JP2012163393A - Magnetic field measurement device - Google Patents

Magnetic field measurement device Download PDF

Info

Publication number
JP2012163393A
JP2012163393A JP2011022438A JP2011022438A JP2012163393A JP 2012163393 A JP2012163393 A JP 2012163393A JP 2011022438 A JP2011022438 A JP 2011022438A JP 2011022438 A JP2011022438 A JP 2011022438A JP 2012163393 A JP2012163393 A JP 2012163393A
Authority
JP
Japan
Prior art keywords
cell
magnetic field
temperature
control
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011022438A
Other languages
Japanese (ja)
Other versions
JP5750919B2 (en
JP2012163393A5 (en
Inventor
Masahiko Nakajima
雅彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011022438A priority Critical patent/JP5750919B2/en
Publication of JP2012163393A publication Critical patent/JP2012163393A/en
Publication of JP2012163393A5 publication Critical patent/JP2012163393A5/ja
Application granted granted Critical
Publication of JP5750919B2 publication Critical patent/JP5750919B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide technology which improves measurement accuracy of a magnetic field by controlling temperature of each cell in a magnetic field measurement device for measuring the magnetic field by lining up a plurality of cells.SOLUTION: The magnetic field measurement device includes: a cell array having the plurality of cells containing a plurality of atoms to be excited by pump light; magnetic field detection sections for exciting the atoms in the cells by irradiating each cell with the pump light, and detecting the magnetic fields in each cell by detecting probe light which is penetrated through each cell; temperature control sections for controlling the temperature of each cell in accordance with input control values; and a controller for carrying out a first process in which the temperature of each cell is adjusted so that detection results of the magnetic field of each cell to be detected in the magnetic field detection sections at the time when a prescribed magnetic field is impressed to the cell array become a reference value, and control values showing the temperature of each cell when becoming the reference value are stored in a storage section for every cell as temperature information, and for carrying out a second process in place of the first process, in which the control value based on the temperature information in the storage section is inputted to the temperature control section and the result detected by the magnetic field detection section is outputted.

Description

本発明は、磁場計測装置に関する。   The present invention relates to a magnetic field measurement apparatus.

生体の脳や心臓等から発せられる磁場を検出する生体磁気計測装置等において、光ポンピングを利用した磁気センサーが利用されている。このような磁気センサーとしては、ガスが封入された各セルに、円偏光成分を有するポンプ光と直線偏光成分を有するプローブ光とが直交するように照射され、生体から発せられる磁場をプローブ光によって検出するものがある。下記特許文献1には、そのような光ポンピング原子磁力計が開示されている。   Magnetic sensors using optical pumping are used in biomagnetic measuring devices that detect magnetic fields emitted from the brain, heart, etc. of living bodies. As such a magnetic sensor, each cell in which gas is sealed is irradiated so that pump light having a circularly polarized component and probe light having a linearly polarized component are orthogonal to each other, and a magnetic field emitted from a living body is generated by the probe light. There is something to detect. Patent Document 1 below discloses such an optical pumping atomic magnetometer.

特開2009−236599号公報JP 2009-236599 A

ところで、独立した複数のセルを並べて生体の広範囲な部分を測定する場合、各セル内の原子やガスが均一でなければ磁場感度にばらつきが生じる。磁場感度は、光ポンピングされている原子が多いほど高くなるため、セルの温度を調整することでセル内の原子密度を高くして磁場感度を高めることができるが、各セルの磁場感度が均一でなければ正確に磁場を測定することができない。
本発明は、複数のセルを並べて磁場を計測する磁場計測装置において、セルの温度を制御して磁場の測定精度を向上させる技術を提供する。
By the way, when measuring a wide part of a living body by arranging a plurality of independent cells, if the atoms and gases in each cell are not uniform, the magnetic field sensitivity varies. Magnetic field sensitivity increases as the number of optically pumped atoms increases. Therefore, by adjusting the cell temperature, the atomic density in the cell can be increased to increase the magnetic field sensitivity, but the magnetic field sensitivity of each cell is uniform. Otherwise, the magnetic field cannot be measured accurately.
The present invention provides a technique for improving the measurement accuracy of a magnetic field by controlling the temperature of the cell in a magnetic field measurement apparatus that measures a magnetic field by arranging a plurality of cells.

本発明に係る磁場計測装置は、ポンプ光により励起される複数の原子からなる原子群が内部に含まれたセルを複数有するセルアレイと、前記セルアレイの各セルに対してポンプ光を照射して前記各セルにおける前記原子を励起させ、前記各セルを透過したプローブ光を検出して前記各セルにおける磁場を検出する磁場検出手段と、前記セルアレイの各セルに対応して設けられ、入力される制御値に従って、前記各セルの温度を制御する温度制御手段と、前記セル毎に温度情報を記憶する記憶手段と、前記セルアレイに対して一定の磁場を印加し、前記温度制御手段に入力する前記制御値を変化させて前記磁場検出手段で検出される前記各セルの磁場の検出結果が予め定められた基準値となるときの前記制御値を前記セル毎に特定し、特定した前記セル毎の前記制御値を前記温度情報として前記記憶手段に記憶させる第1の処理と、前記第1の処理に代えて、前記記憶手段に記憶された前記温度情報に基づく前記制御値を前記温度制御手段に入力し、前記磁場検出手段による検出結果を出力する第2の処理とを行う制御手段とを備える。この構成によれば、各セルの感度が均一になるように各セルの温度が制御され、磁場の測定精度を向上させることができる。   A magnetic field measurement apparatus according to the present invention includes a cell array having a plurality of cells including therein an atomic group composed of a plurality of atoms excited by pump light, and irradiating each cell of the cell array with pump light. Magnetic field detection means for detecting the magnetic field in each cell by exciting the atoms in each cell and detecting the probe light transmitted through each cell, and the control provided corresponding to each cell in the cell array The temperature control means for controlling the temperature of each cell according to the value, the storage means for storing temperature information for each cell, and the control for applying a constant magnetic field to the cell array and inputting it to the temperature control means The control value when the detection result of the magnetic field of each cell detected by the magnetic field detection means by changing the value becomes a predetermined reference value is specified for each cell, and specified. The first processing for storing the control value for each cell as the temperature information in the storage means, and the control value based on the temperature information stored in the storage means instead of the first processing And a control means for performing a second process of inputting to the temperature control means and outputting the detection result by the magnetic field detection means. According to this configuration, the temperature of each cell is controlled so that the sensitivity of each cell becomes uniform, and the measurement accuracy of the magnetic field can be improved.

