JP2012163510A - Impedance measuring apparatus - Google Patents

Impedance measuring apparatus Download PDF

Info

Publication number
JP2012163510A
JP2012163510A JP2011025677A JP2011025677A JP2012163510A JP 2012163510 A JP2012163510 A JP 2012163510A JP 2011025677 A JP2011025677 A JP 2011025677A JP 2011025677 A JP2011025677 A JP 2011025677A JP 2012163510 A JP2012163510 A JP 2012163510A
Authority
JP
Japan
Prior art keywords
voltage
battery
source
differential amplifier
impedance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011025677A
Other languages
Japanese (ja)
Other versions
JP5620297B2 (en
Inventor
Junji Iijima
淳司 飯島
Yasuyoshi Kamata
康良 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2011025677A priority Critical patent/JP5620297B2/en
Publication of JP2012163510A publication Critical patent/JP2012163510A/en
Application granted granted Critical
Publication of JP5620297B2 publication Critical patent/JP5620297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an impedance measuring apparatus capable of measuring an internal impedance of a battery in a short period of time.SOLUTION: An impedance measuring apparatus 1 supplies a battery 30 of a measuring object with an alternating current Ifrom an AC supply 2 and measures the internal impedance of the battery 30 based on the supplied alternating current Iand an interpolar AC voltage Vgenerated between both the electrodes of the battery 30. In the impedance measuring apparatus, the AC supply 2 and the battery 30 are configured to be connected via a first DC voltage supply 3, a negative electrode of which is connected to the output end of the AC supply 2 and a positive electrode of which is connected to a positive electrode of the battery 30. The battery 30 and a differential amplifier may be connected via a second DC voltage supply 4.

Description

本発明は、電池に交流電流を供給して、その交流電流、及び電池の両極間に発生する交流電圧から電池の内部インピーダンスを測定するインピーダンス測定装置に関するものである。   The present invention relates to an impedance measuring apparatus that supplies an alternating current to a battery and measures the internal impedance of the battery from the alternating current and an alternating voltage generated between both electrodes of the battery.

電池は、直流起電力を発生するものであり、例えば、マンガン電池、アルカリマンガン電池などの一次電池や、鉛蓄電池、リチウムイオン蓄電池、ニッケルカドミニウム蓄電池などの二次電池の他に、燃料電池、太陽電池など種々のものがある。このような電池の特性を評価するために、電池の内部インピーダンス(出力インピーダンス)の値を測定することが行われている。   The battery generates a direct current electromotive force. For example, in addition to a primary battery such as a manganese battery or an alkaline manganese battery, a secondary battery such as a lead storage battery, a lithium ion storage battery, or a nickel cadmium storage battery, a fuel cell, a solar battery, or the like. There are various types of batteries. In order to evaluate the characteristics of such a battery, the value of the internal impedance (output impedance) of the battery is measured.

特許文献1には、電池の内部インピーダンスを測定可能なインピーダンス測定装置が記載されている。このインピーダンス測定装置1では、コンデンサを介して交流定電流源(交流源)から電池に交流電流を供給し、別のコンデンサを介して電池の両極端に発生する交流電圧を差動増幅回路(電圧検出回路)に入力させている。これらコンデンサは、直流を阻止して、電池の起電する直流電圧が交流源や差動増幅回路に直接印加されることを防止している。これにより、電池電圧の高低によらず、交流源等を破壊することなく、電池の内部インピーダンスの測定が可能になっている。   Patent Document 1 describes an impedance measuring device capable of measuring the internal impedance of a battery. In this impedance measuring apparatus 1, an alternating current is supplied from a constant AC current source (AC source) to a battery via a capacitor, and an AC voltage generated at both extremes of the battery via a different capacitor is converted to a differential amplifier circuit (voltage detection). Circuit). These capacitors block direct current and prevent direct current voltage generated by the battery from being directly applied to an alternating current source or a differential amplifier circuit. Thereby, the internal impedance of the battery can be measured without destroying the AC source or the like regardless of the level of the battery voltage.

特開平11−295363号公報Japanese Patent Laid-Open No. 11-295363

特許文献1のインピーダンス測定装置では、電池を装置に接続したときに、コンデンサが電池電圧との電位差で充電されていく。コンデンサが充電されるまでの過渡期間には、その過渡特性により、差動増幅回路に入力する電圧が同相入力電圧範囲を超えてしまい差動増幅回路の出力電圧が飽和して、測定を行うことはできない。この飽和期間は、特に電池の直流起電力が交流源や差動増幅回路の電源電圧よりも大きく、さらにその差が大きいときに長くなる。充電時間(飽和期間)を短くするために、コンデンサの静電容量を小さくすることも考えられるが、交流源側のコンデンサの静電容量を小さくすると、コンデンサが交流源の負荷(抵抗)となるので、規定の交流電流を流すために交流源の電源電圧を高くする必要がある。また、差動増幅回路側のコンデンサの静電容量を小さくすると、交流信号の位相の回転が大きくなるため、測定精度が悪化してしまう。このため、コンデンサを大きな静電容量に設定する必要があるので、充電時間が長くなって、差動増幅回路の飽和期間が長くなり、測定に時間が掛かるという課題がある。   In the impedance measuring device of Patent Literature 1, when a battery is connected to the device, the capacitor is charged with a potential difference from the battery voltage. During the transition period until the capacitor is charged, the voltage input to the differential amplifier circuit exceeds the common-mode input voltage range due to the transient characteristics, and the output voltage of the differential amplifier circuit is saturated. I can't. This saturation period is particularly long when the direct current electromotive force of the battery is larger than the power supply voltage of the alternating current source or the differential amplifier circuit and the difference is large. In order to shorten the charging time (saturation period), it is conceivable to reduce the capacitance of the capacitor. However, if the capacitance of the capacitor on the AC source side is reduced, the capacitor becomes a load (resistance) of the AC source. Therefore, it is necessary to increase the power supply voltage of the AC source in order to allow the specified AC current to flow. Further, if the capacitance of the capacitor on the differential amplifier circuit side is reduced, the rotation of the phase of the AC signal is increased, so that the measurement accuracy is deteriorated. For this reason, since it is necessary to set a capacitor | condenser to a big electrostatic capacitance, charging time becomes long, the saturation period of a differential amplifier circuit becomes long, and there exists a subject that a measurement takes time.

本発明は前記の課題を解決するためになされたもので、電池の内部インピーダンスの測定を短時間で行うことができるインピーダンス測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an impedance measuring apparatus capable of measuring the internal impedance of a battery in a short time.

前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載されたインピーダンス測定装置は、測定対象の電池に交流源から交流電流を供給して、供給した該交流電流、及び該電池の両極間に発生する両極間交流電圧に基づいて、該電池の内部インピーダンスを測定するインピーダンス測定装置であって、該交流源と該電池とが、該交流源の出力端に負極が接続されると共に、該電池の正極に正極が接続される第1の直流電圧源を介して接続されることを特徴とする。   An impedance measuring device according to claim 1, which is made to achieve the above object, supplies an alternating current from an alternating current source to a battery to be measured, and the supplied alternating current, and An impedance measuring device for measuring an internal impedance of the battery based on an AC voltage between both electrodes generated between both electrodes of the battery, wherein the AC source and the battery are connected to a negative electrode at an output terminal of the AC source. In addition, the battery is connected to a positive electrode of the battery via a first DC voltage source connected to the positive electrode.

