JP2012163253A - Solar heat utilization water heater - Google Patents

Solar heat utilization water heater Download PDF

Info

Publication number
JP2012163253A
JP2012163253A JP2011023887A JP2011023887A JP2012163253A JP 2012163253 A JP2012163253 A JP 2012163253A JP 2011023887 A JP2011023887 A JP 2011023887A JP 2011023887 A JP2011023887 A JP 2011023887A JP 2012163253 A JP2012163253 A JP 2012163253A
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
panel
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011023887A
Other languages
Japanese (ja)
Other versions
JP5195947B2 (en
Inventor
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011023887A priority Critical patent/JP5195947B2/en
Publication of JP2012163253A publication Critical patent/JP2012163253A/en
Application granted granted Critical
Publication of JP5195947B2 publication Critical patent/JP5195947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat utilization water heater that utilizes solar energy with high efficiency to generate power and supply hot water, and has superior reliability.SOLUTION: The solar heat utilization water heater includes: a hot water storage tank 1; a photovoltaic power generation panel 4; a panel cooling apparatus 3 that cools the photovoltaic power generation panel 4; a circulation circuit having an outgoing channel 10 that sends water taken out from the inside of the hot water storage tank 1 to the panel cooling apparatus 3 and return channels 11, 12 that return hot water generated by the water receiving heat of the photovoltaic power generation panel 4 to the hot water storage tank 1; a bypass channel 13 that pours some of hot water flowing out from the panel cooling apparatus 3 into the outgoing channel 10; an inflow water temperature detection device 6a for detecting a temperature of water flowing into the panel cooling apparatus 3; a dew-point temperature obtaining device for obtaining a dew-point temperature of outside air; and a flow rate adjust device for adjusting a flow rate of hot water flowing in the bypass channel 13 so that an inflow water temperature detected by the inflow water temperature detection device 6a reaches the dew-point temperature or higher.

Description

本発明は、太陽熱利用給湯装置に関する。   The present invention relates to a solar water heater.

下記特許文献1には、太陽光発電パネルを冷却する装置を冷凍サイクルの蒸発器として構成し、太陽熱を熱源にヒートポンプを駆動させ、冷凍サイクルの凝縮器より温熱を供給する太陽光ヒートポンプシステムが開示されている。このシステムでは、蒸発器の蒸発温度を40〜60℃に制御し、太陽光発電パネルでの結露を抑制し、太陽光発電パネルの信頼性を確保している。   Patent Document 1 below discloses a solar heat pump system in which an apparatus for cooling a photovoltaic power generation panel is configured as an evaporator of a refrigeration cycle, a solar pump is used as a heat source to drive a heat pump, and heat is supplied from a condenser in the refrigeration cycle. Has been. In this system, the evaporation temperature of the evaporator is controlled to 40 to 60 ° C., condensation on the photovoltaic power generation panel is suppressed, and the reliability of the photovoltaic power generation panel is ensured.

特開2008−157483号公報JP 2008-155743 A

特許文献1の発明のように、太陽光発電パネルの熱をヒートポンプで回収するようにした場合、ヒートポンプを駆動する圧縮機の消費電力が生じる。そのため、太陽光発電パネルの熱源温度が高く、太陽光発電パネルで水を直接加熱することが可能である場合には、余分な消費電力が発生することとなり、装置の運転効率が低下する。また、太陽光発電パネルからより多くの熱量を得ようとした場合、太陽光発電パネルを冷却する冷却媒体の温度はできるだけ低いことが望ましいが、特許文献1の発明では、ヒートポンプを駆動するため、蒸発温度を低く運転することになり、多くの熱量を得ようとするとヒートポンプの運転効率が低下する。このため、更に多くの消費電力を要するようになり、装置の運転効率が更に低下するという問題もある。   When the heat of the photovoltaic power generation panel is recovered by the heat pump as in the invention of Patent Document 1, power consumption of the compressor that drives the heat pump is generated. Therefore, when the heat source temperature of the solar power generation panel is high and water can be directly heated by the solar power generation panel, extra power consumption is generated, and the operation efficiency of the apparatus is reduced. In addition, when trying to obtain a larger amount of heat from the photovoltaic power generation panel, the temperature of the cooling medium that cools the photovoltaic power generation panel is desirably as low as possible. However, in the invention of Patent Document 1, in order to drive the heat pump, The operation of the heat pump is lowered when the evaporation temperature is lowered and an attempt is made to obtain a large amount of heat. For this reason, more power consumption is required, and there is a problem that the operation efficiency of the apparatus further decreases.

本発明は、上述のような課題を解決するためになされたもので、太陽エネルギーを高効率に利用して発電および給湯を行うことができるとともに、信頼性に優れた太陽熱利用給湯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a solar water heater that can generate power and hot water using solar energy with high efficiency and has excellent reliability. For the purpose.

本発明に係る太陽熱利用給湯装置は、負荷側に供給する湯を貯える貯湯タンクと、太陽光発電パネルと、太陽光発電パネルを冷却するパネル冷却装置と、貯湯タンク内から取り出した水をパネル冷却装置に送る往き流路と、該水が太陽光発電パネルの熱を受け取ることによって生成された湯を貯湯タンクに戻す戻り流路とを有する循環回路と、パネル冷却装置から流出した湯の一部を往き流路に注入可能なバイパス流路と、パネル冷却装置に流入する水の温度を検出する入水温度検出手段と、外気の露点温度を取得する露点温度取得手段と、入水温度検出手段により検出される入水温度が、露点温度取得手段により取得された露点温度以上となるように、バイパス流路を流れる湯の流量を調整する流量調整手段と、を備える。   The hot water supply apparatus using solar heat according to the present invention includes a hot water storage tank for storing hot water supplied to the load side, a solar power generation panel, a panel cooling device for cooling the solar power generation panel, and panel cooling for water taken out from the hot water storage tank. A circulation circuit having a forward flow path to be sent to the apparatus, a return flow path for returning hot water generated by the water receiving the heat of the photovoltaic power generation panel to the hot water storage tank, and part of the hot water flowing out from the panel cooling device Detected by a bypass flow path that can be injected into the forward flow path, an incoming water temperature detection means that detects the temperature of the water flowing into the panel cooling device, a dew point temperature acquisition means that acquires the dew point temperature of the outside air, and an incoming water temperature detection means Flow rate adjusting means for adjusting the flow rate of hot water flowing through the bypass channel so that the incoming water temperature is equal to or higher than the dew point temperature acquired by the dew point temperature acquiring means.