また、本発明に係る磁場計測装置は、上記磁場計測装置において、気温を計測する計測手段を備え、前記記憶手段は、気温毎に前記セル毎の温度情報を記憶し、前記制御手段は、前記第1の処理において、前記計測手段で計測された気温毎に前記セル毎の前記制御値を特定し、特定した制御値を前記温度情報として前記記憶手段に記憶させ、前記第2の処理において、前記計測手段で計測された気温に応じた前記セル毎の前記温度情報を前記記憶手段から読み出して当該温度情報に基づく前記制御値を前記温度制御手段に入力することとしてもよい。この構成によれば、気温に応じて各セルの温度が制御されるので、気温が変化しても一定の測定精度を得ることができる。   Moreover, the magnetic field measurement apparatus according to the present invention includes a measurement unit that measures the temperature in the magnetic field measurement apparatus, the storage unit stores temperature information for each cell for each temperature, and the control unit includes: In the first process, the control value for each cell is specified for each temperature measured by the measuring means, the specified control value is stored in the storage means as the temperature information, and in the second process, It is good also as reading the said temperature information for every said cell according to the temperature measured by the said measurement means from the said memory | storage means, and inputting the said control value based on the said temperature information to the said temperature control means. According to this configuration, since the temperature of each cell is controlled according to the temperature, a certain measurement accuracy can be obtained even if the temperature changes.

また、本発明に係る磁場計測装置は、上記磁場計測装置において、前記ポンプ光の光量を示す情報を取得する取得手段を備え、前記記憶手段は、前記ポンプ光の光量毎に前記セル毎の温度情報を記憶し、前記制御手段は、前記第1の処理において、前記取得手段で取得された前記情報が示す光量毎に前記セル毎の前記制御値を特定し、特定した制御値を前記温度情報として前記記憶手段に記憶させ、前記第2の処理において、前記取得手段で取得された前記情報が示す前記光量に応じた前記セル毎の前記温度情報を前記記憶手段から読み出して当該温度情報に基づく前記制御値を前記温度制御手段に入力することとしてもよい。この構成によれば、ポンプ光の光量に応じて各セルの温度が制御されるので、ポンプ光の光量が変化しても一定の測定精度を得ることができる。   Moreover, the magnetic field measurement apparatus according to the present invention includes an acquisition unit that acquires information indicating the light amount of the pump light in the magnetic field measurement device, and the storage unit is configured to change the temperature for each cell for each light amount of the pump light. The information is stored, and the control means specifies the control value for each cell for each light amount indicated by the information acquired by the acquisition means in the first process, and the specified control value is set as the temperature information. In the second process, the temperature information for each cell corresponding to the amount of light indicated by the information acquired by the acquisition unit is read from the storage unit and based on the temperature information. The control value may be input to the temperature control means. According to this configuration, since the temperature of each cell is controlled according to the light amount of the pump light, it is possible to obtain a certain measurement accuracy even if the light amount of the pump light changes.

また、本発明に係る磁場計測装置は、上記磁場計測装置の前記制御手段においては、前記第1の処理において、前記各セルの磁場の検出結果に基づいて前記基準値を求めることとしてもよい。この構成によれば、各セルにおける磁場の検出結果に基づいて各セルの温度を制御することができる。   In the magnetic field measurement apparatus according to the present invention, the control unit of the magnetic field measurement apparatus may obtain the reference value based on a detection result of the magnetic field of each cell in the first process. According to this configuration, the temperature of each cell can be controlled based on the detection result of the magnetic field in each cell.

実施形態に係る磁場計測装置の構成例を示す図である。It is a figure which shows the structural example of the magnetic field measuring device which concerns on embodiment. 実施形態に係る磁気センサーアレイに照射するポンプ光とプローブ光を説明する図である。It is a figure explaining the pump light and probe light which irradiate to the magnetic sensor array which concerns on embodiment. (a)は、実施形態に係るポンプ光照射部を説明する図である。(b)は、実施形態に係るプローブ光照射部を説明する図である。(A) is a figure explaining the pump light irradiation part which concerns on embodiment. (B) is a figure explaining the probe light irradiation part which concerns on embodiment. 実施形態に係る各セルの磁場の検出結果と制御値との関係を示す図である。It is a figure which shows the relationship between the detection result and control value of the magnetic field of each cell which concern on embodiment. 実施形態に係る温度情報の例を示す図である。It is a figure which shows the example of the temperature information which concerns on embodiment. 変形例(1)に係る温度情報の例を示す図である。It is a figure which shows the example of the temperature information which concerns on a modification (1).

<実施形態>
(構成)
図1は、本発明に係る実施形態の磁場計測装置の構成を表すブロック図である。磁場計測装置1は、セルアレイ10、セルアレイ10の温度を制御する温度制御ユニット20、セルアレイ10における磁場を検出する磁場検出ユニット30、制御部40、操作部50及び記憶部60を備えている。
<Embodiment>
(Constitution)
FIG. 1 is a block diagram showing a configuration of a magnetic field measurement apparatus according to an embodiment of the present invention. The magnetic field measurement apparatus 1 includes a cell array 10, a temperature control unit 20 that controls the temperature of the cell array 10, a magnetic field detection unit 30 that detects a magnetic field in the cell array 10, a control unit 40, an operation unit 50, and a storage unit 60.