請求項2に記載されたインピーダンス測定装置は、請求項1に記載されたもので、前記第1の直流電圧源が、前記交流源を内蔵する装置筐体の内部に配置され、又は該装置筐体にケーブル接続可能に該装置筐体の外部に配置されることを特徴とする。   An impedance measuring device according to a second aspect is the one according to the first aspect, wherein the first DC voltage source is disposed inside a device housing in which the AC source is incorporated, or the device housing. It is arranged outside the apparatus housing so that it can be connected to the body by a cable.

請求項3に記載されたインピーダンス測定装置は、請求項1又は2に記載されたもので、前記電池の前記正極に正極が接続される第2の直流電圧源と、該電池の負極、及び該第2の直流電圧源の負極間の電圧を検出する電圧検出回路とを備え、該電圧検出回路の出力の交流成分から前記両極間交流電圧を測定することを特徴とする。   An impedance measuring device according to claim 3 is the impedance measuring device according to claim 1, wherein a second DC voltage source having a positive electrode connected to the positive electrode of the battery, a negative electrode of the battery, and the And a voltage detection circuit for detecting a voltage between the negative electrodes of the second DC voltage source, and measuring the AC voltage between both electrodes from the AC component of the output of the voltage detection circuit.

請求項4に記載されたインピーダンス測定装置は、請求項3に記載されたもので、前記第2の直流電圧源が、前記電圧検出回路を内蔵する装置筐体の内部に配置され、又は該装置筐体にケーブル接続可能に該装置筐体の外部に配置されることを特徴とする。   An impedance measuring device according to a fourth aspect is the one according to the third aspect, wherein the second DC voltage source is disposed inside a device housing in which the voltage detection circuit is incorporated, or the device. It is arranged outside the apparatus casing so that a cable can be connected to the casing.

請求項5に記載されたインピーダンス測定装置は、請求項1又は2に記載されたもので、前記電池の前記両極間に接続される抵抗分圧比が既知な、直列接続された直列抵抗と、該直列抵抗で抵抗分圧された電圧を検出する電圧検出回路とを備え、該電圧検出回路の出力の交流成分から前記両極間交流電圧を測定することを特徴とする。   The impedance measuring device according to claim 5 is the impedance measuring device according to claim 1 or 2, wherein the series resistance connected in series with a known resistance voltage dividing ratio connected between the two electrodes of the battery, A voltage detection circuit for detecting a voltage divided by a series resistor, and measuring the AC voltage between both electrodes from an AC component of an output of the voltage detection circuit.

本発明のインピーダンス測定装置によれば、交流源と電池とがコンデンサを介さずに接続されるので、コンデンサが電池で充電される過渡現象が発生せず、測定を短時間で行うことができる。   According to the impedance measuring apparatus of the present invention, since the AC source and the battery are connected without a capacitor, a transient phenomenon in which the capacitor is charged by the battery does not occur, and the measurement can be performed in a short time.

さらに、電圧検出回路と電池とがコンデンサを介さずに接続されるので、コンデンサが電池で充電される過渡現象が発生せず、測定を短時間で行うことができる。   Furthermore, since the voltage detection circuit and the battery are connected without a capacitor, a transient phenomenon in which the capacitor is charged by the battery does not occur, and the measurement can be performed in a short time.

第1の直流電圧源や第2の直流電圧源を、装置筐体に内蔵する場合、装置の持ち運びに便利である。また、第1の直流電圧源や第2の直流電圧源を、装置筐体の外部に配置してケーブル接続可能にする場合、例えば市販されている直流電圧源装置や測定対象の電池と同種の電池を装置にケーブルで接続することで、第1の直流電圧源や第2の直流電圧源として用いることができる。   When the first DC voltage source or the second DC voltage source is built in the apparatus housing, it is convenient to carry the apparatus. Further, when the first DC voltage source or the second DC voltage source is arranged outside the device casing and can be connected to the cable, for example, the same type as a commercially available DC voltage source device or a battery to be measured is used. By connecting the battery to the device with a cable, it can be used as a first DC voltage source or a second DC voltage source.

本発明を適用するインピーダンス測定装置の使用状態の構成を示すブロック図である。It is a block diagram which shows the structure of the use condition of the impedance measuring apparatus to which this invention is applied. 本発明を適用する他のインピーダンス測定装置の使用状態の構成を示すブロック図である。It is a block diagram which shows the structure of the use condition of the other impedance measuring apparatus to which this invention is applied.

以下、本発明の実施形態を詳細に説明するが、本発明の範囲はこれらの実施形態に限定されるものではない。   Hereinafter, although embodiment of this invention is described in detail, the scope of the present invention is not limited to these embodiment.

図1に示すインピーダンス測定装置1は、交流源2、第1の直流電圧源3、第2の直流電圧源4、測定部5、及び表示部6を備え、測定対象の電池30に交流源2から交流電流IACを供給して、供給した交流電流IAC、及び電池30の両極間に発生する両極間交流電圧VACに基づいて、4端子式で電池30の内部インピーダンスRBATを測定するものである。なお、同図では、電池30に、等価的な内部抵抗30aを図示している。この内部抵抗30aの抵抗値が内部インピーダンスRBATである。 The impedance measuring apparatus 1 shown in FIG. 1 includes an AC source 2, a first DC voltage source 3, a second DC voltage source 4, a measuring unit 5, and a display unit 6, and the AC source 2 is connected to the battery 30 to be measured. supplying an alternating current I AC from the supplied alternating current I AC, and based on the electrode-to-electrode AC voltage V AC generated between both electrodes of the battery 30, to measure the internal impedance R BAT of the battery 30 by the 4-terminal type Is. In the drawing, an equivalent internal resistance 30 a is shown for the battery 30. The resistance value of the internal resistor 30a is the internal impedance RBAT .

交流源2は、一例として交流周波数1kHzの定電流を出力する交流定電流源である。交流源2と電池30とは、直流電圧源3を介して接続される。具体的には、同図に示すように、交流源2の出力端に直流電圧源3の負極が接続されていて、電池30の正極に、テストプローブ21aによって直流電圧源3の正極が接続される。また、交流源2の他の出力端は、テストプローブ21bによって電池30の負極に接続されると共に、基準電位に接続されている。交流源2としては、交流定電圧源を用いてもよい。   The AC source 2 is an AC constant current source that outputs a constant current having an AC frequency of 1 kHz as an example. The AC source 2 and the battery 30 are connected via a DC voltage source 3. Specifically, as shown in the figure, the negative electrode of the DC voltage source 3 is connected to the output terminal of the AC source 2, and the positive electrode of the DC voltage source 3 is connected to the positive electrode of the battery 30 by the test probe 21a. The The other output terminal of the AC source 2 is connected to the negative electrode of the battery 30 by the test probe 21b and to the reference potential. As the AC source 2, an AC constant voltage source may be used.