本発明によれば、太陽光発電パネルの熱を直接的に利用して湯を生成することができる。このため、ヒートポンプを介在させる場合と異なり、圧縮機の消費電力が発生しないので、全体としてのエネルギー効率を高めることができる。また、パネル冷却装置に供給される水の温度を外気の露点温度以上とすることができるので、太陽光発電パネルに結露が生ずることを確実に防止することができる。このため、結露による太陽光発電パネルの絶縁の低下や材料劣化による長期信頼性の低下を確実に防止することができる。更に、太陽光発電パネルは、パネル温度が低いほど発電効率が上昇するので、パネル冷却装置による冷却で太陽光発電パネルの温度を低下させることで、太陽光発電パネルでの発電量を増加させることができる。これらのことから、本発明によれば、太陽エネルギーを高効率に利用して発電および給湯を行うことができるとともに、装置の信頼性を向上することができる。   According to the present invention, hot water can be generated by directly using the heat of the photovoltaic power generation panel. For this reason, unlike the case where a heat pump is interposed, since the power consumption of a compressor does not generate | occur | produce, the energy efficiency as a whole can be improved. Moreover, since the temperature of the water supplied to a panel cooling device can be made more than the dew point temperature of external air, it can prevent reliably that dew condensation arises in a photovoltaic power generation panel. For this reason, it is possible to reliably prevent a decrease in insulation of the photovoltaic power generation panel due to condensation and a decrease in long-term reliability due to material deterioration. Furthermore, since the power generation efficiency of the photovoltaic power generation panel increases as the panel temperature decreases, the amount of power generated by the photovoltaic power generation panel can be increased by lowering the temperature of the photovoltaic power generation panel by cooling with the panel cooling device. Can do. For these reasons, according to the present invention, solar energy can be used with high efficiency to generate power and hot water, and the reliability of the apparatus can be improved.

本発明の実施の形態1の太陽熱利用給湯装置を示す構成図である。It is a block diagram which shows the solar-powered hot water supply apparatus of Embodiment 1 of this invention. 本発明の実施の形態1において制御装置が三方弁の開度を制御するために実行するルーチンのフローチャートである。It is a flowchart of the routine performed in order that the control apparatus may control the opening degree of a three-way valve in Embodiment 1 of this invention. 本発明の実施の形態2の太陽熱利用給湯装置を示す構成図である。It is a block diagram which shows the solar-heating hot water supply apparatus of Embodiment 2 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1の太陽熱利用給湯装置を示す構成図である。図1に示すように、本実施形態の太陽熱利用給湯装置(以下、単に「給湯装置」と称する)は、貯湯タンク1と、ポンプ2と、パネル冷却装置3と、太陽光発電パネル4と、三方弁5とを有している。パネル冷却装置3は、太陽光発電パネル4の裏面に接触するように配置されており、発電時に高温となる太陽光発電パネル4から熱を奪い、太陽光発電パネル4を冷却することができる。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a solar water heater using Embodiment 1 of the present invention. As shown in FIG. 1, a solar water heater (hereinafter simply referred to as “hot water heater”) of the present embodiment includes a hot water storage tank 1, a pump 2, a panel cooling device 3, a photovoltaic power generation panel 4, And a three-way valve 5. The panel cooling device 3 is disposed so as to be in contact with the back surface of the photovoltaic power generation panel 4, and can remove heat from the photovoltaic power generation panel 4 that is at a high temperature during power generation to cool the photovoltaic power generation panel 4.

貯湯タンク1の下部と、パネル冷却装置3の入口との間は、往き流路10により接続されている。送水を行うためのポンプ2は、この往き流路10の途中に設けられている。パネル冷却装置3の出口と、三方弁5との間は、戻り流路11により接続されている。三方弁5と、貯湯タンク1の上部との間は、戻り流路12により接続されている。更に、三方弁5と、ポンプ2の上流側の往き流路10との間は、バイパス流路13により接続されている。   A lower passage of the hot water storage tank 1 and the inlet of the panel cooling device 3 are connected by an outward flow path 10. A pump 2 for supplying water is provided in the middle of the forward flow path 10. A return flow path 11 is connected between the outlet of the panel cooling device 3 and the three-way valve 5. The three-way valve 5 and the upper part of the hot water storage tank 1 are connected by a return flow path 12. Further, a bypass flow path 13 connects between the three-way valve 5 and the forward flow path 10 on the upstream side of the pump 2.

貯湯タンク1は、温度成層を形成しながら貯湯を行い、上部側の高温の湯と、下部側の低温の水とを、混じり合わないように貯留することができる。水道等の水源の水を供給する給水端Aは、給水流路14を介して貯湯タンク1の下部に接続されている。貯湯タンク1の上部と出湯端Bとは、給湯流路15を介して接続されている。負荷側の要求に応じて、貯湯タンク1内の上部に貯えられた湯が給湯流路15を通って出湯端Bへ出湯されると、これと同時に、給水端Aから給水流路14を通って送られた水が貯湯タンク1の下部に流入する。   The hot water storage tank 1 stores hot water while forming temperature stratification, and can store hot water on the upper side and low temperature water on the lower side so as not to be mixed. A water supply end A for supplying water from a water source such as a water supply is connected to the lower part of the hot water storage tank 1 via a water supply channel 14. The upper part of the hot water storage tank 1 and the hot water outlet end B are connected via a hot water supply channel 15. When the hot water stored in the upper part of the hot water storage tank 1 is discharged to the hot water outlet B through the hot water supply passage 15 in accordance with the demand on the load side, at the same time, the hot water stored in the upper part of the hot water storage tank 1 passes through the water supply passage 14. The sent water flows into the lower part of the hot water storage tank 1.

