven main body is composed of bricks serving as heat transfer materials that transmit the heat of the combustion chamber 2 to the carbonization chamber 1 side. The coke generated in the carbonization chamber 1 is extruded by the ram 3a of the extruder 3. The side where the extruder 3 is located is called the machine side, and the side where the coke comes out is called the coke side. Since coke generation takes a long time, a coke oven generally performs a continuous operation in which a large number of carbonization chambers 1 and combustion chambers 2 are alternately arranged and coke is sequentially generated in each carbonization chamber 1.

図2にコークス炉平面断面図を示す。乾留中に石炭は膨張し、その膨張圧が炉壁4(炭化室の側壁であり、燃焼室の外壁に相当)に作用する。またコークス押出時には押出せん断力と圧力が炉壁4に作用する。長年の操業によるこのような力の作用により、レンガや目地に亀裂や欠けが発生する。また、炉壁間をつなぐビンダー5が切れる場合や、炉壁4の変形や崩壊が発生する場合がある。炉壁4が炭化室1の内側に張り出し変形すると、ラム3aによるコークスの押し出し時に炉壁4に負荷がかかり、炉壁4の損耗が進み、最終的にはコークスの押し出し自体が不可能となる操業トラブルが生じる。   FIG. 2 is a plan sectional view of the coke oven. During the carbonization, the coal expands, and the expansion pressure acts on the furnace wall 4 (the side wall of the carbonization chamber, which corresponds to the outer wall of the combustion chamber). Further, during the coke extrusion, extrusion shear force and pressure act on the furnace wall 4. Due to the effects of such forces from years of operation, the bricks and joints are cracked and chipped. In addition, the binder 5 connecting the furnace walls may be cut, or the furnace wall 4 may be deformed or collapsed. When the furnace wall 4 protrudes into the inside of the carbonization chamber 1 and is deformed, a load is applied to the furnace wall 4 when the coke is pushed out by the ram 3a, the wear of the furnace wall 4 progresses, and finally the coke extrusion itself becomes impossible. Operation trouble occurs.

このような場合、押し出しが可能になるように、炉壁4を削って張り出しをなくす対処が取られている。一方で、炉壁4を削って薄くすることにより、炉体レンガ構造が弱くなる。炉壁厚みがある限界以下になると膨張圧や押し出し負荷に耐えられなくなるため、炉壁4の積替えといった補修が必要となるが、炉壁厚みの管理は難しく、測定も困難であるため、適切な時期に積替え補修を実施せずにいて、炉壁4が崩れるといった大きな炉体損傷を発生させてしまうことがある。したがって、炉壁厚みを的確に把握する技術が望まれている。   In such a case, measures are taken to eliminate the overhang by cutting the furnace wall 4 so that extrusion is possible. On the other hand, the furnace brick structure is weakened by cutting and thinning the furnace wall 4. If the furnace wall thickness falls below a certain limit, it will not be able to withstand the expansion pressure and extrusion load, so repair such as transshipment of the furnace wall 4 is necessary, but it is difficult to manage the furnace wall thickness and measurement is difficult. If the transshipment repair is not performed at the time, a large furnace body damage such as collapse of the furnace wall 4 may occur. Therefore, a technique for accurately grasping the furnace wall thickness is desired.

また、製鉄プロセスで使用される炉の多くは、例えば精錬炉などのように、鉄皮容器の内側に耐火レンガが貼られている。鉄皮容器には溶銑や溶鋼などが入れられるため、熱や化学反応による亀裂やレンガ厚みの減少などの損耗が次第に発生する。溶射補修など一時的な補修もあるが、最終的にはレンガの張り替え補修が行われる。耐火レンガの張替えは高コストなため、適切な時期の炉修判定が望まれている。また、レンガの損耗状態を正しく把握していなければ、漏鋼などの大トラブルにも成りかねない。したがって、炉体診断のひとつとしてレンガの厚みを測定する技術が必要である。   Moreover, many of the furnaces used in the iron making process have refractory bricks attached to the inside of the iron skin container, such as a refining furnace. Since the molten iron or molten steel is placed in the iron-shell container, wear such as cracks due to heat or chemical reaction or reduction in brick thickness gradually occurs. Temporary repairs such as thermal spray repairs are also possible, but in the end, bricks are replaced and repaired. Refurbishment of refractory bricks is expensive, so it is desirable to make furnace repair judgment at an appropriate time. Moreover, if the wear state of the brick is not correctly grasped, it may cause a serious trouble such as leakage steel. Therefore, a technique for measuring the thickness of the brick is necessary as one of the furnace body diagnosis.

特開2007−127672号公報JP 2007-127672 A 特開平9−264735号公報JP-A-9-264735 特開2006−153845号公報JP 2006-153845 A

従来の炉内診断方法の多くは炉幅を測定するものである。   Many of the conventional in-furnace diagnostic methods measure the furnace width.

例えば、特許文献1において、炉壁の荒れを修復するために溶射補修をする場合に、炉幅は必要な情報であり、炉幅を測定する方法が記載されている。このとき、炉壁厚みが炭化室側から減肉した場合には、炉幅が広がり残存炉壁厚みが推定できる。   For example, Patent Document 1 describes a method for measuring the furnace width because the furnace width is necessary information when repairing the thermal spraying to repair the roughness of the furnace wall. At this time, when the thickness of the furnace wall is reduced from the carbonization chamber side, the furnace width increases and the remaining furnace wall thickness can be estimated.

しかしながら、ビンダー5が切れるなどして炉壁4が炭化室1側に張り出し、炉壁4を削る作業が行われると、炉幅が正常であっても炉壁厚みが減っている場合がある。したがってレンガ構造の強度を判断する炉壁厚みの把握には炉幅情報のみでは不十分である。   However, if the work is performed such that the furnace wall 4 protrudes toward the carbonization chamber 1 by cutting the binder 5, and the furnace wall 4 is cut, the furnace wall thickness may be reduced even if the furnace width is normal. Therefore, the furnace width information alone is not sufficient for grasping the furnace wall thickness for judging the strength of the brick structure.

これに対して、炉壁厚みを測定する方法としては、特許文献2、特許文献3がある。   On the other hand, there are Patent Literature 2 and Patent Literature 3 as methods for measuring the furnace wall thickness.