セルアレイ10は、複数のセル(10a,10b,10c,10d)を一列に並べて構成されている。各セルは、光を透過するガラス等の素材で構成され、内部に所定の原子を含む立方体形状の各々独立した物体である。各セル内の所定の原子は、円偏光によって励起状態となり、スピン偏極する原子であり、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びフランシウム(Fr)等のアルカリ金属である。また、各セル内には、これらのアルカリ金属原子の他に、ヘリウム(He)、窒素(N)などのバッファーガスが含まれていてもよい。尚、アルカリ金属の原子は磁気を検出する際に気体の状態であればよく、常時気体の状態でなくてもよい。また、本実施形態では、セルアレイ10のセルは一列に4つ並べられている例であるが、セルの数は複数であればよく、複数列であってもよい。本実施形態では、各セルは独立した物体である例を用いるが、例えば、隣接するセルとの影響を受けないように直方体を仕切って形成されたものでもよいし、隣接するセルとの影響を受けない程度にセルとセルとの仕切りの一部に設けられた孔によって各セルが連通されていてもよい。要は、セルアレイ10は、区分けされた複数の各空間が形成されていればよい。また、本実施形態のセルの形状は、立方体形状であるが、セルの形状はこの形状に限らない。   The cell array 10 is configured by arranging a plurality of cells (10a, 10b, 10c, 10d) in a line. Each cell is made of a material such as glass that transmits light, and is an independent object having a cubic shape including predetermined atoms therein. Predetermined atoms in each cell are excited by circularly polarized light and spin-polarized atoms. For example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) And alkali metals such as francium (Fr). Each cell may contain a buffer gas such as helium (He) or nitrogen (N) in addition to these alkali metal atoms. The alkali metal atoms may be in a gaseous state when detecting magnetism, and may not always be in a gaseous state. In the present embodiment, four cells of the cell array 10 are arranged in a line. However, the number of cells may be plural, and may be plural. In this embodiment, an example is used in which each cell is an independent object.However, for example, the cell may be formed by partitioning a rectangular parallelepiped so as not to be affected by adjacent cells, and the influence of adjacent cells may be reduced. Each cell may be communicated by a hole provided in a part of the partition between the cells so as not to be received. In short, the cell array 10 only needs to have a plurality of partitioned spaces. Moreover, although the shape of the cell of this embodiment is a cube shape, the shape of a cell is not restricted to this shape.

温度制御ユニット20は、各セルに対応する温度制御部(20a,20b,20c,20d)を有する。各温度制御部は、温度制御手段の一例であり、各セル(10a,10b,10c,10d)と対応するように当該セルの外側に設けられており、セルを加熱・冷却する加熱冷却装置を各々有し、制御部40によって入力された制御値(電力値)に応じて加熱冷却装置を制御することで、各セルの温度を調整する。   The temperature control unit 20 has a temperature control unit (20a, 20b, 20c, 20d) corresponding to each cell. Each temperature control unit is an example of temperature control means, and is provided outside the cell so as to correspond to each cell (10a, 10b, 10c, 10d), and a heating / cooling device for heating / cooling the cell is provided. The temperature of each cell is adjusted by controlling the heating and cooling device according to the control value (power value) input by the control unit 40.

磁場検出ユニット30は、各セル(10a,10b,10c,10d)における磁場を検出する磁場検出部(30a,30b,30c,30d)を有する。各磁場検出部は、磁場検出手段の一例であり、各セル内の原子を同一方向にスピン偏極させるためのポンプ光を、図2の破線矢印で示す各セルの上面から底面へ向かう方向(−z軸方向)に照射するポンプ光照射部(図示略)と、各セルにおける磁場を検出するためのプローブ光を図2の実線矢印で示す各セルの側面方向(−y軸方向)に照射するプローブ光照射部(図示略)と、更に、各セルを透過したプローブ光を検出することにより各セルにおける磁場を検出する検出部(図示略)とを備える。ここで、ポンプ光照射部、プローブ光照射部、検出部について説明する。   The magnetic field detection unit 30 includes magnetic field detection units (30a, 30b, 30c, 30d) that detect magnetic fields in the cells (10a, 10b, 10c, 10d). Each magnetic field detection unit is an example of a magnetic field detection means, and pump light for spin-polarizing atoms in each cell in the same direction is directed from the top surface to the bottom surface of each cell indicated by the broken-line arrows in FIG. -Pump light irradiation unit (not shown) for irradiation in the -z-axis direction) and probe light for detecting the magnetic field in each cell are irradiated in the side surface direction (-y-axis direction) of each cell indicated by the solid line arrow in FIG. A probe light irradiating section (not shown) for detecting the probe light transmitted through each cell and detecting a magnetic field in each cell by detecting the probe light. Here, the pump light irradiation unit, the probe light irradiation unit, and the detection unit will be described.

図3(a)は、ポンプ光照射部(310a,310b,310c,310d)と図2に示した各セルとを示す図である。図3(a)に示すように、各ポンプ光照射部は、セル毎に設けられている。ポンプ光照射部は、円偏光成分を有するレーザー光をポンプ光として出力する光源を各々有する。各光源は、円偏光成分を有するポンプ光を対応するセルに対して破線矢印で示すように各々照射する。各ポンプ光照射部の各々から照射されたポンプ光が各セルに入射すると、各セル内の原子はポンプ光によって同一方向にスピン偏極する。   FIG. 3A is a diagram showing the pump light irradiation units (310a, 310b, 310c, 310d) and the respective cells shown in FIG. As shown to Fig.3 (a), each pump light irradiation part is provided for every cell. Each of the pump light irradiation units has a light source that outputs laser light having a circularly polarized component as pump light. Each light source irradiates a corresponding cell with pump light having a circularly polarized component as indicated by a dashed arrow. When the pump light irradiated from each pump light irradiation unit enters each cell, atoms in each cell are spin-polarized in the same direction by the pump light.