ポンプ2が作動すると、貯湯タンク1の下部から水が取り出され、この取り出された水が往き流路10を通ってパネル冷却装置3に流入する。太陽光発電パネル4は、発電時に受光することにより加熱され、高温(例えば70℃程度)となる。この太陽光発電パネル4の熱が、パネル冷却装置3を通る水に伝熱することにより、この水の温度が上昇する。本明細書では、便宜上、パネル冷却装置3で加熱されて温度が上昇した水を「湯」と称する。この湯は、パネル冷却装置3から流出し、戻り流路11、三方弁5、戻り流路12を経て、貯湯タンク1の上部に流入し、貯留される。太陽光発電パネル4は、パネル冷却装置3を通る水に熱を奪われることにより、冷却される。   When the pump 2 is operated, water is taken out from the lower part of the hot water storage tank 1, and the taken out water flows into the panel cooling device 3 through the forward flow path 10. The solar power generation panel 4 is heated by receiving light at the time of power generation, and becomes high temperature (for example, about 70 ° C.). As the heat of the photovoltaic power generation panel 4 is transferred to the water passing through the panel cooling device 3, the temperature of the water rises. In the present specification, for convenience, water heated by the panel cooling device 3 and having a raised temperature is referred to as “hot water”. This hot water flows out of the panel cooling device 3, passes through the return flow path 11, the three-way valve 5, and the return flow path 12 and flows into the upper part of the hot water storage tank 1 and stored. The photovoltaic power generation panel 4 is cooled by removing heat from the water passing through the panel cooling device 3.

三方弁5は、パネル冷却装置3から流出した湯の一部をバイパス流路13に分岐させることができる。三方弁5は、各流路の弁開度が連続的に変更可能な構成となっており、戻り流路12へ流す湯の流量と、バイパス流路13へ流す湯の流量との比を連続的に変更可能である。三方弁5で分岐した湯は、バイパス流路13を通って、ポンプ2の上流側の往き流路10を流れる水と合流する。このような構成により、ポンプ2からパネル冷却装置3に供給される水の温度は、バイパス流路13から合流する湯の量に応じて、上昇する。すなわち、バイパス流路13を流れる湯の流量が増加するほど、パネル冷却装置3に供給される水の温度が高くなる。   The three-way valve 5 can branch a part of the hot water flowing out from the panel cooling device 3 into the bypass flow path 13. The three-way valve 5 has a configuration in which the valve opening degree of each flow path can be continuously changed, and the ratio of the flow rate of hot water flowing to the return flow path 12 and the flow rate of hot water flowing to the bypass flow path 13 is continuous. Can be changed. The hot water branched by the three-way valve 5 passes through the bypass flow path 13 and joins with the water flowing through the upstream flow path 10 of the pump 2. With such a configuration, the temperature of the water supplied from the pump 2 to the panel cooling device 3 rises according to the amount of hot water joining from the bypass channel 13. That is, the temperature of the water supplied to the panel cooling device 3 increases as the flow rate of hot water flowing through the bypass flow path 13 increases.

本実施形態の給湯装置は、パネル冷却装置3に供給される水の温度を検出する温度センサ6a(入水温度検出手段)と、外気温度を検出する温度センサ6b(外気温度検出手段)と、パネル冷却装置3を出て貯湯タンク1に流入する湯の温度を検出する温度センサ6c(戻り温度検出手段)と、貯湯タンク1上部に滞留する湯の温度を検出する温度センサ6d(貯湯温度検出手段)と、制御装置7とを備えている。制御装置7は、温度センサ6a〜6dで検出された情報等に基づき、三方弁5の開度を制御する。   The hot water supply apparatus of this embodiment includes a temperature sensor 6a (incoming water temperature detecting means) that detects the temperature of water supplied to the panel cooling device 3, a temperature sensor 6b (outside air temperature detecting means) that detects the outside air temperature, and a panel. A temperature sensor 6c (return temperature detection means) for detecting the temperature of hot water flowing out of the cooling device 3 and flowing into the hot water storage tank 1 and a temperature sensor 6d (hot water storage temperature detection means) for detecting the temperature of hot water remaining in the upper part of the hot water storage tank 1 ) And a control device 7. The control device 7 controls the opening degree of the three-way valve 5 based on information detected by the temperature sensors 6a to 6d.

図2は、制御装置7が三方弁5の開度を制御するために実行するルーチンのフローチャートである。制御装置7は、本ルーチンを所定時間毎に繰り返し実行する。本ルーチンによれば、まず、温度センサ6bにより外気温度を計測する(ステップS1)。続いて、この計測された外気温度に基づいて、外気の露点温度(以下、単に「露点温度」と称する)を算出する(ステップS2)。露点温度の算出には、湿度の情報が必要となるが、本実施形態では湿度の変動の小さい環境を想定し、湿度は予め設定された固定値とする。   FIG. 2 is a flowchart of a routine executed by the control device 7 to control the opening degree of the three-way valve 5. The control device 7 repeatedly executes this routine every predetermined time. According to this routine, first, the outside air temperature is measured by the temperature sensor 6b (step S1). Subsequently, based on the measured outside air temperature, the dew point temperature of the outside air (hereinafter, simply referred to as “dew point temperature”) is calculated (step S2). The calculation of the dew point temperature requires information on the humidity. In the present embodiment, the humidity is assumed to be an environment where the fluctuation of the humidity is small, and the humidity is set to a fixed value set in advance.