しかしながら、特許文献2は鉄皮を開孔して検知器をレンガに接触させる方式であり、レンガに接触させることができる部位でのみ測定が可能となる。実際、対象レンガが高温の場合には実施が困難である。   However, Patent Document 2 is a method in which the iron skin is opened and the detector is brought into contact with the brick, and measurement can be performed only at a portion where the detector can be brought into contact with the brick. In fact, it is difficult to implement when the target brick is hot.

また、特許文献3はマイクロ波を用いる非接触式のレンガ厚み計であるが、アンテナとレンガ間に(1)空間、(2)マイクロ波通過窓、(3)空間を挟む構成のため、レンガの表面と裏面からの反射波を識別することが困難であり、雑音誤差除去の工夫が必要となっている。   Moreover, although patent document 3 is a non-contact-type brick thickness meter using a microwave, since it is the structure which sandwiches (1) space, (2) microwave passage window, and (3) space between an antenna and a brick, it is a brick. It is difficult to distinguish the reflected waves from the front surface and the back surface, and it is necessary to devise noise error removal.

本発明は、上記のような事情に鑑みてなされたものであり、コークス炉や精錬炉などにおける高温のレンガの厚みを簡便で精度よく測定することができるレンガ厚み測定方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a brick thickness measuring method that can easily and accurately measure the thickness of a high-temperature brick in a coke oven or a refining furnace. It is what.

前記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]レンガに送信アンテナから電磁波を放射して、屈折率の異なる材質の境界面での電磁波の反射を受信アンテナで受信して、電磁波がレンガの背面で反射して受信アンテナに戻ってくるまでの時間とレンガの電磁波伝播速度から熱間でレンガ厚みを測定する方法において、送信アンテナおよび受信アンテナとレンガ間に4〜300mmの厚さの断熱層を充填させることを特徴とするレンガ厚み測定方法。   [1] The electromagnetic wave is radiated from the transmitting antenna to the brick, and the reflection of the electromagnetic wave at the boundary surface of materials having different refractive indexes is received by the receiving antenna, and the electromagnetic wave is reflected by the back surface of the brick and returns to the receiving antenna. Thickness measurement characterized by filling a heat-insulating layer having a thickness of 4 to 300 mm between a transmitting antenna and a receiving antenna and a brick in a method for measuring the thickness of a brick between heat and the electromagnetic wave propagation speed of the brick. Method.

[2]送信アンテナおよび受信アンテナとレンガ間に充填された断熱層の厚みに応じてレンガの厚みを補正することを特徴とする前記[1]に記載のレンガ厚み測定方法。   [2] The brick thickness measurement method according to [1], wherein the thickness of the brick is corrected according to the thickness of the heat insulating layer filled between the transmission antenna and the reception antenna and the brick.

[3]厚みを測定するレンガが電磁波を透過しない素材を隔てた内側にある場合に、電磁波を透過しない素材を開口することを特徴とする前記[1]または[2]に記載のレンガ厚み測定方法。   [3] The brick thickness measurement according to [1] or [2], wherein a material that does not transmit electromagnetic waves is opened when the brick whose thickness is to be measured is located inside a material that does not transmit electromagnetic waves. Method.

本発明においては、電磁波を使用することにより、コークス炉や精錬炉などにおける高温のレンガの厚みを簡便に精度よく測定することができる。   In the present invention, the thickness of a high-temperature brick in a coke oven or a refining furnace can be easily and accurately measured by using electromagnetic waves.

コークス炉概観斜視図である。It is a perspective view of a coke oven. コークス炉平面図である。It is a coke oven top view. 本発明の実施形態1による電磁波でのレンガ厚みを測定する概念図である。It is a conceptual diagram which measures the brick thickness in the electromagnetic waves by Embodiment 1 of this invention. 本発明の実施形態1によるレンガ厚み測定時の送信波と受信波の波形の概念図である。It is a conceptual diagram of the waveform of the transmission wave and reception wave at the time of the brick thickness measurement by Embodiment 1 of this invention. 本発明の実施形態2による電磁波でのレンガ厚みを測定する概念図である。It is a conceptual diagram which measures the brick thickness in the electromagnetic waves by Embodiment 2 of this invention. 本発明の実施例1におけるレンガ厚みの測定結果を示す図である。It is a figure which shows the measurement result of the brick thickness in Example 1 of this invention.

本発明の実施形態を図面に基づき説明する。   Embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図3は、本発明の実施形態1における電磁波でのレンガ厚みを測定する概念図である。この実施形態1では、室炉式コークス炉の炉壁レンガの厚み測定を行う場合を念頭においている。
[Embodiment 1]
FIG. 3 is a conceptual diagram for measuring the brick thickness of the electromagnetic wave according to Embodiment 1 of the present invention. In this Embodiment 1, the case where the thickness measurement of the furnace wall brick of a chamber furnace type coke oven is performed is considered.

図3に示すように、レンガ厚み測定装置(センサーボックス)11に取り付けたアンテナ(送信アンテナ)12から電磁波(送信波)をレンガ13に放射すると、レンガ13とは屈折率が異なる材質の材料14との境界で反射波が得られ、その反射波をアンテナ(受信アンテナ)12で受信する。レンガ13とは屈折率が異なる材質の材料14とは、空気や鉄部材などである。   As shown in FIG. 3, when an electromagnetic wave (transmitted wave) is radiated to the brick 13 from an antenna (transmitting antenna) 12 attached to the brick thickness measuring device (sensor box) 11, a material 14 having a material having a refractive index different from that of the brick 13. A reflected wave is obtained at the boundary between and the received wave is received by the antenna (receiving antenna) 12. The material 14 having a refractive index different from that of the brick 13 is air or an iron member.

図4は、この実施形態1におけるレンガ厚み測定時の送信波と受信波の波形の概念図である。   FIG. 4 is a conceptual diagram of waveforms of a transmission wave and a reception wave when the brick thickness is measured in the first embodiment.