直流電圧源3は、電池30の直流起電力(直流起電電圧)VBATと直流電圧源3の出力する直流電圧VDC1との電圧差が、交流源2の出力に印加可能な最大電圧以下となる直流電圧VDC1を出力するものである。直流電圧源3が、電池30の直流起電力VBATにほぼ等しい直流電圧VDC1を出力するものであれば、両電圧の電圧差が少なくなるので好ましい。この例では、直流電圧源3として、電池30と同様の電池を用いている。この場合、直流電圧源3となる電池は消耗時に交換可能になっている。なお、直流電圧源3として、公知の直流定電圧回路を用いてもよい。 The DC voltage source 3 is such that the voltage difference between the DC electromotive force (DC electromotive voltage) V BAT of the battery 30 and the DC voltage V DC1 output from the DC voltage source 3 is less than the maximum voltage that can be applied to the output of the AC source 2. DC voltage V DC1 is output. If the DC voltage source 3 outputs a DC voltage V DC1 substantially equal to the DC electromotive force V BAT of the battery 30, the voltage difference between the two voltages is preferable. In this example, a battery similar to the battery 30 is used as the DC voltage source 3. In this case, the battery serving as the DC voltage source 3 can be replaced when exhausted. Note that a known DC constant voltage circuit may be used as the DC voltage source 3.

直流電圧源3は、交流源2、測定部5、及び表示部6を内蔵するインピーダンス測定装置1の装置筐体の内部に配置してもよいし、この装置筐体の外部に配置して、装置筐体に設けられたコネクタ端子に、電気ケーブルで接続してもよい。   The direct-current voltage source 3 may be disposed inside the device housing of the impedance measuring device 1 including the alternating current source 2, the measurement unit 5, and the display unit 6, or may be disposed outside the device housing. You may connect to the connector terminal provided in the apparatus housing | casing with an electric cable.

また、電池30の正極に、第2の直流電圧源4の正極がテストプローブ22aによって接続される。この直流電圧源4の負極は、測定部5の後述する差動増幅回路11の反転入力端子に接続されている。また、電池30の負極に、テストプローブ22bによって差動増幅回路11の非反転入力端子が接続される。   The positive electrode of the second DC voltage source 4 is connected to the positive electrode of the battery 30 by the test probe 22a. The negative electrode of the DC voltage source 4 is connected to an inverting input terminal of a differential amplifier circuit 11 described later of the measurement unit 5. Further, the non-inverting input terminal of the differential amplifier circuit 11 is connected to the negative electrode of the battery 30 by the test probe 22b.

直流電圧源4は、電池30の直流起電力VBATと直流電圧源4の出力する直流電圧VDC2との電圧差が、測定部5に入力して測定可能な最大電圧以下となる直流電圧VDC2を出力するものである。具体的には、直流電圧源4は、直流起電力VBATと直流電圧VDC2との電圧差が、差動増幅回路11の両入力端子間に入力可能な最大電圧(同相入力電圧範囲)以下であり、直流電圧VDC2に両極間交流電圧VACが重畳されたときにも差動増幅回路11の出力が飽和しない直流電圧VDC2を出力する。直流電圧源4が、電池30の直流起電力VBATにほぼ等しい直流電圧VDC2を出力するものであれば、両電圧の電圧差が少なくなるので好ましい。この例では、直流電圧源4として、電池30と同様の電池を用いている。この場合、直流電圧源4となる電池は消耗時に交換可能になっている。なお、直流電圧源4として、公知の直流定電圧回路を用いてもよい。 The DC voltage source 4 has a DC voltage V at which the voltage difference between the DC electromotive force V BAT of the battery 30 and the DC voltage V DC2 output from the DC voltage source 4 is less than the maximum voltage that can be input to the measuring unit 5 and measured. DC2 is output. Specifically, the DC voltage source 4 is such that the voltage difference between the DC electromotive force V BAT and the DC voltage V DC2 is equal to or less than the maximum voltage (common-mode input voltage range) that can be input between both input terminals of the differential amplifier circuit 11. The DC voltage V DC2 that does not saturate the output of the differential amplifier circuit 11 is output even when the interpolar AC voltage V AC is superimposed on the DC voltage V DC2 . If the DC voltage source 4 outputs a DC voltage V DC2 substantially equal to the DC electromotive force V BAT of the battery 30, it is preferable because the voltage difference between the two voltages is reduced. In this example, a battery similar to the battery 30 is used as the DC voltage source 4. In this case, the battery serving as the DC voltage source 4 can be replaced when consumed. Note that a known DC constant voltage circuit may be used as the DC voltage source 4.

直流電圧源4は、交流源2、測定部5、及び表示部6を内蔵するインピーダンス測定装置1の装置筐体の内部に配置してもよいし、この装置筐体の外部に配置して、装置筐体に設けられたコネクタ端子に、電気ケーブルで接続してもよい。   The direct current voltage source 4 may be disposed inside the device housing of the impedance measuring device 1 including the alternating current source 2, the measurement unit 5, and the display unit 6, or may be disposed outside the device housing, You may connect to the connector terminal provided in the apparatus housing | casing with an electric cable.

測定部5は、差動増幅回路11、BPF12、A/D変換器13、演算処理部14、及びA/D変換器15を備えている。差動増幅回路11は、本発明における電圧検出回路の一例であって、一対の入力端子(この場合、反転入力端子及び非反転入力端子)間のインピーダンスが電圧検出対象に比べて充分にハイインピーダンスになっていて、入力端子間に印加される電圧の信号波形を、そのまま又は所望の増幅度で増幅して出力する電圧波形検出用の入力回路である。この場合、差動増幅回路11は、反転入力端子と非反転入力端子との間の電位差を所望の増幅度で差動増幅して出力する。差動増幅回路11の出力に接続されたBPF12は、交流源2の出力する周波数(この例では1kHz)の交流成分を通過させ、直流成分を通過させないバンドパスフィルタである。A/D変換器13は、BFF12の出力信号をアナログ/デジタル変換して演算処理部14に出力する。   The measurement unit 5 includes a differential amplifier circuit 11, a BPF 12, an A / D converter 13, an arithmetic processing unit 14, and an A / D converter 15. The differential amplifier circuit 11 is an example of a voltage detection circuit according to the present invention, and the impedance between a pair of input terminals (in this case, an inverting input terminal and a non-inverting input terminal) is sufficiently high compared to a voltage detection target. The voltage waveform detection input circuit outputs a signal waveform of a voltage applied between the input terminals as it is or after being amplified with a desired amplification degree. In this case, the differential amplifier circuit 11 differentially amplifies the potential difference between the inverting input terminal and the non-inverting input terminal with a desired amplification level and outputs it. The BPF 12 connected to the output of the differential amplifier circuit 11 is a band-pass filter that passes an AC component of a frequency (1 kHz in this example) output from the AC source 2 and does not pass a DC component. The A / D converter 13 performs analog / digital conversion on the output signal of the BFF 12 and outputs the result to the arithmetic processing unit 14.