続いて、ステップS2で算出された露点温度Tdと、温度センサ6aにより検出される、パネル冷却装置3に流入する水の温度(以下、「パネル入水温度」と略称することがある。)Twとを比較する(ステップS3)。その比較の結果、パネル入水温度Twが露点温度Tdより低い場合には、バイパス流路13に流れる湯の流量が増加するように、三方弁5の開度を、バイパス流路13側に開口する開度が大きくなる方向に補正する(ステップS4)。また、パネル入水温度Twが露点温度Tdより高く、且つ、両者の温度差が所定温度差ΔTより大きい場合には、バイパス流路13に流れる湯の流量が減少するように、三方弁5の開度を、バイパス流路13側に開口する開度が小さくなる方向に補正する。一方、パネル入水温度Twが露点温度Tdよりも高く、且つ、両者の温度差が所定温度差ΔT以下の場合(すなわち、Td≦Tw≦Td+ΔTの場合)には、三方弁5の開度を現在の開度に維持する(ステップS6)。なお、所定温度差ΔTは、例えば3〜5℃程度に設定される。   Subsequently, the dew point temperature Td calculated in step S2 and the temperature of water flowing into the panel cooling device 3 detected by the temperature sensor 6a (hereinafter sometimes referred to as “panel incoming temperature”) Tw. Are compared (step S3). As a result of the comparison, when the panel incoming water temperature Tw is lower than the dew point temperature Td, the opening of the three-way valve 5 is opened to the bypass flow passage 13 side so that the flow rate of hot water flowing through the bypass flow passage 13 increases. Correction is made in the direction of increasing the opening (step S4). When the panel incoming temperature Tw is higher than the dew point temperature Td and the temperature difference between the two is larger than the predetermined temperature difference ΔT, the three-way valve 5 is opened so that the flow rate of hot water flowing through the bypass passage 13 decreases. The degree is corrected so that the opening degree opening to the bypass flow path 13 side becomes smaller. On the other hand, when the panel incoming temperature Tw is higher than the dew point temperature Td and the temperature difference between them is equal to or smaller than the predetermined temperature difference ΔT (that is, when Td ≦ Tw ≦ Td + ΔT), the opening degree of the three-way valve 5 is set to the current value. (Step S6). The predetermined temperature difference ΔT is set to about 3 to 5 ° C., for example.

以上のような運転動作を行うことで、本給湯装置によれば、以下のような効果を得ることができる。まず、太陽光発電パネル4の熱を直接的に利用して湯を生成することができる。このため、ヒートポンプを介在させる場合と異なり、圧縮機が必要ない。それゆえ、圧縮機の消費電力が発生しないので、全体としてのエネルギー効率を高めることができる。   By performing the above operation, according to the hot water supply apparatus, the following effects can be obtained. First, hot water can be generated by directly using the heat of the photovoltaic power generation panel 4. For this reason, unlike the case where a heat pump is interposed, a compressor is not required. Therefore, since the power consumption of the compressor does not occur, the overall energy efficiency can be improved.

また、パネル冷却装置3に供給される水の温度を外気の露点温度以上とすることができる。そのため、太陽光発電パネル4に結露が生ずることを確実に防止することができる。太陽光発電パネル4の表面に結露が生じると、絶縁の低下や材料劣化による長期信頼性の低下の懸念がある。したがって、結露が確実に防止できることで、これらの信頼性上の問題を回避でき、信頼性を高めることができる。   Moreover, the temperature of the water supplied to the panel cooling device 3 can be set to be equal to or higher than the dew point temperature of the outside air. Therefore, it is possible to reliably prevent condensation on the photovoltaic power generation panel 4. When dew condensation occurs on the surface of the photovoltaic power generation panel 4, there is a concern that long-term reliability may decrease due to a decrease in insulation or material deterioration. Therefore, by reliably preventing condensation, these reliability problems can be avoided and the reliability can be improved.

更に、太陽光発電パネル4は、パネル温度が低いほど発電効率が上昇するという特性を持つ。本給湯装置によれば、パネル冷却装置3による冷却で太陽光発電パネル4の温度を低下させることができるので、太陽光発電パネル4での発電量を増加させることができる。よって、全体としてのエネルギー効率を更に高めることができる。   Furthermore, the photovoltaic power generation panel 4 has a characteristic that the power generation efficiency increases as the panel temperature decreases. According to the present hot water supply device, the temperature of the photovoltaic power generation panel 4 can be lowered by the cooling by the panel cooling device 3, so that the amount of power generation in the photovoltaic power generation panel 4 can be increased. Therefore, the energy efficiency as a whole can be further increased.

特に、上記の運転動作では、パネル冷却装置3に供給される水の温度を、露点温度と、露点温度よりΔT高い温度との間に維持することができる。このため、パネル冷却装置3に供給される水の温度を、太陽光発電パネル4に結露を生じさせない範囲で、なるべく低い温度に保つことができる。パネル冷却装置3では、太陽光発電パネル4と水との間で熱交換がなされ、太陽光発電パネル4の冷却と、水の加熱がなされるが、その際の熱交換量は、両者の温度差が大きいほど増加できる。従って、上記の運転動作によれば、太陽光発電パネル4に結露を生じさせない範囲で、なるべく多くの熱交換量を得ることができ、給湯装置としての運転効率を高めることができる。また、太陽光発電パネル4の温度をより低下させることができるので、発電効率を更に向上させることができる。   In particular, in the above operation, the temperature of the water supplied to the panel cooling device 3 can be maintained between the dew point temperature and a temperature higher than the dew point temperature by ΔT. For this reason, the temperature of the water supplied to the panel cooling device 3 can be kept as low as possible within a range that does not cause condensation on the photovoltaic power generation panel 4. In the panel cooling device 3, heat exchange is performed between the photovoltaic power generation panel 4 and water, and the photovoltaic power generation panel 4 is cooled and the water is heated. The larger the difference, the more it can be increased. Therefore, according to said driving | operation operation | movement, the heat exchange amount as much as possible can be obtained in the range which does not produce dew condensation on the photovoltaic power generation panel 4, and the operating efficiency as a hot water supply apparatus can be improved. Moreover, since the temperature of the photovoltaic power generation panel 4 can be further reduced, the power generation efficiency can be further improved.