図4に示すように、送信波と受信波の時間差が電磁波の反射に要した時間(反射時間)である。すなわち、レンガ13に送信アンテナ12から電磁波を放射して、屈折率の異なる材質14の境界面(レンガ13の背面)での電磁波の反射を受信アンテナ12で受信するまでの時間が反射時間となる。そして、反射時間t、電磁波の伝播速度をvとすると、レンガの厚みはD=tv/2で算出される。   As shown in FIG. 4, the time difference between the transmission wave and the reception wave is the time required for reflection of the electromagnetic wave (reflection time). That is, the time from when the electromagnetic wave is radiated to the brick 13 from the transmitting antenna 12 and the reflection of the electromagnetic wave at the boundary surface (back surface of the brick 13) of the material 14 having a different refractive index is received by the receiving antenna 12 is the reflection time. . When the reflection time t and the propagation speed of electromagnetic waves are v, the thickness of the brick is calculated by D = tv / 2.

その際に、電磁波の伝播速度vは媒質の屈折率によって異なるため、初期に対象レンガ13の屈折率で校正しておく必要がある。また、電磁波の伝播速度vは温度環境によっても異なるため、高温レンガ13を測定する際には伝播速度vの温度依存性を考慮して厚みを計算することが望ましい。なお、電磁波は測定精度から100〜3000MHzの範囲でパルス波にすることが適切である。   At that time, since the propagation velocity v of the electromagnetic wave varies depending on the refractive index of the medium, it is necessary to calibrate with the refractive index of the target brick 13 in the initial stage. Further, since the propagation speed v of electromagnetic waves varies depending on the temperature environment, it is desirable to calculate the thickness in consideration of the temperature dependence of the propagation speed v when measuring the high temperature brick 13. In addition, it is appropriate that the electromagnetic wave is a pulse wave in the range of 100 to 3000 MHz from the measurement accuracy.

その上で、この実施形態1においては、図3に示すように、アンテナ12をレンガ13に接触させずに、アンテナ12とレンガ13の間に断熱層(断熱材:例えば、セラミッククロス)16を充填するようにしている。これによって、単にアンテナ12とレンガ13の間に空隙を設ける場合に比べて、高温レンガ13によるアンテナ12への熱負荷を大幅に軽減することができる。   In addition, in the first embodiment, as shown in FIG. 3, a heat insulating layer (heat insulating material: ceramic cloth, for example) 16 is provided between the antenna 12 and the brick 13 without bringing the antenna 12 into contact with the brick 13. I try to fill it. Thereby, compared with the case where a space | gap is simply provided between the antenna 12 and the brick 13, the thermal load to the antenna 12 by the high temperature brick 13 can be reduced significantly.

なお、アンテナ12とレンガ13の間に断熱層16が充填されているので、レンガ13の厚みの算出の際には、アンテナ12とレンガ13の間の断熱材16の厚み(すなわち、アンテナ12とレンガ13の間の距離)や断熱材16の種類(材質)に応じて、測定結果の補正を行うことが必要である。ここでは、測定に先立ち、断熱材16の厚みや種類に応じた影響の度合いを予め決定しておくことが望ましい。   In addition, since the heat insulating layer 16 is filled between the antenna 12 and the brick 13, when calculating the thickness of the brick 13, the thickness of the heat insulating material 16 between the antenna 12 and the brick 13 (that is, the antenna 12 and It is necessary to correct the measurement results according to the distance between the bricks 13) and the type (material) of the heat insulating material 16. Here, it is desirable to determine in advance the degree of influence according to the thickness and type of the heat insulating material 16 prior to measurement.

例えば、ある温度条件下で、アンテナ12とレンガ13の間に断熱材16として厚みδのある種のセラミッククロスが充填されている場合、D=tv/2で算出した測定値から、セラミッククロスの厚み(アンテナ12とレンガ13の間の距離)δの例えば0.25倍を差し引く補正を行えば良い。   For example, when a certain type of ceramic cloth having a thickness δ is filled as the heat insulating material 16 between the antenna 12 and the brick 13 under a certain temperature condition, from the measurement value calculated by D = tv / 2, Correction for subtracting, for example, 0.25 times the thickness (distance between the antenna 12 and the brick 13) δ may be performed.

ちなみに、ある温度条件下で単にアンテナ12とレンガ13の間に空隙を設ける場合は、D=tv/2で算出した測定値から、アンテナ12とレンガ13の間の距離δの例えば0.15倍を差し引く補正を行えば良いことが分かっているが、測定個所によっては、アンテナ12とレンガ13の間の距離δを正確に検出することが難しく、D=tv/2で算出した測定値を精度良く補正することが困難である。なお、前記セラミッククロスが充填されている場合のδの0.25倍、前記空隙を設ける場合のδの0.15倍という数字は固定的なものではなく、充填材質や温度条件等によって異なるものであり、実験結果や経験によって設定される値である。   Incidentally, when a gap is simply provided between the antenna 12 and the brick 13 under a certain temperature condition, for example, 0.15 times the distance δ between the antenna 12 and the brick 13 from the measured value calculated by D = tv / 2. However, depending on the measurement location, it is difficult to accurately detect the distance δ between the antenna 12 and the brick 13, and the measurement value calculated by D = tv / 2 is accurate. It is difficult to correct well. The numbers 0.25 times δ when the ceramic cloth is filled and 0.15 times δ when the gap is provided are not fixed, and differ depending on the filling material, temperature conditions, etc. It is a value set based on experimental results and experience.

これに対して、アンテナ12とレンガ13の間に事前に厚みδを測定可能な断熱層16を充填することによって、D=tv/2で算出した測定値を精度良く補正することができる。   On the other hand, the measurement value calculated by D = tv / 2 can be accurately corrected by previously filling the space between the antenna 12 and the brick 13 with the heat insulating layer 16 capable of measuring the thickness δ.

なお、アンテナ12とレンガ13の距離(断熱層16の厚み)δについては、断熱効果と反射波の受信の感度から4〜300mmが適切である。   The distance δ between the antenna 12 and the brick 13 (thickness of the heat insulating layer 16) δ is suitably 4 to 300 mm from the heat insulating effect and the sensitivity of receiving the reflected wave.

また、アンテナ12とレンガ13の間に充填する断熱層(断熱材)16については、ブランケットのような押し付け方で厚みが変動するような素材ではなく、断熱ボードのような厚みが容易に変化しない素材が好適である。ただし、線材などで補強されているような、一様な素材でないものは望ましくない。   In addition, the heat insulating layer (heat insulating material) 16 filled between the antenna 12 and the brick 13 is not a material whose thickness varies depending on how it is pressed, such as a blanket, and the thickness of a heat insulating board does not easily change. A material is preferred. However, a non-uniform material that is reinforced with a wire or the like is not desirable.