また、交流源2は、交流源2の出力する交流電流IACの電流波形を、一例として電流検出用抵抗(不図示)で検出するなどして、電圧波形で出力する電流測定用端子18を有している。A/D変換器15は、電流測定用端子18の出力信号をアナログ/デジタル変換して演算処理部14に出力する。 In addition, the AC source 2 detects the current waveform of the AC current I AC output from the AC source 2 by using a current detection resistor (not shown) as an example, and a current measurement terminal 18 that outputs a voltage waveform. Have. The A / D converter 15 performs analog / digital conversion on the output signal of the current measurement terminal 18 and outputs the result to the arithmetic processing unit 14.

演算処理部14は、一例としてマイクロプロセッサやCPUなどの演算処理回路や、その動作プログラムを内蔵するROMや演算結果を記憶するRAMなどの記憶部を有して構成されている。演算処理部14は、A/D変換器13の出力から差動増幅回路11の増幅度を考慮して電池30の両極間交流電圧VACを測定すると共に、A/D変換器13の出力から交流電流IACを測定し、両極間交流電圧VAC及び交流電流IACの各振幅と位相差とに基づいて、電池30の内部インピーダンスRBATを算出して、表示部6に出力する。表示部6は、一例として液晶ディスプレイパネルである。 As an example, the arithmetic processing unit 14 includes an arithmetic processing circuit such as a microprocessor or a CPU, and a storage unit such as a ROM incorporating an operation program thereof or a RAM storing an arithmetic result. Arithmetic processing unit 14, with taking into account the amplification degree of the differential amplifier circuit 11 from the output of the A / D converter 13 to measure the electrode-to-electrode AC voltage V AC of the battery 30, from the output of the A / D converter 13 The AC current I AC is measured, the internal impedance R BAT of the battery 30 is calculated based on the amplitude and phase difference of the AC voltage V AC between the two electrodes and the AC current I AC , and is output to the display unit 6. The display unit 6 is a liquid crystal display panel as an example.

次に、このインピーダンス測定装置1の測定動作について説明する。   Next, the measurement operation of the impedance measuring apparatus 1 will be described.

先ず、図1に示すように測定対象の電池30にテストプローブ21a,21b,22a,22bを接続する。測定を開始すると、交流源2が交流電流IACを出力する。交流電流IACは、交流源2、直流電圧源3、及び電池30で形成される閉ループを流れる。なお、差動増幅回路11の入力インピーダンスがハイインピーダンスであるので、交流電流IACは直流電圧源4や差動増幅回路11に流れない。 First, as shown in FIG. 1, test probes 21a, 21b, 22a, and 22b are connected to a battery 30 to be measured. When the measurement is started, the AC source 2 outputs an AC current I AC . The alternating current I AC flows in a closed loop formed by the alternating current source 2, the direct current voltage source 3, and the battery 30. Since the input impedance of the differential amplifier circuit 11 is high impedance, the alternating current I AC does not flow to the DC voltage source 4 or the differential amplifier circuit 11.

電池30の接続により、交流源2の両出力端子間に掛かる直流電圧は、直流電圧源3が接続されていることから、(直流起電力VBAT)−(直流電圧VDC1)となる。つまり、交流源2には、電池30の直流起電力VBATが直接印加されず、直流電圧源3の直流電圧VDC1との差の電圧が印加される。この差の電圧は、交流源2に印加可能な電圧範囲内に設定しているので、交流源2は破損しない。つまり、直流電圧源3を配することで、従来の特許文献1に配されたような直流阻止用のコンデンサを配する必要がない。このため、コンデンサの充電に起因する差動増幅回路11の飽和現象が発生しない。また、電池30の直流起電力VBATが交流源2にそのまま印加されないので、交流源2として、例えば回路の電源電圧を直流起電力VBATよりも高くした交流源のような、出力に印加可能な最大電圧が大きな交流源を用いる必要が無い。電池30と直流電源3とが同様の電池であれば、直流起電力VBAT≒直流電圧VDC1であり、交流源2にはほとんど直流電圧が印加されないので好ましい。また、直流電圧源3が出力電圧を調整可能な直流定電圧回路であれば、直流起電力VBAT≒直流電圧VDC1に調整することができるので好ましい。 The DC voltage applied between the output terminals of the AC source 2 by the connection of the battery 30 is (DC electromotive force V BAT ) − (DC voltage V DC1 ) because the DC voltage source 3 is connected. That is, the direct current electromotive force V BAT of the battery 30 is not directly applied to the alternating current source 2, but a voltage that is different from the direct current voltage V DC1 of the direct current voltage source 3 is applied. Since the voltage of this difference is set within a voltage range that can be applied to the AC source 2, the AC source 2 is not damaged. That is, by providing the DC voltage source 3, it is not necessary to provide a DC blocking capacitor as in the conventional Patent Document 1. For this reason, the saturation phenomenon of the differential amplifier circuit 11 due to the charging of the capacitor does not occur. Further, since the DC electromotive force V BAT of the battery 30 is not applied to the AC source 2 as it is, the AC source 2 can be applied to an output such as an AC source whose circuit power supply voltage is higher than the DC electromotive force V BAT. It is not necessary to use an AC source with a large maximum voltage. If the battery 30 and the DC power source 3 are similar batteries, it is preferable that the DC electromotive force V BAT ≈DC voltage V DC1 , and almost no DC voltage is applied to the AC source 2. Further, if the DC voltage source 3 is a DC constant voltage circuit capable of adjusting the output voltage, it is preferable because it can be adjusted to DC electromotive force V BAT ≈DC voltage V DC1 .

電池30に交流電流IACが供給されて、電池30の内部抵抗30aに交流電流IACが流れることに起因して、電池30の両端間には交流電圧(両端間交流電圧)VACが発生する。電池30自体は、直流起電力VBATを起電するので、電池30の両端間電圧VDUTは、
両端間電圧VDUT=直流起電力VBAT+両端間交流電圧VAC
となる。差動増幅回路11の両入力端子間に入力される入力電圧VIN1は、電池30と差動増幅回路11との間に直流電圧源4が接続されていることから、
入力電圧VIN1=両端間電圧VDUT−直流電圧VDC2
=直流起電力VBAT+両端間交流電圧VAC−直流電圧VDC2
となる。
An AC voltage (AC voltage between both ends) V AC is generated between both ends of the battery 30 due to the AC current I AC being supplied to the battery 30 and the AC current I AC flowing through the internal resistance 30a of the battery 30. To do. Since the battery 30 itself generates a DC electromotive force V BAT , the voltage V DUT across the battery 30 is
Voltage between both ends V DUT = DC electromotive force V BAT + AC voltage between both ends V AC
It becomes. The input voltage V IN1 input between both input terminals of the differential amplifier circuit 11 is connected to the DC voltage source 4 between the battery 30 and the differential amplifier circuit 11.
Input voltage V IN1 = Voltage between both ends V DUT -DC voltage V DC2
= DC electromotive force V BAT + AC voltage V AC across both ends-DC voltage V DC2
It becomes.