図3(b)は、図2に示した各セルとプローブ光照射部(320a,320b,320c,320d)及び検出部(330a,330b,330c,330d)を示す図である。図3(b)に示すように、各プローブ光照射部と各検出部は、セル毎に設けられている。各プローブ光照射部は、直線偏光成分を有するレーザー光をプローブ光として出力する光源を各々有する。各光源は、直線偏光成分を有するプローブ光を対応するセルに対して照射する。各セルに照射されたプローブ光は、各々のセルに入射し、入射した光は、各セルにおける磁場の影響により原子が歳差運動を行った回転力に応じて偏光面が回転されて各セルを透過する。各検出部は、フォトディテクターを有し、各セルを透過したプローブ光をP偏光成分とS偏光成分とに分離して各々のフォトディテクターで受光する。そして、各検出部は、各フォトディテクターで受光した光量に応じた電気信号を解析し、セル毎に受光したプローブ光の偏光面の回転角度を求め、回転角度に応じた磁場値を検出する。この例においては、図3(b)に示すx軸方向の磁場が検出される。   FIG. 3B is a diagram illustrating each cell, the probe light irradiation unit (320a, 320b, 320c, 320d), and the detection unit (330a, 330b, 330c, 330d) illustrated in FIG. As shown in FIG. 3B, each probe light irradiation unit and each detection unit are provided for each cell. Each probe light irradiation unit has a light source that outputs laser light having a linearly polarized light component as probe light. Each light source irradiates a corresponding cell with probe light having a linearly polarized light component. The probe light irradiated to each cell is incident on each cell, and the incident light is rotated by the polarization plane according to the rotational force of the atoms precessed by the influence of the magnetic field in each cell. Transparent. Each detector has a photodetector, and separates the probe light transmitted through each cell into a P-polarized component and an S-polarized component and receives the light with each photodetector. Each detection unit analyzes an electrical signal corresponding to the amount of light received by each photodetector, obtains the rotation angle of the polarization plane of the probe light received for each cell, and detects the magnetic field value corresponding to the rotation angle. In this example, the magnetic field in the x-axis direction shown in FIG. 3B is detected.

図1に戻り、構成の説明を続ける。制御部40は、制御手段の一例であり、CPU(Central Processing Unit)とROM(Read Only Memory)及びRAM(Random Access Memory)のメモリを有する。CPUは、ROMに予め記憶されている制御プログラムを実行することにより、第1の処理としてキャリブレーション処理と、第2の処理として生体から発する磁場を検出する磁場検出処理とをユーザー操作に応じて行う。   Returning to FIG. 1, the description of the configuration is continued. The control unit 40 is an example of a control unit, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). The CPU executes a control program stored in advance in the ROM, thereby performing a calibration process as a first process and a magnetic field detection process for detecting a magnetic field emitted from a living body as a second process in accordance with a user operation. Do.

制御部40は、キャリブレーション処理として、各セルに対して設けられた図示しないコイルを用い、セルアレイ10に対して図2のx軸方向に一定の磁場を印加すると共に、各ポンプ光照射部と各プローブ光照射部と各検出部とを制御して各セル(10a,10b,10c,10d)における磁場を検出する。そして、各セルにおける磁場の検出結果が予め定められた基準値となるように、各セルの温度を調整する制御値を変化させて温度制御ユニット20に入力し、基準値の検出結果が得られたときの制御値をセル毎に特定し、特定したセル毎の制御値を温度情報として記憶部60に記憶させる処理を行う。本実施形態では、基準値の一例として、印加した磁場の値に相当する値を用いる。また、制御部40は、磁場検出処理として、記憶部60に記憶させた各セルの温度情報に基づく制御値を温度制御ユニット20に入力し、各ポンプ光照射部と各プローブ光照射部と各検出部とを制御して生体から発する磁場を検出し、検出結果を出力する処理を行う。   The controller 40 uses a coil (not shown) provided for each cell as a calibration process, applies a constant magnetic field in the x-axis direction of FIG. Each probe light irradiation unit and each detection unit are controlled to detect a magnetic field in each cell (10a, 10b, 10c, 10d). Then, the control value for adjusting the temperature of each cell is changed and input to the temperature control unit 20 so that the detection result of the magnetic field in each cell becomes a predetermined reference value, and the detection result of the reference value is obtained. A control value is specified for each cell, and the control value for each specified cell is stored in the storage unit 60 as temperature information. In the present embodiment, a value corresponding to the value of the applied magnetic field is used as an example of the reference value. Moreover, the control part 40 inputs into the temperature control unit 20 the control value based on the temperature information of each cell memorize | stored in the memory | storage part 60 as a magnetic field detection process, and each pump light irradiation part, each probe light irradiation part, and each The detection unit is controlled to detect a magnetic field emitted from the living body and to output a detection result.

操作部50は、キャリブレーションの指示操作を受付ける操作スイッチと、生体の磁場の測定指示を受付ける操作スイッチ等の操作手段を有し、操作された内容を示す操作信号を制御部40に送出する。記憶部60は、記憶手段の一例であり、不揮発性の記憶媒体で構成され、制御部40の制御の下、キャリブレーション処理によって特定されたセル毎の各温度制御部の制御値を温度情報として記憶する。   The operation unit 50 includes operation means such as an operation switch that accepts an instruction operation for calibration and an operation switch that accepts an instruction to measure a magnetic field of a living body, and sends an operation signal indicating the operated content to the control unit 40. The storage unit 60 is an example of a storage unit, and is configured by a non-volatile storage medium. Under the control of the control unit 40, the control value of each temperature control unit for each cell specified by the calibration process is used as temperature information. Remember.

(動作例)
次に、この磁場計測装置1の動作例について説明する。磁場計測装置1の制御部40は、キャリブレーション処理を指示する操作が操作部50を介してなされると、各ポンプ光照射部(310a,310b,310c,310d)の各々から円偏光成分を有するポンプ光をセルアレイ10の各セル(10a,10b,10c,10d)に対して照射すると共に、各プローブ光照射部(320a,320b,320c,320d)から直線偏光成分を有するプローブ光を、各セル(10a,10b,10c,10d)に照射されたポンプ光とセル内で直交するように照射する。そして、制御部40は、ポンプ光とプローブ光とに直交する方向の一定の磁場を図示しないコイルを用いて印加する。
(Operation example)
Next, an operation example of the magnetic field measurement apparatus 1 will be described. The control unit 40 of the magnetic field measurement apparatus 1 has a circularly polarized component from each of the pump light irradiation units (310a, 310b, 310c, 310d) when an operation for instructing the calibration process is performed via the operation unit 50. While irradiating each cell (10a, 10b, 10c, 10d) of the cell array 10 with pump light, probe light having a linearly polarized light component from each probe light irradiation unit (320a, 320b, 320c, 320d) is supplied to each cell. Irradiation is performed so as to be orthogonal to the pump light irradiated to (10a, 10b, 10c, 10d) in the cell. And the control part 40 applies the fixed magnetic field of the direction orthogonal to pump light and probe light using the coil which is not shown in figure.