また、本実施形態では、湿度は予め設定された固定値であるものとし、外気温度に基づいて露点温度を容易に算出することができる。ただし、本発明では、このような方法に限らず、外気の湿度に関する情報を取得し、その湿度情報も加味して露点温度を求めても良い。湿度情報を取得する方法としては、例えば、湿度を検出する湿度センサを設ける方法や、あるいは、太陽光発電パネル4の発電量より日射量を推算し、晴天、曇天、雨天の状況を判別し、その状態より湿度を推定する方法などが挙げられる。また、本発明では、例えば静電容量式露点計などの露点検出手段により露点温度を直接に検出したり、あるいは、気象台などで観測された湿度や露点温度に関する情報を通信で取得するようにしてもよい。   In the present embodiment, the humidity is a fixed value set in advance, and the dew point temperature can be easily calculated based on the outside air temperature. However, the present invention is not limited to such a method, and information on the humidity of the outside air may be acquired, and the dew point temperature may be obtained in consideration of the humidity information. As a method for acquiring humidity information, for example, a method of providing a humidity sensor for detecting humidity, or estimating the amount of solar radiation from the amount of power generated by the photovoltaic power generation panel 4, and determining the condition of sunny weather, cloudy weather, and rainy weather, For example, a method for estimating the humidity from the state can be mentioned. Further, in the present invention, for example, the dew point temperature is directly detected by a dew point detecting means such as a capacitance type dew point meter, or information on humidity and dew point temperature observed at a weather station or the like is acquired by communication. Also good.

また、パネル冷却装置3での水への加熱量は、天候に応じて変化する。例えば、一時的に曇天となった場合などは、加熱量が減少し、パネル冷却装置3から流出する湯の温度が、貯湯タンク1上部の貯湯温度より低くなる場合がある。この場合、パネル冷却装置3からの湯が貯湯タンク1上部の湯と混合することで、貯湯タンク1上部の貯湯温度が低下し、貯湯熱量が減少する可能性がある。このような事態を避けるため、制御装置7により、貯湯タンク1上部の貯湯温度を検出する温度センサ6dの検出値と、貯湯タンク1上部に流入する湯の温度を検出する温度センサ6cの検出値とを比較し、貯湯タンク1上部に流入する湯の温度が貯湯タンク1上部の貯湯温度と比べて所定温度差以上低い場合には、三方弁5の開度を制御し、バイパス流路13に流れる湯の流量を増加させるように制御してもよい。このように運転すると、パネル冷却装置3に供給される水の温度が上昇する。その結果、パネル冷却装置3から流出する湯の温度が上昇するので、貯湯タンク1上部に流入する湯の温度を、貯湯タンク1上部の貯湯温度と同等程度に高めることができる。このため、貯湯熱量が減少することを確実に回避できるので、より効率の高い装置の運転が実現される。   Moreover, the amount of heating to the water in the panel cooling device 3 changes according to the weather. For example, when it becomes cloudy temporarily, the amount of heating decreases, and the temperature of hot water flowing out from the panel cooling device 3 may become lower than the hot water storage temperature in the upper part of the hot water storage tank 1. In this case, the hot water from the panel cooling device 3 is mixed with the hot water in the upper part of the hot water storage tank 1, so that the hot water storage temperature in the upper part of the hot water storage tank 1 is lowered and the amount of stored hot water may be reduced. In order to avoid such a situation, the control device 7 detects the detected value of the temperature sensor 6d for detecting the hot water temperature at the upper part of the hot water tank 1, and the detected value of the temperature sensor 6c for detecting the temperature of the hot water flowing into the upper part of the hot water tank 1. When the temperature of hot water flowing into the upper part of the hot water storage tank 1 is lower than the hot water storage temperature of the upper part of the hot water storage tank 1 by a predetermined temperature difference or more, the opening degree of the three-way valve 5 is controlled and You may control to increase the flow volume of flowing hot water. If it operates in this way, the temperature of the water supplied to the panel cooling device 3 will rise. As a result, the temperature of the hot water flowing out from the panel cooling device 3 rises, so that the temperature of the hot water flowing into the upper part of the hot water storage tank 1 can be raised to the same level as the hot water temperature in the upper part of the hot water storage tank 1. For this reason, since it can avoid reliably that the amount of hot water storage heat reduces, the operation | movement of a more efficient apparatus is implement | achieved.

また、ポンプ2の流量については、一定速で運転させてもよいし、あるいは温度状況に応じてインバータなどにより回転数を変化させ、流量を制御してもよい。例えば、貯湯タンク1上部に流入する湯の温度が貯湯タンク1上部の貯湯温度よりも低い場合に、ポンプ2の流量を低下させる制御を行ってもよい。これにより、パネル冷却装置3での熱交換による水の温度上昇幅が大きくなるので、パネル冷却装置3から流出して貯湯タンク1に流入する湯の温度が上昇する。その結果、貯湯タンク1の貯湯温度の低下を確実に抑制し、より効率の高い装置の運転が実現される。   Further, the flow rate of the pump 2 may be operated at a constant speed, or the flow rate may be controlled by changing the rotational speed by an inverter or the like according to the temperature condition. For example, when the temperature of hot water flowing into the upper part of the hot water storage tank 1 is lower than the hot water storage temperature of the upper part of the hot water storage tank 1, control may be performed to reduce the flow rate of the pump 2. Thereby, since the temperature rise width of the water by the heat exchange in the panel cooling device 3 becomes large, the temperature of the hot water flowing out from the panel cooling device 3 and flowing into the hot water storage tank 1 rises. As a result, a decrease in the hot water storage temperature of the hot water storage tank 1 is reliably suppressed, and a more efficient operation of the apparatus is realized.

一方、パネル冷却装置3から流出する湯の温度が過度に高い場合、水に含まれるカルシウムの析出などによるスケールが発生し、流路が閉塞しやすくなる可能性がある。そこで、パネル冷却装置3から流出する湯の温度が高温(例えば80℃以上)である場合に、ポンプ2の流量を増加させる制御を行ってもよい。これにより、貯湯タンク1上部に流入する湯の温度が低下し、その結果、スケールの生成量を抑制し、流路の閉塞を回避することで、より信頼性の高い装置の運転を行うことができる。   On the other hand, when the temperature of the hot water flowing out from the panel cooling device 3 is excessively high, a scale may be generated due to precipitation of calcium contained in the water, and the flow path may be easily blocked. Therefore, when the temperature of the hot water flowing out from the panel cooling device 3 is high (for example, 80 ° C. or higher), control for increasing the flow rate of the pump 2 may be performed. Thereby, the temperature of the hot water flowing into the upper part of the hot water storage tank 1 is lowered, and as a result, the production amount of scale is suppressed and the blockage of the flow path is avoided, so that a more reliable apparatus can be operated. it can.