つまり、差動増幅回路11には、直流的に、電池30の直流起電力VBATが印加されず、直流起電力VBATと直流電圧源4の直流電圧VDC2との差の直流電圧が印加される。この差の電圧は、差動増幅回路11が入力可能な電圧範囲内に設定しているので、差動増幅回路11は破損せず、増幅動作(測定)が可能である。つまり、直流電圧源4を配することで、直流阻止用のコンデンサを配する必要がなく、このため、コンデンサの充電に起因する差動増幅回路11の飽和現象が発生しない。また、電池30の直流起電力VBATが差動増幅回路11にそのまま印加されないので、差動増幅回路11として、例えば回路の電源電圧を直流起電力VBATよりも高くした差動増幅回路のような、入力可能な最大電圧範囲が大きな差動増幅回路を用いる必要が無い。 That is, the direct current electromotive force V BAT of the battery 30 is not applied to the differential amplifier circuit 11 in direct current, and a direct current voltage that is the difference between the direct current electromotive force V BAT and the direct current voltage V DC2 of the direct current voltage source 4 is applied. Is done. Since the voltage of this difference is set within a voltage range that can be input by the differential amplifier circuit 11, the differential amplifier circuit 11 is not damaged and an amplification operation (measurement) is possible. That is, by providing the DC voltage source 4, it is not necessary to provide a DC blocking capacitor, and therefore, the saturation phenomenon of the differential amplifier circuit 11 due to the charging of the capacitor does not occur. Further, since the DC electromotive force V BAT of the battery 30 is not applied to the differential amplifier circuit 11 as it is, the differential amplifier circuit 11 is, for example, a differential amplifier circuit in which the power supply voltage of the circuit is higher than the DC electromotive force V BAT. In addition, there is no need to use a differential amplifier circuit having a large maximum input voltage range.

電池30と直流電圧源4とが同様の電池であれば、直流起電力VBAT≒直流電圧VDC2であるので、差動増幅回路11には、ほとんど直流電圧が印加されずに、電池30に発生した両端間交流電圧VACが印加されるので好ましい。また、直流電圧源4が出力電圧を調整可能な直流定電圧回路であれば、直流起電力VBAT≒直流電圧VDC2に調整することができるので好ましい。 If the battery 30 and the DC voltage source 4 are similar batteries, since the DC electromotive force V BAT ≈DC voltage V DC2 , almost no DC voltage is applied to the differential amplifier circuit 11 and the battery 30 Since the generated AC voltage V AC between both ends is applied, it is preferable. Further, if the DC voltage source 4 is a DC constant voltage circuit capable of adjusting the output voltage, it is preferable because the DC electromotive force V BAT ≈DC voltage V DC2 can be adjusted.

差動増幅回路11が入力電圧VIN1を差動増幅し、BPF12が周波数1kHzの交流成分(交流電圧信号)だけを通過させる。その信号をA/D変換器13がデジタル信号に変換する。また、A/D変換器15が交流電流IACに対応する電圧信号をデジタル信号に変換する。演算処理部14は、入力された両信号から電池30の内部インピーダンスRBATを算出して表示部6に出力する。表示部6は、演算処理部14から出力された内部インピーダンスRBATの値を表示する。 The differential amplifier circuit 11 differentially amplifies the input voltage V IN1 , and the BPF 12 passes only an AC component (AC voltage signal) having a frequency of 1 kHz. The A / D converter 13 converts the signal into a digital signal. The A / D converter 15 converts a voltage signal corresponding to the alternating current I AC into a digital signal. The arithmetic processing unit 14 calculates the internal impedance R BAT of the battery 30 from both input signals and outputs it to the display unit 6. The display unit 6 displays the value of the internal impedance R BAT output from the arithmetic processing unit 14.

以上で、電池30の内部インピーダンスRBATの測定が終了する。 This completes the measurement of the internal impedance R BAT of the battery 30.

このように、交流源2、直流電圧源3、及び電池30で形成される閉ループ内や、電池30、直流電圧源4、及び差動増幅回路11で形成される閉ループ内に、コンデンサが存在しないので、コンデンサの充電に起因する差動増幅回路11の飽和現象が発生しないため、電池30の接続後、直ちに測定することができる。従って、短時間で測定を行うことが可能である。   Thus, there is no capacitor in the closed loop formed by the AC source 2, the DC voltage source 3, and the battery 30, or in the closed loop formed by the battery 30, the DC voltage source 4, and the differential amplifier circuit 11. Therefore, since the saturation phenomenon of the differential amplifier circuit 11 due to the charging of the capacitor does not occur, the measurement can be performed immediately after the battery 30 is connected. Therefore, measurement can be performed in a short time.

次に、本発明の他の実施形態であるインピーダンス測定装置1aについて、図2を参照しつつ説明する。なお、すでに説明した構成と同様の構成については同じ符号を付して詳細な説明を省略する。   Next, an impedance measuring apparatus 1a according to another embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected about the structure similar to the already demonstrated structure, and detailed description is abbreviate | omitted.

既に説明した図1のインピーダンス測定装置1では、電池30に直流電圧源4を接続して端子間交流電圧VACを測定していたのに対し、この図2のインピーダンス測定装置1aでは、電池30の両極間に、抵抗分圧比が既知な直列接続された抵抗25,26(本発明における直列抵抗)を接続して、抵抗25,26で抵抗分割される電圧から両極間交流電圧VACを測定する点で異なっている。交流源2と電池30とが直流電圧源3を介して接続される点は同様である。 In the impedance measuring device 1 of Figure 1 already described, whereas was measured between terminals AC voltage V AC by connecting a DC voltage source 4 to the battery 30, the impedance measuring device 1a of FIG. 2, the battery 30 The resistors 25 and 26 connected in series (series resistors in the present invention) having a known resistance voltage dividing ratio are connected between the two electrodes, and the AC voltage V AC between the two electrodes is measured from the voltage divided by the resistors 25 and 26. Is different. The point that the AC source 2 and the battery 30 are connected via the DC voltage source 3 is the same.

具体的には、同図に示すように、電池30の正極に、抵抗25の一端がテストプローブ22aによって接続され、電池30の負極に、抵抗26の一端がテストプローブ22bによって接続される。抵抗25,26の他端同士が接続されて、抵抗25,26が直列接続されている。また、抵抗25,26の他端同士は、差動増幅回路11の反転入力端子に接続されている。抵抗26の一端は、差動増幅回路11の非反転入力端子に接続されている。差動増幅回路11は、抵抗26の両端間の電圧を差動増幅する。   Specifically, as shown in the figure, one end of the resistor 25 is connected to the positive electrode of the battery 30 by a test probe 22a, and one end of the resistor 26 is connected to the negative electrode of the battery 30 by a test probe 22b. The other ends of the resistors 25 and 26 are connected to each other, and the resistors 25 and 26 are connected in series. The other ends of the resistors 25 and 26 are connected to the inverting input terminal of the differential amplifier circuit 11. One end of the resistor 26 is connected to the non-inverting input terminal of the differential amplifier circuit 11. The differential amplifier circuit 11 differentially amplifies the voltage across the resistor 26.