各セル内の原子はポンプ光により励起されて同一方向にスピン偏極され、印加された磁場に応じて磁気モーメントの方向を変化させて歳差運動を行う。プローブ光は、各セルに入射し、各セル内の原子が受けている磁場の大きさに応じて偏光面を回転させ各セルを透過する。各セルを透過したプローブ光は、当該セルに対応する検出部で受光される。各検出部(330a,330b,330c,330d)は、プローブ光の光量に応じた電気信号を解析してプローブ光の偏光面の回転角を求め、対応するセルにおける磁場を検出して制御部40に検出結果を出力する。   Atoms in each cell are excited by pump light and spin-polarized in the same direction, and perform precession by changing the direction of the magnetic moment according to the applied magnetic field. The probe light is incident on each cell, and passes through each cell by rotating the polarization plane according to the magnitude of the magnetic field received by the atoms in each cell. The probe light transmitted through each cell is received by the detection unit corresponding to the cell. Each detection unit (330a, 330b, 330c, 330d) analyzes an electrical signal corresponding to the light amount of the probe light to determine the rotation angle of the polarization plane of the probe light, detects the magnetic field in the corresponding cell, and controls the control unit 40. The detection result is output to.

制御部40は、セル毎に、印加した磁場値に相当する基準値の検出結果が得られるまで、当該セルに対応する温度制御部に入力する制御値を変化させ、基準値の検出結果が得られたときの制御値を特定する。そして、制御部40は、各セルについて特定した制御値を温度情報として当該セルを識別するセル番号と関連付けて記憶部60に記憶する。例えば、セル毎の温度制御部の制御値に対する磁場の検出結果が図4に示す波形で表わされる場合、検出結果が基準値となる各セル(10a,10b,10c,10d)の制御値として、P2,P4,P1,P3が特定される。この場合、記憶部60には、図5に示すように、各セルを識別するセル番号と当該セルに対応する温度情報とを関連づけた温度制御情報150が記憶される。   The control unit 40 changes the control value input to the temperature control unit corresponding to the cell until the detection result of the reference value corresponding to the applied magnetic field value is obtained for each cell, and the reference value detection result is obtained. The control value when specified is specified. Then, the control unit 40 stores the control value specified for each cell in the storage unit 60 in association with the cell number for identifying the cell as temperature information. For example, when the detection result of the magnetic field with respect to the control value of the temperature control unit for each cell is represented by the waveform shown in FIG. 4, as the control value of each cell (10a, 10b, 10c, 10d) whose detection result is the reference value, P2, P4, P1, and P3 are specified. In this case, as shown in FIG. 5, the storage unit 60 stores temperature control information 150 that associates a cell number for identifying each cell with temperature information corresponding to the cell.

次に、磁場計測処理の動作例について説明する。磁場計測装置1において、生体からの磁場を計測する磁場計測処理の指示操作が操作部50を介してなされると、制御部40は、記憶部60からセル毎の温度制御情報150を読み出す。制御部40は、温度制御情報150の各セル番号に対応する温度制御部(20a,20b,20c,20d)に対し、温度制御情報150に記憶されている温度情報に基づく制御値を入力する。各温度制御部は、制御部40から入力された制御値に従って加熱冷却装置を制御する。制御部40は、各ポンプ光照射部(310a,310b,310c,310d)の各々から円偏光成分を有するポンプ光をセルアレイ10の各セル(10a,10b,10c,10d)に対して照射すると共に、各プローブ光照射部(320a,320b,320c,320d)から直線偏光成分を有するプローブ光をポンプ光と直交するように照射する。
各セル内の原子はポンプ光の照射によって同一方向にスピン偏極され、生体からの磁場に応じて歳差運動を行う。プローブ光は、各セルに入射し、セル内の原子が受ける磁場の大きさに応じて偏光面が回転されて各セルを透過する。各セルを透過したプローブ光は、各セルに対応する検出部で各々受光される。各検出部(330a,330b,330c,330d)は、プローブ光の光量に応じた電気信号を解析してプローブ光の偏光面の回転角を求め、回転角から磁場値を算出して制御部40に出力する。制御部40は、検出部毎に出力された各磁場の値を示す情報を図示しない表示装置等に出力する。
Next, an operation example of the magnetic field measurement process will be described. In the magnetic field measurement apparatus 1, when an instruction operation of a magnetic field measurement process for measuring a magnetic field from a living body is performed via the operation unit 50, the control unit 40 reads the temperature control information 150 for each cell from the storage unit 60. The control unit 40 inputs a control value based on the temperature information stored in the temperature control information 150 to the temperature control unit (20a, 20b, 20c, 20d) corresponding to each cell number of the temperature control information 150. Each temperature control unit controls the heating and cooling device according to the control value input from the control unit 40. The control unit 40 irradiates each cell (10a, 10b, 10c, 10d) of the cell array 10 with pump light having a circularly polarized component from each of the pump light irradiation units (310a, 310b, 310c, 310d). The probe light having a linearly polarized light component is irradiated from each probe light irradiation unit (320a, 320b, 320c, 320d) so as to be orthogonal to the pump light.
The atoms in each cell are spin-polarized in the same direction by irradiation with pump light, and precess according to the magnetic field from the living body. The probe light enters each cell, and the plane of polarization is rotated according to the magnitude of the magnetic field received by the atoms in the cell, and passes through each cell. The probe light transmitted through each cell is received by the detection unit corresponding to each cell. Each detection unit (330a, 330b, 330c, 330d) analyzes an electrical signal corresponding to the light amount of the probe light to obtain a rotation angle of the polarization plane of the probe light, calculates a magnetic field value from the rotation angle, and controls the control unit 40. Output to. The control unit 40 outputs information indicating the value of each magnetic field output for each detection unit to a display device or the like (not shown).