なお、太陽光発電パネル4の結露については、水による冷却だけでなく、周囲の空気温度の低下によっても生じる可能性がある。そこで、夜間など昼間の発電中の時間以外にも、ポンプ2を駆動し、露点温度以上の水を供給することで、パネル冷却装置3の温度を露点温度以上に維持する運転を行ってもよい。これにより、太陽光発電パネル4の結露を抑制し、信頼性を高める運転を行うことができる。   Condensation of the photovoltaic power generation panel 4 may be caused not only by cooling with water but also by a decrease in ambient air temperature. Therefore, the operation of maintaining the temperature of the panel cooling device 3 at or above the dew point temperature by driving the pump 2 and supplying water at or above the dew point temperature may be performed in addition to the time during the daytime power generation such as at night. . Thereby, the operation | movement which suppresses the dew condensation of the solar power generation panel 4 and improves reliability can be performed.

実施の形態2.
次に、図3を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 3. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. Is omitted.

前述した実施の形態1では、貯湯タンク1の下部に水の取り出し口を一箇所設けている。これに対し、図3に示すように、本実施形態では、上下方向に位置を異ならせた複数箇所の取り出し口16を貯湯タンク1に設けるとともに、各取り出し口16に対応して開閉弁8をそれぞれ設けている。このような構成において、制御装置7が各開閉弁8の開閉を選択することにより、任意の取り出し口16から水を取り出して、パネル冷却装置3に供給することができる。貯湯タンク1内部では、温度成層が形成されるため、取り出し口16の位置が高いほど、取り出される水の温度が高くなる。このため、本実施形態では、水を取り出す位置を複数の取り出し口16から選択することにより、取り出される水の温度を選択することができる。これにより、以下のような利点がある。   In the first embodiment described above, one outlet for water is provided in the lower part of the hot water storage tank 1. On the other hand, as shown in FIG. 3, in the present embodiment, the hot water storage tank 1 is provided with a plurality of outlets 16 whose positions are different in the vertical direction, and the opening / closing valve 8 is provided corresponding to each outlet 16. Each is provided. In such a configuration, when the control device 7 selects opening / closing of each on-off valve 8, water can be taken out from an arbitrary outlet 16 and supplied to the panel cooling device 3. Since temperature stratification is formed inside the hot water storage tank 1, the higher the position of the outlet 16, the higher the temperature of the extracted water. For this reason, in this embodiment, the temperature of the water to be taken out can be selected by selecting the position from which the water is taken out from the plurality of outlets 16. This has the following advantages.

貯湯タンク1の下部の水温が極めて低いようなときには、貯湯タンク1の下部の取り出し口16から取り出した水をパネル冷却装置3に供給している場合に、バイパス流路13を流れる湯の流量が最大となるように三方弁5の開度を制御しても、パネル冷却装置3に供給される水の温度が露点温度未満となる場合が考えられる。そのような場合に、本実施形態の装置では、温度センサ6aにより検出されるパネル入水温度に基づいて制御装置7が各開閉弁8の開閉を選択することにより、水の取り出し位置を、上方の取り出し口16に切り換えることができる。この切り換えにより、取り出される水の温度が上昇するため、パネル冷却装置3に供給される水の温度を露点温度以上にすることができる。このため、太陽光発電パネル4に結露が生ずることを確実に防止することができる。   When the water temperature in the lower part of the hot water storage tank 1 is extremely low, the flow rate of the hot water flowing through the bypass passage 13 when the water taken out from the outlet 16 in the lower part of the hot water storage tank 1 is supplied to the panel cooling device 3 is Even if the opening degree of the three-way valve 5 is controlled so as to be maximized, the temperature of the water supplied to the panel cooling device 3 may be less than the dew point temperature. In such a case, in the apparatus of the present embodiment, the control device 7 selects opening / closing of each on-off valve 8 based on the panel water inlet temperature detected by the temperature sensor 6a, so The outlet 16 can be switched. By this switching, the temperature of the water to be taken out increases, so that the temperature of the water supplied to the panel cooling device 3 can be set to the dew point temperature or higher. For this reason, it can prevent reliably that dew condensation arises in the photovoltaic power generation panel 4. FIG.

また、装置の運転開始時などは、装置各部の温度が低く、より結露が生じやすい運転となる可能性がある。そこで、装置の運転開始時は、貯湯タンク1上部の取り出し口16から水を取り出し、パネル冷却装置3に供給される水の温度が結露を回避できる温度となっていることを確認してから、取り出し口16を下方側のものに順次切り換えていくようにしてもよい。このような運転を行うことで、装置の運転開始時など、装置各部の温度が低い場合においても、結露をより確実に抑制し、信頼性を高める運転を行うことができる。   In addition, when the operation of the apparatus is started, there is a possibility that the temperature of each part of the apparatus is low and the operation is more likely to cause condensation. Therefore, at the start of operation of the device, water is taken out from the outlet 16 at the top of the hot water storage tank 1 and after confirming that the temperature of the water supplied to the panel cooling device 3 is a temperature at which condensation can be avoided, The takeout port 16 may be sequentially switched to the lower one. By performing such an operation, even when the temperature of each part of the apparatus is low, such as at the start of the operation of the apparatus, it is possible to perform an operation that more reliably suppress condensation and increase reliability.