直列接続された抵抗25,26は、交流電流IACの測定に影響が出ないように、交流電流IACが殆ど流れないようなハイインピーダンスに設定されている。この抵抗25,26の各々の抵抗値を適宜設定することで、抵抗分圧比を適宜設定する。つまり、抵抗26の両端間電圧(入力電圧VIN2)が差動増幅回路11で差動増幅可能な電圧範囲内となるように、抵抗25,26の抵抗分圧比を設定する。 Series connected resistors 25 and 26, so as not to affect the measurement of the AC current I AC, alternating current I AC is set to high impedance, as hardly flows. By appropriately setting the resistance values of the resistors 25 and 26, the resistance voltage dividing ratio is appropriately set. That is, the resistance voltage dividing ratio of the resistors 25 and 26 is set so that the voltage across the resistor 26 (input voltage V IN2 ) is within the voltage range that can be differentially amplified by the differential amplifier circuit 11.

測定部5aの演算処理部14aは、抵抗25,26の抵抗分圧比、及び差動増幅回路11の増幅度を考慮して、電池30の両極間交流電圧VACを算出可能になっている。演算処理部14aは、両極間交流電圧VAC及び交流電流IACから電池30の内部インピーダンスRBATを算出する。 The arithmetic processing unit 14a of the measuring unit 5a can calculate the AC voltage VAC between both electrodes of the battery 30 in consideration of the resistance voltage dividing ratio of the resistors 25 and 26 and the amplification degree of the differential amplifier circuit 11. The arithmetic processing unit 14a calculates the internal impedance R BAT of the battery 30 from the AC voltage V AC between the two electrodes and the AC current I AC .

このインピーダンス測定装置1aの測定動作について説明する。   A measuring operation of the impedance measuring apparatus 1a will be described.

電池30を接続して、交流源2が交流電流IACを出力すると、電池30の両端間電圧VDUTは、インピーダンス測定装置1と同様に、
両端間電圧VDUT=直流起電力VBAT+両端間交流電圧VAC
となる。この両端間電圧VDUTが抵抗25,26で抵抗分圧されるので、差動増幅回路11への入力電圧VIN2は、下記のように両端間電圧VDUTに抵抗分圧比を乗算することで算出できる。
入力電圧VIN2=両端間電圧VDUT×R26/(R25+R26)
=直流起電力VBAT×R26/(R25+R26)
+両端間交流電圧VAC×R26/(R25+R26)
となる。ここで、R25は抵抗25の抵抗値、R26は抵抗26の抵抗値である。
When the battery 30 is connected and the AC source 2 outputs the AC current I AC , the voltage V DUT across the battery 30 is the same as that of the impedance measuring device 1.
Voltage between both ends V DUT = DC electromotive force V BAT + AC voltage between both ends V AC
It becomes. Since the voltage V DUT between both ends is resistance-divided by the resistors 25 and 26, the input voltage V IN2 to the differential amplifier circuit 11 is obtained by multiplying the voltage V DUT between both ends by the resistance voltage dividing ratio as follows. It can be calculated.
Input voltage V IN2 = voltage across both ends V DUT × R26 / (R25 + R26)
= DC electromotive force V BAT × R26 / (R25 + R26)
+ Both ends AC voltage V AC × R26 / (R25 + R26)
It becomes. Here, R25 is the resistance value of the resistor 25, and R26 is the resistance value of the resistor 26.

入力電圧VIN2は、差動増幅回路11が入力可能な電圧範囲内になるように分圧比が設定されているので、差動増幅回路11が破損せず、増幅動作(測定)が可能な電圧となる。従って、差動増幅回路11の入力に直流阻止用のコンデンサを配する必要がないため、コンデンサの充電に起因する差動増幅回路11の飽和現象が発生しない。また、差動増幅回路11として、例えば回路の電源電圧を直流起電力VBATよりも高くした差動増幅回路のような、入力可能な最大電圧範囲が大きな差動増幅回路を用いる必要が無い。 Since the voltage dividing ratio of the input voltage V IN2 is set so as to be within the voltage range that the differential amplifier circuit 11 can input, the differential amplifier circuit 11 is not damaged and can be amplified (measured). It becomes. Accordingly, since there is no need to provide a DC blocking capacitor at the input of the differential amplifier circuit 11, a saturation phenomenon of the differential amplifier circuit 11 due to charging of the capacitor does not occur. Further, as the differential amplifier circuit 11, it is not necessary to use a differential amplifier circuit having a large maximum input voltage range, such as a differential amplifier circuit in which the power supply voltage of the circuit is higher than the DC electromotive force VBAT .

差動増幅回路11は入力電圧VIN2を差動増幅し、BPF12が周波数1kHzの交流成分だけを通過させる。その信号をA/D変換器13がデジタル変換して、演算処理部14aに出力する。演算処理部14aは、両極間交流電圧VACを測定し、この極間交流電圧VAC、及びA/D変換器13から出力される交流電流IACから電池30の内部インピーダンスRBATを算出して表示部6に表示させる。 The differential amplifier circuit 11 differentially amplifies the input voltage V IN2 , and the BPF 12 passes only an AC component having a frequency of 1 kHz. The signal is digitally converted by the A / D converter 13 and output to the arithmetic processing unit 14a. Processing unit 14a measures the electrode-to-electrode AC voltage V AC, and calculates the internal impedance R BAT of the battery 30 from the AC current I AC output from the inter-electrode AC voltage V AC, and A / D converter 13 Display on the display unit 6.

以上で、電池30の内部インピーダンスRBATの測定が終了する。 This completes the measurement of the internal impedance R BAT of the battery 30.

このように、交流源2、直流電圧源3、及び電池30で形成される閉ループ内や、電池30、抵抗25,26、及び差動増幅回路11で形成される閉ループ内に、コンデンサが存在しないので、コンデンサの充電に起因する差動増幅回路11の飽和が発生しないため、電池30の接続後、直ちに測定することができるので、短時間で測定を行うことが可能である。   Thus, there is no capacitor in the closed loop formed by the AC source 2, the DC voltage source 3, and the battery 30, or in the closed loop formed by the battery 30, the resistors 25 and 26, and the differential amplifier circuit 11. Therefore, since the saturation of the differential amplifier circuit 11 due to charging of the capacitor does not occur, the measurement can be performed immediately after the battery 30 is connected, so that the measurement can be performed in a short time.

なお、差動増幅回路11とD/A変換器13との間にBPF12を配置した構成について説明したが、差動増幅回路11出力をD/A変換器13に接続して、演算処理部14がデジタル的にバンドパスフィルタ処理を行ってもよい。   The configuration in which the BPF 12 is disposed between the differential amplifier circuit 11 and the D / A converter 13 has been described. However, the output of the differential amplifier circuit 11 is connected to the D / A converter 13 and the arithmetic processing unit 14 is connected. However, the band pass filter processing may be performed digitally.

また、電圧検出回路として差動増幅回路11を用いた例について説明したが、これに限られず、電圧検出対象の電圧波形を、電圧検出対象に影響なく検出(入力)して、その波形をそのまま又は増幅(増幅度1以下も含む)して出力可能な回路であれば、公知の種々の回路を用いることができる。例えば、図1に示すようにテストプローブ21b、22bは基準電位に接地されているので、電圧検出回路として、基準電位に対する電圧波形を増幅可能な、一つの入力端子を有する増幅回路を用いてもよい。   Further, the example in which the differential amplifier circuit 11 is used as the voltage detection circuit has been described. However, the present invention is not limited to this, and the voltage waveform of the voltage detection target is detected (input) without affecting the voltage detection target, and the waveform is directly used. Alternatively, various known circuits can be used as long as they can be amplified (including an amplification degree of 1 or less) and output. For example, as shown in FIG. 1, since the test probes 21b and 22b are grounded to the reference potential, an amplifier circuit having one input terminal capable of amplifying a voltage waveform with respect to the reference potential may be used as the voltage detection circuit. Good.

1・1aはインピーダンス測定装置、2は交流源、3は第1の直流電圧源、4は第2の直流電圧源、5・5aは測定部、6は表示部、11は差動増幅回路、12はBPF、13はA/D変換器、14・14aは演算処理部、15はA/D変換器、18は電流測定用端子、21a・21b・22a・22bはテストプローブ、25・26は抵抗、30は電池、30aは内部抵抗、IACは交流電流、VACは電池30の両極間交流電圧、VBATは直流電圧、VDC1・VDC2は直流電圧、VDUTは電池30の両端間電圧、VIN1・VIN2は入力電圧である。 1 and 1a are impedance measuring devices, 2 is an AC source, 3 is a first DC voltage source, 4 is a second DC voltage source, 5 and 5a are measurement units, 6 is a display unit, 11 is a differential amplifier circuit, 12 is a BPF, 13 is an A / D converter, 14 and 14a are arithmetic processing units, 15 is an A / D converter, 18 is a terminal for current measurement, 21a, 21b, 22a and 22b are test probes, and 25 and 26 are Resistance, 30 is battery, 30a is internal resistance, I AC is AC current, V AC is AC voltage across battery 30, V BAT is DC voltage, V DC1 and V DC2 are DC voltage, V DUT is both ends of battery 30 The voltage between V IN1 and V IN2 is the input voltage.

Claims (5)

測定対象の電池に交流源から交流電流を供給して、供給した該交流電流、及び該電池の両極間に発生する両極間交流電圧に基づいて、該電池の内部インピーダンスを測定するインピーダンス測定装置であって、
該交流源と該電池とが、該交流源の出力端に負極が接続されると共に、該電池の正極に正極が接続される第1の直流電圧源を介して接続されることを特徴とするインピーダンス測定装置。
An impedance measuring device that supplies an alternating current from an alternating current source to a battery to be measured, and measures the internal impedance of the battery based on the supplied alternating current and the alternating voltage between both electrodes generated between both electrodes of the battery. There,
The AC source and the battery are connected via a first DC voltage source having a negative electrode connected to an output terminal of the AC source and a positive electrode connected to a positive electrode of the battery. Impedance measuring device.
前記第1の直流電圧源が、前記交流源を内蔵する装置筐体の内部に配置され、又は該装置筐体にケーブル接続可能に該装置筐体の外部に配置されることを特徴とする請求項1に記載のインピーダンス測定装置。   The first DC voltage source is disposed inside an apparatus housing containing the AC source, or is disposed outside the apparatus housing so that a cable can be connected to the apparatus housing. Item 4. The impedance measuring apparatus according to Item 1. 前記電池の前記正極に正極が接続される第2の直流電圧源と、該電池の負極、及び該第2の直流電圧源の負極間の電圧を検出する電圧検出回路とを備え、該電圧検出回路の出力の交流成分から前記両極間交流電圧を測定することを特徴とする請求項1又は2に記載のインピーダンス測定装置。   A second DC voltage source having a positive electrode connected to the positive electrode of the battery; a voltage detection circuit for detecting a voltage between the negative electrode of the battery and the negative electrode of the second DC voltage source; The impedance measuring apparatus according to claim 1, wherein the AC voltage between both electrodes is measured from an AC component of an output of the circuit. 前記第2の直流電圧源が、前記電圧検出回路を内蔵する装置筐体の内部に配置され、又は該装置筐体にケーブル接続可能に該装置筐体の外部に配置されることを特徴とする請求項3に記載のインピーダンス測定装置。   The second DC voltage source is disposed inside an apparatus housing incorporating the voltage detection circuit, or is disposed outside the apparatus housing so that a cable can be connected to the apparatus housing. The impedance measuring apparatus according to claim 3. 前記電池の前記両極間に接続される抵抗分圧比が既知な、直列接続された直列抵抗と、該直列抵抗で抵抗分圧された電圧を検出する電圧検出回路とを備え、該電圧検出回路の出力の交流成分から前記両極間交流電圧を測定することを特徴とする請求項1又は2に記載のインピーダンス測定装置。   A series resistor connected in series with a known resistance voltage dividing ratio connected between the two electrodes of the battery; and a voltage detection circuit for detecting a voltage divided by the series resistor. The impedance measuring apparatus according to claim 1 or 2, wherein the AC voltage between both electrodes is measured from an AC component of an output.
JP2011025677A 2011-02-09 2011-02-09 Impedance measuring device Active JP5620297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025677A JP5620297B2 (en) 2011-02-09 2011-02-09 Impedance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025677A JP5620297B2 (en) 2011-02-09 2011-02-09 Impedance measuring device

Publications (2)

Publication Number Publication Date
JP2012163510A true JP2012163510A (en) 2012-08-30
JP5620297B2 JP5620297B2 (en) 2014-11-05

Family

ID=46843027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025677A Active JP5620297B2 (en) 2011-02-09 2011-02-09 Impedance measuring device

Country Status (1)