本実施形態の例では、セルアレイの状態でキャリブレーション処理を行い、各セルの位置で検出された磁場の検出値が各々基準値となるように各セルの温度を制御する制御値が設定される。そのため、生体からの磁場を測定する際、各セルの感度が均一となるようにセルを保温することができ、磁場の測定精度を向上させることができる。   In the example of the present embodiment, the calibration process is performed in the state of the cell array, and the control value for controlling the temperature of each cell is set so that the detected value of the magnetic field detected at the position of each cell becomes the reference value. . Therefore, when measuring the magnetic field from a living body, the cells can be kept warm so that the sensitivity of each cell becomes uniform, and the measurement accuracy of the magnetic field can be improved.

<変形例>
本発明は、上述した実施形態に限定されるものではなく、以下のように変形させて実施してもよい。また、以下の変形例を組み合わせてもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and may be carried out by being modified as follows. Further, the following modifications may be combined.

(1)上述した実施形態では、セル毎の温度制御部の制御値を当該セルを識別する情報と共に記憶する例であったが、磁場計測装置1が設置される場所の気温と制御値とを記憶するようにしてもよい。この場合には、計測手段の一例として、気温を計測する気温計測部を磁場計測装置1に設けるようにしてもよいし、磁場計測装置1が外部装置から通信により気温情報を取得してもよいし、気温を入力するための操作部を磁場計測装置1に設け、ユーザーの入力操作によって気温情報を取得するように構成してもよい。本変形例では、キャリブレーション処理において、磁場計測装置1の制御部40は、計測された気温とセル毎の温度制御部の制御値とを対応づけた温度情報を記憶部60に記憶する。例えば、15℃〜30℃の範囲の気温毎に、実施形態と同様の方法で各セルにおける磁場を検出すると共に、各セルにおける磁場の検出結果が基準値となるように温度制御部へ入力する制御値を変化させて、基準値の検出結果が得られたときの制御値をセル毎に特定する。そして、制御部40は、図6に示すように各セルについて特定した制御値を温度情報として記憶部60に記憶する。また、制御部40は、磁場計測処理を開始する際、磁場計測装置1の設置場所における気温情報を取得し、取得した気温情報の気温に対応する温度情報を記憶部60から読み出す。制御部40は、各セルに対応する温度制御部に対し、読み出した温度情報に基づく制御値を入力し、生体から発する磁場を実施形態と同様の方法で検出する。 (1) In the above-described embodiment, the control value of the temperature control unit for each cell is stored together with the information for identifying the cell. However, the temperature and control value of the place where the magnetic field measurement apparatus 1 is installed are stored. You may make it memorize | store. In this case, as an example of the measuring unit, a temperature measuring unit that measures the temperature may be provided in the magnetic field measuring device 1, or the magnetic field measuring device 1 may acquire temperature information from an external device by communication. In addition, an operation unit for inputting the temperature may be provided in the magnetic field measurement apparatus 1 so that the temperature information is acquired by a user input operation. In this modification, in the calibration process, the control unit 40 of the magnetic field measurement apparatus 1 stores in the storage unit 60 temperature information that associates the measured temperature with the control value of the temperature control unit for each cell. For example, for each temperature in the range of 15 ° C. to 30 ° C., the magnetic field in each cell is detected by the same method as in the embodiment, and input to the temperature control unit so that the detection result of the magnetic field in each cell becomes a reference value. By changing the control value, the control value when the reference value detection result is obtained is specified for each cell. And the control part 40 memorize | stores the control value specified about each cell in the memory | storage part 60 as temperature information, as shown in FIG. In addition, when starting the magnetic field measurement process, the control unit 40 acquires temperature information at the installation location of the magnetic field measurement device 1 and reads temperature information corresponding to the temperature of the acquired temperature information from the storage unit 60. The control unit 40 inputs a control value based on the read temperature information to the temperature control unit corresponding to each cell, and detects the magnetic field generated from the living body by the same method as in the embodiment.

(2)上述した変形例(1)では、気温毎に各セルに対応する温度制御部の制御値を記憶する例を説明したが、気温だけでなく、各セルに照射されるポンプ光の光量毎又は波長毎又は光量と波長の組み合わせ毎に、各セルに対応する温度制御部の制御値を記憶させるようにしてもよい。この場合には、取得手段の一例として、ポンプ光の光量や波長を示す情報をユーザーが入力するための操作部を磁場計測装置1に設け、光量や波長を示す情報をユーザーの入力操作によって取得するようにしてもよい。例えば、キャリブレーション処理において、気温と光量とに応じたセル毎の温度制御部の制御値を設定する場合、制御部40は、気温毎及びポンプ光の光量毎に各セルにおける磁場を実施形態と同様に検出し、セル毎の磁場の検出結果が基準値となるように当該セルの温度制御部の制御値を変化させ、基準値の検出結果が得られたときの制御値とセルを識別する情報とを気温及び光量と共に温度情報として記憶するようにする。制御部40は、磁場計測処理を開始する際に、磁場計測装置1の設置場所における気温とポンプ光の光量を示す情報をユーザーによる入力操作等によって取得し、取得した気温と光量とに対応する各セルに対応する制御値を温度情報から読み出し、各温度制御部に対して読み出した各制御値を入力する。 (2) In the modified example (1) described above, the example in which the control value of the temperature control unit corresponding to each cell is stored for each temperature has been described. However, not only the temperature but also the amount of pump light irradiated to each cell You may make it memorize | store the control value of the temperature control part corresponding to each cell for every combination of a light quantity and a wavelength for every wavelength. In this case, as an example of the acquisition unit, an operation unit for the user to input information indicating the light amount and wavelength of the pump light is provided in the magnetic field measuring apparatus 1, and information indicating the light amount and wavelength is acquired by the user's input operation. You may make it do. For example, in the calibration process, when setting the control value of the temperature control unit for each cell according to the air temperature and the light amount, the control unit 40 determines the magnetic field in each cell for each air temperature and for each light amount of the pump light. Similarly, the control value of the temperature control unit of the cell is changed so that the detection result of the magnetic field for each cell becomes the reference value, and the control value and the cell when the detection result of the reference value is obtained are identified. The information is stored as temperature information together with the temperature and light quantity. When starting the magnetic field measurement process, the control unit 40 acquires information indicating the temperature at the installation location of the magnetic field measurement device 1 and the light amount of the pump light by an input operation by the user, and corresponds to the acquired temperature and light amount. The control value corresponding to each cell is read from the temperature information, and the read control value is input to each temperature control unit.