また、本実施形態では、制御装置7により、貯湯タンク1上部の貯湯温度を検出する温度センサ6dの検出値と、貯湯タンク1上部に流入する湯の温度を検出する温度センサ6cの検出値とを比較し、貯湯タンク1上部に流入する湯の温度が貯湯タンク1上部の貯湯温度と比べて所定温度差以上低い場合には、水を取り出す取り出し口16を上方側のものに切り換えるように制御してもよい。この制御により、パネル冷却装置3に供給される水の温度が上昇するので、パネル冷却装置3から流出する湯の温度が上昇する。その結果、貯湯タンク1上部に流入する湯の温度を、貯湯タンク1上部の貯湯温度と同等程度に高めることができる。このため、貯湯熱量が減少することを確実に回避できるので、より効率の高い装置の運転が実現される。   Moreover, in this embodiment, the detected value of the temperature sensor 6d which detects the hot water storage temperature of the hot water storage tank 1 upper part by the control apparatus 7, and the detection value of the temperature sensor 6c which detects the temperature of the hot water which flows into the hot water storage tank 1 upper part, If the temperature of the hot water flowing into the upper part of the hot water storage tank 1 is lower than the temperature of the hot water stored in the upper part of the hot water storage tank 1 by a predetermined temperature difference or more, the outlet 16 for taking out the water is switched to the upper one. May be. By this control, the temperature of the water supplied to the panel cooling device 3 rises, so the temperature of the hot water flowing out from the panel cooling device 3 rises. As a result, the temperature of hot water flowing into the upper part of the hot water storage tank 1 can be increased to the same level as the hot water storage temperature in the upper part of the hot water storage tank 1. For this reason, since it can avoid reliably that the amount of hot water storage heat reduces, the operation | movement of a more efficient apparatus is implement | achieved.

なお、以上説明した実施の形態では、貯湯タンク1は温度成層を形成しながら貯湯を行い、上部に湯が、下部に低温の水が貯留されるとして説明したが、本発明では、貯湯タンク各部の温度が均一になるように沸き上げる循環加温方式の貯湯タンクを用いてもよい。また、貯湯タンク内の温度が所定温度以上(例えば結露を回避可能とする30℃以上)となるまでは、前述した循環加温方式で沸き上げ、それ以降は温度成層を形成しながら貯湯する一過式の沸き上げを行ってもよい。このような運転を行った場合、貯湯タンク1からパネル冷却装置3に供給される水の温度は基本的に結露を回避可能な温度となるので、前述した装置の起動時や夜間の運転であっても、取り出し口16を変更することなく露点温度以上の水を供給できるので、貯湯タンク1からの取り出し口16を1個に集約することができ、より低コストの装置とすることができる。   In the embodiment described above, the hot water storage tank 1 stores hot water while forming temperature stratification, and hot water is stored in the upper part and low temperature water is stored in the lower part. However, in the present invention, each part of the hot water storage tank is stored. Alternatively, a circulating warming hot water storage tank that heats up so that the temperature of the water becomes uniform may be used. Further, until the temperature in the hot water storage tank reaches a predetermined temperature or higher (for example, 30 ° C. or higher to avoid condensation), the water is boiled by the above-described circulation heating method, and thereafter, hot water is stored while forming a temperature stratification. Excessive boiling may be performed. When such an operation is performed, the temperature of the water supplied from the hot water storage tank 1 to the panel cooling device 3 is basically a temperature at which condensation can be avoided. However, since water having a dew point temperature or higher can be supplied without changing the outlet 16, the outlet 16 from the hot water storage tank 1 can be integrated into one, and a lower cost apparatus can be obtained.

1 貯湯タンク
2 ポンプ
3 パネル冷却装置
4 太陽光発電パネル
5 三方弁
6a,6b,6c,6d 温度センサ
7 制御装置
8 開閉弁
10 往き流路
11,12 戻り流路
13 バイパス流路
14 給水流路
15 給湯流路
16 取り出し口
DESCRIPTION OF SYMBOLS 1 Hot water storage tank 2 Pump 3 Panel cooling device 4 Solar power generation panel 5 Three-way valve 6a, 6b, 6c, 6d Temperature sensor 7 Control device 8 On-off valve 10 Outgoing flow path 11, 12 Return flow path 13 Bypass flow path 14 Water supply flow path 15 Hot water supply flow path 16 Outlet

Claims (5)

負荷側に供給する湯を貯える貯湯タンクと、
太陽光発電パネルと、
前記太陽光発電パネルを冷却するパネル冷却装置と、
前記貯湯タンク内から取り出した水を前記パネル冷却装置に送る往き流路と、該水が前記太陽光発電パネルの熱を受け取ることによって生成された湯を前記貯湯タンクに戻す戻り流路とを有する循環回路と、
前記パネル冷却装置から流出した前記湯の一部を前記往き流路に注入可能なバイパス流路と、
前記パネル冷却装置に流入する水の温度を検出する入水温度検出手段と、
外気の露点温度を取得する露点温度取得手段と、
前記入水温度検出手段により検出される入水温度が、前記露点温度取得手段により取得された露点温度以上となるように、前記バイパス流路を流れる湯の流量を調整する流量調整手段と、
を備える太陽熱利用給湯装置。
A hot water storage tank for storing hot water to be supplied to the load side,
Solar power panels,
A panel cooling device for cooling the solar power generation panel;
A forward flow path for sending water taken out from the hot water storage tank to the panel cooling device; and a return flow path for returning hot water generated by the water receiving heat of the photovoltaic power generation panel to the hot water storage tank. A circulation circuit;
A bypass flow path capable of injecting a part of the hot water flowing out from the panel cooling device into the forward flow path;
Inlet water temperature detecting means for detecting the temperature of water flowing into the panel cooling device;
Dew point temperature acquisition means for acquiring the dew point temperature of outside air;
A flow rate adjusting means for adjusting the flow rate of hot water flowing through the bypass flow path so that the incoming water temperature detected by the incoming water temperature detecting means is equal to or higher than the dew point temperature acquired by the dew point temperature acquiring means;
A solar water heater using
前記流量調整手段は、前記入水温度が、前記露点温度と、前記露点温度より所定温度差だけ高い温度との間の範囲に入るように、前記バイパス流路を流れる湯の流量を調整する請求項1記載の太陽熱利用給湯装置。   The flow rate adjusting means adjusts the flow rate of hot water flowing through the bypass channel so that the incoming water temperature falls within a range between the dew point temperature and a temperature higher than the dew point temperature by a predetermined temperature difference. Item 1. A solar water heater according to item 1. 外気温度を検出する外気温度検出手段を備え、
前記露点温度取得手段は、前記外気温度検出手段により検出された外気温度に基づいて前記露点温度を算出する請求項1または2記載の太陽熱利用給湯装置。
An outside temperature detecting means for detecting outside temperature is provided,
3. The solar-powered hot water supply apparatus according to claim 1, wherein the dew point temperature acquisition unit calculates the dew point temperature based on an outside air temperature detected by the outside air temperature detection unit.
前記貯湯タンクには、前記パネル冷却装置に送る水を取り出し可能な取り出し口が高さの異なる複数の箇所に設けられており、
前記入水温度検出手段により検出される入水温度に応じて、前記パネル冷却装置に送る水を取り出す位置を前記複数の取り出し口のうちから選択する取り出し位置選択手段を備える請求項1乃至3の何れか1項記載の太陽熱利用給湯装置。
The hot water storage tank is provided with a plurality of outlets having different heights from which water to be sent to the panel cooling device can be taken out.
Any of Claim 1 thru | or 3 provided with the taking-out position selection means which selects the position which takes out the water sent to the said panel cooling device from these some taking-out ports according to the incoming water temperature detected by the said incoming water temperature detection means. The hot water supply apparatus using solar heat according to claim 1.
前記戻り流路から前記貯湯タンクに流入する湯の温度を検出する戻り温度検出手段と、
前記貯湯タンクの上部に貯えられている湯の温度を検出する貯湯温度検出手段と、
前記戻り温度検出手段により検出される戻り温度と、前記貯湯温度検出手段により検出される貯湯温度とに基づいて、前記バイパス流路を流れる湯の流量を調整する第2の流量調整手段と、
を備える請求項1乃至4の何れか1項記載の太陽熱利用給湯装置。
Return temperature detection means for detecting the temperature of hot water flowing into the hot water storage tank from the return flow path;
Hot water storage temperature detecting means for detecting the temperature of the hot water stored in the upper part of the hot water storage tank;
Second flow rate adjusting means for adjusting the flow rate of hot water flowing through the bypass flow path based on the return temperature detected by the return temperature detecting means and the hot water storage temperature detected by the hot water storage temperature detecting means;
The solar-heat-use hot water supply apparatus of any one of Claims 1 thru | or 4 provided with these.
JP2011023887A 2011-02-07 2011-02-07 Solar water heater Active JP5195947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023887A JP5195947B2 (en) 2011-02-07 2011-02-07 Solar water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023887A JP5195947B2 (en) 2011-02-07 2011-02-07 Solar water heater

Publications (2)

Publication Number Publication Date
JP2012163253A true JP2012163253A (en) 2012-08-30
JP5195947B2 JP5195947B2 (en) 2013-05-15

Family

ID=46842812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023887A Active JP5195947B2 (en) 2011-02-07 2011-02-07 Solar water heater

Country Status (1)

Country Link
JP (1) JP5195947B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020063890A (en) * 2018-10-19 2020-04-23 株式会社長谷工コーポレーション Solar power generation and hot water supply system
JP2020522673A (en) * 2017-06-02 2020-07-30 ソーブルー・アーゲー How to operate a hybrid collector solar system
CN113747762A (en) * 2021-09-03 2021-12-03 中国电建集团中南勘测设计研究院有限公司 Anti-condensation system and anti-condensation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413409A (en) * 2018-03-09 2018-08-17 宁夏黑金科技有限公司 A kind of solar cogeneration fixed-end forces system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127694A (en) * 2003-09-29 2005-05-19 Matsushita Electric Ind Co Ltd Heat storage type solar panel, solar system, heat storage type solar heat pump system, and operating method for heat storage type solar heat pump system
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method
JP2008157483A (en) * 2006-12-21 2008-07-10 Kenji Umetsu Photovoltaic heat pump system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127694A (en) * 2003-09-29 2005-05-19 Matsushita Electric Ind Co Ltd Heat storage type solar panel, solar system, heat storage type solar heat pump system, and operating method for heat storage type solar heat pump system
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method
JP2008157483A (en) * 2006-12-21 2008-07-10 Kenji Umetsu Photovoltaic heat pump system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522673A (en) * 2017-06-02 2020-07-30 ソーブルー・アーゲー How to operate a hybrid collector solar system
JP2020063890A (en) * 2018-10-19 2020-04-23 株式会社長谷工コーポレーション Solar power generation and hot water supply system
JP7022487B2 (en) 2018-10-19 2022-02-18 株式会社長谷工コーポレーション Solar power generation hot water supply system
CN113747762A (en) * 2021-09-03 2021-12-03 中国电建集团中南勘测设计研究院有限公司 Anti-condensation system and anti-condensation method

Also Published As

Publication number Publication date
JP5195947B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5779070B2 (en) Solar energy utilization system
JP5510506B2 (en) Solar system
JP4952867B2 (en) Hot water storage hot water system and its operation method
JP4981589B2 (en) Solar power generation / heat collection combined use device
US9010281B2 (en) Hot water supply system
DK177404B1 (en) An energy system with a heat pump
JP3918807B2 (en) Hot water storage type electric water heater
KR101606893B1 (en) Device for adjusting temperature of molding die
JP5195947B2 (en) Solar water heater
JP2007113836A (en) Heat pump type water heater
KR101621168B1 (en) Hot water supply system
SE538309C2 (en) Apparatus and method for heating air in an air treatment device
JP5464195B2 (en) Solar-powered heat pump hot water supply system
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JP2011089707A (en) Hot water storage type water heater, and control method of hot water storage type water heater
JP2010266135A (en) Heat pump type water heater
JP6570874B2 (en) Heat storage system
JP2006052902A (en) Cogeneration system
JP4833707B2 (en) Waste heat recovery device
JP5792501B2 (en) Thermal storage device and method for preventing freezing thereof
JP2008220217A (en) Greenhouse warming system
JP2012237515A (en) Storage heat pump water heater
JP2011257130A (en) Apparatus for recovering exhaust heat
JP2012098003A (en) Thermoelectric-generation cogeneration system
JP2015183948A (en) Solar device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5195947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250