また、アンテナ(送信アンテナ、受信アンテナ)12を含むレンガ厚み測定装置(センサーボックス)11に車輪などを取り付け走査させれば、短時間に広範囲のレンガ厚みの測定が可能となる。車輪は別の形態、例えばキャタピラーであっても構わない。レンガ厚み測定装置11が動力を持ち自走しても良いし、別の移動機に搭載して走査しても構わない。   If a brick thickness measuring device (sensor box) 11 including an antenna (transmitting antenna, receiving antenna) 12 is attached and scanned, a wide range of brick thicknesses can be measured in a short time. The wheel may have another form, for example, a caterpillar. The brick thickness measuring device 11 may be powered and run on its own, or may be mounted on another mobile device and scanned.

ここで、この実施形態1におけるレンガ厚み測定装置11は、電磁波の送受信アンテナ12、電磁波の送受信に要する伝播時間測定手段から構成される。さらに、伝播時間から伝播距離を算出する手段や測定データの記憶装置が含まれることが望ましい。   Here, the brick thickness measuring apparatus 11 according to the first embodiment includes an electromagnetic wave transmitting / receiving antenna 12 and a propagation time measuring means required for electromagnetic wave transmission / reception. Further, it is desirable to include means for calculating the propagation distance from the propagation time and a storage device for measurement data.

[実施形態2]
図5は、本発明の実施形態2における電磁波でのレンガ厚みを測定する概念図である。この実施形態2では、精錬炉などのように、鉄皮容器の内側にレンガが貼られている炉のレンガ厚み測定を行う場合を念頭においている。
[Embodiment 2]
FIG. 5 is a conceptual diagram for measuring the brick thickness in the electromagnetic wave according to Embodiment 2 of the present invention. In this Embodiment 2, the case where the brick thickness measurement of the furnace with which the brick is stuck inside the iron skin container like a refining furnace is performed in mind.

この実施形態2は、基本的な構成は、前述の実施形態1と同様であるが、図5に示すように、レンガ厚み測定装置(センサーボックス)11に取り付けたアンテナ(送信アンテナ)12から電磁波(送信波)をレンガ13に放射した場合、電磁波は鉄皮15を透過しないため、電磁波を通過させたい鉄皮15部分に開口部17を設けている。そして、アンテナ(送信アンテナ)12から開口部17を経由させて電磁波をレンガ13に放射すると、レンガ13とは屈折率が異なる材質の材料14との境界で反射波が得られ、その反射波をアンテナ(受信アンテナ)12で受信する。レンガ13とは屈折率が異なる材質の材料14とは、空気や鉄部材などである。   The basic configuration of the second embodiment is the same as that of the first embodiment described above. However, as shown in FIG. 5, an electromagnetic wave is transmitted from an antenna (transmitting antenna) 12 attached to a brick thickness measuring device (sensor box) 11. When (transmitted wave) is radiated to the brick 13, since the electromagnetic wave does not pass through the iron skin 15, the opening 17 is provided in the iron skin 15 portion where the electromagnetic wave is desired to pass. When an electromagnetic wave is radiated from the antenna (transmission antenna) 12 to the brick 13 via the opening 17, a reflected wave is obtained at the boundary with the material 14 made of a material having a refractive index different from that of the brick 13, and the reflected wave is The signal is received by the antenna (reception antenna) 12. The material 14 having a refractive index different from that of the brick 13 is air or an iron member.

なお、この実施形態2におけるレンガ厚み測定時の送信波と受信波の波形の概念図は、前述の図4と同様であり、実施形態も同様であるので説明は省略する。   In addition, the conceptual diagram of the waveform of the transmission wave at the time of brick thickness measurement in this Embodiment 2 and a reception wave is the same as that of above-mentioned FIG. 4, Since embodiment is also the same, description is abbreviate | omitted.

ここで、この実施形態2におけるレンガ厚み測定装置11は、電磁波の送受信アンテナ12、電磁波の送受信に要する伝播時間測定手段から構成される。さらに、伝播時間から伝播距離を算出する手段や測定データの記憶装置が含まれることが望ましい。   Here, the brick thickness measuring apparatus 11 according to the second embodiment includes an electromagnetic wave transmitting / receiving antenna 12 and a propagation time measuring means required for electromagnetic wave transmission / reception. Further, it is desirable to include means for calculating the propagation distance from the propagation time and a storage device for measurement data.

本発明の実施例1として、上記の本発明の実施形態1を参照して、コークス炉の炉壁レンガの厚み測定を行った。   As Example 1 of the present invention, the thickness of a furnace wall brick of a coke oven was measured with reference to Embodiment 1 of the present invention.

その際に、電磁波の送信/受信アンテナ12を搭載した150mm幅×140mm高さ×200mm長さのサイズのセンサーボックス11を製作し、コークス炉の炉壁レンガの厚みを約1000℃の熱間で測定した。測定したレンガは後でコークス炉から取り外し、厚みを確認したところ69mmであった。測定条件と測定結果を表1に示す。   At that time, a sensor box 11 having a size of 150 mm width × 140 mm height × 200 mm length on which the electromagnetic wave transmitting / receiving antenna 12 is mounted is manufactured, and the thickness of the coke oven furnace wall brick is about 1000 ° C. hot. It was measured. The measured brick was later removed from the coke oven and the thickness was confirmed to be 69 mm. Table 1 shows measurement conditions and measurement results.

Figure 2012163524
Figure 2012163524

まず、条件1では、センサーボックス11(アンテナ12)をレンガ13から4mm離して測定した。レンガ13の屈折率すなわち電磁波の伝播速度は常温における値を使って厚みを計算した。   First, in condition 1, the sensor box 11 (antenna 12) was measured 4 mm away from the brick 13 for measurement. The thickness of the brick 13 was calculated using the refractive index, that is, the propagation speed of the electromagnetic wave, at a room temperature.

また、条件2では、条件1と同じくセンサーボックス11(アンテナ12)をレンガ13から4mm離して測定した上で、1000℃における屈折率の値を用いて厚みの計算を行った。   In condition 2, as in condition 1, the sensor box 11 (antenna 12) was measured 4 mm away from the brick 13, and the thickness was calculated using the refractive index value at 1000 ° C.

また、条件3では、条件1と同じくセンサーボックス11(アンテナ12)をレンガ13から4mm離した上で、センサーボックス11(アンテナ12)とレンガ13の間に、耐熱材16として、耐熱1200℃のセラミッククロス4mmを充填して測定した。温度による屈折率の校正も実施した。   Further, in condition 3, as in condition 1, the sensor box 11 (antenna 12) is separated from the brick 13 by 4 mm, and between the sensor box 11 (antenna 12) and the brick 13, the heat resistant material 16 has a heat resistance of 1200 ° C. Measurement was made by filling a ceramic cloth of 4 mm. Refractive index calibration with temperature was also performed.

条件1〜3における測定結果(測定波形)を図6に示す。この測定では、レンガと空気の境界で反射波が返ってくるので、空気はレンガより屈折率が低いため、反射波の強度はマイナス側で検出される。   The measurement results (measurement waveforms) under conditions 1 to 3 are shown in FIG. In this measurement, since the reflected wave returns at the boundary between the brick and the air, since the refractive index of air is lower than that of the brick, the intensity of the reflected wave is detected on the minus side.

まず、条件1では、63mmと測定できた。真値69mmに対し、誤差は10%以内で測定された。なお、センサーボックス11(アンテナ12)とレンガ13の距離を徐々に広げて測定を続けたところ、距離が300mmを越えると、反射波のピーク値が判別できなくなった。   First, in condition 1, it was able to measure with 63 mm. The error was measured within 10% for a true value of 69 mm. Note that when the distance between the sensor box 11 (antenna 12) and the brick 13 was gradually increased and the measurement was continued, the peak value of the reflected wave could not be discriminated when the distance exceeded 300 mm.

次に、条件2では、真値とほぼ同じ70mmと測定できた。   Next, in condition 2, it could be measured as 70 mm, which is almost the same as the true value.

さらに、条件3でも、真値とほぼ同じ70mmと測定できた。なお、センサーボックス11(アンテナ12)とレンガ13の距離を徐々に広げるとともに、充填する断熱材16の厚みを徐々に広げて測定を続けたところ、断熱材16の厚みが300mmを越えると、反射波のピーク値が判別できなくなった。   Furthermore, even under condition 3, it was possible to measure 70 mm, which is almost the same as the true value. In addition, while gradually increasing the distance between the sensor box 11 (antenna 12) and the brick 13 and gradually increasing the thickness of the heat insulating material 16 to be filled, if the thickness of the heat insulating material 16 exceeds 300 mm, the reflection is reflected. The peak value of the wave can no longer be determined.

この実施例1で分かるように、電磁波によりレンガ厚み測定が可能であること、屈折率の温度校正をした方が望ましいこと、センサーボックス11(アンテナ12)とレンガ13の間に4〜300mmの距離を開けても良いこと、センサーボックス11(アンテナ12)とレンガ13の間に断熱層16を充填させても良いことが示された。   As can be seen from this Example 1, it is desirable that the brick thickness can be measured by electromagnetic waves, the temperature of the refractive index should be calibrated, and a distance of 4 to 300 mm between the sensor box 11 (antenna 12) and the brick 13. It was shown that the heat insulating layer 16 may be filled between the sensor box 11 (antenna 12) and the brick 13.

本発明の実施例2として、上記の本発明の実施形態1を参照して、コークス炉の炉壁レンガの厚み測定を行った。   As Example 2 of the present invention, the thickness of the furnace wall brick of the coke oven was measured with reference to Embodiment 1 of the present invention.

その際に、電磁波の送信/受信アンテナ12を搭載した150mm幅×140mm高さ×200mm長さのサイズのセンサーボックス11を製作し、コークス炉の炉壁レンガの厚みを約1000℃の熱間で測定した。測定したレンガは後でコークス炉から取り外し、厚みを確認したところ69mmであった。測定条件と測定結果を表2に示す。   At that time, a sensor box 11 having a size of 150 mm width × 140 mm height × 200 mm length on which the electromagnetic wave transmitting / receiving antenna 12 is mounted is manufactured, and the thickness of the coke oven furnace wall brick is about 1000 ° C. hot. It was measured. The measured brick was later removed from the coke oven and the thickness was confirmed to be 69 mm. Table 2 shows measurement conditions and measurement results.

Figure 2012163524
Figure 2012163524

まず、条件4aでは、センサーボックス11(アンテナ12)をレンガ13から4mm離して測定し、条件4bでは、センサーボックス11(アンテナ12)をレンガ13から300mm離して測定した。   First, in condition 4a, measurement was performed by separating the sensor box 11 (antenna 12) from the brick 13 by 4 mm, and in condition 4b, measurement was performed by separating the sensor box 11 (antenna 12) from the brick 13 by 300 mm.

また、条件5aでは、条件4aと同じくセンサーボックス11(アンテナ12)をレンガ13から4mm離した上で、センサーボックス11(アンテナ12)とレンガ13の間に耐熱温度1200℃のセラミッククロス4mmを充填して測定し、条件5bでは、条件4bと同じくセンサーボックス11(アンテナ12)をレンガ13から300mm離した上で、センサーボックス11(アンテナ12)とレンガ13の間に耐熱温度1200℃のセラミッククロス300mmを充填して測定した。   In condition 5a, as in condition 4a, the sensor box 11 (antenna 12) is separated from the brick 13 by 4 mm, and a ceramic cloth 4 mm having a heat resistant temperature of 1200 ° C. is filled between the sensor box 11 (antenna 12) and the brick 13. In the condition 5b, the sensor box 11 (antenna 12) is separated from the brick 13 by 300 mm as in the condition 4b, and a ceramic cloth having a heat resistant temperature of 1200 ° C. between the sensor box 11 (antenna 12) and the brick 13 is measured. Measurement was performed by filling 300 mm.

なお、条件4a、4b、5a、5bのいずれの場合も、温度による屈折率の校正を実施した。   In all cases of conditions 4a, 4b, 5a, and 5b, the refractive index was calibrated with temperature.

その結果、条件4aでは70mmと測定され、条件4bでは114mmと測定された。そして、前述したように、センサーボックス11(アンテナ12)とレンガ13の間に空間がある場合、測定値から空間距離δの0.15倍を差し引く補正を行えば良いことが分かっていたので、条件4aでは70−4×0.15=69.4mm、条件4bでは114−300×0.15=69mmと補正できた。   As a result, it was measured as 70 mm under condition 4a, and as 114 mm under condition 4b. And, as described above, when there is a space between the sensor box 11 (antenna 12) and the brick 13, it has been known that correction should be made by subtracting 0.15 times the spatial distance δ from the measured value. Condition 4a was corrected to be 70−4 × 0.15 = 69.4 mm, and condition 4b was 114−300 × 0.15 = 69 mm.

また、条件5aでは70mmと測定され、条件5bでは144mmと測定された。そして、前述したように、センサーボックス11(アンテナ12)とレンガ13の間に断熱材(セラミッククロス)16が充填されている場合、測定値からセラミッククロスの厚みδの0.25倍を差し引く補正を行えば良いことが分かっていたので、条件5aでは70−4×0.25=69mm、条件5bでは144−300×0.25=69mmと補正できた。   Moreover, in condition 5a, it measured with 70 mm, and in condition 5b, it measured with 144 mm. And as mentioned above, when the heat insulating material (ceramic cloth) 16 is filled between the sensor box 11 (antenna 12) and the brick 13, the correction is made by subtracting 0.25 times the thickness δ of the ceramic cloth from the measured value. Therefore, it was found that 70-4 × 0.25 = 69 mm under condition 5a and 144−300 × 0.25 = 69 mm under condition 5b.

この実施例2で分かるように、センサーボックス11(アンテナ12)とレンガ13の間に空間や断熱層(断熱材)16がある場合には、その材質と厚みに応じた補正をする必要があることが示された。   As can be seen in the second embodiment, when there is a space or a heat insulating layer (heat insulating material) 16 between the sensor box 11 (antenna 12) and the brick 13, it is necessary to make a correction according to the material and thickness. It was shown that.

本発明の実施例3として、上記の本発明の実施形態2を参照して、精錬炉の炉壁レンガの厚み測定を行った。   As Example 3 of the present invention, the thickness of the furnace wall brick of the smelting furnace was measured with reference to Embodiment 2 of the present invention.

その際に、電磁波の送信/受信アンテナ12を搭載した150mm幅×140mm高さ×200mm長さのサイズのセンサーボックス11を製作し、精錬炉で減肉するスラグラインの鉄皮15を150mm幅×200mm長さ開口し、センサーボックス11を取り付け、レンガ厚みを約1000℃の熱間で測定した。測定したレンガは後で精錬炉から取り外し、厚みを確認したところ295mmであった。   At that time, a sensor box 11 having a size of 150 mm width × 140 mm height × 200 mm length on which the electromagnetic wave transmitting / receiving antenna 12 is mounted is manufactured, and a slag line iron skin 15 that is thinned in a refining furnace is 150 mm wide × The opening was 200 mm long, the sensor box 11 was attached, and the brick thickness was measured hot at about 1000 ° C. The measured brick was later removed from the smelting furnace and the thickness was confirmed to be 295 mm.

測定条件と測定結果を表3に示す。   Table 3 shows the measurement conditions and measurement results.

Figure 2012163524
Figure 2012163524

まず、条件6では、センサーボックス11(アンテナ12)をレンガ13から4mm離して測定した。屈折率は常温における値を使って厚みを計算した。   First, in condition 6, the sensor box 11 (antenna 12) was measured 4 mm away from the brick 13. Refractive index calculated thickness using the value in normal temperature.

また、条件7では、条件6と同じくセンサーボックス11(アンテナ12)をレンガ13から4mm離して測定した上で、1000℃における屈折率の値を用いて厚みの計算を行った。   In condition 7, as in condition 6, the sensor box 11 (antenna 12) was measured 4 mm away from the brick 13, and the thickness was calculated using the refractive index value at 1000 ° C.

また、条件8では、条件6と同じくセンサーボックス11(アンテナ12)をレンガ13から4mm離して測定した上で、センサーボックス11(アンテナ12)とレンガ13の間に耐熱温度1200℃のセラミッククロス16を4mm充填して測定した。温度による屈折率の校正も実施した。   In condition 8, as in condition 6, the sensor box 11 (antenna 12) was measured 4 mm away from the brick 13 and then measured between the sensor box 11 (antenna 12) and the brick 13 and the ceramic cloth 16 having a heat resistant temperature of 1200 ° C. Was measured by filling 4 mm. Refractive index calibration with temperature was also performed.

その結果、まず、条件6では272mmと測定できた。真値295mmに対し、誤差は10%以内で測定できた。なお、センサーボックス11(アンテナ12)とレンガ13の距離を徐々に広げて測定を続けたところ、距離が300mmを越えると、反射波のピーク値が判別できなくなった。   As a result, first, under condition 6, it could be measured as 272 mm. The error could be measured within 10% against the true value of 295 mm. Note that when the distance between the sensor box 11 (antenna 12) and the brick 13 was gradually increased and the measurement was continued, the peak value of the reflected wave could not be discriminated when the distance exceeded 300 mm.

また、条件7では1000℃における屈折率を使用して厚み計算を行ったので、真値とほぼ同じ296mmで測定ができた。   In condition 7, the thickness was calculated using the refractive index at 1000 ° C., so that the measurement was performed at 296 mm, which was almost the same as the true value.

また、条件8では、センサーボックス11(アンテナ12)とレンガ13の間に断熱層(セラミッククロス)16を4mm充填し、温度による屈折率の校正も実施したので、真値とほぼ同じ296mmで測定できた。なお、センサーボックス11(アンテナ12)とレンガ13の距離を徐々に広げるとともに、断熱材16の厚みを徐々に広げて測定を続けたところ、断熱材16の厚みが300mmを越えると、反射波のピーク値が判別できなくなった。   In condition 8, the heat insulation layer (ceramic cloth) 16 was filled 4 mm between the sensor box 11 (antenna 12) and the brick 13, and the refractive index was calibrated by temperature. did it. In addition, while gradually increasing the distance between the sensor box 11 (antenna 12) and the brick 13 and gradually increasing the thickness of the heat insulating material 16, when the thickness of the heat insulating material 16 exceeds 300 mm, The peak value can no longer be determined.

この実施例3で分かるように、精錬炉などのように、鉄皮容器の内側にレンガが貼られている炉の場合も、電磁波によりレンガ厚み測定が可能であること、屈折率の温度校正をした方が望ましいこと、センサーボックス11(アンテナ12)とレンガ13の間に4〜300mmの距離を開けても良いこと、センサーボックス(アンテナ12)とレンガ13の間に断熱層16を充填させても良いことが示された。   As can be seen in Example 3, even in the case of a furnace in which a brick is stuck inside the iron skin container, such as a refining furnace, it is possible to measure the thickness of the brick by electromagnetic waves, and temperature calibration of the refractive index. It is preferable that a distance of 4 to 300 mm be provided between the sensor box 11 (antenna 12) and the brick 13, and a heat insulating layer 16 is filled between the sensor box (antenna 12) and the brick 13. Also shown to be good.

本発明の実施例4として、上記の本発明の実施形態2を参照して、精錬炉の炉壁レンガの厚み測定を行った。   As Example 4 of this invention, with reference to said Embodiment 2 of this invention, the thickness measurement of the furnace wall brick of a smelting furnace was performed.

その際に、電磁波の送信/受信アンテナ12を搭載した150mm幅×140mm高さ×200mm長さのサイズのセンサーボックス11を製作し、精錬炉で減肉するスラグラインの鉄皮15を150mm幅×200mm長さ開口し、センサーボックス11を取り付け、レンガ厚みを約1000℃の熱間で測定した。測定したレンガは後で精錬炉から取り外し、厚みを確認したところ295mmであった。   At that time, a sensor box 11 having a size of 150 mm width × 140 mm height × 200 mm length on which the electromagnetic wave transmitting / receiving antenna 12 is mounted is manufactured, and a slag line iron skin 15 that is thinned in a refining furnace is 150 mm wide × The opening was 200 mm long, the sensor box 11 was attached, and the brick thickness was measured hot at about 1000 ° C. The measured brick was later removed from the smelting furnace and the thickness was confirmed to be 295 mm.

測定条件と測定結果を表4に示す。   Table 4 shows the measurement conditions and measurement results.

Figure 2012163524
Figure 2012163524

まず、条件9aでは、センサーボックス11(アンテナ12)をレンガ13から4mm離して測定し、条件9bでは、センサーボックス11(アンテナ12)をレンガ13から300mm離して測定した。   First, in condition 9a, the sensor box 11 (antenna 12) was measured 4 mm away from the brick 13 and in condition 9b, the sensor box 11 (antenna 12) was measured 300 mm away from the brick 13.

また、条件10aでは、条件9aと同じくセンサーボックス11(アンテナ12)をレンガ13から4mm離した上で、センサーボックス11(アンテナ12)とレンガ13の間に耐熱温度1200℃のセラミッククロス4mmを充填して測定し、条件10bでは、条件9bと同じくセンサーボックス11(アンテナ12)をレンガ13から300mm離した上で、センサーボックス11(アンテナ12)とレンガ13の間に耐熱温度1200℃のセラミッククロス300mmを挟んで測定した。   In condition 10a, as in condition 9a, the sensor box 11 (antenna 12) is separated from the brick 13 by 4 mm, and a ceramic cloth 4 mm having a heat resistant temperature of 1200 ° C. is filled between the sensor box 11 (antenna 12) and the brick 13. In condition 10b, the sensor box 11 (antenna 12) is separated from the brick 13 by 300 mm as in the condition 9b, and a ceramic cloth having a heat resistant temperature of 1200 ° C. is interposed between the sensor box 11 (antenna 12) and the brick 13. Measurements were taken across 300 mm.

なお、条件9a、9b、10a、10bのいずれの場合も、温度による屈折率の校正を実施した。   In all cases of conditions 9a, 9b, 10a, and 10b, the refractive index was calibrated with temperature.

その結果、条件9aでは296mmと測定され、条件9bでは340mmと測定された。そして、前述したように、センサーボックス11(アンテナ12)とレンガ13の間に空間がある場合、測定値から空間距離δの0.15倍を差し引く補正を行えば良いことが分かっていたので、条件9aでは296−4×0.15=295.4mm、条件9bでは340−300×0.15=295mmと補正できた。   As a result, it was measured as 296 mm under condition 9a, and as 340 mm under condition 9b. And, as described above, when there is a space between the sensor box 11 (antenna 12) and the brick 13, it has been known that correction should be made by subtracting 0.15 times the spatial distance δ from the measured value. Condition 9a was corrected to 296-4 × 0.15 = 295.4 mm, and condition 9b was corrected to 340−300 × 0.15 = 295 mm.

また、条件10aでは296mmと測定され、条件10bでは370mmと測定された。そして、前述したように、センサーボックス11(アンテナ12)とレンガ13の間に断熱材(セラミッククロス)16が充填されている場合、測定値からセラミッククロスの厚みδの0.25倍を差し引く補正を行えば良いことが分かっていたので、条件10aでは296−4×0.25=295mm、条件10bでは370−300×0.25=295mmと補正できた。   Further, it was measured as 296 mm under the condition 10a, and as 370 mm under the condition 10b. And as mentioned above, when the heat insulating material (ceramic cloth) 16 is filled between the sensor box 11 (antenna 12) and the brick 13, the correction is made by subtracting 0.25 times the thickness δ of the ceramic cloth from the measured value. Since it was known that it was sufficient to perform the above, it was possible to correct the condition 10a to 296-4 × 0.25 = 295 mm and the condition 10b to 370−300 × 0.25 = 295 mm.

この実施例4で分かるように、センサーボックス11(アンテナ12)とレンガ13の間に空間や断熱層(断熱材)16がある場合には、その材質と厚みに応じた補正をする必要があることが示された。   As can be seen from the fourth embodiment, when there is a space or a heat insulating layer (heat insulating material) 16 between the sensor box 11 (antenna 12) and the brick 13, it is necessary to perform correction according to the material and thickness. It was shown that.

1 炭化室
2 燃焼室
3 押し出し機
3a ラム
4 炉壁
5 ビンダー
6 燃焼室フリュー
7 装炭車
8 装炭孔
11 レンガ厚み測定装置(センサーボックス)
12 アンテナ(送信/受信アンテナ)
13 レンガ
14 レンガと屈折率の異なる材質の部材
15 鉄皮などの電磁波を透過しない材質の部材
16 断熱層
17 開口部
DESCRIPTION OF SYMBOLS 1 Carbonization chamber 2 Combustion chamber 3 Extruder 3a Ram 4 Furnace wall 5 Binder 6 Combustion chamber flue 7 Charcoal vehicle 8 Charging hole 11 Brick thickness measuring device (sensor box)
12 Antenna (transmit / receive antenna)
13 Brick 14 Member made of a material having a refractive index different from that of brick 15 Member made of a material that does not transmit electromagnetic waves such as an iron skin 16 Heat insulation layer 17 Opening

Claims (3)

レンガに送信アンテナから電磁波を放射して、屈折率の異なる材質の境界面での電磁波の反射を受信アンテナで受信して、電磁波がレンガの背面で反射して受信アンテナに戻ってくるまでの時間とレンガの電磁波伝播速度から熱間でレンガ厚みを測定する方法において、送信アンテナおよび受信アンテナとレンガ間に4〜300mmの厚さの断熱層を充填させることを特徴とするレンガ厚み測定方法。   The time from when the electromagnetic wave is radiated from the transmitting antenna to the brick, the reflection of the electromagnetic wave at the boundary surface of the material with different refractive index is received by the receiving antenna, and the electromagnetic wave is reflected at the back of the brick and returns to the receiving antenna And a brick thickness measurement method, wherein a heat insulating layer having a thickness of 4 to 300 mm is filled between the transmitting antenna and the receiving antenna and the brick. 送信アンテナおよび受信アンテナとレンガ間に充填された断熱層の厚みに応じてレンガの厚みを補正することを特徴とする請求項1に記載のレンガ厚み測定方法。   The brick thickness measuring method according to claim 1, wherein the thickness of the brick is corrected according to the thickness of the heat insulating layer filled between the transmitting antenna and the receiving antenna and the brick. 厚みを測定するレンガが電磁波を透過しない素材を隔てた内側にある場合に、電磁波を透過しない素材を開口することを特徴とする請求項1または2に記載のレンガ厚み測定方法。   The brick thickness measuring method according to claim 1 or 2, wherein a material that does not transmit electromagnetic waves is opened when a brick whose thickness is to be measured is located inside a material that does not transmit electromagnetic waves.
JP2011025970A 2011-02-09 2011-02-09 Brick thickness measurement method Active JP5659838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025970A JP5659838B2 (en) 2011-02-09 2011-02-09 Brick thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025970A JP5659838B2 (en) 2011-02-09 2011-02-09 Brick thickness measurement method

Publications (2)

Publication Number Publication Date
JP2012163524A true JP2012163524A (en) 2012-08-30
JP5659838B2 JP5659838B2 (en) 2015-01-28

Family

ID=46843040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025970A Active JP5659838B2 (en) 2011-02-09 2011-02-09 Brick thickness measurement method

Country Status (1)

Country Link
JP (1) JP5659838B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180582A (en) * 1991-12-27 1993-07-23 Shimadzu Corp Monitoring device in furnace
JP2003294430A (en) * 2002-04-01 2003-10-15 Mitsubishi Heavy Ind Ltd Measuring instrument for thickness of refractory
JP2008013814A (en) * 2006-07-06 2008-01-24 Nippon Steel Corp Apparatus for detecting behavior of charge in blast furnace
JP2012013512A (en) * 2010-06-30 2012-01-19 Agc Ceramics Co Ltd Method and device for measuring residual thickness of fused cast refractories

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180582A (en) * 1991-12-27 1993-07-23 Shimadzu Corp Monitoring device in furnace
JP2003294430A (en) * 2002-04-01 2003-10-15 Mitsubishi Heavy Ind Ltd Measuring instrument for thickness of refractory
JP2008013814A (en) * 2006-07-06 2008-01-24 Nippon Steel Corp Apparatus for detecting behavior of charge in blast furnace
JP2012013512A (en) * 2010-06-30 2012-01-19 Agc Ceramics Co Ltd Method and device for measuring residual thickness of fused cast refractories

Also Published As

Publication number Publication date
JP5659838B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US9212956B2 (en) Ultrasonic temperature measurement device
EP0096912B1 (en) A method of monitoring the wear of a refractory lining of a metallurgical furnace wall
EP2712420B1 (en) Furnace structural integrity monitoring systems and methods
JP4757408B2 (en) Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device
CN101690252B (en) Component based on a ceramic material
EP3173733A1 (en) Ultrasonic thickness reduction inspection method/apparatus
CA2593767C (en) Non-destructive testing of the lining of a process vessel
JP5114666B2 (en) Refractory layer residual dimension measurement method for molten metal containers
CN101029848B (en) Continuous temperature sensing method for high-temperature liquid
JP5659838B2 (en) Brick thickness measurement method
JP5461768B2 (en) Coke oven carbonization chamber diagnostic method
CN202482340U (en) Thermocouple for online installation of blast furnace
JP2004271446A (en) Method and instrument for measuring coal charge level in coke oven
JP2012013512A (en) Method and device for measuring residual thickness of fused cast refractories
CN102952920B (en) Method for measuring etching thickness of working surface of converter liner
Gordon et al. Diagnostics of blast-furnace linings
JP2014142152A (en) Residual thickness measurement method of wear layer
TWI431241B (en) Non - destructive measurement method for furnace wall thickness of high temperature furnace
TWI832542B (en) Furnace temperature measuring device
JP4142333B2 (en) Coke oven coking chamber diagnostic method
JPH10219323A (en) Method for evaluating wear of refractory, device therefor and method for controlling refractory device therefor
JPH07268428A (en) Structure for side wall part of furnace bottom in blast furnace and method for measuring remaining thickness of furnace bottom brick
CN206580849U (en) Means for correcting for thermocouple temperature measurement in blast furnace
JPWO2004090071A1 (en) Coke oven coking chamber diagnostic apparatus and diagnostic method
KR101714928B1 (en) Apparatus and method for measuring thickness of refractory in blast furnace hearth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250