(3)上述した実施形態及び変形例では、セル毎に、ポンプ光及びプローブ光の光源を設ける例を説明したが、分岐カプラー等を用いて、各々1つの光源からのポンプ光及びプローブ光を各セルに分配して照射するようにしてもよい。また、各セルにつき、ポンプ光とプローブ光とを兼ねた一つの光源で当該セル内の原子をポンピングさせ、当該セルを透過したプローブ光を検出するように構成してもよい。 (3) In the embodiment and the modification described above, the example in which the light source of the pump light and the probe light is provided for each cell has been described. However, the pump light and the probe light from one light source are respectively used by using a branch coupler or the like. You may make it distribute and irradiate to each cell. In addition, for each cell, a single light source that serves as both pump light and probe light may be used to pump atoms in the cell and detect the probe light transmitted through the cell.

(4)また、上述した実施形態及び変形例では、印加した磁場に相当する値を基準値として用いる例を説明したが、キャリブレーション処理において検出された各セルにおける磁場の検出結果から基準値を求めるようにしてもよい。例えば、各セルにおける磁場の検出値のうち、印加した磁場に相当する値に最も近い検出値を各セルについて特定し、特定した各検出値を平均した値や、特定した各検出値の最小値や最頻値等を基準値として用いるようにしてもよい。また、キャリブレーション処理において検出された各セルの検出値が基準値と一致していない場合でも、検出値と基準値との差分が予め定めた値の範囲内であれば、当該検出値を検出したときの温度制御部の制御値を当該セルに対応する制御値として記憶するようにしてもよい。 (4) In the above-described embodiment and modification, the example in which the value corresponding to the applied magnetic field is used as the reference value has been described. However, the reference value is obtained from the detection result of the magnetic field in each cell detected in the calibration process. You may make it ask. For example, among the detection values of the magnetic field in each cell, the detection value closest to the value corresponding to the applied magnetic field is specified for each cell, and the average value of each specified detection value or the minimum value of each specified detection value Or the mode value may be used as the reference value. Even if the detected value of each cell detected in the calibration process does not match the reference value, the detected value is detected if the difference between the detected value and the reference value is within a predetermined value range. The control value of the temperature control unit at this time may be stored as a control value corresponding to the cell.

(5)また、上述した実施形態では、ユーザーによる操作部50の操作に応じてキャリブレーション処理と磁場検出処理とが選択的に行われる例について説明したが、キャリブレーション処理と磁場検出処理とが排他的に行われればよく、例えば、キャリブレーション処理の後、自動的に磁場検出処理が開始されてもよい。 (5) In the above-described embodiment, the example in which the calibration process and the magnetic field detection process are selectively performed according to the operation of the operation unit 50 by the user has been described. For example, the magnetic field detection process may be automatically started after the calibration process.

1・・・磁場計測装置、10・・・セルアレイ、10a,10b,10c,10d・・・セル、20・・・温度制御ユニット、20a,20b,20c,20d・・・温度制御部、30・・・磁場検出ユニット、30a,30b,30c,30d・・・磁場検出部、40・・・制御部、50・・・操作部、60・・・記憶部、310a,310b,310c,310d・・・ポンプ光照射部、320a,320b,320c,320d・・・プローブ光照射部、330a,330b,330c,330d・・・検出部   DESCRIPTION OF SYMBOLS 1 ... Magnetic field measuring apparatus, 10 ... Cell array, 10a, 10b, 10c, 10d ... Cell, 20 ... Temperature control unit, 20a, 20b, 20c, 20d ... Temperature control part, 30. .. Magnetic field detection unit, 30a, 30b, 30c, 30d ... Magnetic field detection unit, 40 ... Control unit, 50 ... Operation unit, 60 ... Storage unit, 310a, 310b, 310c, 310d ... Pump light irradiation unit, 320a, 320b, 320c, 320d ... Probe light irradiation unit, 330a, 330b, 330c, 330d ... detection unit

Claims (4)