Country Link
JP (1) JP5620297B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098691A (en) * 2012-10-17 2014-05-29 Hioki Ee Corp Impedance measuring device and impedance measuring method
JP2014106071A (en) * 2012-11-27 2014-06-09 Hioki Ee Corp Impedance measuring device and impedance measuring method
JP2015014564A (en) * 2013-07-08 2015-01-22 矢崎総業株式会社 Battery state detector
WO2015145615A1 (en) * 2014-03-26 2015-10-01 日産自動車株式会社 Impedance measurement device and impedance measurement method
WO2016071213A1 (en) * 2014-11-03 2016-05-12 Bayerische Motoren Werke Aktiengesellschaft Circuit arrangement and method for determining the impedance of a test battery
US20170179546A1 (en) * 2014-04-23 2017-06-22 The University Of Akron A method for charging batteries
CN109557472A (en) * 2017-09-26 2019-04-02 埃克斯得克欧洲 Differential cell tester
JP2021501960A (en) * 2018-10-23 2021-01-21 大唐恩智浦半導体有限公司Datang Nxp Semiconductors Co., Ltd Battery management device, method and chip
WO2023033467A1 (en) * 2021-09-03 2023-03-09 주식회사 엘지에너지솔루션 Apparatus for inspecting welds of battery module
WO2023189370A1 (en) * 2022-03-28 2023-10-05 ヌヴォトンテクノロジージャパン株式会社 Measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167665B (en) * 2017-05-10 2020-11-27 中车株洲电力机车有限公司 Diagnosis method and device of super capacitor module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050018A (en) * 1975-09-24 1977-09-20 Rca Corporation Capacitance meter bias protection circuit
JPS5748465U (en) * 1980-09-04 1982-03-18
JP3003659U (en) * 1994-04-28 1994-10-25 アデックス株式会社 Impedance measuring device
JP2000299137A (en) * 1998-08-10 2000-10-24 Toyota Motor Corp Secondary battery state judging method, state judging device and secondary battery regenerating method
JP2006349391A (en) * 2005-06-14 2006-12-28 Hioki Ee Corp Ac amplifier and impedance measuring apparatus
JP2007132777A (en) * 2005-11-10 2007-05-31 Hioki Ee Corp Impedance measuring apparatus
JP2008039637A (en) * 2006-08-08 2008-02-21 Hioki Ee Corp Measuring device
JP2010127700A (en) * 2008-11-26 2010-06-10 Kyocera Corp Battery diagnostic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050018A (en) * 1975-09-24 1977-09-20 Rca Corporation Capacitance meter bias protection circuit
JPS5748465U (en) * 1980-09-04 1982-03-18
JP3003659U (en) * 1994-04-28 1994-10-25 アデックス株式会社 Impedance measuring device
JP2000299137A (en) * 1998-08-10 2000-10-24 Toyota Motor Corp Secondary battery state judging method, state judging device and secondary battery regenerating method
US20010028238A1 (en) * 1998-08-10 2001-10-11 Kenji Nakamura Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
JP2006349391A (en) * 2005-06-14 2006-12-28 Hioki Ee Corp Ac amplifier and impedance measuring apparatus
JP2007132777A (en) * 2005-11-10 2007-05-31 Hioki Ee Corp Impedance measuring apparatus
JP2008039637A (en) * 2006-08-08 2008-02-21 Hioki Ee Corp Measuring device
JP2010127700A (en) * 2008-11-26 2010-06-10 Kyocera Corp Battery diagnostic device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098691A (en) * 2012-10-17 2014-05-29 Hioki Ee Corp Impedance measuring device and impedance measuring method
JP2014106071A (en) * 2012-11-27 2014-06-09 Hioki Ee Corp Impedance measuring device and impedance measuring method
JP2015014564A (en) * 2013-07-08 2015-01-22 矢崎総業株式会社 Battery state detector
WO2015145615A1 (en) * 2014-03-26 2015-10-01 日産自動車株式会社 Impedance measurement device and impedance measurement method
CN106133539A (en) * 2014-03-26 2016-11-16 日产自动车株式会社 Impedance measuring instrument and impedance measuring method
JPWO2015145615A1 (en) * 2014-03-26 2017-04-13 日産自動車株式会社 Impedance measuring apparatus and impedance measuring method
US10062928B2 (en) * 2014-04-23 2018-08-28 The University Of Akron Method for charging batteries
US20170179546A1 (en) * 2014-04-23 2017-06-22 The University Of Akron A method for charging batteries
WO2016071213A1 (en) * 2014-11-03 2016-05-12 Bayerische Motoren Werke Aktiengesellschaft Circuit arrangement and method for determining the impedance of a test battery
US10698035B2 (en) 2014-11-03 2020-06-30 Bayerische Motoren Werke Aktiengesellschaft Circuit arrangement and method for determining the impedance of a test battery
CN109557472A (en) * 2017-09-26 2019-04-02 埃克斯得克欧洲 Differential cell tester
WO2019064138A1 (en) * 2017-09-26 2019-04-04 E-Xteq Europe Differential battery tester and method for battery testing
US10809307B2 (en) 2017-09-26 2020-10-20 E-Xteq Europe Differential battery testers
JP2021501960A (en) * 2018-10-23 2021-01-21 大唐恩智浦半導体有限公司Datang Nxp Semiconductors Co., Ltd Battery management device, method and chip
US11150308B2 (en) 2018-10-23 2021-10-19 Datang Nxp Semiconductors Co., Ltd. Battery management device, method and chip
JP7055470B2 (en) 2018-10-23 2022-04-18 大唐恩智浦半導体有限公司 Battery management equipment, methods and chips
WO2023033467A1 (en) * 2021-09-03 2023-03-09 주식회사 엘지에너지솔루션 Apparatus for inspecting welds of battery module
WO2023189370A1 (en) * 2022-03-28 2023-10-05 ヌヴォトンテクノロジージャパン株式会社 Measuring device

Also Published As

Publication number Publication date
JP5620297B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5620297B2 (en) Impedance measuring device
JP4241787B2 (en) Total battery voltage detection and leak detection device
CN106896274B (en) Apparatus, system and method for insulation resistance measurement and insulation loss diagnosis
US9255957B2 (en) Earth fault detection circuit and power source device
CN200996992Y (en) Corrugating fast inspecter of micro-radar medical low-voltage power supply
JP4825890B2 (en) Current integrating circuit device and secondary battery pack using the same
JP4723353B2 (en) Impedance measuring device
WO2016103742A1 (en) Cell voltage measurement circuit
KR20100105954A (en) Insulation resistance measurement circuit using resistance connected with battery
JP3170470U (en) Integrated value measurement circuit
US10459036B2 (en) Battery checker
JP2017223580A (en) Charging/discharging device
JP2012052831A (en) Battery degradation diagnosis device
WO2013011929A1 (en) Electronic instrument
JPH07260839A (en) Current detector for detecting residual electric charge of battery
CN210514568U (en) Sine excitation source for UPS storage battery detection system
CN112526439A (en) Standard voltage/charge converter calibration device
KR20100104216A (en) System for monitoring battery state of health
JP2003282158A (en) Battery voltage measuring circuit
JP2014010028A (en) Battery impedance measuring device and method
JP2007089277A (en) Leak detector for electric car
JP4566964B2 (en) Total battery voltage detector
JP4739710B2 (en) Battery characteristic measuring device
JP3805478B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
CN217981612U (en) Charging and discharging current detection circuit of rechargeable battery and electronic device with rechargeable battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250