ポンプ光により励起される複数の原子からなる原子群が内部に含まれたセルを複数有するセルアレイと、
前記セルアレイの各セルに対してポンプ光を照射して前記各セルにおける前記原子を励起させ、前記各セルを透過したプローブ光を検出して前記各セルにおける磁場を検出する磁場検出手段と、
前記セルアレイの各セルに対応して設けられ、入力される制御値に従って、前記各セルの温度を制御する温度制御手段と、
前記セル毎に温度情報を記憶する記憶手段と、
前記セルアレイに対して一定の磁場を印加し、前記温度制御手段に入力する前記制御値を変化させて前記磁場検出手段で検出される前記各セルの磁場の検出結果が予め定められた基準値となるときの前記制御値を前記セル毎に特定し、特定した前記セル毎の前記制御値を前記温度情報として前記記憶手段に記憶させる第1の処理と、前記第1の処理に代えて、前記記憶手段に記憶された前記温度情報に基づく前記制御値を前記温度制御手段に入力し、前記磁場検出手段による検出結果を出力する第2の処理とを行う制御手段と
を備えることを特徴とする磁場計測装置。
A cell array having a plurality of cells including therein an atomic group composed of a plurality of atoms excited by pump light;
A magnetic field detection means for irradiating each cell of the cell array with pump light to excite the atoms in each cell, detecting probe light transmitted through each cell, and detecting a magnetic field in each cell;
Temperature control means provided corresponding to each cell of the cell array and controlling the temperature of each cell according to an input control value;
Storage means for storing temperature information for each cell;
Applying a constant magnetic field to the cell array, changing the control value input to the temperature control means, and detecting the magnetic field of each cell detected by the magnetic field detection means with a predetermined reference value Instead of the first process for specifying the control value for each cell and storing the control value for each specified cell in the storage means as the temperature information, Control means for performing a second process of inputting the control value based on the temperature information stored in the storage means to the temperature control means and outputting a detection result by the magnetic field detection means. Magnetic field measuring device.
気温を計測する計測手段を備え、
前記記憶手段は、気温毎に前記セル毎の温度情報を記憶し、
前記制御手段は、前記第1の処理において、前記計測手段で計測された気温毎に前記セル毎の前記制御値を特定し、特定した制御値を前記温度情報として前記記憶手段に記憶させ、前記第2の処理において、前記計測手段で計測された気温に応じた前記セル毎の前記温度情報を前記記憶手段から読み出して当該温度情報に基づく前記制御値を前記温度制御手段に入力することを特徴とする請求項1に記載の磁場計測装置。
Equipped with measuring means to measure the temperature,
The storage means stores temperature information for each cell for each temperature,
In the first process, the control unit specifies the control value for each cell for each temperature measured by the measurement unit, stores the specified control value in the storage unit as the temperature information, and In the second process, the temperature information for each of the cells corresponding to the temperature measured by the measuring unit is read from the storage unit, and the control value based on the temperature information is input to the temperature control unit. The magnetic field measurement apparatus according to claim 1.
前記ポンプ光の光量を示す情報を取得する取得手段を備え、
前記記憶手段は、前記ポンプ光の光量毎に前記セル毎の温度情報を記憶し、
前記制御手段は、前記第1の処理において、前記取得手段で取得された前記情報が示す光量毎に前記セル毎の前記制御値を特定し、特定した制御値を前記温度情報として前記記憶手段に記憶させ、前記第2の処理において、前記取得手段で取得された前記情報が示す前記光量に応じた前記セル毎の前記温度情報を前記記憶手段から読み出して当該温度情報に基づく前記制御値を前記温度制御手段に入力することを特徴とする請求項1に記載の磁場計測装置。
An acquisition means for acquiring information indicating the amount of the pump light;
The storage means stores temperature information for each cell for each light amount of the pump light,
In the first process, the control unit specifies the control value for each cell for each light amount indicated by the information acquired by the acquisition unit, and stores the specified control value as the temperature information in the storage unit. In the second process, the temperature information for each cell corresponding to the light quantity indicated by the information acquired by the acquisition unit is read from the storage unit, and the control value based on the temperature information is read out from the storage unit. The magnetic field measurement apparatus according to claim 1, wherein the magnetic field measurement apparatus inputs the temperature control means.
前記制御手段は、前記第1の処理において、前記各セルの磁場の検出結果に基づいて前記基準値を求めることを特徴とする請求項1から3のいずれか一項に記載の磁場計測装置。   4. The magnetic field measurement apparatus according to claim 1, wherein the control unit obtains the reference value based on a detection result of the magnetic field of each cell in the first process. 5.
JP2011022438A 2011-02-04 2011-02-04 Magnetic field measuring device Expired - Fee Related JP5750919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011022438A JP5750919B2 (en) 2011-02-04 2011-02-04 Magnetic field measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022438A JP5750919B2 (en) 2011-02-04 2011-02-04 Magnetic field measuring device

Publications (3)

Publication Number Publication Date
JP2012163393A true JP2012163393A (en) 2012-08-30
JP2012163393A5 JP2012163393A5 (en) 2014-03-20
JP5750919B2 JP5750919B2 (en) 2015-07-22

Family

ID=46842924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022438A Expired - Fee Related JP5750919B2 (en) 2011-02-04 2011-02-04 Magnetic field measuring device

Country Status (1)

Country Link
JP (1) JP5750919B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11541064B2 (en) 2017-05-30 2023-01-03 Zavante Therapeutics, Inc. Methods of identifying dosing regimens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167616A (en) * 2005-11-28 2007-07-05 Hitachi High-Technologies Corp Magnetic field measuring system, and optical pumping fluxmeter
JP2009518657A (en) * 2005-12-29 2009-05-07 インテル・コーポレーション Optical magnetometer array and method of making and using the same
JP2010085134A (en) * 2008-09-30 2010-04-15 Hitachi High-Technologies Corp Magnetic field measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167616A (en) * 2005-11-28 2007-07-05 Hitachi High-Technologies Corp Magnetic field measuring system, and optical pumping fluxmeter
JP2009518657A (en) * 2005-12-29 2009-05-07 インテル・コーポレーション Optical magnetometer array and method of making and using the same
JP2010085134A (en) * 2008-09-30 2010-04-15 Hitachi High-Technologies Corp Magnetic field measuring device

Also Published As

Publication number Publication date
JP5750919B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
US9291508B1 (en) Light-pulse atom interferometric device
EP2317331B1 (en) Magnetic field measuring apparatus
JP2018004462A (en) Magnetic field measurement device, adjustment method of magnetic field measurement device and method of manufacturing magnetic field measurement device
EP2952854B1 (en) Self-calibrating nuclear magnetic resonance (nmr) gyroscope system
US9500725B2 (en) Probe beam frequency stabilization in an atomic sensor system
EP2910964B1 (en) Probe beam frequency stabilization in an atomic sensor system
JP6077050B2 (en) Atomic sensor system
WO2013008500A1 (en) Magnetoencephalography meter and neuromagnetism measuring method
EP2952855B1 (en) Optical probe beam stabilization in an atomic sensor system
US9500722B2 (en) Magnetic field measurement apparatus
CN111854724B (en) Atomic spin precession detection device and method
Liu et al. Dynamics of a spin-exchange relaxation-free comagnetometer for rotation sensing
JP5750919B2 (en) Magnetic field measuring device
CN203931304U (en) A kind of comprehensive experimental device of measuring Faraday effect and magneto-optic modulation
JP5764949B2 (en) Magnetic field measuring device
Bevington et al. Dual-frequency cesium spin maser
JP5261284B2 (en) Magneto-optical spectrum measuring apparatus and magneto-optical spectrum measuring method
JP5434782B2 (en) Magnetic measuring device
JP2006125858A (en) Infrared gas analyzer and infrared gas analysis method
JP2012213547A (en) Magnetic field measurement device
JP2011232277A5 (en)
JP5682343B2 (en) Magnetic field measuring device
JP2012168078A (en) Magnetic field measuring device
JP5736795B2 (en) Magnetic field measuring device
US3058053A (en) Gyromagnetic magnetometer method and apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R150 Certificate of patent or registration of utility model

Ref document number: 5750919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees